1
|
Timpano S, Bellicini I, Poli P, Moratto D, Cortesi M, Salvi M, Chiarini M, Padoan R, Pezzotta R, Fiorentini S, Caruso A, Giacomelli M, Badolato R. Low Th17 cells in patients with cystic fibrosis and allergic broncho-pulmonary aspergillosis. Pediatr Allergy Immunol 2025; 36:e70090. [PMID: 40238087 PMCID: PMC12002360 DOI: 10.1111/pai.70090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 04/04/2025] [Accepted: 04/08/2025] [Indexed: 04/18/2025]
Abstract
BACKGROUND Allergic bronchopulmonary aspergillosis (ABPA) is a hypersensitivity response to the allergens of Aspergillus fumigatus, which is the most frequently isolated fungus from the sputum of cystic fibrosis (CF) patients. Because a low number of Th17 lymphocytes is associated with the risk of fungal infections, we investigated inflammatory markers, Th17 cells, and T-cell polarization in CF patients with ABPA. METHODS We analyzed the levels of inflammatory markers, blood counts, chemokines, cytokines, and T cell subsets in blood and sputum of CF subjects to elucidate the immunological factors associated with CF patients with Aspergillus fumigatus (AF) positive sputum (AFS+) or with ABPA. RESULTS We observed that AFS+ patients have higher sputum and blood IL-6 levels than AF-negative sputum (AFS-) patients. Analysis of blood memory T-helper subsets associated with Th1, Th2, and Th17 polarization among circulating CD45RA-/CD4+ memory T-cell subsets showed higher numbers of CCR4+/CCR6+/CXCR3- and CCR4+/CCR6+/CXCR3+ memory CD4 cells in AFS+ compared to AFS- subjects. Further analysis of Th17-related subsets and IL-17 secreting T cells in subjects with AFS+ showed that those with ABPA have statistically significantly lower levels of Th17 cells as compared to those without ABPA. CONCLUSION In CF, AF airway colonization is associated with increased blood counts of Th17-related subsets. However, CF patients with ABPA exhibit lower numbers of CCR4+/CCR6+/CXCR3+ memory CD4 cells and IL-17-secreting CD4 cells compared to control subjects and CF patients without AF sensitization.
Collapse
Affiliation(s)
- Silviana Timpano
- Department of Pediatrics, Cystic Fibrosis CentreASST Spedali Civili di Brescia, University of BresciaBresciaItaly
| | - Irene Bellicini
- Department of Pediatrics, Cystic Fibrosis CentreASST Spedali Civili di Brescia, University of BresciaBresciaItaly
| | - Piercarlo Poli
- Department of Pediatrics, Cystic Fibrosis CentreASST Spedali Civili di Brescia, University of BresciaBresciaItaly
| | - Daniele Moratto
- Flow Cytometry Unit, Clinical Chemistry LaboratoryASST Spedali CiviliBresciaItaly
- European Reference Network on Rare Primary Immunodeficiency Autoinflammatory and Autoimmune Diseases (ERN‐RITA)UtrechtThe Netherlands
| | - Manuela Cortesi
- Department of Pediatrics, Cystic Fibrosis CentreASST Spedali Civili di Brescia, University of BresciaBresciaItaly
| | - Marta Salvi
- Department of Pediatrics, Cystic Fibrosis CentreASST Spedali Civili di Brescia, University of BresciaBresciaItaly
| | - Marco Chiarini
- Flow Cytometry Unit, Clinical Chemistry LaboratoryASST Spedali CiviliBresciaItaly
| | - Rita Padoan
- Department of Pediatrics, Cystic Fibrosis CentreASST Spedali Civili di Brescia, University of BresciaBresciaItaly
| | - Ramona Pezzotta
- Department of Molecular and Translational Medicine, Section of MicrobiologyUniversity of BresciaBresciaItaly
| | - Simona Fiorentini
- Department of Molecular and Translational Medicine, Section of MicrobiologyUniversity of BresciaBresciaItaly
| | - Arnaldo Caruso
- Department of Molecular and Translational Medicine, Section of MicrobiologyUniversity of BresciaBresciaItaly
| | - Mauro Giacomelli
- Department of Pediatrics & “Angelo Nocivelli” Institute for Molecular Medicine, Department of Clinical and Experimental SciencesASST Spedali Civili Brescia, University of BresciaBresciaItaly
| | - Raffaele Badolato
- Department of Pediatrics, Cystic Fibrosis CentreASST Spedali Civili di Brescia, University of BresciaBresciaItaly
- European Reference Network on Rare Primary Immunodeficiency Autoinflammatory and Autoimmune Diseases (ERN‐RITA)UtrechtThe Netherlands
| |
Collapse
|
2
|
Sharma J, Mudalagiriyappa S, Nanjappa SG. T cell responses to control fungal infection in an immunological memory lens. Front Immunol 2022; 13:905867. [PMID: 36177012 PMCID: PMC9513067 DOI: 10.3389/fimmu.2022.905867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/22/2022] [Indexed: 11/24/2022] Open
Abstract
In recent years, fungal vaccine research emanated significant findings in the field of antifungal T-cell immunity. The generation of effector T cells is essential to combat many mucosal and systemic fungal infections. The development of antifungal memory T cells is integral for controlling or preventing fungal infections, and understanding the factors, regulators, and modifiers that dictate the generation of such T cells is necessary. Despite the deficiency in the clear understanding of antifungal memory T-cell longevity and attributes, in this review, we will compile some of the existing literature on antifungal T-cell immunity in the context of memory T-cell development against fungal infections.
Collapse
Affiliation(s)
| | | | - Som Gowda Nanjappa
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
3
|
Ostadi V, Sherkat R, Migaud M, Modaressadeghi SM, Casanova JL, Puel A, Nekooie-Marnany N, Ganjalikhani-Hakemi M. Functional analysis of two STAT1 gain-of-function mutations in two Iranian families with autosomal dominant chronic mucocutaneous candidiasis. Med Mycol 2021; 59:180-188. [PMID: 32526033 DOI: 10.1093/mmy/myaa043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 01/31/2020] [Accepted: 05/09/2020] [Indexed: 02/05/2023] Open
Abstract
Candidiasis is characterized by susceptibility to recurrent or persistent infections caused by Candida spp., typically Candida albicans, of cutaneous and mucosal surfaces. In this report, function and frequency of Th17 cells as well as genetics of patients susceptible to mucocutaneous candidiasis were studied. For patients, T-cell proliferation tests in response to Candida antigen, Th17 cell proportions, and STAT1 phosphorylation were evaluated through flow cytometry. Expression of IL17A, IL17F and IL22 genes were measured by real-time quantitative PCR. At the same time, whole exome sequencing was performed for all patients. We identified two heterozygous substitutions, one: c.821G > A (p. R274Q) was found in a multiplex family with three individuals affected, the second one: c.812A > C (p. Q271P) was found in a sporadic case. Both mutations are located in the coiled-coil domain (CCD) of STAT1. The frequency of Th17 cells, IL17A, IL17F, and IL22 gene expression in patients' peripheral blood mononuclear cells (PBMCs), and T-cell proliferation to Candida antigens were significantly reduced in the patients as compared to healthy controls. An increased STAT1 phosphorylation was observed in patients' PBMCs upon interferon (IFN)-γ stimulation as compared to healthy controls. We report two different but neighboring heterozygous mutations, located in exon 10 of the STAT1 gene, in four Iranian patients with CMC, one of whom also had hypothyroidism. These mutations were associated with impaired T cell proliferation to Candida antigen, low Th17 cell proportions, and increased STAT1 phosphorylation upon IFN-γ. We suggest that interfering with STAT1 phosphorylation might be a promising way for potential therapeutic measurements for such patients.
Collapse
Affiliation(s)
- Vajiheh Ostadi
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roya Sherkat
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Melanie Migaud
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Medical School, INSERM U1163 and University Paris Descartes, Sorbonne Paris Cité, Imagine Institute, Paris, France, EU
| | | | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Medical School, INSERM U1163 and University Paris Descartes, Sorbonne Paris Cité, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, the Rockefeller University, New York, New York, USA
- Howard Hughes Medical Institute, New York, New York, USA
- Pediatric Hematology-Immunology Unit, Assistance Publique-Hôpitaux de Paris AP-HP, Necker Hospital for Sick Children, Paris, France, EU
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Medical School, INSERM U1163 and University Paris Descartes, Sorbonne Paris Cité, Imagine Institute, Paris, France, EU
| | - Nioosha Nekooie-Marnany
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mazdak Ganjalikhani-Hakemi
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
4
|
Sabihi M, Böttcher M, Pelczar P, Huber S. Microbiota-Dependent Effects of IL-22. Cells 2020; 9:E2205. [PMID: 33003458 PMCID: PMC7599675 DOI: 10.3390/cells9102205] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023] Open
Abstract
Cytokines are important contributors to immune responses against microbial and environmental threats and are of particular importance at epithelial barriers. These interfaces are continuously exposed to external factors and thus require immune components to both protect the host from pathogen invasion and to regulate overt inflammation. Recently, substantial efforts have been devoted to understanding how cytokines act on certain cells at barrier sites, and why the dysregulation of immune responses may lead to pathogenesis. In particular, the cytokine IL-22 is involved in preserving an intact epithelium, maintaining a balanced microbiota and a functioning defense system against external threats. However, a tight regulation of IL-22 is generally needed, since uncontrolled IL-22 production can lead to the progression of autoimmunity and cancer. Our aim in this review is to summarize novel findings on IL-22 and its interactions with specific microbial stimuli, and subsequently, to understand their contributions to the function of IL-22 and the clinical outcome. We particularly focus on understanding the detrimental effects of dysregulated control of IL-22 in certain disease contexts.
Collapse
Affiliation(s)
| | | | | | - Samuel Huber
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; (M.S.); (M.B.); (P.P.)
| |
Collapse
|
5
|
Aggor FEY, Break TJ, Trevejo-Nuñez G, Whibley N, Coleman BM, Bailey RD, Kaplan DH, Naglik JR, Shan W, Shetty AC, McCracken C, Durum SK, Biswas PS, Bruno VM, Kolls JK, Lionakis MS, Gaffen SL. Oral epithelial IL-22/STAT3 signaling licenses IL-17-mediated immunity to oral mucosal candidiasis. Sci Immunol 2020; 5:eaba0570. [PMID: 32503875 PMCID: PMC7340112 DOI: 10.1126/sciimmunol.aba0570] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 05/07/2020] [Indexed: 12/29/2022]
Abstract
Oropharyngeal candidiasis (OPC; thrush) is an opportunistic infection caused by the commensal fungus Candida albicans Interleukin-17 (IL-17) and IL-22 are cytokines produced by type 17 lymphocytes. Both cytokines mediate antifungal immunity yet activate quite distinct downstream signaling pathways. While much is now understood about how IL-17 promotes immunity in OPC, the activities of IL-22 are far less well delineated. We show that, despite having similar requirements for induction from type 17 cells, IL-22 and IL-17 function nonredundantly during OPC. We find that the IL-22 and IL-17 receptors are required in anatomically distinct locations within the oral mucosa; loss of IL-22RA1 or signal transducer and activator of transcription 3 (STAT3) in the oral basal epithelial layer (BEL) causes susceptibility to OPC, whereas IL-17RA is needed in the suprabasal epithelial layer (SEL). Transcriptional profiling of the tongue linked IL-22/STAT3 not only to oral epithelial cell proliferation and survival but also, unexpectedly, to driving an IL-17-specific gene signature. We show that IL-22 mediates regenerative signals on the BEL that replenish the IL-17RA-expressing SEL, thereby restoring the ability of the oral epithelium to respond to IL-17 and thus to mediate antifungal events. Consequently, IL-22 signaling in BEL "licenses" IL-17 signaling in the oral mucosa, revealing spatially distinct yet cooperative activities of IL-22 and IL-17 in oral candidiasis.
Collapse
Affiliation(s)
- Felix E Y Aggor
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Timothy J Break
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | | | - Natasha Whibley
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bianca M Coleman
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rachel D Bailey
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel H Kaplan
- Department of Dermatology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Julian R Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - Wei Shan
- Cytokines and Immunity Section, Cancer and Inflammation Program, National Cancer Institute, NIH, Frederick, MD, USA
| | - Amol C Shetty
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Carrie McCracken
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Scott K Durum
- Cytokines and Immunity Section, Cancer and Inflammation Program, National Cancer Institute, NIH, Frederick, MD, USA
| | - Partha S Biswas
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Vincent M Bruno
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jay K Kolls
- Center for Translational Research in Infection and Inflammation, Tulane University, New Orleans, LA, USA
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Sarah L Gaffen
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
6
|
Lionakis MS, Levitz SM. Host Control of Fungal Infections: Lessons from Basic Studies and Human Cohorts. Annu Rev Immunol 2017; 36:157-191. [PMID: 29237128 DOI: 10.1146/annurev-immunol-042617-053318] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the last few decades, the AIDS pandemic and the significant advances in the medical management of individuals with neoplastic and inflammatory conditions have resulted in a dramatic increase in the population of immunosuppressed patients with opportunistic, life-threatening fungal infections. The parallel development of clinically relevant mouse models of fungal disease and the discovery and characterization of several inborn errors of immune-related genes that underlie inherited human susceptibility to opportunistic mycoses have significantly expanded our understanding of the innate and adaptive immune mechanisms that protect against ubiquitous fungal exposures. This review synthesizes immunological knowledge derived from basic mouse studies and from human cohorts and provides an overview of mammalian antifungal host defenses that show promise for informing therapeutic and vaccination strategies for vulnerable patients.
Collapse
Affiliation(s)
- Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892;
| | - Stuart M Levitz
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01655;
| |
Collapse
|
7
|
Armstrong-James D, Brown GD, Netea MG, Zelante T, Gresnigt MS, van de Veerdonk FL, Levitz SM. Immunotherapeutic approaches to treatment of fungal diseases. THE LANCET. INFECTIOUS DISEASES 2017; 17:e393-e402. [PMID: 28774700 DOI: 10.1016/s1473-3099(17)30442-5] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 11/20/2016] [Accepted: 02/09/2017] [Indexed: 12/15/2022]
Abstract
Fungal infections cause morbidity worldwide and are associated with an unacceptably high mortality despite the availability of antifungal drugs. The incidence of mycoses is rising because of the HIV pandemic and because immunomodulatory drugs are increasingly used to treat autoimmune diseases and cancer. New classes of antifungal drugs have only been partly successful in improving the prognosis for patients with fungal infection. Adjunctive host-directed therapy is therefore believed to be the only option to further improve patient outcomes. Recent advances in the understanding of complex interactions between fungi and host have led to the design and exploration of novel therapeutic strategies in cytokine therapy, vaccines, and cellular immunotherapy, each of which might become viable adjuncts to existing antifungal regimens. In this report, we discuss immunotherapeutic approaches-the rationale behind their design, the challenges in their use, and the progress that is so urgently needed to overcome the devastating effect of fungal diseases.
Collapse
Affiliation(s)
- Darius Armstrong-James
- Fungal Pathogens Laboratory, National Heart and Lung Institute, Imperial College London, UK.
| | - Gordon D Brown
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, University of Aberdeen, Aberdeen, UK
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands; Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Teresa Zelante
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Mark S Gresnigt
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands; Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Frank L van de Veerdonk
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands; Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Stuart M Levitz
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
8
|
Singh A, Lelis F, Braig S, Schäfer I, Hartl D, Rieber N. Differential Regulation of Myeloid-Derived Suppressor Cells by Candida Species. Front Microbiol 2016; 7:1624. [PMID: 27790210 PMCID: PMC5061774 DOI: 10.3389/fmicb.2016.01624] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/29/2016] [Indexed: 12/25/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are innate immune cells characterized by their ability to suppress T-cell responses. Recently, we demonstrated that the human-pathogenic fungi Candida albicans and Aspergillus fumigatus induced a distinct subset of neutrophilic MDSCs. To dissect Candida-mediated MDSC induction in more depth, we studied the relative efficacy of different pathogenic non-albicans Candida species to induce and functionally modulate neutrophilic MDSCs, including C. glabrata, C. parapsilosis, C. dubliniensis, and C. krusei. Our data demonstrate that the extent of MDSC generation is largely dependent on the Candida species with MDSCs induced by C. krusei and C. glabrata showing a higher suppressive activity compared to MDSCs induced by C. albicans. In summary, these studies show that fungal MDSC induction is differentially regulated at the species level and differentially affects effector T-cell responses.
Collapse
Affiliation(s)
- Anurag Singh
- University Children's Hospital and Interdisciplinary Center for Infectious Diseases, University of Tübingen Tübingen, Germany
| | - Felipe Lelis
- University Children's Hospital and Interdisciplinary Center for Infectious Diseases, University of Tübingen Tübingen, Germany
| | - Stefanie Braig
- University Children's Hospital and Interdisciplinary Center for Infectious Diseases, University of Tübingen Tübingen, Germany
| | - Iris Schäfer
- University Children's Hospital and Interdisciplinary Center for Infectious Diseases, University of Tübingen Tübingen, Germany
| | - Dominik Hartl
- University Children's Hospital and Interdisciplinary Center for Infectious Diseases, University of Tübingen Tübingen, Germany
| | - Nikolaus Rieber
- University Children's Hospital and Interdisciplinary Center for Infectious Diseases, University of TübingenTübingen, Germany; Department of Pediatrics, Kinderklinik München Schwabing, StKM GmbH und Klinikum rechts der Isar, Technische Universität MünchenMunich, Germany
| |
Collapse
|
9
|
Borghi M, De Luca A, Puccetti M, Jaeger M, Mencacci A, Oikonomou V, Pariano M, Garlanda C, Moretti S, Bartoli A, Sobel J, van de Veerdonk FL, Dinarello CA, Netea MG, Romani L. Pathogenic NLRP3 Inflammasome Activity during Candida Infection Is Negatively Regulated by IL-22 via Activation of NLRC4 and IL-1Ra. Cell Host Microbe 2015; 18:198-209. [PMID: 26269955 DOI: 10.1016/j.chom.2015.07.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 05/21/2015] [Accepted: 07/14/2015] [Indexed: 01/20/2023]
Abstract
Candida albicans is a well-tolerated resident of human mucosal tissues. This implies that host defense mechanisms cooperate to limit inflammation while controlling fungal burden. The cytokine IL-22 and inflammasomes are essential components of the mucosal responses to C. albicans. How these components cooperate to mediate the balance of inflammation and host defense is not explored. We find that NLRP3 inflammasome activation promotes neutrophil recruitment and inflammation during infection and that this activity is counteracted by IL-22. Mechanistically, IL-22 activated NLRC4 for sustained production of the IL-1 receptor antagonist IL-1Ra, which restrained NLRP3 activity. Symptomatic infection in mice and humans occurred under conditions of IL-1Ra deficiency and was rescued in mice by replacement therapy with the recombinant IL-1Ra anakinra. Thus, pathogenic inflammasome activity during Candida infection is negatively regulated by the IL-22/NLRC4/IL-1Ra axis. Our findings offer insights into the pathogenesis of C. albicans and suggest therapeutic avenues for candidiasis.
Collapse
Affiliation(s)
- Monica Borghi
- Department of Experimental Medicine, University of Perugia, Polo Unico Sant'Andrea delle Fratte, 06132 Perugia, Italy
| | - Antonella De Luca
- Department of Experimental Medicine, University of Perugia, Polo Unico Sant'Andrea delle Fratte, 06132 Perugia, Italy
| | - Matteo Puccetti
- Department of Experimental Medicine, University of Perugia, Polo Unico Sant'Andrea delle Fratte, 06132 Perugia, Italy
| | - Martin Jaeger
- Department of Medicine, Radboud University, Medical Centre, 6500 HB, Nijmegen, The Netherlands; Radboud Center for Infectious Diseases, 6500 HB, Nijmegen, The Netherlands
| | - Antonella Mencacci
- Department of Experimental Medicine, University of Perugia, Polo Unico Sant'Andrea delle Fratte, 06132 Perugia, Italy
| | - Vasilis Oikonomou
- Department of Experimental Medicine, University of Perugia, Polo Unico Sant'Andrea delle Fratte, 06132 Perugia, Italy
| | - Marilena Pariano
- Department of Experimental Medicine, University of Perugia, Polo Unico Sant'Andrea delle Fratte, 06132 Perugia, Italy
| | - Cecilia Garlanda
- Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy
| | - Silvia Moretti
- Department of Experimental Medicine, University of Perugia, Polo Unico Sant'Andrea delle Fratte, 06132 Perugia, Italy
| | - Andrea Bartoli
- Department of Experimental Medicine, University of Perugia, Polo Unico Sant'Andrea delle Fratte, 06132 Perugia, Italy
| | - Jack Sobel
- Infectious Diseases, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Frank L van de Veerdonk
- Department of Medicine, Radboud University, Medical Centre, 6500 HB, Nijmegen, The Netherlands; Radboud Center for Infectious Diseases, 6500 HB, Nijmegen, The Netherlands
| | - Charles A Dinarello
- Radboud Center for Infectious Diseases, 6500 HB, Nijmegen, The Netherlands; Division of Infectious Diseases, University of Colorado Denver, Aurora, CO 80045, USA
| | - Mihai G Netea
- Department of Medicine, Radboud University, Medical Centre, 6500 HB, Nijmegen, The Netherlands; Radboud Center for Infectious Diseases, 6500 HB, Nijmegen, The Netherlands
| | - Luigina Romani
- Department of Experimental Medicine, University of Perugia, Polo Unico Sant'Andrea delle Fratte, 06132 Perugia, Italy.
| |
Collapse
|
10
|
Sahaza JH, Suárez-Alvarez R, Estrada-Bárcenas DA, Pérez-Torres A, Taylor ML. Profile of cytokines in the lungs of BALB/c mice after intra-nasal infection with Histoplasma capsulatum mycelial propagules. Comp Immunol Microbiol Infect Dis 2015; 41:1-9. [PMID: 26264521 DOI: 10.1016/j.cimid.2015.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 05/24/2015] [Accepted: 05/26/2015] [Indexed: 12/27/2022]
Abstract
The host pulmonary response to the fungus Histoplasma capsulatum was evaluated, through the profile of cytokines detected by the MagPix magnetic beads platform in lung homogenates and by lung-granulomas formation, from mice intra-nasally infected with mycelial propagules (M-phase) of two virulent H. capsulatum strains, EH-46 and G-217B. Results highlight that mice lung inflammatory response depends on the H. capsulatum strain used, during the first step of the fungal infection. IL-1β and TNF-α increased their concentrations in mice infected with both strains. The highest levels of IL-6, IL-17, and IL-23 were found in EH-46-infected mice, whereas levels of IL-22 were variable at all post-infection times for both strains. Significant increases of IL-12, IFN-γ, IL-4, and IL-10 were associated to EH-46-infected mice. Histological lung findings from EH-46-infected mice revealed incipient and numerous well-developed granulomas, distributed in lung-lobes at the 14th and the 21st days after infection, according to cytokine profiles.
Collapse
Affiliation(s)
- Jorge Humberto Sahaza
- Laboratorio de Inmunología de Hongos, Unidad de Micología, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), México DF, Mexico; Unidad de Micología Médica y Experimental, Corporación para Investigaciones Biológicas, Medellín, Colombia
| | | | - Daniel Alfonso Estrada-Bárcenas
- Laboratorio de Inmunología de Hongos, Unidad de Micología, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), México DF, Mexico; Colección Nacional de Cultivos Microbianos, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, México DF, Mexico
| | - Armando Pérez-Torres
- Laboratorio de Filogenia del Sistema Inmune de Piel y Mucosas, Departamento de Biología Celular y Tisular, Facultad de Medicina, UNAM, México DF, Mexico
| | - Maria Lucia Taylor
- Laboratorio de Inmunología de Hongos, Unidad de Micología, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), México DF, Mexico.
| |
Collapse
|
11
|
Dühring S, Germerodt S, Skerka C, Zipfel PF, Dandekar T, Schuster S. Host-pathogen interactions between the human innate immune system and Candida albicans-understanding and modeling defense and evasion strategies. Front Microbiol 2015; 6:625. [PMID: 26175718 PMCID: PMC4485224 DOI: 10.3389/fmicb.2015.00625] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 06/08/2015] [Indexed: 12/13/2022] Open
Abstract
The diploid, polymorphic yeast Candida albicans is one of the most important human pathogenic fungi. C. albicans can grow, proliferate and coexist as a commensal on or within the human host for a long time. However, alterations in the host environment can render C. albicans virulent. In this review, we describe the immunological cross-talk between C. albicans and the human innate immune system. We give an overview in form of pairs of human defense strategies including immunological mechanisms as well as general stressors such as nutrient limitation, pH, fever etc. and the corresponding fungal response and evasion mechanisms. Furthermore, Computational Systems Biology approaches to model and investigate these complex interactions are highlighted with a special focus on game-theoretical methods and agent-based models. An outlook on interesting questions to be tackled by Systems Biology regarding entangled defense and evasion mechanisms is given.
Collapse
Affiliation(s)
- Sybille Dühring
- Department of Bioinformatics, Friedrich-Schiller-University JenaJena, Germany
| | - Sebastian Germerodt
- Department of Bioinformatics, Friedrich-Schiller-University JenaJena, Germany
| | - Christine Skerka
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll InstituteJena, Germany
| | - Peter F. Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll InstituteJena, Germany
- Friedrich-Schiller-University JenaJena, Germany
| | - Thomas Dandekar
- Department of Bioinformatics, Biozentrum, Universitaet WuerzburgWuerzburg, Germany
| | - Stefan Schuster
- Department of Bioinformatics, Friedrich-Schiller-University JenaJena, Germany
| |
Collapse
|
12
|
Zelante T, Iannitti RG, Fallarino F, Gargaro M, De Luca A, Moretti S, Bartoli A, Romani L. Tryptophan Feeding of the IDO1-AhR Axis in Host-Microbial Symbiosis. Front Immunol 2014; 5:640. [PMID: 25566253 PMCID: PMC4266093 DOI: 10.3389/fimmu.2014.00640] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 12/01/2014] [Indexed: 12/25/2022] Open
Affiliation(s)
- Teresa Zelante
- Department of Experimental Medicine, University of Perugia , Perugia , Italy
| | | | - Francesca Fallarino
- Department of Experimental Medicine, University of Perugia , Perugia , Italy
| | - Marco Gargaro
- Department of Experimental Medicine, University of Perugia , Perugia , Italy
| | - Antonella De Luca
- Department of Experimental Medicine, University of Perugia , Perugia , Italy
| | - Silvia Moretti
- Department of Experimental Medicine, University of Perugia , Perugia , Italy
| | - Andrea Bartoli
- Department of Experimental Medicine, University of Perugia , Perugia , Italy
| | - Luigina Romani
- Department of Experimental Medicine, University of Perugia , Perugia , Italy
| |
Collapse
|
13
|
Romani L, Zelante T, Palmieri M, Napolioni V, Picciolini M, Velardi A, Aversa F, Puccetti P. The cross-talk between opportunistic fungi and the mammalian host via microbiota's metabolism. Semin Immunopathol 2014; 37:163-71. [PMID: 25404119 DOI: 10.1007/s00281-014-0464-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 11/04/2014] [Indexed: 12/26/2022]
Abstract
An increased understanding of the importance of microbiota in shaping the host's immune and metabolic activities has rendered fungal interactions with their hosts more complex than previously appreciated. It is now clear that a three-way interaction between host, fungi, and microbiota dictates the types of host-fungus relationship. Indeed, microbial dysbiosis predisposes to a variety of chronic fungal infections and diseases at local and distant sites. By correlating changes in metabolite profiles with microbiota metagenomic composition, we have defined a functional node whereby certain bacteria species contribute to host-fungal symbiosis and mucosal homeostasis. A tryptophan catabolic pathway is exploited by commensal lactobacilli and the mammalian host to increase fitness in response to Candida albicans by inducing resistance and tolerance mechanisms of antifungal immunity. Much like lactobacilli in the gut, Firmicutes change significantly in the airways during aspergillosis. The aryl hydrocarbon receptor has a pivotal role in connecting tryptophan catabolism by microbial communities and the host's own pathway of tryptophan degradation through the enzyme indoleamine 2,3-dioxygenase 1. These data suggest that the study of the human microbiota in the trans-omics era, with a focus on metagenomics and metabonomics, is providing novel insights into the regulation of host immune responsiveness to fungi.
Collapse
Affiliation(s)
- Luigina Romani
- Department of Experimental Medicine, University of Perugia, Polo Unico Sant'Andrea delle Fratte, 06132, Perugia, Italy,
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Romani L, Zelante T, De Luca A, Iannitti RG, Moretti S, Bartoli A, Aversa F, Puccetti P. Microbiota control of a tryptophan-AhR pathway in disease tolerance to fungi. Eur J Immunol 2014; 44:3192-200. [PMID: 25256754 DOI: 10.1002/eji.201344406] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 07/30/2014] [Accepted: 09/23/2014] [Indexed: 01/09/2023]
Abstract
An increased understanding of the importance of microbiota in shaping the host's immune and metabolic activities has rendered fungal interactions with their hosts more complex than previously appreciated. The aryl hydrocarbon receptor (AhR) has a pivotal role in connecting tryptophan catabolism by microbial communities and the host's own pathway of tryptophan metabolite production with the orchestration of T-cell function. AhR activation by a Lactobacillus-derived AhR ligand leads to the production of IL-22 to the benefit of mucosal defense mechanisms, an activity upregulated in the absence of the host tryptophan catabolic enzyme, indoleamine 2,3-dioxygenase 1 (IDO1), which is required for protection from fungal diseases ("disease tolerance"). As AhR activation in turn leads to the activation-in a feedback fashion-of IDO1, the regulatory loop involving AhR and IDO1 may have driven the coevolution of commensal fungi with the mammalian immune system and the microbiota, to the benefit of host survival and fungal commensalism. This review will discuss the essential help the microbiota provides in controlling the balance between the dual nature of the fungal-host relationship, namely, commensalism vs. infection.
Collapse
Affiliation(s)
- Luigina Romani
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Borghi M, Renga G, Puccetti M, Oikonomou V, Palmieri M, Galosi C, Bartoli A, Romani L. Antifungal Th Immunity: Growing up in Family. Front Immunol 2014; 5:506. [PMID: 25360137 PMCID: PMC4197763 DOI: 10.3389/fimmu.2014.00506] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 09/28/2014] [Indexed: 12/25/2022] Open
Abstract
Fungal diseases represent an important paradigm in immunology since they can result from either the lack of recognition or over-activation of the inflammatory response. Current understanding of the pathophysiology underlying fungal infections and diseases highlights the multiple cell populations and cell-signaling pathways involved in these conditions. A systems biology approach that integrates investigations of immunity at the systems-level is required to generate novel insights into this complexity and to decipher the dynamics of the host–fungus interaction. It is becoming clear that a three-way interaction between the host, microbiota, and fungi dictates the types of host–fungus relationship. Tryptophan metabolism helps support this interaction, being exploited by the mammalian host and commensals to increase fitness in response to fungi via resistance and tolerance mechanisms of antifungal immunity. The cellular and molecular mechanisms that provide immune homeostasis with the fungal biota and its possible rupture in fungal infections and diseases will be discussed within the expanding role of antifungal Th cell responses.
Collapse
Affiliation(s)
- Monica Borghi
- Pathology Section, Department of Experimental Medicine, University of Perugia , Perugia , Italy
| | - Giorgia Renga
- Pathology Section, Department of Experimental Medicine, University of Perugia , Perugia , Italy
| | | | - Vasileios Oikonomou
- Pathology Section, Department of Experimental Medicine, University of Perugia , Perugia , Italy
| | - Melissa Palmieri
- Pathology Section, Department of Experimental Medicine, University of Perugia , Perugia , Italy
| | - Claudia Galosi
- Pathology Section, Department of Experimental Medicine, University of Perugia , Perugia , Italy
| | - Andrea Bartoli
- Pathology Section, Department of Experimental Medicine, University of Perugia , Perugia , Italy
| | - Luigina Romani
- Pathology Section, Department of Experimental Medicine, University of Perugia , Perugia , Italy
| |
Collapse
|
16
|
Pan CX, Tang J, Wang XY, Wu FR, Ge JF, Chen FH. Role of interleukin-22 in liver diseases. Inflamm Res 2014; 63:519-25. [PMID: 24623532 PMCID: PMC4050291 DOI: 10.1007/s00011-014-0727-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Revised: 02/05/2014] [Accepted: 02/24/2014] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Interleukin (IL)-22, originally referred to as IL-TIF for IL-10-related T cell-derived inducible factor, is a member of the IL-10-like cytokine family. IL-22 is highly expressed by Th17 cells and is tightly linked to chronic inflammation, including inflammatory bowel disease and local intestinal inflammation among others. MATERIALS AND METHODS A PubMed and Web of Science databases search was performed for studies providing evidences on the role of IL-22 in liver diseases. CONCLUSION IL-22 plays an important role in ameliorating liver injury in many rodent models by targeting hepatocytes that express high levels of IL-22 receptor 1 and IL-10 receptor 2. This review concisely summarizes the role of IL-22 in the development progression of liver disease of different etiologies. It is focused mainly on the IL-22 intracellular signaling and its influence on liver diseases.
Collapse
Affiliation(s)
- Chun-xiao Pan
- School of Pharmacy, Anhui Medical University, 81 Mei-shan Road, Hefei, 230032 China
| | - Jie Tang
- School of Pharmacy, Anhui Medical University, 81 Mei-shan Road, Hefei, 230032 China
| | - Xiao-yu Wang
- School of Pharmacy, Anhui Medical University, 81 Mei-shan Road, Hefei, 230032 China
| | - Fan-rong Wu
- School of Pharmacy, Anhui Medical University, 81 Mei-shan Road, Hefei, 230032 China
| | - Jin-fang Ge
- School of Pharmacy, Anhui Medical University, 81 Mei-shan Road, Hefei, 230032 China
| | - Fei-hu Chen
- School of Pharmacy, Anhui Medical University, 81 Mei-shan Road, Hefei, 230032 China
| |
Collapse
|
17
|
Sarkadi AK, Taskó S, Csorba G, Tóth B, Erdős M, Maródi L. Autoantibodies to IL-17A may be correlated with the severity of mucocutaneous candidiasis in APECED patients. J Clin Immunol 2014; 34:181-93. [PMID: 24493573 DOI: 10.1007/s10875-014-9987-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 01/03/2014] [Indexed: 12/19/2022]
Abstract
The relative roles of various autoantibodies against IL-17-type cytokines in susceptibility to chronic mucocutaneous candidiasis (CMC) in patients with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) remain poorly defined. The purpose of this longitudinal study was to analyze the relationship between the occurrence of mucocutaneous candidiasis and levels of anti-IL-17A, anti-IL-17F and anti-IL-22 autoantibodies. We studied six APECED patients from four families with various disease manifestations. Clinical data were collected during regular follow-up. Anti-endocrine organ antibody levels and clinical chemistry and immunology parameters were determined in routine laboratory assays on freshly isolated serum. Levels of autoantibodies against IL-17A, IL-17F, IL-22, IFN-α, IFN-ω and TNF-α, and cytokine release by Candida-exposed blood cells were determined by ELISA. Mutations were analyzed by sequencing genomic DNA. Four patients carried the germline c.769C > T homozygous nonsense mutation, which results in R257X truncation of the AIRE protein, and two patients from the same family were compound heterozygous for the c.769C > T/c.1344delC mutation. We found persistently high levels of antibodies against IL-17A in the serum samples of one patient presenting CMC since infancy and low or undetectable anti-IL-17A antibody levels in the sera of five patients with no candidiasis or without severe candidiasis. By contrast, levels of autoantibodies against IL-17F and IL-22 were higher in all patients than in healthy controls. Release of IL-17-type cytokines by Candida-exposed blood mononuclear cells was low or negligible in all patients tested. We suggest that anti-IL-17A antibodies may play an important role in the predisposition to candidiasis of APECED patients. However, the lack of severe CMC in APECED patients with high levels of IL-17F and anti-IL-22 autoantibodies clearly calls into question the role of these antibodies as the principal cause of cutaneous and mucosal candidiasis in at least some APECED patients. These data also suggest that the impaired release of IL-17-type cytokines by blood cells may be an element of the immunopathology of CMC in APECED patients.
Collapse
Affiliation(s)
- Adrien Katalin Sarkadi
- Department of Infectious and Pediatric Immunology, University of Debrecen, Medical and Health Science Center, Nagyerdei Krt. 98, 4032, Debrecen, Hungary
| | | | | | | | | | | |
Collapse
|
18
|
Eidenschenk C, Rutz S, Liesenfeld O, Ouyang W. Role of IL-22 in microbial host defense. Curr Top Microbiol Immunol 2014; 380:213-36. [PMID: 25004820 DOI: 10.1007/978-3-662-43492-5_10] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Interleukin (IL)-22 is a member of the IL-10 family of cytokines, which, besides IL-10, contains seven additional cytokines. Although the founding member IL-10 is an important immunoregulatory cytokine that represses both innate and adaptive immunity, the other family members preferentially target epithelial cells and enhance innate host defense mechanisms against various pathogens such as bacteria, yeast, and viruses. Based on their functions, the IL-10 family can be further divided into three subgroups, IL-10 itself, the IL-20 subfamily, and the IFNλ subfamily. IL-22 is the best-studied member of the IL-20 subfamily, and exemplifies the diverse biological effects of this subfamily. IL-22 elicits various innate immune responses from epithelial cells and is essential for host defense against several invading pathogens, including Citrobacter rodentium and Klebsiella pneumonia. IL-22 also protects tissue integrity and maintains the mucosal homeostasis. On the other hand, IL-22 is a proinflammatory cytokine with the capacity to amplify inflammatory responses, which might result in tissue damage, e.g., the IL-22-dependent necrosis of the small intestine during Toxoplasma gondii infection.
Collapse
Affiliation(s)
- Celine Eidenschenk
- Department of Immunology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA,
| | | | | | | |
Collapse
|
19
|
Wang X, Ouyang W. Interleukin-22: A Bridge Between Epithelial Innate Host Defense and Immune Cells. CYTOKINE FRONTIERS 2014. [PMCID: PMC7120444 DOI: 10.1007/978-4-431-54442-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Interleukin-22 (IL-22), an IL-10 family cytokine, is produced by various leukocytes. The receptor of IL-22, however, is preferentially detected on peripheral tissue epithelial cells. IL-22 functions as a unique messenger from immune system to tissue epithelial cells and to regulate homeostasis of epithelia. IL-22 is able to directly enhance antimicrobial defense mechanisms in epithelial cells and to facilitate epithelial barrier repair and wound healing process. It, therefore, possesses an irreplaceable role in host defense against certain pathogens that specifically invade epithelial cells. In addition, IL-22 can help to preserve the integrity and homeostasis of various epithelial organs during infection or inflammation. The importance of its tissue-protective function is manifested in many inflammatory situations such as inflammatory bowel diseases (IBD) and hepatitis. On the other hand, as a cytokine, IL-22 is capable of induction of proinflammatory responses, especially in synergy with other cytokines. Consequently, IL-22 contributes to pathogenesis of certain inflammatory diseases for example psoriasis.
Collapse
|
20
|
Hamilos DL. Host-microbial interactions in patients with chronic rhinosinusitis. J Allergy Clin Immunol 2013; 133:640-53.e4. [PMID: 24290275 PMCID: PMC7112254 DOI: 10.1016/j.jaci.2013.06.049] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 06/25/2013] [Accepted: 06/27/2013] [Indexed: 12/26/2022]
Abstract
There has been considerable investigation of host-microbial interactions in patients with chronic rhinosinusitis (CRS) in hopes of elucidating mechanisms of disease and better treatment. Most attention has been paid to bacterial infection and potential underlying defects in innate immunity. Bacterial biofilm is present in most patients with CRS undergoing surgical intervention, and its presence is associated with more severe disease and worse surgical outcomes. A role for viral or fungal infection in patients with CRS is less clear. There is no evidence for a primary defect in mucociliary clearance in most patients with CRS. Decreased levels of certain antimicrobial proteins, most notably lactoferrin, have been found in sinus secretions, whereas levels of other antimicrobial proteins have been found to be normal. No primary defects in Toll-like receptors have been found in patients with CRS, although a 50% reduced expression of Toll-like receptor 9 was reported in patients with recalcitrant nasal polyps. A polymorphism in a bitter taste receptor was recently associated with refractory CRS and persistent Pseudomonas aeruginosa infection. A downregulation of innate immunity by maladaptive TH2 tissue inflammation has also been described in patients with recalcitrant nasal polyps, suggesting a link to persistent infection. To date, an effective means of restoring host-microbial balance and mitigating disease in patients with CRS remains elusive.
Collapse
Affiliation(s)
- Daniel L Hamilos
- Division of Rheumatology, Allergy & Immunology, Massachusetts General Hospital, Boston, Mass.
| |
Collapse
|
21
|
Hernández-Santos N, Huppler AR, Peterson AC, Khader SA, McKenna KC, Gaffen SL. Th17 cells confer long-term adaptive immunity to oral mucosal Candida albicans infections. Mucosal Immunol 2013; 6:900-10. [PMID: 23250275 PMCID: PMC3608691 DOI: 10.1038/mi.2012.128] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 11/13/2012] [Indexed: 02/04/2023]
Abstract
Oropharyngeal candidiasis (OPC) is an opportunistic infection caused by Candida albicans. Despite its prevalence, little is known about C. albicans-specific immunity in the oral mucosa. Vaccines against Candida generate both T helper type 1 (Th1) and Th17 responses, and considerable evidence implicates interleukin (IL)-17 in immunity to OPC. However, IL-17 is also produced by innate immune cells that are remarkably similar to Th17 cells, expressing the same markers and localizing to similar mucosal sites. To date, the relative contribution(s) of Th1, Th17, and innate IL-17-producing cells in OPC have not been clearly defined. Here, we sought to determine the nature and function of adaptive T-cell responses to OPC, using a new recall infection model. Mice subjected to infection and re-challenge with Candida mounted a robust and stable antigen-specific IL-17 response in CD4+ but not CD8+ T cells. There was little evidence for Th1 or Th1/Th17 responses. The Th17 response promoted accelerated fungal clearance, and Th17 cells could confer protection in Rag1-/- mice upon adoptive transfer. Surprisingly, CD4 deficiency did not cause OPC but was instead associated with compensatory IL-17 production by Tc17 and CD3+CD4-CD8- cells. Therefore, classic CD4+Th17 cells protect from OPC but can be compensated by other IL-17-producing cells in CD4-deficient hosts.
Collapse
Affiliation(s)
| | - Anna R. Huppler
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh
| | - Alanna C. Peterson
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh
| | | | | | - Sarah L. Gaffen
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh,Correspondence: Division of Rheumatology & Clinical Immunology, BST S703, 3500 Terrace St, Pittsburgh PA 15261, USA. 412-383-8903, Fax: 412-383-8864,
| |
Collapse
|
22
|
Characterization of the immune response in human paracoccidioidomycosis. J Infect 2013; 67:470-85. [PMID: 23872208 DOI: 10.1016/j.jinf.2013.07.019] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 07/02/2013] [Accepted: 07/03/2013] [Indexed: 11/22/2022]
Abstract
OBJECTIVES Paracoccidioidomycosis (PCM) is a systemic mycosis caused by the dimorphic fungus Paracoccidioides brasiliensis that presents two main clinical forms: the adult form (AF) and the juvenile form (JF); and an asymptomatic form denominated PCM-infection (PI). These forms of PCM are related to the immune response developed after infection, which has been associated with Th1 and Th2 responses. However, some PCM characteristics cannot be explained by this balance. In this study we aimed to complement the characterization of the immune response in PCM, including the newly described T cells subpopulations (Th17, Th9 and Th22). METHODS We analyzed the expression of cytokines and transcription factors characteristics of these different subpopulations of CD4(+) T cells in PBMCs from PCM patients and a PI group. RESULTS The results showed that the PI group presented a predominant Th1 response; that JF patients were characterized by a mixed Th2/Th9 response; and AF patients were characterized by a predominant Th17/Th22 response, as well as substantial participation of Th1 cells. CONCLUSIONS These results contribute to the existing knowledge on the immune responses associated with resistance or susceptibility to the P. brasiliensis infection, and thus could lead to the development of new strategies for patient management.
Collapse
|
23
|
Lass-Flörl C, Roilides E, Löffler J, Wilflingseder D, Romani L. Minireview: host defence in invasive aspergillosis. Mycoses 2013; 56:403-13. [PMID: 23406508 DOI: 10.1111/myc.12052] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Aspergillus is a saprophytic fungus, which mainly becomes pathogenic in immunosuppressed hosts. A failure of host defences results in a diverse set of illnesses, ranging from chronic colonisation, aspergilloma, invasive disease and hypersensitivity. A key concept in immune responses to Aspergillus species is that host susceptibility determines the morphological form, antigenic structure and physical location of the fungus. Traditionally, innate immunity has been considered as a first line of defence and activates adaptive immune mechanisms by the provision of specific signals; innate and adaptive immune responses are intimately linked. The T-helper cell (TH 1) response is associated with increased production of inflammatory cytokines IFN-γ, IL-2 and IL-12 and stimulation of antifungal effector cells. Alternatively, TH 2-type responses are associated with suppression of antifungal effector cell activity, decreased production of IFN-γ and increased concentrations of IL-4 and IL-10, which promote humoral responses to Aspergillus. The host's defensive capacity is defined by the sum of resistance and tolerance. Resistance displays the ability to limit fungal burden and elimination of the pathogen, and tolerance means the ability to limit host damage caused by immune response.
Collapse
Affiliation(s)
- Cornelia Lass-Flörl
- Division of Hygiene and Medical Microbiology, Innsbruck Medical University, Innsbruck, Austria.
| | | | | | | | | |
Collapse
|
24
|
McGeachy MJ, McSorley SJ. Microbial-induced Th17: superhero or supervillain? THE JOURNAL OF IMMUNOLOGY 2012; 189:3285-91. [PMID: 22997231 DOI: 10.4049/jimmunol.1201834] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Th17 cells are an effector lineage of CD4 T cells that can contribute to protection against microbial pathogens and to the development of harmful autoimmune and inflammatory conditions. An increasing number of studies suggests that Th17 cells play an important protective role in mobilizing host immunity to extracellular and intracellular microbial pathogens, such as Candida and Salmonella. Furthermore, the generation of Th17 cells is heavily influenced by the normal microbial flora, highlighting the complex interplay among harmless microbes, pathogens, and host immunity in the regulation of pathogen-specific Th17 responses. In this article, we review the current understanding of microbe-induced Th17 cells in the context of infectious and inflammatory disease.
Collapse
Affiliation(s)
- Mandy J McGeachy
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
25
|
Huppler AR, Bishu S, Gaffen SL. Mucocutaneous candidiasis: the IL-17 pathway and implications for targeted immunotherapy. Arthritis Res Ther 2012; 14:217. [PMID: 22838497 PMCID: PMC3580547 DOI: 10.1186/ar3893] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
IL-17 and related cytokines are direct and indirect targets of selective immunosuppressive agents for the treatment of autoimmune diseases and other diseases of pathologic inflammation. Insights into the potential adverse effects of IL-17 blockade can be drawn from the experience of patients with deficiencies in the IL-17 pathway. A unifying theme of susceptibility to mucocutaneous candidiasis is seen in both mice and humans with a variety of genetic defects that converge on this pathway. Mucocutaneous candidiasis is a superficial infection of mucosal, nail or skin surfaces usually caused by the fungal pathogen Candida albicans. The morbidity of the disease includes significant pain, weight loss and secondary complications, including carcinoma and aneurysms. This review describes the known human diseases associated with chronic mucocutaneous candidiasis (CMC) as well as the known and proposed connections to IL-17 signaling. The human diseases include defects in IL-17 signaling due to autoantibodies (AIRE deficiency), receptor mutations (IL-17 receptor mutations) or mutations in the cytokine genes (IL17F and IL17A). Hyper-IgE syndrome is characterized by elevated serum IgE, dermatitis and recurrent infections, including CMC due to impaired generation of IL-17-producing Th17 cells. Mutations in STAT1, IL12B and IL12RB1 result in CMC secondary to decreased IL-17 production through different mechanisms. Dectin-1 defects and CARD9 defects result in susceptibility to C. albicans because of impaired host recognition of the pathogen and subsequent impaired generation of IL-17-producing T cells. Thus, recent discoveries of genetic predisposition to CMC have driven the recognition of the role of IL-17 in protection from mucosal fungal infection and should guide counseling and management of patients treated with pharmacologic IL-17 blockade.
Collapse
|
26
|
Valdez PA, Vithayathil PJ, Janelsins BM, Shaffer AL, Williamson PR, Datta SK. Prostaglandin E2 suppresses antifungal immunity by inhibiting interferon regulatory factor 4 function and interleukin-17 expression in T cells. Immunity 2012; 36:668-79. [PMID: 22464170 PMCID: PMC3334441 DOI: 10.1016/j.immuni.2012.02.013] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 12/08/2011] [Accepted: 02/02/2012] [Indexed: 11/20/2022]
Abstract
T helper 17 (Th17) cells play an important role in mucosal host defense through production of the signature cytokines IL-17 and IL-22. Prostaglandin E2 (PGE2) has been shown to enhance IL-17 production by mature Th17 cells. However, when present during Th17 cell differentiation, we found that PGE2 inhibited the transcription factor IRF4 and suppressed production of IL-17 but not IL-22. We show that IRF4 was required for IL-17 expression but inhibited IL-22 expression, highlighting the potential for discordant regulation of these two cytokines in Th17 cells. The pathogenic fungus Cryptococcus neoformans produces PGE2, and we found that it uses PGE2- and IRF4-dependent mechanisms to specifically inhibit induction of IL-17 during Th17 cell differentiation. Blockade of host PGE2 during infection led to increased IL-17 production from CD4(+) T cells and increased survival of mice. These findings suggest that host- or pathogen-derived PGE2 can act directly on Th17 cells during differentiation to inhibit IL-17-dependent antimicrobial responses.
Collapse
Affiliation(s)
- Patricia A Valdez
- Bacterial Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
27
|
C-type lectin receptors and cytokines in fungal immunity. Cytokine 2012; 58:89-99. [DOI: 10.1016/j.cyto.2011.08.031] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 08/20/2011] [Indexed: 12/29/2022]
|
28
|
Mullangi PK, Shahani L, Koirala J. Role of endogenous biological response modifiers in pathogenesis of infectious diseases. Infect Dis Clin North Am 2012; 25:733-54. [PMID: 22054753 DOI: 10.1016/j.idc.2011.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Biologic response modifiers (BRMs) interact with the host immune system and modify the immune response. BRMs can be therapeutically used to restore, augment, or dampen the host immune response. Although they have been used for decades, their clinical applications have been expanded in the past decade for diagnosis and treatment of many diseases including cancers, immunologic disorders, and infections. This article discusses endogenous biological response modifiers (ie, naturally occurring immunomodulators as a part of the host immune system), which play vital roles as regulators of both innate and adaptive immune responses.
Collapse
Affiliation(s)
- Praveen K Mullangi
- Division of Infectious Diseases, Springfield Clinic, Springfield, IL 62701, USA
| | | | | |
Collapse
|
29
|
Abstract
Only a handful of the more than 100,000 fungal species on our planet cause disease in humans, yet the number of life-threatening fungal infections in patients has recently skyrocketed as a result of advances in medical care that often suppress immunity intensely. This emerging crisis has created pressing needs to clarify immune defense mechanisms against fungi, with the ultimate goal of therapeutic applications. Herein, we describe recent insights in understanding the mammalian immune defenses deployed against pathogenic fungi. The review focuses on adaptive immune responses to the major medically important fungi and emphasizes how dendritic cells and subsets in various anatomic compartments respond to fungi, recognize their molecular patterns, and signal responses that nurture and shape the differentiation of T cell subsets and B cells. Also emphasized is how the latter deploy effector and regulatory mechanisms that eliminate these nasty invaders while also constraining collateral damage to vital tissue.
Collapse
Affiliation(s)
- Marcel Wüthrich
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53792, USA.
| | | | | |
Collapse
|
30
|
Ota N, Takano F, Muroga S, Kawabata T, Ishigaki Y, Yahagi N, Ohta T. Garlic extract and its selected organosulphur constituents promote ileal immune responses ex vivo. J Funct Foods 2012. [DOI: 10.1016/j.jff.2011.11.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
31
|
Espinosa V, Rivera A. Cytokines and the regulation of fungus-specific CD4 T cell differentiation. Cytokine 2011; 58:100-6. [PMID: 22133343 DOI: 10.1016/j.cyto.2011.11.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 11/02/2011] [Accepted: 11/03/2011] [Indexed: 12/11/2022]
Abstract
CD4 T cells play important and non-redundant roles in protection against infection with diverse fungi. Distinct CD4 T cell subsets can mediate protection against fungal disease where Th1 and Th17 CD4 T cell subsets have been found to promote fungal clearance and protective immunity against diverse fungal pathogens. The differentiation of naïve CD4 T cells into Th1 or Th17 cells is crucially controlled by their interaction with dendritic cells and instructed by cytokines. IL-12 and IFN-γ promote Th1 differentiation while TGF-β, IL-6, IL-1, IL-21 and IL-23 promote Th17 differentiation and maintenance. The production of these cytokines by DCs is in turn regulated by innate receptors triggered in response to fungal infection. In this review we will discuss the contributions of cytokines found to influence fungus-specific CD4 T cell differentiation and their role in defense against fungal disease. We will also highlight the contributions of innate receptors involved in recognition of fungi and how they shape cytokine secretion and CD4 T cell differentiation.
Collapse
Affiliation(s)
- Vanessa Espinosa
- Graduate School of Biomedical Sciences, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, 185 So Orange Avenue, MSB-F601, Newark, NJ 07101, USA.
| | | |
Collapse
|
32
|
Abstract
The discovery of the Th17 lineage in 2005 triggered a major change in how immunity to infectious diseases is viewed. Fungal infections, in particular, have long been a relatively understudied area of investigation in terms of the host immune response. Candida albicans is a commensal yeast that colonizes mucosal sites and skin. In healthy individuals, it is non-pathogenic, but in conditions of immune deficiency, this organism can cause a variety of infections associated with considerable morbidity. Candida can also cause disseminated infections that have a high mortality rate and are a major clinical problem in hospital settings. Although immunity to Candida albicans was long considered to be mediated by Th1 cells, new data in both rodent models and in humans have revealed an essential role for the Th17 lineage, and in particular its signature cytokine IL-17.
Collapse
|
33
|
Kisand K, Lilic D, Casanova JL, Peterson P, Meager A, Willcox N. Mucocutaneous candidiasis and autoimmunity against cytokines in APECED and thymoma patients: clinical and pathogenetic implications. Eur J Immunol 2011; 41:1517-27. [PMID: 21574164 DOI: 10.1002/eji.201041253] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 03/09/2011] [Accepted: 04/14/2011] [Indexed: 12/16/2023]
Abstract
Much has been learnt about the mechanisms of thymic self-tolerance induction from work on both the rare autosomal recessive disease autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED) and the autoimmune regulator (AIRE) protein mutated in this disease. Normally, AIRE drives low-level expression of huge numbers of peripheral tissue-specific antigens (TSAgs) in medullary thymic epithelial cells (mTECs), leading to the deletion of TSAg-reactive thymocytes maturing nearby. The very recently discovered neutralizing autoantibodies (autoAbs) against Th17-related cells and cytokines in two autoimmunity-related syndromes associated with AIRE-mutant thymi or AIRE-deficient thymomas help to explain the chronic mucocutaneous candidiasis (CMC) seen in both syndromes. The surprising parallels between these syndromes also demand new hypotheses and research into the consequences of AIRE deficiency and the ensuing autoimmunizing pathways, and suggest more appropriate treatment regimens as discussed in this review.
Collapse
Affiliation(s)
- Kai Kisand
- Molecular Pathology Group, Institute of General and Molecular Pathology, University of Tartu, Tartu, Estonia.
| | | | | | | | | | | |
Collapse
|