1
|
Brummer C, Singer K, Renner K, Bruss C, Hellerbrand C, Dorn C, Reichelt-Wurm S, Gronwald W, Pukrop T, Herr W, Banas M, Kreutz M. The spleen-liver axis supports obesity-induced systemic and fatty liver inflammation via MDSC and NKT cell enrichment. Mol Cell Endocrinol 2025; 601:112518. [PMID: 40054835 DOI: 10.1016/j.mce.2025.112518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 01/29/2025] [Accepted: 03/05/2025] [Indexed: 04/01/2025]
Abstract
Obesity promotes adipose tissue inflammation and leads to impaired local but also systemic immune cell homeostasis. This chronic low-grade inflammation plays a significant role in the development of obesity-associated secondary diseases such as metabolic associated fatty liver disease or cancer. The spleen as the central organ of immune cell regulation is anatomically directly connected to the visceral adipose tissue and the liver via the portal vein circulation. However, the inter-organ crosstalk and linkage between obesity-induced systemic, hepatic and splenic immune cell dysregulation is not clearly outlined. In this study blood, spleen, and liver immune cells of non-obese wildtype vs. leptin deficient obese BTBR mice were isolated and analyzed in terms of leukocyte composition by flow cytometry. Significant differences between circulating, spleen- and liver-resident immune cell distribution revealed, that obesity-induced hepatic and systemic immune cell dysregulation is distinct from splenic immune cell reprogramming. Fatty liver inflammation was associated with splenic myeloid derived suppressor cell (MDSC) and natural killer T cell (NKT) enrichment whereas loss of hepatic T and B cells was not reflected by the splenic lymphocyte landscape. Correlation analysis confirmed a selective strong positive correlation between spleen and liver MDSC and NKT cell distribution indicating that the spleen-liver axis modulates obesity-induced immune dysregulation in a cell-specific manner. Similar results were observed in a diet-induced obesity mouse model. These data provide novel insights into the role of the spleen-liver axis in obesity-induced inflammation and foster the understanding of obesity-associated complications such as fatty liver disease and cancer.
Collapse
Affiliation(s)
- Christina Brummer
- Department of Internal Medicine III, University Hospital Regensburg, 93053, Regensburg, Germany.
| | - Katrin Singer
- Department of Internal Medicine III, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Kathrin Renner
- Department of Otorhinolaryngology, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Christina Bruss
- Department of Internal Medicine III, University Hospital Regensburg, 93053, Regensburg, Germany; Department of Gynecology and Obstetrics, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Claus Hellerbrand
- Institute of Biochemistry, University of Erlangen, 91054, Erlangen, Germany
| | - Christoph Dorn
- Institute of Pharmacy, University of Regensburg, 93053, Regensburg, Germany
| | - Simone Reichelt-Wurm
- Department of Nephrology, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Wolfram Gronwald
- Institute of Functional Genomics, University of Regensburg, 93053, Regensburg, Germany
| | - Tobias Pukrop
- Department of Internal Medicine III, University Hospital Regensburg, 93053, Regensburg, Germany; Comprehensive Cancer Center Ostbayern (CCCO), 93053, Regensburg, Germany
| | - Wolfgang Herr
- Department of Internal Medicine III, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Miriam Banas
- Department of Nephrology, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Marina Kreutz
- Department of Internal Medicine III, University Hospital Regensburg, 93053, Regensburg, Germany
| |
Collapse
|
2
|
Taselaar AE, Wijngaarden LH, Klaassen RA, van der Harst E, Dunkelgrun M, Kuijper TM, Ambagtsheer G, Hendriks T, de Bruin RWF, Litjens NHR. Bariatric surgery reverses morbid obesity-induced changes in the composition of circulating immune cells-a prospective cohort study. Surg Obes Relat Dis 2025:S1550-7289(25)00008-5. [PMID: 40038017 DOI: 10.1016/j.soard.2024.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/15/2024] [Accepted: 12/22/2024] [Indexed: 03/06/2025]
Abstract
BACKGROUND Morbid obesity is associated with aging of the immune system, a phenomenon known as "inflammaging," characterized by increased numbers of various immune cell subsets. OBJECTIVES To evaluate the long-term effects of bariatric surgery on immune cell subsets in patients with obesity and to determine the impact of metabolic syndrome on these changes. SETTING High-volume bariatric center, Netherlands. METHODS This prospective cohort study included patients with obesity, with and without metabolic syndrome, as well as lean controls. Peripheral blood samples were collected preoperatively (T0) and at various time points up to 18 months postoperatively (T18). Flow cytometry was used to measure absolute numbers of T cells, B cells, natural killer (NK) cells, and monocyte subsets, with adjustments for age and cytomegalovirus (CMV) serostatus. RESULTS At T0, patients with obesity had elevated numbers of CD4+ CD31 naïve T cells, CD8+ terminally differentiated effector memory RA T cells, double-negative B cells, plasmablasts, NK cells, and monocytes compared with lean controls. CD8+ central memory T cells were decreased in patients with obesity. While most immune cell subsets gradually normalized by T18, some subsets, including T cells, B cells, and NK cells, that were initially elevated, decreased during follow-up and ultimately ended up lower than those in lean controls at T12 or T18. Metabolic syndrome did not affect these outcomes. COVID-19-related disruptions reduced the number of patients assessed over time. CONCLUSIONS Bariatric surgery restores the harmful effects of morbid obesity on the composition of innate and adaptive immune cell subsets in the long-term for patients with obesity, both with and without metabolic syndrome.
Collapse
Affiliation(s)
- Annick Elianna Taselaar
- Department of Surgery, Erasmus MC, Erasmus MC Transplant Institute, University Medical Center, Rotterdam, Netherlands; Department of Surgery, Maasstad Hospital, Rotterdam, Netherlands.
| | - Leontine Henriëtte Wijngaarden
- Department of Surgery, Erasmus MC, Erasmus MC Transplant Institute, University Medical Center, Rotterdam, Netherlands; Department of Surgery, Maasstad Hospital, Rotterdam, Netherlands
| | | | | | - Martin Dunkelgrun
- Department of Surgery, Franciscus Gasthuis & Vlietland, Rotterdam, Netherlands
| | | | - Gisela Ambagtsheer
- Department of Surgery, Erasmus MC, Erasmus MC Transplant Institute, University Medical Center, Rotterdam, Netherlands
| | - Tessa Hendriks
- Department of Surgery, Maasstad Hospital, Rotterdam, Netherlands
| | | | - Nicolle Helena Renier Litjens
- Department of Internal Medicine, Erasmus MC Transplant Institute, Division Nephrology and Transplantation, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
3
|
Morris I, Vrieling F, Bouwman A, Stienstra R, Kalkhoven E. Lipid accumulation in adipose tissue-resident iNKT cells contributes to an inflammatory phenotype. Adipocyte 2024; 13:2421750. [PMID: 39484712 PMCID: PMC11540091 DOI: 10.1080/21623945.2024.2421750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 11/03/2024] Open
Abstract
Reciprocal communication between adipocytes and immune cells is essential to maintain optimal adipose tissue (AT) functionality. Amongst others, adipocytes directly interact with invariant NKT cells (iNKT cells), which in turn secrete various cytokines. A lipid-rich microenvironment, as observed in obesity, skews this adipocyte-driven cytokine output towards a more inflammatory output. Whether a lipid-rich microenvironment also affects iNKT cells directly, however, is unknown. Here, we show that primary mouse iNKT cells isolated from AT can accumulate lipids in lipid droplets (LDs), more so than liver- and spleen-resident iNKT cells. Furthermore, a lipid-rich microenvironment increased the production of the proinflammatory cytokine IFNγ. Next, to an indirect, adipocyte-mediated cue, iNKT cells can directly respond to environmental lipid changes, supporting a potential role as nutrient sensors.
Collapse
Affiliation(s)
- Imogen Morris
- Ce nter for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Frank Vrieling
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Annemieke Bouwman
- Ce nter for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Rinke Stienstra
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Eric Kalkhoven
- Ce nter for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
4
|
Wilkin C, Piette J, Legrand-Poels S. Unravelling metabolic factors impacting iNKT cell biology in obesity. Biochem Pharmacol 2024; 228:116436. [PMID: 39029630 DOI: 10.1016/j.bcp.2024.116436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/01/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
Obesity and related diseases have reached epidemic proportions and continue to rise. Beyond creating an economical burden, obesity and its co-morbidities are associated with shortened human life expectancy. Despite major advances, the underlying mechanisms of obesity remain not fully elucidated. Recently, several studies have highlighted that various immune cells are metabolically reprogrammed in obesity, thereby profoundly affecting the immune system. This sheds light on a new field of interest: the impact of obesity-related systemic metabolic changes affecting immune system that could lead to immunosurveillance loss. Among immune cells altered by obesity, invariant Natural Killer T (iNKT) cells have recently garnered intense focus due to their ability to recognize lipid antigen. While iNKT cells are well-described to be affected by obesity, how and to what extent immunometabolic factors (e.g., lipids, glucose, cytokines, adipokines, insulin and free fatty acids) can drive iNKT cells alterations remains unclear, but represent an emerging field of research. Here, we review the current knowledge on iNKT cells in obesity and discuss the immunometabolic factors that could modulate their phenotype and activity.
Collapse
Affiliation(s)
- Chloé Wilkin
- Laboratory of Immunometabolism and Nutrition, GIGA, ULiège, Liège, Belgium.
| | - Jacques Piette
- Laboratory of Virology and Immunology, GIGA, ULiège, Liège, Belgium
| | | |
Collapse
|
5
|
Rodrigues DF, Fagundes GBP, Monteiro BL, Monteze NM, Rodrigues AMDS, Vieira ÉLM, Teixeira AL, Teixeira MM, Oliveira MCD, Correia MITD, Generoso SDV, Ferreira AVM. Blunted inflammatory response is associated with a lower response to a weight loss dietary intervention in liver recipients. Clin Nutr 2024; 43:2438-2447. [PMID: 39305754 DOI: 10.1016/j.clnu.2024.09.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/24/2024] [Accepted: 09/13/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND & AIMS Obesity is associated with chronic low-grade inflammation, and adipose tissue inflammation is required for fatty tissue remodeling. Interestingly, immunosuppressed patients, as liver transplant recipients, often experience excessive weight gain. We investigated how liver recipients' inflammatory response affects body weight loss induced by dietary treatment. METHODS Overweight liver recipients were paired with non-transplanted subjects to compare their peripheral immune profiles. RESULTS Transplanted patients had similar profiles of peripheral blood mononuclear cells compared to controls but lower CD8lowCD56+CD16+NK cells and higher B lymphocytes. Patients showed lower serum concentrations of IFN-γ, TNF, IL-4, IL-2, and IL-10 and lower inflammatory responsiveness of peripheral blood mononuclear cells under inflammatory stimuli. Liver recipients paired with non-transplanted subjects followed a weight loss dietary plan for 6 months to verify body composition changes. After 3 and 6 months of nutritional follow-up, the control group lost more body weight than the liver recipient group. The control group decreased fat mass and waist circumference, which was not observed in transplanted patients. CONCLUSION Therefore, liver recipients under immunosuppressant treatment responded less to different inflammatory stimuli. This impaired inflammatory milieu might be implicated in the lack of response to weight loss dietary intervention. Inflammation may be essential to trigger the weight loss induced by dietary prescription. CLINICAL TRIAL REGISTRY ClinicalTrials.gov identification number: NCT03103984.
Collapse
Affiliation(s)
- Débora Fernandes Rodrigues
- Immunometabolism, Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Gabriela Barbosa Pires Fagundes
- Immunometabolism, Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Brenda Loise Monteiro
- Immunometabolism, Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Nayara Mussi Monteze
- Immunometabolism, Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ana Maria Dos Santos Rodrigues
- Immunometabolism, Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Érica Leandro Marciano Vieira
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Antônio Lucio Teixeira
- Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, TX, United States
| | - Mauro Martins Teixeira
- Immunopharmacology, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marina Chaves de Oliveira
- Immunometabolism, Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Simone de Vasconcelos Generoso
- Nutrition and Health Program, Department of Nutrition, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Adaliene Versiani Matos Ferreira
- Immunometabolism, Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
6
|
Pellicci DG, Tavakolinia N, Perriman L, Berzins SP, Menne C. Thymic development of human natural killer T cells: recent advances and implications for immunotherapy. Front Immunol 2024; 15:1441634. [PMID: 39267746 PMCID: PMC11390520 DOI: 10.3389/fimmu.2024.1441634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/05/2024] [Indexed: 09/15/2024] Open
Abstract
Invariant natural killer T (iNKT) cells are a subset of lipid-reactive, unconventional T cells that have anti-tumor properties that make them a promising target for cancer immunotherapy. Recent studies have deciphered the developmental pathway of human MAIT and Vγ9Vδ2 γδ-T cells as well as murine iNKT cells, yet our understanding of human NKT cell development is limited. Here, we provide an update in our understanding of how NKT cells develop in the human body and how knowledge regarding their development could enhance human treatments by targeting these cells.
Collapse
Affiliation(s)
- Daniel G Pellicci
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Naeimeh Tavakolinia
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, VIC, Australia
| | - Louis Perriman
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Fiona Elsey Cancer Institute, Ballarat, VIC, Australia
- Federation University Australia, Ballarat, VIC, Australia
| | - Stuart P Berzins
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, VIC, Australia
- Federation University Australia, Ballarat, VIC, Australia
| | | |
Collapse
|
7
|
O’Neal J, Mavers M, Jayasinghe RG, DiPersio JF. Traversing the bench to bedside journey for iNKT cell therapies. Front Immunol 2024; 15:1436968. [PMID: 39170618 PMCID: PMC11335525 DOI: 10.3389/fimmu.2024.1436968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024] Open
Abstract
Invariant natural killer T (iNKT) cells are immune cells that harness properties of both the innate and adaptive immune system and exert multiple functions critical for the control of various diseases. Prevention of graft-versus-host disease (GVHD) by iNKT cells has been demonstrated in mouse models and in correlative human studies in which high iNKT cell content in the donor graft is associated with reduced GVHD in the setting of allogeneic hematopoietic stem cell transplants. This suggests that approaches to increase the number of iNKT cells in the setting of an allogeneic transplant may reduce GVHD. iNKT cells can also induce cytolysis of tumor cells, and murine experiments demonstrate that activating iNKT cells in vivo or treating mice with ex vivo expanded iNKT cells can reduce tumor burden. More recently, research has focused on testing anti-tumor efficacy of iNKT cells genetically modified to express a chimeric antigen receptor (CAR) protein (CAR-iNKT) cells to enhance iNKT cell tumor killing. Further, several of these approaches are now being tested in clinical trials, with strong safety signals demonstrated, though efficacy remains to be established following these early phase clinical trials. Here we review the progress in the field relating to role of iNKT cells in GVHD prevention and anti- cancer efficacy. Although the iNKT field is progressing at an exciting rate, there is much to learn regarding iNKT cell subset immunophenotype and functional relationships, optimal ex vivo expansion approaches, ideal treatment protocols, need for cytokine support, and rejection risk of iNKT cells in the allogeneic setting.
Collapse
Affiliation(s)
- Julie O’Neal
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, United States
| | - Melissa Mavers
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, United States
- Division of Hematology and Oncology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Reyka G. Jayasinghe
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| | - John F. DiPersio
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
8
|
Markina NO, Matveev GA, Zasypkin GG, Golikova TI, Ryzhkova DV, Kononova YA, Danilov SD, Babenko AY. Role of Brown Adipose Tissue in Metabolic Health and Efficacy of Drug Treatment for Obesity. J Clin Med 2024; 13:4151. [PMID: 39064191 PMCID: PMC11277946 DOI: 10.3390/jcm13144151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/05/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
(1) Background: Brown adipose tissue (BAT) is responsible for non-shivering thermogenesis, and its activation has become a new object as both a determinant of metabolic health and a target for therapy. This study aimed to identify the relationships between the presence of BAT, parameters that characterize metabolic health (glucose, lipids, blood pressure (BP)), and the dynamics of body mass index (BMI) during weight-reducing therapy. (2) Methods: The study included 72 patients with obesity. We investigated metabolic parameters, anthropometric parameters, and BP. Dual-energy X-ray absorptiometry (DXA) and positron emission tomography and computed tomography (PET/CT) imaging with 18F-fluorodeoxyglucose (18F-FDG) were performed. (3) Results: Before weight-reducing therapy, BAT was revealed only in 19% patients with obesity. The presence of BAT was associated with a lower risk of metabolic deviations that characterize metabolic syndrome: shorter waist circumference (WC) (p = 0.02) and lower levels of glucose (p = 0.03) and triglycerides (p = 0.03). Thereafter, patients were divided into four groups according to the type of therapy (only lifestyle modification or with Liraglutide or Reduxin or Reduxin Forte). We did not find a relationship between the presence of BAT and response to therapy: percent weight reduction was 10.4% in patients with BAT and 8.5% in patients without BAT (p = 0.78) during six months of therapy. But we noted a significant positive correlation between the volume of BAT and the effectiveness of weight loss at 3 months (r = 0.52, p = 0.016). The dynamic analysis of BAT after 6 months of therapy showed a significant increase in the volume of cold-induced metabolically active BAT, as determined by PET/CT with 18F-FDG in the Liraglutide group (p = 0.04) and an increase in the activity of BAT standardized uptake value (SUV mean and SUV max) in the Reduxin (p = 0.02; p = 0.01, respectively) and Liraglutide groups (p = 0.02 in both settings). (4) Conclusions: The presence of brown adipose tissue is associated with a lower risk of metabolic abnormalities. In general, our study demonstrated that well-established drugs in the treatment of obesity (Liraglutide and Reduxin) have one more mechanism for implementing their effects. These drugs have the ability to increase the activity of BAT. A significant positive relationship between the total volume of BAT and the percentage of weight loss may further determine the priority mechanism of the weight-reducing effect of these medicaments.
Collapse
Affiliation(s)
- Natalia O. Markina
- Laboratory of Prediabetes and Metabolic Disorders, WCRC “Centre for Personalized Medicine”, Almazov National Medical Research Centre, Saint Petersburg 197341, Russia (G.A.M.); (G.G.Z.); (T.I.G.)
| | - Georgy A. Matveev
- Laboratory of Prediabetes and Metabolic Disorders, WCRC “Centre for Personalized Medicine”, Almazov National Medical Research Centre, Saint Petersburg 197341, Russia (G.A.M.); (G.G.Z.); (T.I.G.)
| | - German G. Zasypkin
- Laboratory of Prediabetes and Metabolic Disorders, WCRC “Centre for Personalized Medicine”, Almazov National Medical Research Centre, Saint Petersburg 197341, Russia (G.A.M.); (G.G.Z.); (T.I.G.)
| | - Tatiana I. Golikova
- Laboratory of Prediabetes and Metabolic Disorders, WCRC “Centre for Personalized Medicine”, Almazov National Medical Research Centre, Saint Petersburg 197341, Russia (G.A.M.); (G.G.Z.); (T.I.G.)
| | - Daria V. Ryzhkova
- Laboratory of Prediabetes and Metabolic Disorders, WCRC “Centre for Personalized Medicine”, Almazov National Medical Research Centre, Saint Petersburg 197341, Russia (G.A.M.); (G.G.Z.); (T.I.G.)
| | - Yulia A. Kononova
- Laboratory of Prediabetes and Metabolic Disorders, WCRC “Centre for Personalized Medicine”, Almazov National Medical Research Centre, Saint Petersburg 197341, Russia (G.A.M.); (G.G.Z.); (T.I.G.)
| | - Sergey D. Danilov
- Facility of Digital Transformation, ITMO University, Saint Petersburg 197101, Russia
| | - Alina Yu. Babenko
- Laboratory of Prediabetes and Metabolic Disorders, WCRC “Centre for Personalized Medicine”, Almazov National Medical Research Centre, Saint Petersburg 197341, Russia (G.A.M.); (G.G.Z.); (T.I.G.)
| |
Collapse
|
9
|
Alhamawi RM, Almutawif YA, Aloufi BH, Alotaibi JF, Alharbi MF, Alsrani NM, Alinizy RM, Almutairi WS, Alaswad WA, Eid HMA, Mumena WA. Free sugar intake is associated with reduced proportion of circulating invariant natural killer T cells among women experiencing overweight and obesity. Front Immunol 2024; 15:1358341. [PMID: 38807605 PMCID: PMC11131101 DOI: 10.3389/fimmu.2024.1358341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/29/2024] [Indexed: 05/30/2024] Open
Abstract
Background Higher prevalence of obesity has been observed among women compared to men, which can be explained partly by the higher consumption of sweets and physical inactivity. Obesity can alter immune cell infiltration, and therefore increase the susceptibility to develop chronic inflammation and metabolic disorders. In this study, we aimed to explore the association between free sugar intake and other unhealthy lifestyle habits in relation to the proportion of circulating iNKT cells among women with healthy weight and women experiencing overweight and obesity. Methods A cross-sectional study was conducted on 51 Saudi women > 18 years, wherein their daily free sugar intake was assessed using the validated Food Frequency Questionnaire. Data on smoking status, physical activity, and supplement use were also collected. Anthropometric data including height, weight, waist circumference were objectively measured from each participants. The proportion of circulating iNKT cells was determined using flow cytometry. Results Smoking, physical activity, supplement use, and weight status were not associated with proportion of circulating iNKT cells. Significant association was found between proportion of circulating iNKT cells and total free sugar intake and free sugar intake coming from solid food sources only among women experiencing overweight and obesity (Beta: -0.10: Standard Error: 0.04 [95% Confidence Interval: -0.18 to -0.01], p= 0.034) and (Beta: -0.15: Standard Error: 0.05 [95% Confidence Interval: -0.25 to -0.05], p= 0.005), respectively. Conclusion Excessive free sugar consumption may alter iNKT cells and consequently increase the risk for chronic inflammation and metabolic disorders.
Collapse
Affiliation(s)
- Renad M. Alhamawi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia
| | - Yahya A. Almutawif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia
| | - Bushra H. Aloufi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia
| | - Jory F. Alotaibi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia
| | - Manar F. Alharbi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia
| | - Nura M. Alsrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia
| | - Razan M. Alinizy
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia
| | - Waad S. Almutairi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia
| | - Wed A. Alaswad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia
| | - Hamza M. A. Eid
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia
| | - Walaa A. Mumena
- Clinical Nutrition Department, College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia
| |
Collapse
|
10
|
Boonchalermvichian C, Yan H, Gupta B, Rubin A, Baker J, Negrin RS. invariant Natural Killer T cell therapy as a novel therapeutic approach in hematological malignancies. FRONTIERS IN TRANSPLANTATION 2024; 3:1353803. [PMID: 38993780 PMCID: PMC11235242 DOI: 10.3389/frtra.2024.1353803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/04/2024] [Indexed: 07/13/2024]
Abstract
Invariant Natural Killer T cell therapy is an emerging platform of immunotherapy for cancer treatment. This unique cell population is a promising candidate for cell therapy for cancer treatment because of its inherent cytotoxicity against CD1d positive cancers as well as its ability to induce host CD8 T cell cross priming. Substantial evidence supports that iNKT cells can modulate myelomonocytic populations in the tumor microenvironment to ameliorate immune dysregulation to antagonize tumor progression. iNKT cells can also protect from graft-versus-host disease (GVHD) through several mechanisms, including the expansion of regulatory T cells (Treg). Ultimately, iNKT cell-based therapy can retain antitumor activity while providing protection against GVHD simultaneously. Therefore, these biological properties render iNKT cells as a promising "off-the-shelf" therapy for diverse hematological malignancies and possible solid tumors. Further the introduction of a chimeric antigen recetor (CAR) can further target iNKT cells and enhance function. We foresee that improved vector design and other strategies such as combinatorial treatments with small molecules or immune checkpoint inhibitors could improve CAR iNKT in vivo persistence, functionality and leverage anti-tumor activity along with the abatement of iNKT cell dysfunction or exhaustion.
Collapse
|
11
|
Dimitrov I, Stankova T, Angelova P, Boyadjiev N, Georgieva K, Dimov I, Bivolarska A, Draganova M, Gerginska F, Daskalova E, Gramatikov V, Delchev S. Diet-Induced Early Inflammatory Response of Visceral Adipose Tissue in Healthy Male Wistar Rats. Nutrients 2024; 16:1184. [PMID: 38674875 PMCID: PMC11053711 DOI: 10.3390/nu16081184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
The prolonged consumption of a high-fat diet (HFD) leads to abnormal growth of the visceral adipose tissue (VAT), increased macrophage infiltration, and altered secretion of biologically active molecules. This is considered as a precondition for the development of obesity, inflammation, and obesity-related disorders. Therefore, we studied HFD-induced changes in the tissue levels of the inflammatory markers C-reactive protein, serum amyloid-A, and interleukin-4 in healthy male Wistar rats. The animals were first divided at random into two groups subjected to either a standard or a high-fat diet. The initial effect of the diet was evaluated after fourteen weeks. In order to study the diet duration effect, the standard diet was given to twelve animals from the HFD group, while the remaining continued with the HFD for an additional four weeks. Our results showed that the HFD barely affected body mass index, conicity, relative fat mass, and Lee indices, whereas it provoked adipocyte hypertrophy and gradually increased the levels of both the pro- and anti-inflammatory markers. The switch from the high-fat to the standard diet resulted in the comparatively fast restoration of the baseline levels of the studied molecules. Although, the prolonged consumption of an HFD causes adipocyte hypertrophy in healthy male animals, the inflammatory process in VAT is well-coordinated, time-dependent, and reversible.
Collapse
Affiliation(s)
- Iliyan Dimitrov
- Department of Medical Biochemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (T.S.); (I.D.); (A.B.)
| | - Teodora Stankova
- Department of Medical Biochemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (T.S.); (I.D.); (A.B.)
| | - Penka Angelova
- Department of Physiology, Faculty of Medicine, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria (K.G.)
| | - Nikolay Boyadjiev
- Department of Physiology, Faculty of Medicine, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria (K.G.)
| | - Katerina Georgieva
- Department of Physiology, Faculty of Medicine, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria (K.G.)
| | - Ivica Dimov
- Department of Medical Biochemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (T.S.); (I.D.); (A.B.)
| | - Anelia Bivolarska
- Department of Medical Biochemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (T.S.); (I.D.); (A.B.)
| | - Milena Draganova
- Department of Medical Biology, Faculty of Medicine, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Fanka Gerginska
- Department of Human Anatomy, Histology and Embryology, Faculty of Medicine, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (F.G.); (E.D.); (S.D.)
| | - Elena Daskalova
- Department of Human Anatomy, Histology and Embryology, Faculty of Medicine, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (F.G.); (E.D.); (S.D.)
| | | | - Slavi Delchev
- Department of Human Anatomy, Histology and Embryology, Faculty of Medicine, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (F.G.); (E.D.); (S.D.)
| |
Collapse
|
12
|
Becker M, Dirschl SM, Scherm MG, Serr I, Daniel C. Niche-specific control of tissue function by regulatory T cells-Current challenges and perspectives for targeting metabolic disease. Cell Metab 2024; 36:229-239. [PMID: 38218187 DOI: 10.1016/j.cmet.2023.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/30/2023] [Accepted: 12/15/2023] [Indexed: 01/15/2024]
Abstract
Tissue regulatory T cells (Tregs) exert pivotal functions in both immune and metabolic regulation, maintaining local tissue homeostasis, integrity, and function. Accordingly, Tregs play a crucial role in controlling obesity-induced inflammation and supporting efficient muscle function and repair. Depending on the tissue context, Tregs are characterized by unique transcriptomes, growth, and survival factors and T cell receptor (TCR) repertoires. This functional specialization offers the potential to selectively target context-specific Treg populations, tailoring therapeutic strategies to specific niches, thereby minimizing potential side effects. Here, we discuss challenges and perspectives for niche-specific Treg targeting, which holds promise for highly efficient and precise medical interventions to combat metabolic disease.
Collapse
Affiliation(s)
- Maike Becker
- Research Division Type 1 Diabetes Immunology, Helmholtz Diabetes Center at Helmholtz Zentrum München, 80939 Munich, Germany; Deutsches Zentrum für Diabetesforschung (DZD), 85764 Munich, Germany
| | - Sandra M Dirschl
- Research Division Type 1 Diabetes Immunology, Helmholtz Diabetes Center at Helmholtz Zentrum München, 80939 Munich, Germany; Deutsches Zentrum für Diabetesforschung (DZD), 85764 Munich, Germany
| | - Martin G Scherm
- Research Division Type 1 Diabetes Immunology, Helmholtz Diabetes Center at Helmholtz Zentrum München, 80939 Munich, Germany; Deutsches Zentrum für Diabetesforschung (DZD), 85764 Munich, Germany
| | - Isabelle Serr
- Research Division Type 1 Diabetes Immunology, Helmholtz Diabetes Center at Helmholtz Zentrum München, 80939 Munich, Germany; Deutsches Zentrum für Diabetesforschung (DZD), 85764 Munich, Germany
| | - Carolin Daniel
- Research Division Type 1 Diabetes Immunology, Helmholtz Diabetes Center at Helmholtz Zentrum München, 80939 Munich, Germany; Deutsches Zentrum für Diabetesforschung (DZD), 85764 Munich, Germany; Division of Clinical Pharmacology, Department of Medicine IV, Ludwig-Maximilians-Universität München, 80336 Munich, Germany.
| |
Collapse
|
13
|
Mitchelson KAJ, O’Connell F, O’Sullivan J, Roche HM. Obesity, Dietary Fats, and Gastrointestinal Cancer Risk-Potential Mechanisms Relating to Lipid Metabolism and Inflammation. Metabolites 2024; 14:42. [PMID: 38248845 PMCID: PMC10821017 DOI: 10.3390/metabo14010042] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Obesity is a major driving factor in the incidence, progression, and poor treatment response in gastrointestinal cancers. Herein, we conducted a comprehensive analysis of the impact of obesity and its resulting metabolic perturbations across four gastrointestinal cancer types, namely, oesophageal, gastric, liver, and colorectal cancer. Importantly, not all obese phenotypes are equal. Obese adipose tissue heterogeneity depends on the location, structure, cellular profile (including resident immune cell populations), and dietary fatty acid intake. We discuss whether adipose heterogeneity impacts the tumorigenic environment. Dietary fat quality, in particular saturated fatty acids, promotes a hypertrophic, pro-inflammatory adipose profile, in contrast to monounsaturated fatty acids, resulting in a hyperplastic, less inflammatory adipose phenotype. The purpose of this review is to examine the impact of obesity, including dietary fat quality, on adipose tissue biology and oncogenesis, specifically focusing on lipid metabolism and inflammatory mechanisms. This is achieved with a particular focus on gastrointestinal cancers as exemplar models of obesity-associated cancers.
Collapse
Affiliation(s)
- Kathleen A. J. Mitchelson
- Nutrigenomics Research Group, UCD Conway Institute, UCD Institute of Food and Health, and School of Public Health, Physiotherapy and Sports Science, University College Dublin, D04 H1W8 Dublin, Ireland
| | - Fiona O’Connell
- Department of Surgery, Trinity St. James’s Cancer Institute and Trinity Translational Medicine Institute, St. James’s Hospital and Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Jacintha O’Sullivan
- Department of Surgery, Trinity St. James’s Cancer Institute and Trinity Translational Medicine Institute, St. James’s Hospital and Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Helen M. Roche
- Nutrigenomics Research Group, UCD Conway Institute, UCD Institute of Food and Health, and School of Public Health, Physiotherapy and Sports Science, University College Dublin, D04 H1W8 Dublin, Ireland
- Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, Belfast BT9 5DL, UK
| |
Collapse
|
14
|
Jiang Y, Gong F. Immune cells in adipose tissue microenvironment under physiological and obese conditions. Endocrine 2024; 83:10-25. [PMID: 37768512 DOI: 10.1007/s12020-023-03521-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023]
Abstract
PURPOSE This review will focus on the immune cells in adipose tissue microenvironment and their regulatory roles in metabolic homeostasis of adipose tissue and even the whole body under physiological and obese conditions. METHODS This review used PubMed searches of current literature to examine adipose tissue immune cells and cytokines, as well as the complex interactions between them. RESULTS Aside from serving as a passive energy depot, adipose tissue has shown specific immunological function. Adipose tissue microenvironment is enriched with a large number of immune cells and cytokines, whose physiological regulation plays a crucial role for metabolic homeostasis. However, obesity causes pro-inflammatory alterations in these adipose tissue immune cells, which have detrimental effects on metabolism and increase the susceptibility of individuals to the obesity related diseases. CONCLUSIONS Adipose tissue microenvironment is enriched with various immune cells and cytokines, which regulate metabolic homeostasis of adipose tissue and even the whole body, whether under physiological or obese conditions. Targeting key immune cells and cytokines in adipose tissue microenvironment for obesity treatment becomes an attractive research point.
Collapse
Affiliation(s)
- Yuchen Jiang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, 100730, China
| | - Fengying Gong
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
15
|
Zhang X, Gao L, Meng H, Zhang A, Liang Y, Lu J. Obesity alters immunopathology in cancers and inflammatory diseases. Obes Rev 2023; 24:e13638. [PMID: 37724622 DOI: 10.1111/obr.13638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/11/2023] [Accepted: 08/24/2023] [Indexed: 09/21/2023]
Abstract
Obesity is characterized by chronic low-grade inflammation and is strongly associated with multiple immunological diseases, including cancer and inflammatory diseases. Recent animal studies revealed that obesity-induced immunological changes worsen immune-driven diseases and cause resistance to immunotherapy. Here, we discuss the role of obesity in the immunopathology and treatment responses of cancers, respiratory and allergic diseases, and IL-17-mediated inflammatory diseases. We summarize the unique features of the inflammatory state of these diseases, which are orchestrated by obesity. In particular, obesity alters the immune landscape in cancers with a reprogrammed metabolic profile of tumor-infiltrating immune cells. Obesity exacerbates airway inflammation by dysregulating multiple immune-cell subsets. Obesity also dysregulates Th17, IL-17-producing mucosal-associated invariant T (MAIT), and γδ T cells, which contribute to IL-17-mediated inflammatory response in multiple sclerosis, inflammatory bowel disease, psoriasis, atopic dermatitis, and rheumatoid arthritis. By identifying the effects of obesity on immunological diseases, new strategies could be devised to target immune dysregulation caused by obesity.
Collapse
Affiliation(s)
- Xiaofen Zhang
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li Gao
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Haiyang Meng
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ailing Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Liang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingli Lu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
16
|
Li Y, Yao L, Lu J. IL-35 inhibits adipogenesis via PPARγ-Wnt/β-catenin signaling pathway by targeting Axin2. Int Immunopharmacol 2023; 122:110615. [PMID: 37429144 DOI: 10.1016/j.intimp.2023.110615] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/24/2023] [Accepted: 07/04/2023] [Indexed: 07/12/2023]
Abstract
Interleukin (IL)-35, a member of the IL-12 family, functions as an immunosuppressive cytokine that plays a crucial role in the regulation of immune-related disorders and inflammatory diseases. Adipose tissue, which is now recognized as an immune organ, is regulated by immunocytes through various signaling pathways, including the peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα) pathway and the Wnt/β-actin pathway. However, there is limited research regarding the effects of IL-35 on adipogenesis. Our current findings indicated that IL-35 impedes the proliferation and promotes the cytotoxicity of 3T3-L1 preadipocytes. Furthermore, IL-35 inhibited the adipogenic differentiation, as well as suppressed triglyceride and lipid accumulation. Additionally, the expression of PPARγ and C/EBPα, two key regulators of adipogenesis, were both down-regulated with IL-35 treatment. In order to explicate the mechanisms underlying the effects of IL-35, we conducted an investigation into the expression of Axin2, an intracellular inhibitor of Wnt/β-catenin signaling, in 3T3-L1 preadipocyte cells. Gene silencing of Axin2 through small interfering RNAs (siRNAs) enhanced PPARγ and C/EBPα expression while decreasing nuclear β-catenin levels in the presence of IL-35. Furthermore, in IL-35-treated cells, Axin2 knockdown boosted adipogenic differentiation (as measured by increased Oil Red O staining). These findings imply that IL-35 regulates Axin2 expression and thereby plays an important role in adipocyte development.
Collapse
Affiliation(s)
- Yuxuan Li
- Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, No. 36 San Hao Street, Heping District, Shenyang, 110004, PR China
| | - Lutian Yao
- Department of Orthopedics, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang 110001, PR China.
| | - Jing Lu
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, PR China.
| |
Collapse
|
17
|
Kurioka A, Klenerman P. Aging unconventionally: γδ T cells, iNKT cells, and MAIT cells in aging. Semin Immunol 2023; 69:101816. [PMID: 37536148 PMCID: PMC10804939 DOI: 10.1016/j.smim.2023.101816] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/05/2023]
Abstract
Unconventional T cells include γδ T cells, invariant Natural Killer T cells (iNKT) cells and Mucosal Associated Invariant T (MAIT) cells, which are distinguished from conventional T cells by their recognition of non-peptide ligands presented by non-polymorphic antigen presenting molecules and rapid effector functions that are pre-programmed during their development. Here we review current knowledge of the effect of age on unconventional T cells, from early life to old age, in both mice and humans. We then discuss the role of unconventional T cells in age-associated diseases and infections, highlighting the similarities between members of the unconventional T cell family in the context of aging.
Collapse
Affiliation(s)
- Ayako Kurioka
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Paul Klenerman
- Nuffield Department of Medicine, University of Oxford, Oxford, UK; Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| |
Collapse
|
18
|
Balasko AL, Kowatsch MM, Graydon C, Lajoie J, Fowke KR. The effect of blocking immune checkpoints LAG-3 and PD-1 on human invariant Natural Killer T cell function. Sci Rep 2023; 13:10082. [PMID: 37344517 DOI: 10.1038/s41598-023-36468-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 06/04/2023] [Indexed: 06/23/2023] Open
Abstract
Invariant Natural Killer T (iNKT) cells undergo immune exhaustion during chronic activation caused by cancer and viral infections, such as HIV. Exhaustion is marked by cell dysfunction and increased expression of immune checkpoint proteins programmed cell-death-1 (PD-1) and lymphocyte-activation-gene-3 (LAG-3). We hypothesize that blockade of PD-1 and/or LAG-3 will enhance iNKT cell function. Utilizing peripheral blood mononuclear cells from healthy donors, LAG-3 and PD-1 expression on iNKT cells was assessed using flow cytometry following in vitro stimulation with iNKT-specific stimulant α-galactosylceramide (n = 4). Efficacy of anti-LAG-3 and/or anti-PD-1 antibody blockades in enhancing iNKT cell function was assessed by determining proliferative capacity and IFN-γ production (n = 9). LAG-3 and PD-1 expression on iNKT cells peaked at Day 4 (98.8%; p ≤ 0.0001 and 98.8%; p = 0.005, respectively), followed by steep decrease by Day 10, coinciding with peak iNKT cell proliferation. In a 10-day blocking assay, both the anti-PD-1 alone and dual anti-PD-1 and anti-LAG-3 significantly increased iNKT proliferation (6 and 6.29 log2 fold-change respectively) compared to the no blockade control (ANOVA-p = 0.0005) with the dual blockade system being more effective (t-test-p = 0.013). This provides proof-of-concept for LAG-3 and PD-1 as immunotherapeutic targets to enhance human iNKT cell function, with the long-term goal of addressing immune exhaustion.
Collapse
Affiliation(s)
- Allison L Balasko
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Monika M Kowatsch
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Colin Graydon
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Julie Lajoie
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| | - Keith R Fowke
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada.
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya.
- Department of Community Health Sciences, University of Manitoba, Winnipeg, Canada.
- Partners for Health and Development in Africa, Nairobi, Kenya.
| |
Collapse
|
19
|
Kane H, LaMarche NM, Ní Scannail Á, Garza AE, Koay HF, Azad AI, Kunkemoeller B, Stevens B, Brenner MB, Lynch L. Longitudinal analysis of invariant natural killer T cell activation reveals a cMAF-associated transcriptional state of NKT10 cells. eLife 2022; 11:e76586. [PMID: 36458691 PMCID: PMC9831610 DOI: 10.7554/elife.76586] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 11/30/2022] [Indexed: 12/05/2022] Open
Abstract
Innate T cells, including CD1d-restricted invariant natural killer T (iNKT) cells, are characterized by their rapid activation in response to non-peptide antigens, such as lipids. While the transcriptional profiles of naive, effector, and memory adaptive T cells have been well studied, less is known about the transcriptional regulation of different iNKT cell activation states. Here, using single-cell RNA-sequencing, we performed longitudinal profiling of activated murine iNKT cells, generating a transcriptomic atlas of iNKT cell activation states. We found that transcriptional signatures of activation are highly conserved among heterogeneous iNKT cell populations, including NKT1, NKT2, and NKT17 subsets, and human iNKT cells. Strikingly, we found that regulatory iNKT cells, such as adipose iNKT cells, undergo blunted activation and display constitutive enrichment of memory-like cMAF+ and KLRG1+ populations. Moreover, we identify a conserved cMAF-associated transcriptional network among NKT10 cells, providing novel insights into the biology of regulatory and antigen-experienced iNKT cells.
Collapse
Affiliation(s)
- Harry Kane
- Trinity Biomedical Science Institute, Trinity College DublinDublinIreland
| | - Nelson M LaMarche
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical SchoolBostonUnited States
| | - Áine Ní Scannail
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical SchoolBostonUnited States
| | - Amanda E Garza
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical SchoolBostonUnited States
| | - Hui-Fern Koay
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical SchoolBostonUnited States
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneAustralia
| | - Adiba I Azad
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical SchoolBostonUnited States
| | - Britta Kunkemoeller
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical SchoolBostonUnited States
| | - Brenneth Stevens
- Trinity Biomedical Science Institute, Trinity College DublinDublinIreland
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical SchoolBostonUnited States
| | - Michael B Brenner
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical SchoolBostonUnited States
| | - Lydia Lynch
- Trinity Biomedical Science Institute, Trinity College DublinDublinIreland
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
20
|
Role of NKT cells in cancer immunotherapy-from bench to bed. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 40:29. [PMID: 36460881 DOI: 10.1007/s12032-022-01888-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/08/2022] [Indexed: 12/04/2022]
Abstract
Natural killer T (NKT) cells are a specific T cell subset known to express the αβ-T cell receptor (TCR) for antigens identification and express typical NK cell specifications, such as surface expression of CD56 and CD16 markers as well as production of granzyme. Human NKT cells are divided into two subgroups based on their cytokine receptor and TCR repertoire. Both of them are CD1-restricted and recognize lipid antigens presented by CD1d molecules. Studies have demonstrated that these cells are essential in defense against malignancies. These cells secret proinflammatory and regulatory cytokines that stimulate or suppress immune system responses. In several murine tumor models, activation of type I NKT cells induces tumor rejection and inhibits metastasis's spread. However, type II NKT cells are associated with an inhibitory and regulatory function during tumor immune responses. Variant NKT cells may suppress tumor immunity via different mechanisms that require cross-talk with other immune-regulatory cells. NKT-like cells display high tumor-killing abilities against many tumor cells. In the recent decade, different studies have been performed based on the application of NKT-based immunotherapy for cancer therapy. Moreover, manipulation of NKT cells through administering autologous dendritic cell (DC) loaded with α-galactosylceramide (α-GalCer) and direct α-GalCer injection has also been tested. In this review, we described different subtypes of NKT cells, their function in the anti-tumor immune responses, and the application of NKT cells in cancer immunotherapy from bench to bed.
Collapse
|
21
|
Qian X, Meng X, Zhang S, Zeng W. Neuroimmune regulation of white adipose tissues. FEBS J 2022; 289:7830-7853. [PMID: 34564950 DOI: 10.1111/febs.16213] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/21/2021] [Accepted: 09/24/2021] [Indexed: 01/14/2023]
Abstract
The white adipose tissues (WAT) are located in distinct depots throughout the body. They serve as an energy reserve, providing fatty acids for other tissues via lipolysis when needed, and function as an endocrine organ to regulate systemic metabolism. Their activities are coordinated through intercellular communications among adipocytes and other cell types such as residential and infiltrating immune cells, which are collectively under neuronal control. The adipocytes and immune subtypes including macrophages/monocytes, eosinophils, neutrophils, group 2 innate lymphoid cells (ILC2s), T and B cells, dendritic cells (DCs), and natural killer (NK) cells display cellular and functional diversity in response to the energy states and contribute to metabolic homeostasis and pathological conditions. Accumulating evidence reveals that neuronal innervations control lipid deposition and mobilization via regulating lipolysis, adipocyte size, and cellularity. Vice versa, the neuronal innervations and activity are influenced by cellular factors in the WAT. Though the literature describing adipose tissue cells is too extensive to cover in detail, we strive to highlight a selected list of neuronal and immune components in this review. The cell-to-cell communications and the perspective of neuroimmune regulation are emphasized to enlighten the potential therapeutic opportunities for treating metabolic disorders.
Collapse
Affiliation(s)
- Xinmin Qian
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Xia Meng
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Shan Zhang
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Wenwen Zeng
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China.,Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing, China
| |
Collapse
|
22
|
Varghese B, Lynch L, Vriend LE, Draganov D, Clark JM, Kissick HT, Varghese S, Sanda MG, Dranoff G, Arredouani MS, Balk SP, Exley MA. Invariant NKT cell-augmented GM-CSF-secreting tumor vaccine is effective in advanced prostate cancer model. Cancer Immunol Immunother 2022; 71:2943-2955. [PMID: 35523889 PMCID: PMC10992623 DOI: 10.1007/s00262-022-03210-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 04/08/2022] [Indexed: 10/18/2022]
Abstract
Invariant natural killer T cells (iNKT cells) express a semi-invariant T cell receptor that recognizes certain glycolipids (including α-galactosylceramide, αGC) bound to CD1d, and can induce potent antitumor responses. Here, we assessed whether αGC could enhance the efficacy of a GM-CSF-producing tumor cell vaccine in the transgenic SV40 T antigen-driven TRAMP prostate cancer model. In healthy mice, we initially found that optimal T cell responses were obtained with αGC-pulsed TRAMP-C2 cells secreting GM-CSF and milk fat globule epidermal growth factor protein-8 (MFG-E8) with an RGD to RGE mutation (GM-CSF/RGE TRAMP-C2), combined with systemic low dose IL-12. In a therapeutic model, transgenic TRAMP mice were then castrated at ~ 20 weeks, followed by treatment with the combination vaccine. Untreated mice succumbed to tumor by ~ 40 weeks, but survival was markedly prolonged by vaccine treatment, with most mice surviving past 80 weeks. Prostates in the treated mice were heavily infiltrated with T cells and iNKT cells, which both secreted IFNγ in response to tumor cells. The vaccine was not effective if the αGC, IL-12, or GM-CSF secretion was eliminated. Finally, immunized mice were fully resistant to challenge with TRAMP-C2 cells. Together these findings support further development of therapeutic vaccines that exploit iNKT cell activation.
Collapse
Affiliation(s)
- Bindu Varghese
- Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
- Sana Biotechnology Inc., Boston, MA, USA
| | - Lydia Lynch
- Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
- Brigham and Women's Hospital, 75 Francis St., NRB 6, Boston, MA, 02115, USA
| | - Lianne E Vriend
- Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Dobrin Draganov
- Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Sanofi Inc., San Diego, CA, USA
| | - Justice M Clark
- Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Haydn T Kissick
- Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
- Emory University, Atlanta, GA, USA
| | - Sharlin Varghese
- Medical Center School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA
| | - Martin G Sanda
- Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
- Emory University, Atlanta, GA, USA
| | - Glenn Dranoff
- Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Novartis Biomedical Institutes of Research, Cambridge, MA, USA
| | - M Simo Arredouani
- Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
- Intellia Inc., Cambridge, MA, USA
| | - Steven P Balk
- Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA.
| | - Mark A Exley
- Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA.
- Brigham and Women's Hospital, 75 Francis St., NRB 6, Boston, MA, 02115, USA.
- Imvax Inc., Philadelphia, PA, USA.
- University of Manchester, Manchester, UK.
- MiNK Therapeutics Inc., New York, NY, USA.
| |
Collapse
|
23
|
Harris BHL, Macaulay VM, Harris DA, Klenerman P, Karpe F, Lord SR, Harris AL, Buffa FM. Obesity: a perfect storm for carcinogenesis. Cancer Metastasis Rev 2022; 41:491-515. [PMID: 36038791 PMCID: PMC9470699 DOI: 10.1007/s10555-022-10046-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/08/2022] [Indexed: 12/14/2022]
Abstract
Obesity-related cancers account for 40% of the cancer cases observed in the USA and obesity is overtaking smoking as the most widespread modifiable risk factor for carcinogenesis. Here, we use the hallmarks of cancer framework to delineate how obesity might influence the carcinogenic hallmarks in somatic cells. We discuss the effects of obesity on (a) sustaining proliferative signaling; (b) evading growth suppressors; (c) resisting cell death; (d) enabling replicative immortality; (e) inducing angiogenesis; (f) activating invasion and metastasis; (g) reprogramming energy metabolism; and (h) avoiding immune destruction, together with its effects on genome instability and tumour-promoting inflammation. We present the current understanding and controversies in this evolving field, and highlight some areas in need of further cross-disciplinary focus. For instance, the relative importance of the many potentially causative obesity-related factors is unclear for each type of malignancy. Even within a single tumour type, it is currently unknown whether one obesity-related factor consistently plays a predominant role, or if this varies between patients or, even in a single patient with time. Clarifying how the hallmarks are affected by obesity may lead to novel prevention and treatment strategies for the increasingly obese population.
Collapse
Affiliation(s)
- Benjamin H L Harris
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK.
- St Anne's College, 56 Woodstock Rd, Oxford, OX2 6HS, UK.
| | - Valentine M Macaulay
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, OX3 9DU, UK
| | | | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, OX1 3SY, UK
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Oxford, Oxford, OX3 7LE, UK
| | - Simon R Lord
- Early Phase Clinical Trials Unit, Churchill Hospital, Oxford, OX3 7LE, UK
| | - Adrian L Harris
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | | |
Collapse
|
24
|
Hägglöf T, Vanz C, Kumagai A, Dudley E, Ortega V, Siller M, Parthasarathy R, Keegan J, Koenigs A, Shute T, Leadbetter EA. T-bet + B cells accumulate in adipose tissue and exacerbate metabolic disorder during obesity. Cell Metab 2022; 34:1121-1136.e6. [PMID: 35868310 PMCID: PMC9357106 DOI: 10.1016/j.cmet.2022.07.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/28/2022] [Accepted: 07/06/2022] [Indexed: 01/12/2023]
Abstract
Obesity is accompanied by inflammation in adipose tissue, impaired glucose tolerance, and changes in adipose leukocyte populations. These studies of adipose tissue from humans and mice revealed that increased frequencies of T-bet+ B cells in adipose tissue depend on invariant NKT cells and correlate with weight gain during obesity. Transfer of B cells enriched for T-bet+ cells exacerbates metabolic disorder in obesity, while ablation of Tbx21 specifically in B cells reduces serum IgG2c levels, inflammatory cytokines, and inflammatory macrophages in adipose tissue, ameliorating metabolic symptoms. Furthermore, transfer of serum or purified IgG from HFD mice restores metabolic disease in T-bet+ B cell-deficient mice, confirming T-bet+ B cell-derived IgG as a key mediator of inflammation during obesity. Together, these findings reveal an important pathological role for T-bet+ B cells that should inform future immunotherapy design in type 2 diabetes and other inflammatory conditions.
Collapse
Affiliation(s)
- Thomas Hägglöf
- Department of Microbiology, Immunology & Molecular Genetics, UT Health, San Antonio, TX 78229, USA
| | - Carlo Vanz
- Department of Microbiology, Immunology & Molecular Genetics, UT Health, San Antonio, TX 78229, USA
| | - Abigail Kumagai
- Department of Microbiology, Immunology & Molecular Genetics, UT Health, San Antonio, TX 78229, USA
| | - Elizabeth Dudley
- Department of Microbiology, Immunology & Molecular Genetics, UT Health, San Antonio, TX 78229, USA
| | - Vanessa Ortega
- Department of Microbiology, Immunology & Molecular Genetics, UT Health, San Antonio, TX 78229, USA
| | - McKenzie Siller
- Department of Microbiology, Immunology & Molecular Genetics, UT Health, San Antonio, TX 78229, USA
| | - Raksha Parthasarathy
- Department of Microbiology, Immunology & Molecular Genetics, UT Health, San Antonio, TX 78229, USA
| | - Josh Keegan
- Department of Microbiology, Immunology & Molecular Genetics, UT Health, San Antonio, TX 78229, USA
| | - Abigail Koenigs
- Department of Microbiology, Immunology & Molecular Genetics, UT Health, San Antonio, TX 78229, USA
| | - Travis Shute
- Department of Microbiology, Immunology & Molecular Genetics, UT Health, San Antonio, TX 78229, USA
| | - Elizabeth A Leadbetter
- Department of Microbiology, Immunology & Molecular Genetics, UT Health, San Antonio, TX 78229, USA.
| |
Collapse
|
25
|
Oh SF, Jung DJ, Choi E. Gut Microbiota-Derived Unconventional T Cell Ligands: Contribution to Host Immune Modulation. Immunohorizons 2022; 6:476-487. [PMID: 35868838 PMCID: PMC9924074 DOI: 10.4049/immunohorizons.2200006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/28/2022] [Indexed: 01/26/2023] Open
Abstract
Besides the prototypic innate and adaptive pathways, immune responses by innate-like lymphocytes have gained significant attention due to their unique roles. Among innate-like lymphocytes, unconventional T cells such as NKT cells and mucosal-associated invariant T (MAIT) cells recognize small nonpeptide molecules of specific chemical classes. Endogenous or microbial ligands are loaded to MHC class I-like molecule CD1d or MR1, and inducing immediate effector T cell and ligand structure is one of the key determinants of NKT/MAIT cell functions. Unconventional T cells are in close, constant contact with symbiotic microbes at the mucosal layer, and CD1d/MR1 can accommodate diverse metabolites produced by gut microbiota. There is a strong interest to identify novel immunoactive molecules of endobiotic (symbiont-produced) origin as new NKT/MAIT cell ligands, as well as new cognate Ags for previously uncharacterized unconventional T cell subsets. Further studies will open an possibility to explore basic biology as well as therapeutic potential.
Collapse
Affiliation(s)
- Sungwhan F. Oh
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Da-Jung Jung
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Eungyo Choi
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA
| |
Collapse
|
26
|
Català C, Velasco-de Andrés M, Casadó-Llombart S, Leyton-Pereira A, Carrillo-Serradell L, Isamat M, Lozano F. Innate immune response to peritoneal bacterial infection. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 371:43-61. [PMID: 35965000 DOI: 10.1016/bs.ircmb.2022.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Spontaneous and secondary peritoneal infections, mostly of bacterial origin, easily spread to cause severe sepsis. Cellular and humoral elements of the innate immune system are constitutively present in peritoneal cavity and omentum, and play an important role in peritonitis progression and resolution. This review will focus on the description of the anatomic characteristics of the peritoneal cavity and the composition and function of such innate immune elements under both steady-state and bacterial infection conditions. Potential innate immune-based therapeutic interventions in bacterial peritonitis alternative or adjunctive to classical antibiotic therapy will be briefly discussed.
Collapse
Affiliation(s)
- Cristina Català
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Sergi Casadó-Llombart
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | | | - Marcos Isamat
- Sepsia Therapeutics S.L. 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Francisco Lozano
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Servei d'Immunologia, Centre de Diagnòstic Biomèdic (CDB), Hospital Clínic de Barcelona, Barcelona, Spain; Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
27
|
Crosstalk between macrophages and innate lymphoid cells (ILCs) in diseases. Int Immunopharmacol 2022; 110:108937. [PMID: 35779490 DOI: 10.1016/j.intimp.2022.108937] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 12/15/2022]
Abstract
Innate lymphoid cells (ILCs) and macrophages are tissue-resident cells that play important roles in tissue-immune homeostasis and immune regulation. ILCs are mainly distributed on the barrier surfaces of mammals to ensure immunity or tissue homeostasis following host, microbial, or environmental stimulation. Their complex relationships with different organs enable them to respond quickly to disturbances in environmental conditions and organ homeostasis, such as during infections and tissue damage. Gradually emerging evidence suggests that ILCs also play complex and diverse roles in macrophage development, homeostasis, polarization, inflammation, and viral infection. In turn, macrophages also determine the fate of ILCs to some extent, which indicates that network crossover between these interactions is a key determinant of the immune response. More work is needed to better define the crosstalk of ILCs with macrophages in different tissues and demonstrate how it is affected during inflammation and other diseases. Here, we summarize current research on the functional interactions between ILCs and macrophages and consider the potential therapeutic utility of these interactions for the benefit of human health.
Collapse
|
28
|
Use of Physical Activity and Exercise to Reduce Inflammation in Children and Adolescents with Obesity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19116908. [PMID: 35682490 PMCID: PMC9180584 DOI: 10.3390/ijerph19116908] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 12/13/2022]
Abstract
Childhood obesity is a leading public health problem worldwide, as it is increasingly prevalent and therefore responsible for serious obesity-related comorbidities, not only in childhood but also in adulthood. In addition to cardio-metabolic obesity-related disorders, recent evidence suggests that excess adipose tissue in turn is associated with immune cell infiltration, increased adipokine release, and the development of low-grade systemic inflammation obesity. Exercise is considered a non-pharmacological intervention that can delay obesity-related comorbidities, improving cardiovascular fitness and modulating the inflammatory processes. It has been reported that the anti-inflammatory effect of regular exercise may be mediated by a reduction in visceral fat mass, with a subsequent decrease in the release of adipokines from adipose tissue (AT) and/or by the induction of an anti-inflammatory environment. In this narrative review, we discuss the role of AT as an endocrine organ associated with chronic inflammation and its role in obesity-related complications, focusing on the effect of exercise in reducing inflammation in children and adolescents with obesity. Regular physical exercise must be considered as a natural part of a healthy lifestyle, and promoting physical activity starting from childhood is useful to limit the negative effects of obesity on health. The crucial role of the immune system in the development of obesity-induced inflammatory processes and the efficacy of exercise as an anti-inflammatory, non-pharmacological intervention may provide possible targets for the development of new treatments and early preventive strategies.
Collapse
|
29
|
Abstract
Adipose tissue is a complex dynamic organ with whole-body immunometabolic influence. Much of the work into understanding the role of immune cells in adipose tissue has been in the context of obesity. These investigations have also uncovered a range of typical (immune) and non-typical functions exerted by adipose tissue leukocytes. Here we provide an overview of the adipose tissue immune system, including its role as an immune reservoir in the whole-body response to infection and as a site of parasitic and viral infections. We also describe the functional roles of specialized immunological structures found within adipose tissue. However, our main focus is on the recently discovered 'non-immune' functions of adipose tissue immune cells, which include the regulation of adipocyte homeostasis, as well as responses to changing nutrient status and body temperature. In doing so, we outline the therapeutic potential of the adipose tissue immune system in health and disease.
Collapse
|
30
|
Baranek T, de Amat Herbozo C, Mallevaey T, Paget C. Deconstructing iNKT cell development at single-cell resolution. Trends Immunol 2022; 43:503-512. [PMID: 35654639 DOI: 10.1016/j.it.2022.04.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 12/22/2022]
Abstract
Invariant natural killer T (iNKT) cells are increasingly regarded as disease biomarkers and immunotherapeutic targets. However, a greater understanding of their biology is necessary to effectively target these cells in the clinic. The discovery of iNKT1/2/17 cell effector subsets was a milestone in our understanding of iNKT cell development and function. Recent transcriptomic studies have uncovered an even greater heterogeneity and challenge our understanding of iNKT cell ontogeny and effector differentiation. We propose a refined model whereby iNKT cells differentiate through a dynamic and continuous instructive process that requires the accumulation and integration of various signals within the thymus or peripheral tissues. Within this framework, we question the existence of true iNKT2 cells and discuss the parallels between mouse and human iNKT cells.
Collapse
Affiliation(s)
- Thomas Baranek
- Centre d'Étude des Pathologies Respiratoires (CEPR), Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche 1100, Faculté de Médecine, Université de Tours, Tours, France
| | - Carolina de Amat Herbozo
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Thierry Mallevaey
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada.
| | - Christophe Paget
- Centre d'Étude des Pathologies Respiratoires (CEPR), Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche 1100, Faculté de Médecine, Université de Tours, Tours, France.
| |
Collapse
|
31
|
Rees A, Richards O, Allen-Kormylo A, Jones N, Thornton CA. Maternal body mass index is associated with an altered immunological profile at 28 weeks of gestation. Clin Exp Immunol 2022; 208:114-128. [PMID: 35304898 PMCID: PMC9113395 DOI: 10.1093/cei/uxac023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 01/31/2022] [Accepted: 03/18/2022] [Indexed: 01/12/2023] Open
Abstract
Healthy pregnancy is accompanied by various immunological and metabolic adaptations. Maternal obesity has been implicated in adverse pregnancy outcomes such as miscarriage, preeclampsia, and gestational diabetes mellitus (GDM), while posing a risk to the neonate. There is a lack of knowledge surrounding obesity and the maternal immune system. The objective of this study was to consider if immunological changes in pregnancy are influenced by maternal obesity. Peripheral blood was collected from fasted GDM-negative pregnant women at 26-28 weeks of gestation. Analysis was done using immunoassay, flow cytometry, bioenergetics analysis, and cell culture. The plasma profile was significantly altered with increasing BMI, specifically leptin (r = 0.7635), MCP-1 (r = 0.3024), and IL-6 (r = 0.4985). Circulating leukocyte populations were also affected with changes in the relative abundance of intermediate monocytes (r = -0.2394), CD4:CD8 T-cell ratios (r = 0.2789), and NKT cells (r = -0.2842). Monocytes analysed in more detail revealed elevated CCR2 expression and decreased mitochondrial content with increased BMI. However, LPS-stimulated cytokine production and bioenergetic profile of PBMCs were not affected by maternal BMI. The Th profile skews towards Th17 with increasing BMI; Th2 (r = -0.3202) and Th9 (r = -0.3205) cells were diminished in maternal obesity, and CytoStim™-stimulation exacerbates IL-6 (r = 0.4166), IL-17A (r = 0.2753), IL-17F (r = 0.2973), and IL-22 (r = 0.2257) production with BMI, while decreasing IL-4 (r = -0.2806). Maternal obesity during pregnancy creates an inflammatory microenvironment. Successful pregnancy requires Th2-biased responses yet increasing maternal BMI favours a Th17 response that could be detrimental to pregnancy. Further research should investigate key populations of cells identified here to further understand the immunological challenges that beset pregnant women with obesity.
Collapse
Affiliation(s)
- April Rees
- Institute of Life Science, Swansea University Medical School, Swansea, UK
| | - Oliver Richards
- Institute of Life Science, Swansea University Medical School, Swansea, UK
| | - Anastasia Allen-Kormylo
- Maternity and Child Health, Singleton Hospital, Swansea Bay University Health Board, Swansea, UK
| | - Nicholas Jones
- Institute of Life Science, Swansea University Medical School, Swansea, UK
| | | |
Collapse
|
32
|
Application analysis of omental flap isolation and modified pancreaticojejunostomy in pancreaticoduodenectomy (175 cases). BMC Surg 2022; 22:127. [PMID: 35366868 PMCID: PMC8976960 DOI: 10.1186/s12893-022-01552-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 03/07/2022] [Indexed: 12/09/2022] Open
Abstract
Abstract
Background
To explore the application value of free omental wrapping and modified pancreaticojejunostomy in pancreaticoduodenectomy (PD).
Methods
The clinical data of 175 patients who underwent pancreaticoduodenectomy from January 2015 to December 2020 were retrospectively analysed. In total, 86 cases were divided into Group A (omental wrapping and modified pancreaticojejunostomy) and 89 cases were divided into Group B (control group). The incidences of postoperative pancreatic fistula and other complications were compared between the two groups, and univariate and multivariate logistic regression analyses were used to determine the potential risk factors for postoperative pancreatic fistula. Risk factors associated with postoperative overall survival were identified using Cox regression.
Results
The incidences of grade B/C pancreatic fistula, bile leakage, delayed bleeding, and reoperation in Group A were lower than those in Group B, and the differences were statistically significant (P < 0.05). Group A had an earlier drainage tube extubation time, earlier return to normal diet time and shorter postoperative hospital stay than the control group (P < 0.05). The levels of C-reactive protein (CRP), interleukin-6 (IL-6), and procalcitonin (PCT) inflammatory factors 1, 3 and 7 days after surgery also showed significant. Univariate and multivariate logistic regression analyses showed that a body mass index (BMI) ≥ 24, pancreatic duct diameter less than 3 mm, no isolation of the greater omental flap and modified pancreaticojejunostomy were independent risk factors for pancreatic fistula (P < 0.05). Cox regression analysis showed that age ≥ 65 years old, body mass index ≥ 24, pancreatic duct diameter less than 3 mm, no isolation of the greater omental flap isolation and modified pancreaticojejunostomy, and malignant postoperative pathology were independent risk factors associated with postoperative overall survival (P < 0.05).
Conclusions
Wrapping and isolating the modified pancreaticojejunostomy with free greater omentum can significantly reduce the incidence of postoperative pancreatic fistula and related complications, inhibit the development of inflammation, and favourably affect prognosis.
Collapse
|
33
|
Huang Y, Guo S, Yang J, Tang Y, Zhu X, Ren S. An Objective Diagnosis Model with Integrated Metabolic and Immunity Parameters for Phlegm-Dampness Constitution. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:3353549. [PMID: 35154341 PMCID: PMC8837425 DOI: 10.1155/2022/3353549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 12/06/2021] [Accepted: 01/08/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND According to Chinese constitutional theory, people can be divided into nine constitutions, which represent distinctive vulnerability to different diseases such as metabolic syndrome, atherosclerosis, and immunity-related disease, and so forth in modern medicine, phlegm-dampness constitution (PDC) is one of the nine constitutions, which is susceptible to metabolic syndrome (MS) and atherosclerosis that associate with lipid metabolism and immunity dysregulation closely. OBJECTIVES In this study, we aimed to investigate the metabolic and immunity profiles of phlegm-damp constitution (PDC), including metabolites, lymphocytes distribution, and inflammatory cytokines. METHODS A total of 74 patients with PDC and 66 individuals with gentle constitution (GC) were enrolled in this study. We utilized biochemical methods to detect metabolic parameters, flow cytometry to survey T/B/NK/NKT lymphocyte subgroups distribution, and ELISA to assay inflammatory cytokines. RESULTS The subjects with PDC had higher GLU, AI TC, TG, and LDL-C and lower HDL-C levels. The immunity profile indicated that PDC subjects had higher percentage of WBCs, neutrophils, lymphocytes, B cells, and natural killer T cells compared with subjects with GC (P < 0.05). Serum levels of IL-10 decreased significantly in the subjects with phlegm-damp constitution, whereas IL-12 levels increased dramatically in the PDC group compared with the GC group (both P < 0.05). Additionally, logistic regression identified four independent variables (GLU, TG, LDL-C, and lymphocytes) that were highly correlated with PDC (P < 0.05). The area under the curve of the receiver operating characteristic curve was 0.878, which indicated the data were reliable to distinguish the subjects with PDC from the ones with GC. CONCLUSION Phlegm-damp constitution was prone to hyperglycemia and hyperlipidemia syndrome, promoting the occurrence and progression of metabolic-related diseases. Interestingly, proinflammatory cells and cytokines were activated in the PDC group as well. Our findings could offer a profile of early screening indicators to identify high-risk patients of metabolic- and immunity-related diseases from Chinese constitution.
Collapse
Affiliation(s)
- Yanchun Huang
- Department of Laboratory Medicine, The First People's Hospital of Longquanyi District, Chengdu, West China Longquan Hospital Sichuan University, Chengdu 610100, China
| | - Shanshan Guo
- Center for Translational Medicine, Sichuan Academy of Traditional Chinese Medicine, Translational Chinese Medicine Key Laboratory of Sichuan Province, Chengdu 610041, China
| | - Jun Yang
- Department of Laboratory Medicine, The First People's Hospital of Longquanyi District, Chengdu, West China Longquan Hospital Sichuan University, Chengdu 610100, China
| | - Yangfan Tang
- Center for Translational Medicine, Sichuan Academy of Traditional Chinese Medicine, Translational Chinese Medicine Key Laboratory of Sichuan Province, Chengdu 610041, China
| | - Xinghua Zhu
- Department of Laboratory Medicine, The First People's Hospital of Longquanyi District, Chengdu, West China Longquan Hospital Sichuan University, Chengdu 610100, China
| | - Sichong Ren
- Center for Translational Medicine, Sichuan Academy of Traditional Chinese Medicine, Translational Chinese Medicine Key Laboratory of Sichuan Province, Chengdu 610041, China
- Department of Nephrology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| |
Collapse
|
34
|
Cruz MS, Loureiro JP, Oliveira MJ, Macedo MF. The iNKT Cell-Macrophage Axis in Homeostasis and Disease. Int J Mol Sci 2022; 23:ijms23031640. [PMID: 35163561 PMCID: PMC8835952 DOI: 10.3390/ijms23031640] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 12/12/2022] Open
Abstract
Invariant natural killer T (iNKT) cells are CD1d-restricted, lipid-reactive T cells that exhibit preponderant immunomodulatory properties. The ultimate protective or deleterious functions displayed by iNKT cells in tissues are known to be partially shaped by the interactions they establish with other immune cells. In particular, the iNKT cell–macrophage crosstalk has gained growing interest over the past two decades. Accumulating evidence has highlighted that this immune axis plays central roles not only in maintaining homeostasis but also during the development of several pathologies. Hence, this review summarizes the reported features of the iNKT cell–macrophage axis in health and disease. We discuss the pathophysiological significance of this interplay and provide an overview of how both cells communicate with each other to regulate disease onset and progression in the context of infection, obesity, sterile inflammation, cancer and autoimmunity.
Collapse
Affiliation(s)
- Mariana S. Cruz
- Cell Activation and Gene Expression Group, Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (M.S.C.); (J.P.L.)
- Department of Medical Sciences, University of Aveiro (UA), 3810-193 Aveiro, Portugal
| | - José Pedro Loureiro
- Cell Activation and Gene Expression Group, Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (M.S.C.); (J.P.L.)
- Experimental Immunology Group, Department of Biomedicine (DBM), University of Basel and University Hospital Basel, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Maria J. Oliveira
- Tumour and Microenvironment Interactions Group, Instituto Nacional de Engenharia Biomédica (INEB), Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal;
- Department of Molecular Biology, ICBAS-Institute of Biomedical Sciences Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Maria Fatima Macedo
- Cell Activation and Gene Expression Group, Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (M.S.C.); (J.P.L.)
- Department of Medical Sciences, University of Aveiro (UA), 3810-193 Aveiro, Portugal
- Correspondence:
| |
Collapse
|
35
|
Pasquarelli-do-Nascimento G, Machado SA, de Carvalho JMA, Magalhães KG. Obesity and adipose tissue impact on T-cell response and cancer immune checkpoint blockade therapy. IMMUNOTHERAPY ADVANCES 2022; 2:ltac015. [PMID: 36033972 PMCID: PMC9404253 DOI: 10.1093/immadv/ltac015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 06/23/2022] [Indexed: 11/17/2022] Open
Abstract
Many different types of cancer are now well known to have increased occurrence or severity in individuals with obesity. The influence of obesity on cancer and the immune cells in the tumor microenvironment has been thought to be a pleiotropic effect. As key endocrine and immune organs, the highly plastic adipose tissues play crucial roles in obesity pathophysiology, as they show alterations according to environmental cues. Adipose tissues of lean subjects present mostly anti-inflammatory cells that are crucial in tissue remodeling, favoring uncoupling protein 1 expression and non-shivering thermogenesis. Oppositely, obese adipose tissues display massive proinflammatory immune cell infiltration, dying adipocytes, and enhanced crown-like structure formation. In this review, we discuss how obesity can lead to derangements and dysfunctions in antitumor CD8+ T lymphocytes dysfunction. Moreover, we explain how obesity can affect the efficiency of cancer immunotherapy, depicting the mechanisms involved in this process. Cancer immunotherapy management includes monoclonal antibodies targeting the immune checkpoint blockade. Exhausted CD8+ T lymphocytes show elevated programmed cell death-1 (PD-1) expression and highly glycolytic tumors tend to show a good response to anti-PD-1/PD-L1 immunotherapy. Although obesity is a risk factor for the development of several neoplasms and is linked with increased tumor growth and aggressiveness, obesity is also related to improved response to cancer immunotherapy, a phenomenon called the obesity paradox. However, patients affected by obesity present higher incidences of adverse events related to this therapy. These limitations highlight the necessity of a deeper investigation of factors that influence the obesity paradox to improve the application of these therapies.
Collapse
Affiliation(s)
| | - Sabrina Azevedo Machado
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia , DF , Brazil
| | | | - Kelly Grace Magalhães
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia , DF , Brazil
| |
Collapse
|
36
|
Lecker LSM, Berlato C, Maniati E, Delaine-Smith R, Pearce OMT, Heath O, Nichols SJ, Trevisan C, Novak M, McDermott J, Brenton JD, Cutillas PR, Rajeeve V, Hennino A, Drapkin R, Loessner D, Balkwill FR. TGFBI Production by Macrophages Contributes to an Immunosuppressive Microenvironment in Ovarian Cancer. Cancer Res 2021; 81:5706-5719. [PMID: 34561272 PMCID: PMC9397609 DOI: 10.1158/0008-5472.can-21-0536] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 08/11/2021] [Accepted: 09/22/2021] [Indexed: 01/07/2023]
Abstract
The tumor microenvironment evolves during malignant progression, with major changes in nonmalignant cells, cytokine networks, and the extracellular matrix (ECM). In this study, we aimed to understand how the ECM changes during neoplastic transformation of serous tubal intraepithelial carcinoma lesions (STIC) into high-grade serous ovarian cancers (HGSOC). Analysis of the mechanical properties of human fallopian tubes (FT) and ovaries revealed that normal FT and fimbria had a lower tissue modulus, a measure of stiffness, than normal or diseased ovaries. Proteomic analysis of the matrisome fraction between FT, fimbria, and ovaries showed significant differences in the ECM protein TGF beta induced (TGFBI, also known as βig-h3). STIC lesions in the fimbria expressed high levels of TGFBI, which was predominantly produced by CD163-positive macrophages proximal to STIC epithelial cells. In vitro stimulation of macrophages with TGFβ and IL4 induced secretion of TGFBI, whereas IFNγ/LPS downregulated macrophage TGFBI expression. Immortalized FT secretory epithelial cells carrying clinically relevant TP53 mutations stimulated macrophages to secrete TGFBI and upregulated integrin αvβ3, a putative TGFBI receptor. Transcriptomic HGSOC datasets showed a significant correlation between TGFBI expression and alternatively activated macrophage signatures. Fibroblasts in HGSOC metastases expressed TGFBI and stimulated macrophage TGFBI production in vitro. Treatment of orthotopic mouse HGSOC tumors with an anti-TGFBI antibody reduced peritoneal tumor size, increased tumor monocytes, and activated β3-expressing unconventional T cells. In conclusion, TGFBI may favor an immunosuppressive microenvironment in STICs that persists in advanced HGSOC. Furthermore, TGFBI may be an effector of the tumor-promoting actions of TGFβ and a potential therapeutic target. SIGNIFICANCE: Analysis of ECM changes during neoplastic transformation reveals a role for TGFBI secreted by macrophages in immunosuppression in early ovarian cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Owen Heath
- Barts Cancer Institute, London, United Kingdom
| | | | - Caterina Trevisan
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
- Department of Women and Children Health, University of Padova, Padova, Italy
| | - Marian Novak
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | | | - James D Brenton
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | | | | | - Ana Hennino
- Cancer Research Center of Lyon, UMR INSERM 1052, Lyon, France
| | - Ronny Drapkin
- Ovarian Cancer Research Center, Perelman School of Medicine, Philadelphia, Pennsylvania
| | | | | |
Collapse
|
37
|
Zaborowski AM, Winter DC, Lynch L. The therapeutic and prognostic implications of immunobiology in colorectal cancer: a review. Br J Cancer 2021; 125:1341-1349. [PMID: 34302062 PMCID: PMC8575924 DOI: 10.1038/s41416-021-01475-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/13/2021] [Accepted: 06/17/2021] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer represents the second leading cause of cancer-related death worldwide. The therapeutic field of immuno-oncology has rapidly gained momentum, with strikingly promising results observed in clinical practice. Increasing emphasis has been placed on the role of the immune response in tumorigenesis, therapy and predicting prognosis. Enhanced understanding of the dynamic and complex tumour-immune microenvironment has enabled the development of molecularly directed, individualised treatment. Analysis of intra-tumoural lymphocyte infiltration and the dichotomisation of colorectal cancer into microsatellite stable and unstable disease has important therapeutic and prognostic implications, with potential to capitalise further on this data. This review discusses the latest evidence surrounding the tumour biology and immune landscape of colorectal cancer, novel immunotherapies and the interaction of the immune system with each apex of the tripartite of cancer management (oncotherapeutics, radiotherapy and surgery). By utilising the synergy of chemotherapeutic agents and immunotherapies, and identifying prognostic and predictive immunological biomarkers, we may enter an era of unprecedented disease control, survivorship and cure rates.
Collapse
Affiliation(s)
- Alexandra M. Zaborowski
- grid.412751.40000 0001 0315 8143Centre for Colorectal Disease, St. Vincent’s University Hospital, Dublin 4, Ireland ,grid.8217.c0000 0004 1936 9705School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Des C. Winter
- grid.412751.40000 0001 0315 8143Centre for Colorectal Disease, St. Vincent’s University Hospital, Dublin 4, Ireland ,grid.7886.10000 0001 0768 2743School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Lydia Lynch
- grid.8217.c0000 0004 1936 9705School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland ,grid.38142.3c000000041936754XHarvard Institutes of Medicine, Harvard Medical School, Boston, MA USA
| |
Collapse
|
38
|
Balasko A, Graydon C, Fowke KR. Novel in vitro invariant natural killer T cell functional assays. J Immunol Methods 2021; 499:113171. [PMID: 34706265 DOI: 10.1016/j.jim.2021.113171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/16/2021] [Accepted: 10/12/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Invariant Natural Killer T (iNKT) cells are innate lymphocytes bridging the innate and adaptive immune systems and are critical first responders against cancer and infectious diseases. iNKT cell phenotype and functionality are studied using in vitro stimulation assays assessing cytokine response and proliferation capabilities. The most common stimulant is the glycolipid α-Galactosyl Ceramide (α-GalCer), which stimulates iNKT cells when presented by CD1d, an MHC class I-like molecule expressed by antigen-presenting cells (APC). Another stimulant used is α-GalCer-loaded DimerX, a CD1d-Ig fusion protein which stimulates iNKT cells in an APC-independent fashion. Here, we demonstrate use of the PBS-57-loaded CD1d-tetramer as an APC-independent stimulant, where PBS-57 is an α-GalCer analogue. METHODS Using healthy fresh (n = 4) and frozen (n = 7) peripheral blood mononuclear cells (PBMCs), 10-h cytokine response (measuring IFN-γ production) and 10-day proliferation assays were performed assessing iNKT functionality using α-GalCer, CD1d-tetramer and DimerX stimulants. RESULTS All stimulants effectively induced IFN-γ production in both fresh and frozen PBMC. After the 10-h activation, CD1d-tetramer was significantly more effective than α-GalCer (p = 0.032) in inducing IFN-γ production in fresh PBMC and significantly more effective than both α-GalCer (p = 0.004) and DimerX (p = 0.021) in frozen PBMC. Similarly, all stimulants induced strong proliferation responses in all samples, although this was only significant in the frozen PBMC. No significant differences in proliferation were observed between stimulants. SIGNIFICANCE This study supports PBS-57-loaded CD1d-tetramer as an effective in vitro APC-independent iNKT cell stimulant, which is comparable to or even more effective than α-GalCer and DimerX. As CD1d is downregulated during infectious disease and cancer as evasion strategies, in vitro assays which are APC-independent can assist in providing objective insight to iNKT activation by not relying on CD1d expression by APCs. Overall, the novel CD1d-tetramer stimulation equips researchers with an expanded "toolkit" to successfully assess iNKT cell function.
Collapse
Affiliation(s)
- Allison Balasko
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada.
| | - Colin Graydon
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Keith R Fowke
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada; Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya; Department of Community Health Sciences, University of Manitoba, Winnipeg, Canada; Partners for Health and Development in Africa, Nairobi, Kenya.
| |
Collapse
|
39
|
Ververs FA, Engelen SE, Nuboer R, Vastert B, van der Ent CK, Van't Land B, Garssen J, Monaco C, Boes M, Schipper HS. Immunometabolic factors in adolescent chronic disease are associated with Th1 skewing of invariant Natural Killer T cells. Sci Rep 2021; 11:20082. [PMID: 34635725 PMCID: PMC8505552 DOI: 10.1038/s41598-021-99580-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/20/2021] [Indexed: 11/17/2022] Open
Abstract
Invariant Natural Killer T (iNKT) cells respond to the ligation of lipid antigen-CD1d complexes via their T-cell receptor and are implicated in various immunometabolic diseases. We considered that immunometabolic factors might affect iNKT cell function. To this end, we investigated iNKT cell phenotype and function in a cohort of adolescents with chronic disease and immunometabolic abnormalities. We analyzed peripheral blood iNKT cells of adolescents with cystic fibrosis (CF, n = 24), corrected coarctation of the aorta (CoA, n = 25), juvenile idiopathic arthritis (JIA, n = 20), obesity (OB, n = 20), and corrected atrial septal defect (ASD, n = 25) as controls. To study transcriptional differences, we performed RNA sequencing on a subset of obese patients and controls. Finally, we performed standardized co-culture experiments using patient plasma, to investigate the effect of plasma factors on iNKT cell function. We found comparable iNKT cell numbers across patient groups, except for reduced iNKT cell numbers in JIA patients. Upon ex-vivo activation, we observed enhanced IFN-γ/IL-4 cytokine ratios in iNKT cells of obese adolescents versus controls. The Th1-skewed iNKT cell cytokine profile of obese adolescents was not explained by a distinct transcriptional profile of the iNKT cells. Co-culture experiments with patient plasma revealed that across all patient groups, obesity-associated plasma factors including LDL-cholesterol, leptin, and fatty-acid binding protein 4 (FABP4) coincided with higher IFN-γ production, whereas high HDL-cholesterol and insulin sensitivity (QUICKI) coincided with higher IL-4 production. LDL and HDL supplementation in co-culture studies confirmed the effects of lipoproteins on iNKT cell cytokine production. These results suggest that circulating immunometabolic factors such as lipoproteins may be involved in Th1 skewing of the iNKT cell cytokine response in immunometabolic disease.
Collapse
Affiliation(s)
- Francesca A Ververs
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Roos Nuboer
- Department of Pediatrics, Meander Medical Center Amersfoort, Amersfoort, The Netherlands
| | - Bas Vastert
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Pediatric Rheumatology and Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cornelis K van der Ent
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Belinda Van't Land
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- Center of Excellence Immunology, Danone Nutricia Research, Utrecht, The Netherlands
| | - Johan Garssen
- Center of Excellence Immunology, Danone Nutricia Research, Utrecht, The Netherlands
- Division Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Beta Faculty, Utrecht University, Utrecht, The Netherlands
| | - Claudia Monaco
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Marianne Boes
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Pediatric Rheumatology and Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Henk S Schipper
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands.
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.
- Department of Pediatric Cardiology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
40
|
Ismaiel M, Murphy B, Hayes C, O'Connell LV, Winter DC. Differential inflammatory profile of mesenteric and omental fat in patients with colorectal cancer. Br J Surg 2021; 109:160-161. [PMID: 34611713 DOI: 10.1093/bjs/znab300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 07/24/2021] [Indexed: 11/14/2022]
Abstract
Visceral obesity (mesenteric and omental adipose tissue) is a risk factor for colorectal cancer (CRC) and weight loss can reduce risk. This study examined mesenteric and omental fat activity in patients with CRC.
Collapse
Affiliation(s)
- M Ismaiel
- Department of Surgery, University College Dublin, Dublin, Ireland
- Department of Surgery, St Vincent's University Hospital, Dublin, Ireland
| | - B Murphy
- Department of Surgery, University College Dublin, Dublin, Ireland
- Department of Surgery, St Vincent's University Hospital, Dublin, Ireland
| | - C Hayes
- Department of Surgery, University College Dublin, Dublin, Ireland
| | - L V O'Connell
- Department of Surgery, University College Dublin, Dublin, Ireland
| | - D C Winter
- Department of Surgery, University College Dublin, Dublin, Ireland
- Department of Surgery, St Vincent's University Hospital, Dublin, Ireland
| |
Collapse
|
41
|
Wijngaarden LH, van der Harst E, Klaassen RA, Dunkelgrun M, Kuijper TM, Klepper M, Ambagtsheer G, IJzermans JNM, de Bruin RWF, Litjens NHR. Effects of Morbid Obesity and Metabolic Syndrome on the Composition of Circulating Immune Subsets. Front Immunol 2021; 12:675018. [PMID: 34354700 PMCID: PMC8330422 DOI: 10.3389/fimmu.2021.675018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/30/2021] [Indexed: 12/24/2022] Open
Abstract
Morbid obesity is characterized by chronic, low-grade inflammation, which is associated with ‘inflamm-aging’. The presence of metabolic syndrome (MetS) might accelerate this phenomenon of metaflammation. In this study, we assessed the effects of morbid obesity and MetS on the composition of a broad spectrum of immune cells present within the circulation. A total of 117 morbidly obese patients (MOP) without MetS (MetS-), 127 MOP with MetS (MetS+) and 55 lean controls (LC) were included in this study. Absolute numbers of T cell, B cell, NK cell and monocyte subsets were assessed within peripheral blood using flow cytometry. Both absolute cell numbers and proportion of cells were evaluated correcting for covariates age, body mass index and cytomegalovirus serostatus. Although the absolute number of circulating CD4+ T cells was increased in the MetS+ group, the CD4+ T cell composition was not influenced by MetS. The CD8+ T cell and B cell compartment contained more differentiated cells in the MOP, but was not affected by MetS. Even though the absolute numbers of NK cells and monocytes were increased in the MOP as compared to LC, there was no difference in proportions of NK and monocyte subsets between the three study groups. In conclusion, although absolute numbers of CD4+ and CD8+ T cells, B cells, NK cells and monocytes are increased in MOP, obesity-induced effects of the composition of the immune system are confined to a more differentiated phenotype of CD8+ T cells and B cells. These results were not affected by MetS.
Collapse
Affiliation(s)
- Leontine H Wijngaarden
- Department of Surgery, Maasstad Hospital, Rotterdam, Netherlands.,Department of Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | | | - René A Klaassen
- Department of Surgery, Maasstad Hospital, Rotterdam, Netherlands
| | - Martin Dunkelgrun
- Department of Surgery, Franciscus Gasthuis and Vlietland, Rotterdam, Netherlands
| | | | - Mariska Klepper
- Department of Internal Medicine, Section Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Gisela Ambagtsheer
- Department of Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Jan N M IJzermans
- Department of Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Ron W F de Bruin
- Department of Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Nicolle H R Litjens
- Department of Internal Medicine, Section Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
42
|
Raja R, Wu C, Limbeck F, Butler K, Acharya AP, Curtis M. Instruction of Immunometabolism by Adipose Tissue: Implications for Cancer Progression. Cancers (Basel) 2021; 13:cancers13133327. [PMID: 34283042 PMCID: PMC8267940 DOI: 10.3390/cancers13133327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/23/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Metabolism is the process by which living organisms and cells generate energy to sustain life. At the organismal level, metabolic homeostasis is a tightly controlled balance between energy consumption and energy expenditure. Many studies have shown that disruption of this homeostasis leads to an inflammatory phenotype within adipose tissue. The aim of this review is to provide an overview of the dynamic metabolic interplay within adipose tissue and its implications for cancer progression and metastasis. Abstract Disruption of metabolic homeostasis at the organismal level can cause metabolic syndrome associated with obesity. The role of adipose tissue in cancer has been investigated over the last several decades with many studies implicating obesity as a risk factor for the development of cancer. Adipose tissue contains a diverse array of immune cell populations that promote metabolic homeostasis through a tightly controlled balance of pro- and anti-inflammatory signals. During obesity, pro-inflammatory cell types infiltrate and expand within the adipose tissue, exacerbating metabolic dysfunction. Some studies have now shown that the intracellular metabolism of immune cells is also deregulated by the lipid-rich environment in obesity. What is not fully understood, is how this may influence cancer progression, metastasis, and anti-tumor immunity. This review seeks to highlight our current understanding of the effect of adipose tissue on immune cell function and discuss how recent results offer new insight into the role that adipose tissue plays in cancer progression and anti-tumor immunity.
Collapse
Affiliation(s)
- Remya Raja
- Department of Immunology, Mayo Clinic, Scottsdale, AZ 85259, USA; (R.R.); (C.W.); (F.L.)
| | - Christopher Wu
- Department of Immunology, Mayo Clinic, Scottsdale, AZ 85259, USA; (R.R.); (C.W.); (F.L.)
| | - Francesca Limbeck
- Department of Immunology, Mayo Clinic, Scottsdale, AZ 85259, USA; (R.R.); (C.W.); (F.L.)
| | - Kristina Butler
- Division of Gynecologic Surgery, Mayo Clinic, Phoenix, AZ 85054, USA;
| | - Abhinav P. Acharya
- Department of Chemical Engineering, School for the Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85281, USA;
| | - Marion Curtis
- Department of Immunology, Mayo Clinic, Scottsdale, AZ 85259, USA; (R.R.); (C.W.); (F.L.)
- Department of Cancer Biology, Mayo Clinic, Scottsdale, AZ 85259, USA
- College of Medicine and Science, Mayo Clinic, Scottsdale, AZ 85259, USA
- Correspondence:
| |
Collapse
|
43
|
Wang X, Ba T, Cheng Y, Zhang P, Chang X. Probiotics alleviate adipose inflammation in high-fat diet-induced obesity by restoring adipose invariant natural killer T cells. Nutrition 2021; 89:111285. [PMID: 34116395 DOI: 10.1016/j.nut.2021.111285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/25/2021] [Accepted: 04/11/2021] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Invariant natural killer T (iNKT) cells, which are depleted in obese individuals, play important roles in preventing diet-induced obesity and associated disorders. Probiotic supplementation can alter the gut microbiota and immunomodulation in obesity. However, it remains unclear whether probiotics can affect visceral adipose iNKT cells. The aim of this study was to analyze the effects of probiotics on adipose iNKT cells in mice with high-fat diet (HFD)-induced obesity and to assess the immunomodulatory function of probiotics and their role in obesity, glucose tolerance, lipid metabolism, insulin resistance, and adipose inflammation. METHODS Wildtype (WT) male C57BL/6 mice and CD1d knockout mice were fed an HFD or a normal-fat diet. Some mice received active or heat-sacrificed VSL#3 probiotics. Preventative VSL#3 therapy was also administered to HFD mice. Body weight, metabolic parameters, expression of genes encoding adipose inflammatory factors (interleukin [IL]-4, IL-10, tumor necrosis factor-α, interferon-γ, and IL-6), adipose iNKT cell frequency, and subphenotype were evaluated. RESULTS HFD induced more severe obesity in CD1dKO mice than in WT mice. VSL#3 intervention significantly improved HFD-induced weight gain, adipose iNKT cell depletion, and metabolic and adipose inflammatory profiles in WT mice, but not in CD1dKO mice. Preventative VSL#3 treatment improved HFD-induced obesity and metabolic parameters, and elevated total adipose iNKT and IL-4+ iNKT cell frequencies. CONCLUSIONS Probiotic intervention alleviated weight gain, improved metabolic parameters, and reduced adipose inflammation in HFD-induced obesity. These effects seem to depend on the restoration of visceral adipose iNKT cells. These findings have potential implications for the management of obesity-related diseases.
Collapse
Affiliation(s)
- Xiaoli Wang
- Department of Endocrinology, Zhijiang Branch, Tongde Hospital of Zhejiang Province, Hang Zhou, Zhejiang, China; Department of Endocrinology and Metabolism, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, China.
| | - Tao Ba
- Department of Endocrinology and Metabolism, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Yunjie Cheng
- Department of Cardiovascular, Second People's Hospital of Jiaozuo, Jiaozuo, Henan
| | - Peipei Zhang
- Department of Endocrinology, Nanyang First People's Hospital, Nanyang, Henan
| | - Xiangyun Chang
- Department of Endocrinology and Metabolism, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
44
|
Bass GA, Seamon MJ, Schwab CW. A surgeon's history of the omentum: From omens to patches to immunity. J Trauma Acute Care Surg 2021; 89:e161-e166. [PMID: 32925575 DOI: 10.1097/ta.0000000000002945] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Gary Alan Bass
- From the Division of Traumatology, Emergency Surgery, and Surgical Critical Care, Penn Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | |
Collapse
|
45
|
Kiernan K, MacIver NJ. The Role of the Adipokine Leptin in Immune Cell Function in Health and Disease. Front Immunol 2021; 11:622468. [PMID: 33584724 PMCID: PMC7878386 DOI: 10.3389/fimmu.2020.622468] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/14/2020] [Indexed: 12/20/2022] Open
Abstract
Leptin is a critical mediator of the immune response to changes in overall nutrition. Leptin is produced by adipocytes in proportion to adipose tissue mass and is therefore increased in obesity. Despite having a well-described role in regulating systemic metabolism and appetite, leptin displays pleiotropic actions, and it is now clear that leptin has a key role in influencing immune cell function. Indeed, many immune cells have been shown to respond to leptin directly via the leptin receptor, resulting in a largely pro-inflammatory phenotype. Understanding the role of adipose-tissue derived mediators in inflammation is critical to determining the pathophysiology of multiple obesity-associated diseases, such as type 2 diabetes, autoimmune disease, and infection. This review, therefore, focuses on the latest data regarding the role of leptin in modulating inflammation.
Collapse
Affiliation(s)
- Kaitlin Kiernan
- Department of Immunology, Duke University School of Medicine, Durham, NC, United States
| | - Nancie J. MacIver
- Department of Immunology, Duke University School of Medicine, Durham, NC, United States
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, United States
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
46
|
Affiliation(s)
- S. M. Mansour Haeryfar
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
- Department of Medicine, Division of Clinical Immunology & Allergy, Western University, London, Ontario, Canada
- Department of Surgery, Division of General Surgery, Western University, London, Ontario, Canada
- Centre for Human Immunology, Western University, London, Ontario, Canada
- * E-mail:
| |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW Childhood obesity, with persistent chronic inflammation, is a worldwide epidemic. Obesity causes dysregulation throughout the immune system, affecting the balance and levels of cytokines, adipokines, and innate and adaptive immune cells. The present review focuses on the impact of obesity on immune function in children: altering the baseline activation state of immune cells and affecting the ability of the host to combat pathogens and malignancy and respond appropriately to vaccination. RECENT FINDINGS Obesity causes dysregulation of the immune system. Single-cell RNA-sequencing of adipose tissue and resident immune cells is quantifying the impact of obesity on the frequency of immune cell subsets and their states. The system-wide alterations in immune function in obesity are most evident upon perturbation, including the response to infection (e.g. increased risk of severe COVID-19 in the ongoing pandemic), vaccination, and malignancy. However, mechanistic research in pediatric obesity is limited and this impacts our ability to care for these children. SUMMARY We must better understand baseline and perturbed immune health in obese children to determine how to account for altered frequency and function of humoral and cellular immune components in acute infection, during vaccine design and when considering therapeutic options for this complex, medically vulnerable group.
Collapse
Affiliation(s)
- Xingyuan Fang
- Children’s Hospital of Philadelphia, Department of Pediatrics, Division of Allergy Immunology, Philadelphia, PA
| | - Jorge Henao-Mejia
- Children’s Hospital of Philadelphia, Department of Pathology, Division of Allergy Immunology, Philadelphia, PA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Sarah E. Henrickson
- Children’s Hospital of Philadelphia, Department of Pediatrics, Division of Allergy Immunology, Philadelphia, PA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
48
|
AlZaim I, Hammoud SH, Al-Koussa H, Ghazi A, Eid AH, El-Yazbi AF. Adipose Tissue Immunomodulation: A Novel Therapeutic Approach in Cardiovascular and Metabolic Diseases. Front Cardiovasc Med 2020; 7:602088. [PMID: 33282920 PMCID: PMC7705180 DOI: 10.3389/fcvm.2020.602088] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
Adipose tissue is a critical regulator of systemic metabolism and bodily homeostasis as it secretes a myriad of adipokines, including inflammatory and anti-inflammatory cytokines. As the main storage pool of lipids, subcutaneous and visceral adipose tissues undergo marked hypertrophy and hyperplasia in response to nutritional excess leading to hypoxia, adipokine dysregulation, and subsequent low-grade inflammation that is characterized by increased infiltration and activation of innate and adaptive immune cells. The specific localization, physiology, susceptibility to inflammation and the heterogeneity of the inflammatory cell population of each adipose depot are unique and thus dictate the possible complications of adipose tissue chronic inflammation. Several lines of evidence link visceral and particularly perivascular, pericardial, and perirenal adipose tissue inflammation to the development of metabolic syndrome, insulin resistance, type 2 diabetes and cardiovascular diseases. In addition to the implication of the immune system in the regulation of adipose tissue function, adipose tissue immune components are pivotal in detrimental or otherwise favorable adipose tissue remodeling and thermogenesis. Adipose tissue resident and infiltrating immune cells undergo metabolic and morphological adaptation based on the systemic energy status and thus a better comprehension of the metabolic regulation of immune cells in adipose tissues is pivotal to address complications of chronic adipose tissue inflammation. In this review, we discuss the role of adipose innate and adaptive immune cells across various physiological and pathophysiological states that pertain to the development or progression of cardiovascular diseases associated with metabolic disorders. Understanding such mechanisms allows for the exploitation of the adipose tissue-immune system crosstalk, exploring how the adipose immune system might be targeted as a strategy to treat cardiovascular derangements associated with metabolic dysfunctions.
Collapse
Affiliation(s)
- Ibrahim AlZaim
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Safaa H. Hammoud
- Department of Pharmacology and Therapeutics, Beirut Arab University, Beirut, Lebanon
| | - Houssam Al-Koussa
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon
| | - Alaa Ghazi
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon
| | - Ali H. Eid
- Department of Pharmacology and Therapeutics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Basic Medical Sciences, College of Medicine, Qatar University, Doha, Qatar
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Ahmed F. El-Yazbi
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
49
|
High-parametric evaluation of human invariant natural killer T cells to delineate heterogeneity in allo- and autoimmunity. Blood 2020; 135:814-825. [PMID: 31935280 PMCID: PMC7068034 DOI: 10.1182/blood.2019001903] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 12/16/2019] [Indexed: 12/24/2022] Open
Abstract
Human invariant natural killer T (iNKT) cells are a rare innate-like lymphocyte population that recognizes glycolipids presented on CD1d. Studies in mice have shown that these cells are heterogeneous and are capable of enacting diverse functions, and the composition of iNKT cell subsets can alter disease outcomes. In contrast, far less is known about how heterogeneity in human iNKT cells relates to disease. To address this, we used a high-dimensional, data-driven approach to devise a framework for parsing human iNKT heterogeneity. Our data revealed novel and previously described iNKT cell phenotypes with distinct functions. In particular, we found 2 phenotypes of interest: (1) a population with T helper 1 function that was increased with iNKT activation characterized by HLA-II+CD161- expression, and (2) a population with enhanced cytotoxic function characterized by CD4-CD94+ expression. These populations correlate with acute graft-versus-host disease after allogeneic hematopoietic stem cell transplantation and with new onset type 1 diabetes, respectively. Our study identifies human iNKT cell phenotypes associated with human disease that could aid in the development of biomarkers or therapeutics targeting iNKT cells.
Collapse
|
50
|
Karunakaran D, Turner AW, Duchez AC, Soubeyrand S, Rasheed A, Smyth D, Cook DP, Nikpay M, Kandiah JW, Pan C, Geoffrion M, Lee R, Boytard L, Wyatt H, Nguyen MA, Lau P, Laakso M, Ramkhelawon B, Alvarez M, Pietiläinen KH, Pajukanta P, Vanderhyden BC, Liu P, Berger SB, Gough PJ, Bertin J, Harper ME, Lusis AJ, McPherson R, Rayner KJ. RIPK1 gene variants associate with obesity in humans and can be therapeutically silenced to reduce obesity in mice. Nat Metab 2020; 2:1113-1125. [PMID: 32989316 PMCID: PMC8362891 DOI: 10.1038/s42255-020-00279-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022]
Abstract
Obesity is a major public health burden worldwide and is characterized by chronic low-grade inflammation driven by the cooperation of the innate immune system and dysregulated metabolism in adipose tissue and other metabolic organs. Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) is a central regulator of inflammatory cell function that coordinates inflammation, apoptosis and necroptosis in response to inflammatory stimuli. Here we show that genetic polymorphisms near the human RIPK1 locus associate with increased RIPK1 gene expression and obesity. We show that one of these single nucleotide polymorphisms is within a binding site for E4BP4 and increases RIPK1 promoter activity and RIPK1 gene expression in adipose tissue. Therapeutic silencing of RIPK1 in vivo in a mouse model of diet-induced obesity dramatically reduces fat mass, total body weight and improves insulin sensitivity, while simultaneously reducing macrophage and promoting invariant natural killer T cell accumulation in adipose tissue. These findings demonstrate that RIPK1 is genetically associated with obesity, and reducing RIPK1 expression is a potential therapeutic approach to target obesity and related diseases.
Collapse
Affiliation(s)
- Denuja Karunakaran
- Cardiometabolic microRNA Laboratory, University of Ottawa Heart Institute, Ottawa, Ontario, Canada.
- Cardiac Function Laboratory, University of Ottawa Heart Institute, Ottawa, Ontario, Canada.
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland, Australia.
| | - Adam W Turner
- Atherogenomics Laboratory, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Anne-Claire Duchez
- Cardiometabolic microRNA Laboratory, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Sebastien Soubeyrand
- Atherogenomics Laboratory, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Adil Rasheed
- Cardiometabolic microRNA Laboratory, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - David Smyth
- Cardiac Function Laboratory, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - David P Cook
- Ottawa Hospital Research Institute, Centre for Cancer Therapeutics, Ottawa, Ontario, Canada
| | - Majid Nikpay
- Atherogenomics Laboratory, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Joshua W Kandiah
- Cardiometabolic microRNA Laboratory, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Calvin Pan
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Michele Geoffrion
- Cardiometabolic microRNA Laboratory, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Richard Lee
- Cardiovascular Antisense Drug Discovery Group, Ionis Pharmaceuticals, Carlsbad, CA, USA
| | - Ludovic Boytard
- New York University Langone Medical Center, New York, NY, USA
| | - Hailey Wyatt
- Cardiometabolic microRNA Laboratory, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - My-Anh Nguyen
- Cardiometabolic microRNA Laboratory, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Paulina Lau
- Atherogenomics Laboratory, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | | | - Marcus Alvarez
- Department of Human Genetics, and Institute for Precision Health, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kirsi H Pietiläinen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism and Obesity Center, Endocrinology, Abdominal Center, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland
| | - Päivi Pajukanta
- Department of Human Genetics, and Institute for Precision Health, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Barbara C Vanderhyden
- Ottawa Hospital Research Institute, Centre for Cancer Therapeutics, Ottawa, Ontario, Canada
| | - Peter Liu
- Cardiac Function Laboratory, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Scott B Berger
- Pattern Recognition Receptor DPU, GlaxoSmithKline, Collegeville, PA, USA
| | - Peter J Gough
- Pattern Recognition Receptor DPU, GlaxoSmithKline, Collegeville, PA, USA
| | - John Bertin
- Pattern Recognition Receptor DPU, GlaxoSmithKline, Collegeville, PA, USA
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Aldons J Lusis
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ruth McPherson
- Atherogenomics Laboratory, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Katey J Rayner
- Cardiometabolic microRNA Laboratory, University of Ottawa Heart Institute, Ottawa, Ontario, Canada.
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|