1
|
Mayumi H. A Review of Cyclophosphamide-Induced Transplantation Tolerance in Mice and Its Relationship With the HLA-Haploidentical Bone Marrow Transplantation/Post-Transplantation Cyclophosphamide Platform. Front Immunol 2021; 12:744430. [PMID: 34659242 PMCID: PMC8513786 DOI: 10.3389/fimmu.2021.744430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/14/2021] [Indexed: 11/21/2022] Open
Abstract
The bone marrow transplantation (BMT) between haplo-identical combinations (haploBMT) could cause unacceptable bone marrow graft rejection and graft-versus-host disease (GVHD). To cross such barriers, Johns Hopkins platform consisting of haploBMT followed by post-transplantation (PT) cyclophosphamide (Cy) has been used. Although the central mechanism of the Johns Hopkins regimen is Cy-induced tolerance with bone marrow cells (BMC) followed by Cy on days 3 and 4, the mechanisms of Cy-induced tolerance may not be well understood. Here, I review our studies in pursuing skin-tolerance from minor histocompatibility (H) antigen disparity to xenogeneic antigen disparity through fully allogeneic antigen disparity. To overcome fully allogeneic antigen barriers or xenogeneic barriers for skin grafting, pretreatment of the recipients with monoclonal antibodies (mAb) against T cells before cell injection was required. In the cells-followed-by-Cy system providing successful skin tolerance, five mechanisms were identified using the correlation between super-antigens and T-cell receptor (TCR) Vβ segments mainly in the H-2-identical murine combinations. Those consist of: 1) clonal destruction of antigen-stimulated-thus-proliferating mature T cells with Cy; 2) peripheral clonal deletion associated with immediate peripheral chimerism; 3) intrathymic clonal deletion associated with intrathymic chimerism; 4) delayed generation of suppressor T (Ts) cells; and 5) delayed generation of clonal anergy. These five mechanisms are insufficient to induce tolerance when the donor-recipient combinations are disparate in MHC antigens plus minor H antigens as is seen in haploBMT. Clonal destruction is incomplete when the antigenic disparity is too strong to establish intrathymic mixed chimerism. Although this incomplete clonal destruction leaves the less-proliferative, antigen-stimulated T cells behind, these cells may confer graft-versus-leukemia (GVL) effects after haploBMT/PTCy.
Collapse
|
2
|
Hopkins JR, Crean RM, Catici DAM, Sewell AK, Arcus VL, Van der Kamp MW, Cole DK, Pudney CR. Peptide cargo tunes a network of correlated motions in human leucocyte antigens. FEBS J 2020; 287:3777-3793. [PMID: 32134551 PMCID: PMC8651013 DOI: 10.1111/febs.15278] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/20/2020] [Accepted: 03/03/2020] [Indexed: 11/28/2022]
Abstract
Most biomolecular interactions are typically thought to increase the (local) rigidity of a complex, for example, in drug‐target binding. However, detailed analysis of specific biomolecular complexes can reveal a more subtle interplay between binding and rigidity. Here, we focussed on the human leucocyte antigen (HLA), which plays a crucial role in the adaptive immune system by presenting peptides for recognition by the αβ T‐cell receptor (TCR). The role that the peptide plays in tuning HLA flexibility during TCR recognition is potentially crucial in determining the functional outcome of an immune response, with obvious relevance to the growing list of immunotherapies that target the T‐cell compartment. We have applied high‐pressure/temperature perturbation experiments, combined with molecular dynamics simulations, to explore the drivers that affect molecular flexibility for a series of different peptide–HLA complexes. We find that different peptide sequences affect peptide–HLA flexibility in different ways, with the peptide cargo tuning a network of correlated motions throughout the pHLA complex, including in areas remote from the peptide‐binding interface, in a manner that could influence T‐cell antigen discrimination.
Collapse
Affiliation(s)
- Jade R Hopkins
- Division of Infection and Immunity, School of Medicine, Cardiff University, UK
| | - Rory M Crean
- Department of Biology and Biochemistry, University of Bath, UK.,Doctoral Training Centre in Sustainable Chemical Technologies, University of Bath, UK
| | | | - Andrew K Sewell
- Division of Infection and Immunity, School of Medicine, Cardiff University, UK
| | - Vickery L Arcus
- School of Science, Faculty of Science and Engineering, University of Waikato, Hamilton, New Zealand
| | | | - David K Cole
- Division of Infection and Immunity, School of Medicine, Cardiff University, UK
| | - Christopher R Pudney
- Department of Biology and Biochemistry, University of Bath, UK.,Centre for Therapeutic Innovation, University of Bath, UK
| |
Collapse
|
3
|
Targeting STAT3 and STAT5 in Tumor-Associated Immune Cells to Improve Immunotherapy. Cancers (Basel) 2019; 11:cancers11121832. [PMID: 31766350 PMCID: PMC6966642 DOI: 10.3390/cancers11121832] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/16/2019] [Accepted: 11/18/2019] [Indexed: 02/06/2023] Open
Abstract
Oncogene-induced STAT3-activation is central to tumor progression by promoting cancer cell expression of pro-angiogenic and immunosuppressive factors. STAT3 is also activated in infiltrating immune cells including tumor-associated macrophages (TAM) amplifying immune suppression. Consequently, STAT3 is considered as a target for cancer therapy. However, its interplay with other STAT-family members or transcription factors such as NF-κB has to be considered in light of their concerted regulation of immune-related genes. Here, we discuss new attempts at re-educating immune suppressive tumor-associated macrophages towards a CD8 T cell supporting profile, with an emphasis on the role of STAT transcription factors on TAM functional programs. Recent clinical trials using JAK/STAT inhibitors highlighted the negative effects of these molecules on the maintenance and function of effector/memory T cells. Concerted regulation of STAT3 and STAT5 activation in CD8 T effector and memory cells has been shown to impact their tumor-specific responses including intra-tumor accumulation, long-term survival, cytotoxic activity and resistance toward tumor-derived immune suppression. Interestingly, as an escape mechanism, melanoma cells were reported to impede STAT5 nuclear translocation in both CD8 T cells and NK cells. Ours and others results will be discussed in the perspective of new developments in engineered T cell-based adoptive therapies to treat cancer patients.
Collapse
|
4
|
Madura F, Rizkallah PJ, Legut M, Holland CJ, Fuller A, Bulek A, Schauenburg AJ, Trimby A, Hopkins JR, Wells SA, Godkin A, Miles JJ, Sami M, Li Y, Liddy N, Jakobsen BK, Loveridge EJ, Cole DK, Sewell AK. TCR-induced alteration of primary MHC peptide anchor residue. Eur J Immunol 2019; 49:1052-1066. [PMID: 31091334 PMCID: PMC6618058 DOI: 10.1002/eji.201948085] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/21/2019] [Accepted: 05/14/2019] [Indexed: 12/12/2022]
Abstract
The HLA-A*02:01-restricted decapeptide EAAGIGILTV, derived from melanoma antigen recognized by T-cells-1 (MART-1) protein, represents one of the best-studied tumor associated T-cell epitopes, but clinical results targeting this peptide have been disappointing. This limitation may reflect the dominance of the nonapeptide, AAGIGILTV, at the melanoma cell surface. The decapeptide and nonapeptide are presented in distinct conformations by HLA-A*02:01 and TCRs from clinically relevant T-cell clones recognize the nonapeptide poorly. Here, we studied the MEL5 TCR that potently recognizes the nonapeptide. The structure of the MEL5-HLA-A*02:01-AAGIGILTV complex revealed an induced fit mechanism of antigen recognition involving altered peptide-MHC anchoring. This "flexing" at the TCR-peptide-MHC interface to accommodate the peptide antigen explains previously observed incongruences in this well-studied system and has important implications for future therapeutic approaches. Finally, this study expands upon the mechanisms by which molecular plasticity can influence antigen recognition by T cells.
Collapse
Affiliation(s)
| | | | | | | | - Anna Fuller
- School of MedicineCardiff UniversityCardiffUK
| | - Anna Bulek
- School of MedicineCardiff UniversityCardiffUK
| | | | | | | | | | | | - John J. Miles
- School of MedicineCardiff UniversityCardiffUK
- Centre for Biodiscovery and Molecular Development of TherapeuticsAustralian Institute of Tropical Health and MedicineJames Cook UniversityCairnsQueenslandAustralia
| | | | - Yi Li
- Immunocore Ltd.AbingdonUK
| | | | | | - E. Joel Loveridge
- School of ChemistryCardiff UniversityCardiffUK
- Department of ChemistrySwansea UniversitySwanseaUK
| | - David K. Cole
- School of MedicineCardiff UniversityCardiffUK
- Immunocore Ltd.AbingdonUK
| | - Andrew K. Sewell
- School of MedicineCardiff UniversityCardiffUK
- Systems Immunity Research InstituteCardiff UniversityCardiffUK
| |
Collapse
|
5
|
van den Heuvel H, Heutinck KM, van der Meer-Prins EMW, Franke-van Dijk MEI, van Miert PPMC, Zhang X, Ten Berge IJM, Claas FHJ. The avidity of cross-reactive virus-specific T cells for their viral and allogeneic epitopes is variable and depends on epitope expression. Hum Immunol 2017; 79:39-50. [PMID: 29100943 DOI: 10.1016/j.humimm.2017.10.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 10/30/2017] [Accepted: 10/30/2017] [Indexed: 10/18/2022]
Abstract
Virus-specific T cells can recognize allogeneic HLA (allo-HLA) through cross-reactivity of their T-cell receptor (TCR). In a transplantation setting, such allo-HLA cross-reactivity may contribute to harmful immune responses towards the allograft, provided that the cross-reactive T cells get sufficiently activated upon recognition of the allo-HLA. An important determinant of T-cell activation is TCR avidity, which to date, has remained largely unexplored for allo-HLA-cross-reactive virus-specific T cells. For this purpose, cold target inhibition assays were performed using allo-HLA-cross-reactive virus-specific memory CD8+ T-cell clones as responders, and syngeneic cells loaded with viral peptide and allogeneic cells as hot (radioactively-labeled) and cold (non-radioactively-labeled) targets. CD8 dependency of the T-cell responses was assessed using interferon γ (IFNγ) enzyme-linked immunosorbent assay (ELISA) in the presence and absence of CD8-blocking antibodies. At high viral-peptide loading concentrations, T-cell clones consistently demonstrated lower avidity for allogeneic versus viral epitopes, but at suboptimal concentrations the opposite was observed. In line, anti-viral reactivity was CD8 independent at high, but not at suboptimal viral-peptide-loading concentrations. The avidity of allo-HLA-cross-reactive virus-specific memory CD8+ T cells is therefore highly dependent on epitope expression, and as a consequence, can be both higher and lower for allogeneic versus viral targets under different (patho)physiological conditions.
Collapse
Affiliation(s)
- Heleen van den Heuvel
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands.
| | - Kirstin M Heutinck
- Department of Experimental Immunology, Academic Medical Centre, Amsterdam, The Netherlands; Renal Transplant Unit, Department of Internal Medicine, Division of Internal Medicine, Academic Medical Centre, Amsterdam, The Netherlands
| | - Ellen M W van der Meer-Prins
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Marry E I Franke-van Dijk
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Paula P M C van Miert
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Xiaoqian Zhang
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Ineke J M Ten Berge
- Renal Transplant Unit, Department of Internal Medicine, Division of Internal Medicine, Academic Medical Centre, Amsterdam, The Netherlands
| | - Frans H J Claas
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
6
|
Infectious pathogens may trigger specific allo-HLA reactivity via multiple mechanisms. Immunogenetics 2017; 69:631-641. [PMID: 28718002 PMCID: PMC5537314 DOI: 10.1007/s00251-017-0989-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 04/18/2017] [Indexed: 12/21/2022]
Abstract
Transplant recipients can be sensitized against allo-HLA antigens by previous transplantation, blood transfusion, or pregnancy. While there is growing awareness that multiple components of the immune system can act as effectors of the alloresponse, the role of infectious pathogen exposure in triggering sensitization and allograft rejection has remained a matter of much debate. Here, we describe that exposure to pathogens may enhance the immune response to allogeneic HLA antigens via different pathways. The potential role of allo-HLA cross-reactivity of virus-specific memory T cells, activation of innate immunity leading to a more efficient induction of the adaptive alloimmune response by antigen-presenting cells, and bystander activation of existing memory B cell activation will be discussed in this review.
Collapse
|
7
|
Rossjohn J, Gras S, Miles JJ, Turner SJ, Godfrey DI, McCluskey J. T cell antigen receptor recognition of antigen-presenting molecules. Annu Rev Immunol 2014; 33:169-200. [PMID: 25493333 DOI: 10.1146/annurev-immunol-032414-112334] [Citation(s) in RCA: 560] [Impact Index Per Article: 50.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Major Histocompatibility Complex (MHC) locus encodes classical MHC class I and MHC class II molecules and nonclassical MHC-I molecules. The architecture of these molecules is ideally suited to capture and present an array of peptide antigens (Ags). In addition, the CD1 family members and MR1 are MHC class I-like molecules that bind lipid-based Ags and vitamin B precursors, respectively. These Ag-bound molecules are subsequently recognized by T cell antigen receptors (TCRs) expressed on the surface of T lymphocytes. Structural and associated functional studies have been highly informative in providing insight into these interactions, which are crucial to immunity, and how they can lead to aberrant T cell reactivity. Investigators have determined over thirty unique TCR-peptide-MHC-I complex structures and twenty unique TCR-peptide-MHC-II complex structures. These investigations have shown a broad consensus in docking geometry and provided insight into MHC restriction. Structural studies on TCR-mediated recognition of lipid and metabolite Ags have been mostly confined to TCRs from innate-like natural killer T cells and mucosal-associated invariant T cells, respectively. These studies revealed clear differences between TCR-lipid-CD1, TCR-metabolite-MR1, and TCR-peptide-MHC recognition. Accordingly, TCRs show remarkable structural and biological versatility in engaging different classes of Ag that are presented by polymorphic and monomorphic Ag-presenting molecules of the immune system.
Collapse
Affiliation(s)
- Jamie Rossjohn
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia; ,
| | | | | | | | | | | |
Collapse
|
8
|
Hischenhuber B, Havlicek H, Todoric J, Höllrigl-Binder S, Schreiner W, Knapp B. Differential geometric analysis of alterations in MH α-helices. J Comput Chem 2013; 34:1862-79. [PMID: 23703160 PMCID: PMC3739936 DOI: 10.1002/jcc.23328] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 04/12/2013] [Accepted: 04/13/2013] [Indexed: 01/03/2023]
Abstract
Antigen presenting cells present processed peptides via their major histocompatibility (MH) complex to the T cell receptors (TRs) of T cells. If a peptide is immunogenic, a signaling cascade can be triggered within the T cell. However, the binding of different peptides and/or different TRs to MH is also known to influence the spatial arrangement of the MH α-helices which could itself be an additional level of T cell regulation. In this study, we introduce a new methodology based on differential geometric parameters to describe MH deformations in a detailed and comparable way. For this purpose, we represent MH α-helices by curves. On the basis of these curves, we calculate in a first step the curvature and torsion to describe each α-helix independently. In a second step, we calculate the distribution parameter and the conical curvature of the ruled surface to describe the relative orientation of the two α-helices. On the basis of four different test sets, we show how these differential geometric parameters can be used to describe changes in the spatial arrangement of the MH α-helices for different biological challenges. In the first test set, we illustrate on the basis of all available crystal structures for (TR)/pMH complexes how the binding of TRs influences the MH helices. In the second test set, we show a cross evaluation of different MH alleles with the same peptide and the same MH allele with different peptides. In the third test set, we present the spatial effects of different TRs on the same peptide/MH complex. In the fourth test set, we illustrate how a severe conformational change in an α-helix can be described quantitatively. Taken together, we provide a novel structural methodology to numerically describe subtle and severe alterations in MH α-helices for a broad range of applications.
Collapse
Affiliation(s)
- Birgit Hischenhuber
- Center for Medical Statistics, Informatics, and Intelligent Systems, Section for Biosimulation and Bioinformatics, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
9
|
Baker BM, Scott DR, Blevins SJ, Hawse WF. Structural and dynamic control of T-cell receptor specificity, cross-reactivity, and binding mechanism. Immunol Rev 2013; 250:10-31. [PMID: 23046120 DOI: 10.1111/j.1600-065x.2012.01165.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Over the past two decades, structural biology has shown how T-cell receptors engage peptide/major histocompatibility complex (MHC) complexes and provided insight into the mechanisms underlying antigen specificity and cross-reactivity. Here we review and contextualize our contributions, which have emphasized the influence of structural changes and molecular flexibility. A repeated observation is the presence of conformational melding, in which the T-cell receptor (TCR), peptide, and in some cases, MHC protein cooperatively adjust in order for recognition to proceed. The structural changes reflect the intrinsic dynamics of the unligated proteins. Characterization of the dynamics of unligated TCR shows how binding loop motion can influence TCR cross-reactivity as well as specificity towards peptide and MHC. Examination of peptide dynamics indicates not only peptide-specific variation but also a peptide dependence to MHC flexibility. This latter point emphasizes that the TCR engages a composite peptide/MHC surface and that physically the receptor makes little distinction between the peptide and MHC. Much additional evidence for this can be found within the database of available structures, including our observations of a peptide dependence to the TCR binding mode and structural compensations for altered interatomic interactions, in which lost TCR-peptide interactions are replaced with TCR-MHC interactions. The lack of a hard-coded physical distinction between peptide and MHC has implications not only for specificity and cross-reactivity but also the mechanisms underlying MHC restriction as well as attempts to modulate and control TCR recognition.
Collapse
Affiliation(s)
- Brian M Baker
- Department of Chemistry and Biochemistry, University of Notre Dame, IN, USA.
| | | | | | | |
Collapse
|
10
|
Affiliation(s)
- Atsushi Irie
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University
| | - Yasuharu Nishimura
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University
| |
Collapse
|
11
|
McCoy WH, Wang X, Yokoyama WM, Hansen TH, Fremont DH. Structural mechanism of ER retrieval of MHC class I by cowpox. PLoS Biol 2012; 10:e1001432. [PMID: 23209377 PMCID: PMC3507924 DOI: 10.1371/journal.pbio.1001432] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 10/17/2012] [Indexed: 01/07/2023] Open
Abstract
One of the hallmarks of viral immune evasion is the capacity to disrupt major histocompatibility complex class I (MHCI) antigen presentation to evade T-cell detection. Cowpox virus encoded protein CPXV203 blocks MHCI surface expression by exploiting the KDEL-receptor recycling pathway, and here we show that CPXV203 directly binds a wide array of fully assembled MHCI proteins, both classical and non-classical. Further, the stability of CPXV203/MHCI complexes is highly pH dependent, with dramatically increased affinities at the lower pH of the Golgi relative to the endoplasmic reticulum (ER). Crystallographic studies reveal that CPXV203 adopts a beta-sandwich fold similar to poxvirus chemokine binding proteins, and binds the same highly conserved MHCI determinants located under the peptide-binding platform that tapasin, CD8, and natural killer (NK)-receptors engage. Mutagenesis of the CPXV203/MHCI interface identified the importance of two CPXV203 His residues that confer low pH stabilization of the complex and are critical to ER retrieval of MHCI. These studies clarify mechanistically how CPXV203 coordinates with other cowpox proteins to thwart antigen presentation.
Collapse
Affiliation(s)
- William H. McCoy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Xiaoli Wang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Wayne M. Yokoyama
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Ted H. Hansen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Daved H. Fremont
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
12
|
Autologous HIV-1 clade-B Nef peptides elicit increased frequency, breadth and function of CD8+ T-cells compared to consensus peptides. PLoS One 2012. [PMID: 23185362 PMCID: PMC3501503 DOI: 10.1371/journal.pone.0049562] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE To determine the function and phenotype of CD8(+) T-cells targeting consensus and autologous sequences of entire HIV-1 Nef protein. METHODS Multiparameter flow cytometry-based analysis was used to evaluate the responses of two treatment naïve HIV-infected individuals, during primary and the chronic phases of infection. RESULTS A greater breadth and magnitude of CD8 IFN-γ responses to autologous compared to clade-B consensus peptides was observed in both subjects. Cross recognition between autologous and consensus peptides decreased in both subjects during progression from primary to chronic infection. The frequencies of TEMRA and TEM CD8(+) T-cells targeting autologous peptides were higher than those targeting consensus peptides and were more polyfunctional (IFN-γ(+) Gr-B(+) CD107a(+)). CONCLUSIONS Our data indicate superior sensitivity and specificity of autologous peptides. The functional and maturational aspects of "real" versus "cross-recognized" responses were also found to differ, highlighting the importance of a sequence-specific approach towards understanding HIV immune response.
Collapse
|
13
|
Puech PH, Nevoltris D, Robert P, Limozin L, Boyer C, Bongrand P. Force measurements of TCR/pMHC recognition at T cell surface. PLoS One 2011; 6:e22344. [PMID: 21799834 PMCID: PMC3142151 DOI: 10.1371/journal.pone.0022344] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 06/25/2011] [Indexed: 01/07/2023] Open
Abstract
The rupture forces and adhesion frequencies of single recognition complexes between an affinity selected peptide/MHC complex and a TCR at a murine hybridoma surface were measured using Atomic Force Microscopy. When the CD8 coreceptor is absent, the adhesion frequency depends on the nature of the peptide but the rupture force does not. When CD8 is present, no effect of the nature of the peptide is observed. CD8 is proposed to act as a time and distance lock, enabling the shorter TCR molecule to bridge the pMHC and have time to finely read the peptide. Ultimately, such experiments could help the dissection of the sequential steps by which the TCR reads the peptide/MHC complex in order to control T cell activation.
Collapse
Affiliation(s)
- Pierre-Henri Puech
- Laboratoire Adhésion et Inflammation, Parc Scientifique et Technologique de Luminy, Marseille, France.
| | | | | | | | | | | |
Collapse
|
14
|
Scifo C, Mekaelian L, Munyazesa E, Schmitt-Verhulst AM, Guimezanes A. Selection of T-cell receptors with a recurrent CDR3β peptide-contact motif within the repertoire of alloreactive CD8(+) T cells. Eur J Immunol 2011; 41:2414-23. [PMID: 21590766 DOI: 10.1002/eji.201141494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 04/28/2011] [Accepted: 05/10/2011] [Indexed: 11/06/2022]
Abstract
Peptide/MHC complexes recognized by alloreactive T lymphocytes (TLs) have been identified, but their contribution to in vivo allo-rejection is not known. We previously characterized the peptide pBM1, highly represented among endogenous H-2K(b) (K(b) )-associated peptides and critically required to induce full activation of H-2(k) monoclonal CD8(+) TLs expressing the cognate TCR-BM3.3. Here, we asked whether a pBM1/K(b) -specific TL subset could be detected within a polyclonal TL population rejecting allogeneic cells in vivo. We show that the proportion of pBM1/K(b) -binding CD8(+) TLs increased from <0.04% in naïve mice to 3% of activated CD44(+) CD8(+) TLs in H-2(k) mice rejecting K(b) -expressing cells. Among these, TCR-Vβ2 usage was greatly enriched, and 75% of them shared a TCR-Vβ2 CDR3β motif with the prototype TCR-BM3.3. Fewer than 5% of K(b) -reactive CD44(+) CD8(+) TLs not binding pBM1/K(b) displayed this CDR3β motif. We found that the recurrent CDR3β motif of pBM1/K(b) -binding TLs was assembled from distinct V/D/J recombination events, suggesting that it is recruited upon immunization for its optimal TCR-peptide/MHC fit. Thus, a CDR3β motif generated by a process akin to "convergent recombination" accounts for a sizable fraction of the alloreactive anti-K(b) TCR repertoire.
Collapse
Affiliation(s)
- Caroline Scifo
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Marseille, France
| | | | | | | | | |
Collapse
|
15
|
MHC I stabilizing potential of computer-designed octapeptides. J Biomed Biotechnol 2010; 2010:396847. [PMID: 20508831 PMCID: PMC2876253 DOI: 10.1155/2010/396847] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 01/27/2010] [Accepted: 03/08/2010] [Indexed: 11/17/2022] Open
Abstract
Experimental results are presented for 180 in silico designed octapeptide sequences and their stabilizing effects on the major histocompatibility class I molecule H-2Kb. Peptide sequence design was accomplished by a combination of an ant colony optimization algorithm with artificial neural network classifiers. Experimental tests yielded nine H-2Kb stabilizing and 171 nonstabilizing peptides. 28 among the nonstabilizing octapeptides contain canonical motif residues known to be favorable for MHC I stabilization. For characterization of the area covered by stabilizing and non-stabilizing octapeptides in sequence space, we visualized the distribution of 100,603 octapeptides using a self-organizing map. The experimental results present evidence that the canonical sequence motives of the SYFPEITHI database on their own are insufficient for predicting MHC I protein stabilization.
Collapse
|
16
|
Armstrong K, Piepenbrink K, Baker B. Conformational changes and flexibility in T-cell receptor recognition of peptide-MHC complexes. Biochem J 2008; 415:183-96. [PMID: 18800968 PMCID: PMC2782316 DOI: 10.1042/bj20080850] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 06/23/2008] [Accepted: 07/09/2008] [Indexed: 01/07/2023]
Abstract
A necessary feature of the immune system, TCR (T-cell receptor) cross-reactivity has been implicated in numerous autoimmune pathologies and is an underlying cause of transplant rejection. Early studies of the interactions of alphabeta TCRs (T-cell receptors) with their peptide-MHC ligands suggested that conformational plasticity in the TCR CDR (complementarity determining region) loops is a dominant contributor to T-cell cross-reactivity. Since these initial studies, the database of TCRs whose structures have been solved both bound and free is now large enough to permit general conclusions to be drawn about the extent of TCR plasticity and the types and locations of motion that occur. In the present paper, we review the conformational differences between free and bound TCRs, quantifying the structural changes that occur and discussing their possible roles in specificity and cross-reactivity. We show that, rather than undergoing major structural alterations or 'folding' upon binding, the majority of TCR CDR loops shift by relatively small amounts. The structural changes that do occur are dominated by hinge-bending motions, with loop remodelling usually occurring near loop apexes. As predicted from previous studies, the largest changes are in the hypervariable CDR3alpha and CDR3beta loops, although in some cases the germline-encoded CDR1alpha and CDR2alpha loops shift in magnitudes that approximate those of the CDR3 loops. Intriguingly, the smallest shifts are in the germline-encoded loops of the beta-chain, consistent with recent suggestions that the TCR beta domain may drive ligand recognition.
Collapse
Affiliation(s)
- Kathryn M. Armstrong
- *Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, U.S.A
| | - Kurt H. Piepenbrink
- *Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, U.S.A
| | - Brian M. Baker
- *Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, U.S.A
- †Walther Cancer Research Center, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, U.S.A
| |
Collapse
|
17
|
Mazza C, Auphan-Anezin N, Gregoire C, Guimezanes A, Kellenberger C, Roussel A, Kearney A, van der Merwe PA, Schmitt-Verhulst AM, Malissen B. How much can a T-cell antigen receptor adapt to structurally distinct antigenic peptides? EMBO J 2007; 26:1972-83. [PMID: 17363906 PMCID: PMC1847653 DOI: 10.1038/sj.emboj.7601605] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Accepted: 01/23/2007] [Indexed: 01/15/2023] Open
Abstract
Binding degeneracy is thought to constitute a fundamental property of the T-cell antigen receptor (TCR), yet its structural basis is poorly understood. We determined the crystal structure of a complex involving the BM3.3 TCR and a peptide (pBM8) bound to the H-2K(bm8) major histocompatibility complex (MHC) molecule, and compared it with the structures of the BM3.3 TCR bound to H-2K(b) molecules loaded with two peptides that had a minimal level of primary sequence identity with pBM8. Our findings provide a refined structural view of the basis of BM3.3 TCR cross-reactivity and a structural explanation for the long-standing paradox that a TCR antigen-binding site can be both specific and degenerate. We also measured the thermodynamic features and biological penalties that incurred during cross-recognition. Our data illustrate the difficulty for a given TCR in adapting to distinct peptide-MHC surfaces while still maintaining affinities that result in functional in vivo responses. Therefore, when induction of protective effector T cells is used as the ultimate criteria for adaptive immunity, TCRs are probably much less degenerate than initially assumed.
Collapse
Affiliation(s)
- Catherine Mazza
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerrannée, Marseille Cedex 9, France
- INSERM, U631, Marseille Cedex 9, France
- CNRS, UMR6102, Marseille Cedex 9, France
| | - Nathalie Auphan-Anezin
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerrannée, Marseille Cedex 9, France
- INSERM, U631, Marseille Cedex 9, France
- CNRS, UMR6102, Marseille Cedex 9, France
| | - Claude Gregoire
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerrannée, Marseille Cedex 9, France
- INSERM, U631, Marseille Cedex 9, France
- CNRS, UMR6102, Marseille Cedex 9, France
| | - Annick Guimezanes
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerrannée, Marseille Cedex 9, France
- INSERM, U631, Marseille Cedex 9, France
- CNRS, UMR6102, Marseille Cedex 9, France
| | - Christine Kellenberger
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerrannée, Marseille Cedex 9, France
- INSERM, U631, Marseille Cedex 9, France
- CNRS, UMR6102, Marseille Cedex 9, France
| | - Alain Roussel
- AFMB UMR6098 CNRS, Parc Scientifique de Luminy, Marseille, Cedex 09, France
| | - Alice Kearney
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | - Anne-Marie Schmitt-Verhulst
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerrannée, Marseille Cedex 9, France
- INSERM, U631, Marseille Cedex 9, France
- CNRS, UMR6102, Marseille Cedex 9, France
| | - Bernard Malissen
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerrannée, Marseille Cedex 9, France
- INSERM, U631, Marseille Cedex 9, France
- CNRS, UMR6102, Marseille Cedex 9, France
- Centre d'Immunologie de Marseille-Luminy, Campus de Luminy, Case 906, 13288 Marseille Cedex 09, France. Tel.: +33 491 269 418; Fax: +33 491 269 430; E-mail:
| |
Collapse
|
18
|
Verdeil G, Chaix J, Schmitt-Verhulst AM, Auphan-Anezin N. Temporal cross-talk between TCR and STAT signals for CD8 T cell effector differentiation. Eur J Immunol 2007; 36:3090-100. [PMID: 17111352 DOI: 10.1002/eji.200636347] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The strength and duration of signaling through surface receptors is a primary means of controlling cell fate decisions. In adaptive immunity, Ag-initiated T cell stimulation is secondarily regulated by cytokines. We here summarize evidence for temporal control of a gene expression program in naive CD8 T cells. It is initiated in response to TCR engagement but relies on secondary signaling from cytokine receptors to be sustained and to allow development of full effector capacity. This mechanism permits cytokine receptor signaling to rescue abortive TCR signaling, such as that induced in response to weak or partial TCR agonists. Indeed, limiting TCR-initiated signaling on the Ras/ERK pathway may be complemented by STAT activation. Thus, TCR- and cytokine-driven activation of transcription factors and epigenetic modifications may act in concert in a temporally staggered process to establish the functional program of effector CD8 T cells. Based on gene expression profiling, molecular targets whose activation or inactivation may boost or dampen CD8 T cell effectors are also identified. Manipulation of these targets may, respectively, increase anti-tumor responses or prevent graft-versus-host reactions.
Collapse
Affiliation(s)
- Grégory Verdeil
- Centre d'Immunologie de Marseille-Luminy, INSERM U631, CNRS UMR 6102, Université de la Méditerranée, Marseille, France
| | | | | | | |
Collapse
|