1
|
Bosma DMT, Busselaar J, Staal MD, Frijlink E, Mack M, Salerno F, Borst J. CD4 + T-cell help delivery to monocyte-derived dendritic cells promotes effector differentiation of helper and cytotoxic T cells. Immunol Lett 2025; 275:107022. [PMID: 40239818 DOI: 10.1016/j.imlet.2025.107022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/10/2025] [Accepted: 04/10/2025] [Indexed: 04/18/2025]
Abstract
Delivery of CD4+ T-cell help optimizes CD8+ T-cell effector and memory responses via CD40-mediated licensing of conventional dendritic cells (DCs). Using comparative vaccination settings that prime CD8+ T cells in presence or absence of CD4+ T-cell help, we observed that CD4+ T-cell activation promoted influx of monocytes into the vaccine-draining lymph nodes (dLNs), where they differentiated into monocyte-derived (Mo)DCs, as defined by the most recent standards. Abrogation of these responses by CCR2-targeted depletion indicated that monocyte-derived cells in the dLN promoted T-helper 1 (Th1) type effector differentiation of CD4+ T cells, as well as effector differentiation of CD8+ T cells. Monocyte-derived cells in dLNs upregulated CD40, CD80 and PD-L1 as a result of CD4+ T-cell help. The response of monocyte-derived cells to CD4+ T-cell help was independent of natural killer (NK) cells and proceeded via CD40 ligand (L)-CD40 interactions and IFNγ signaling. Our data argue for a scenario wherein activated CD4+ T cells in dLNs crosstalk via CD40L and IFNγ signals to monocytes, promoting their local differentiation into MoDCs. This event enhances formation of CD4+ Th1 and CD8+ cytotoxic effector T cell pool, most likely by virtue of their improved costimulatory status and cytokine production.
Collapse
Affiliation(s)
- Douwe M T Bosma
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Julia Busselaar
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Mo D Staal
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Elselien Frijlink
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Matthias Mack
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Fiamma Salerno
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jannie Borst
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
2
|
Bala N, McGurk A, Carter EM, Sidhu I, Niak S, Leddon SA, Fowell DJ. Th1 cells are critical tissue organizers of myeloid-rich perivascular activation niches. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.24.625073. [PMID: 39651309 PMCID: PMC11623525 DOI: 10.1101/2024.11.24.625073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Aggregating immune cells within perivascular niches (PVN) can regulate tissue immunity in infection, autoimmunity and cancer. How cells are assembled at PVNs and the activation signals imparted within remain unclear. Here, we integrate dynamic time-resolved in vivo imaging with a novel spatially-resolved platform for microanatomical interrogation of transcriptome, immune phenotype and inflammatory mediators in skin PVNs. We uncover a complex positive-feedback loop within CXCL10 + PVNs that regulates myeloid and Th1 cell positioning for exchange of critical signals for Th1 activation. Th1 cells spend ∼24h in the PVN, receiving initial peripheral activation signals, before redeploying to the inflamed dermal parenchyma. Niche-enriched, CCR2-dependent myeloid cells were critical for Th1 IFNγ-production. In turn, PVN instructional signals enabled Th1s to orchestrate PVN assembly by CXCR2-dependent intra-tissue myeloid cell aggregation. The results reveal a critical tissue organizing role for Th1s, gained rapidly on tissue entry, that could be exploited to boost regional immunity. HIGHLIGHTS Perivascular niche (PVN): myeloid hubs in inflamed mouse and healthy human skinTh1 cells enter, get activated, and leave the PVN within first 24h of tissue entryAntigen-specific signals in the PVN promote the tissue organizing functions of Th1sTh1 cells assemble the PVN via CXCR2-dependent myeloid cell aggregation.
Collapse
|
3
|
Mildner A, Kim KW, Yona S. Unravelling monocyte functions: from the guardians of health to the regulators of disease. DISCOVERY IMMUNOLOGY 2024; 3:kyae014. [PMID: 39430099 PMCID: PMC11486918 DOI: 10.1093/discim/kyae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/06/2024] [Accepted: 08/29/2024] [Indexed: 10/22/2024]
Abstract
Monocytes are a key component of the innate immune system. They undergo intricate developmental processes within the bone marrow, leading to diverse monocyte subsets in the circulation. In a state of healthy homeostasis, monocytes are continuously released into the bloodstream, destined to repopulate specific tissue-resident macrophage pools where they fulfil tissue-specific functions. However, under pathological conditions monocytes adopt various phenotypes to resolve inflammation and return to a healthy physiological state. This review explores the nuanced developmental pathways and functional roles that monocytes perform, shedding light on their significance in both physiological and pathological contexts.
Collapse
Affiliation(s)
- Alexander Mildner
- MediCity Research Laboratory, University of Turku, Turku, Finland
- InFLAMES Research Flagship, University of Turku, 20014 Turku, Finland
| | - Ki-Wook Kim
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Simon Yona
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| |
Collapse
|
4
|
Coillard A, Segura E. Antigen presentation by mouse monocyte-derived cells: Re-evaluating the concept of monocyte-derived dendritic cells. Mol Immunol 2021; 135:165-169. [PMID: 33901761 DOI: 10.1016/j.molimm.2021.04.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/22/2021] [Accepted: 04/12/2021] [Indexed: 12/20/2022]
Abstract
Antigen presentation is a key feature of classical dendritic cells (cDCs). Numerous studies have also reported in mouse that, upon inflammation, monocytes enter tissues and differentiate into monocyte-derived DCs (mo-DC) that have the ability to present antigens to T cells. However, a population of inflammatory cDCs sharing phenotypic features with mo-DC has been recently described, challenging the existence of in vivo-generated mo-DC. Here we review studies describing mouse mo-DC in the light of these findings, and evaluate the in vivo evidence for monocyte-derived antigen-presenting cells. We examine the strategies used to demonstrate the monocytic origin of these cells. Finally, we propose that mo-DC play a complementary role to cDCs, by presenting antigens to effector T cells locally in tissues.
Collapse
Affiliation(s)
- Alice Coillard
- Institut Curie, PSL Research University, INSERM, U932, 26 Rue d'Ulm, 75005, Paris, France; Université Paris Descartes, Paris, France
| | - Elodie Segura
- Institut Curie, PSL Research University, INSERM, U932, 26 Rue d'Ulm, 75005, Paris, France.
| |
Collapse
|
5
|
Abstract
For over 35 years since Mosmann and Coffman proposed the seminal “type 1 T helper (Th1)/type 2 T helper (Th2)” hypothesis in 1986, the immunological community has appreciated that naïve CD4 T cells need to make important decisions upon their activation, namely to differentiate towards a Th1, Th2, Th17 (interleukin-17-producing T helper), follicular T helper (Tfh), or regulatory T cell (Treg) fate to orchestrate a variety of adaptive immune responses. The major molecular underpinnings of the Th1/Th2 effector fate choice had been initially characterized using excellent reductionist in vitro culture systems, through which the transcription factors T-bet and GATA3 were identified as the master regulators for the differentiation of Th1 and Th2 cells, respectively. However, Th1/Th2 cell differentiation and their cellular heterogeneity are usually determined by a combinatorial expression of multiple transcription factors, particularly in vivo, where dendritic cell (DC) and innate lymphoid cell (ILC) subsets can also influence T helper lineage choices. In addition, inflammatory cytokines that are capable of inducing Th17 cell differentiation are also found to be induced during typical Th1- or Th2-related immune responses, resulting in an alternative differentiation pathway, transiting from a Th17 cell phenotype towards Th1 or Th2 cells. In this review, we will discuss the recent advances in the field, focusing on some new players in the transcriptional network, contributions of DCs and ILCs, and alternative differentiation pathways towards understanding the Th1/Th2 effector choice in vivo.
Collapse
Affiliation(s)
- Matthew J Butcher
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
6
|
Perez-Toledo M, Beristain-Covarrubias N, Channell WM, Hitchcock JR, Cook CN, Coughlan RE, Bobat S, Jones ND, Nakamura K, Ross EA, Rossiter AE, Rooke J, Garcia-Gimenez A, Jossi S, Persaud RR, Marcial-Juarez E, Flores-Langarica A, Henderson IR, Withers DR, Watson SP, Cunningham AF. Mice Deficient in T-bet Form Inducible NO Synthase-Positive Granulomas That Fail to Constrain Salmonella. THE JOURNAL OF IMMUNOLOGY 2020; 205:708-719. [PMID: 32591391 PMCID: PMC7372318 DOI: 10.4049/jimmunol.2000089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/29/2020] [Indexed: 11/19/2022]
Abstract
Clearance of intracellular infections caused by Salmonella Typhimurium (STm) requires IFN-γ and the Th1-associated transcription factor T-bet. Nevertheless, whereas IFN-γ-/- mice succumb rapidly to STm infections, T-bet-/- mice do not. In this study, we assess the anatomy of immune responses and the relationship with bacterial localization in the spleens and livers of STm-infected IFN-γ-/- and T-bet-/- mice. In IFN-γ-/- mice, there is deficient granuloma formation and inducible NO synthase (iNOS) induction, increased dissemination of bacteria throughout the organs, and rapid death. The provision of a source of IFN-γ reverses this, coincident with subsequent granuloma formation and substantially extends survival when compared with mice deficient in all sources of IFN-γ. T-bet-/- mice induce significant levels of IFN-γ- after challenge. Moreover, T-bet-/- mice have augmented IL-17 and neutrophil numbers, and neutralizing IL-17 reduces the neutrophilia but does not affect numbers of bacteria detected. Surprisingly, T-bet-/- mice exhibit surprisingly wild-type-like immune cell organization postinfection, including extensive iNOS+ granuloma formation. In wild-type mice, most bacteria are within iNOS+ granulomas, but in T-bet-/- mice, most bacteria are outside these sites. Therefore, Th1 cells act to restrict bacteria within IFN-γ-dependent iNOS+ granulomas and prevent dissemination.
Collapse
Affiliation(s)
- Marisol Perez-Toledo
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom;
| | - Nonantzin Beristain-Covarrubias
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - William M Channell
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Jessica R Hitchcock
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Charlotte N Cook
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Ruth E Coughlan
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Saeeda Bobat
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Nicholas D Jones
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Kyoko Nakamura
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Ewan A Ross
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Amanda E Rossiter
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Jessica Rooke
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Alicia Garcia-Gimenez
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Sian Jossi
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Ruby R Persaud
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Edith Marcial-Juarez
- Department of Cell Biology, Center for Research and Advanced Studies, The National Polytechnic Institute, Mexico City 07360, Mexico
| | - Adriana Flores-Langarica
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Ian R Henderson
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia; and
| | - David R Withers
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Steve P Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Adam F Cunningham
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom;
| |
Collapse
|
7
|
Hilligan KL, Ronchese F. Antigen presentation by dendritic cells and their instruction of CD4+ T helper cell responses. Cell Mol Immunol 2020; 17:587-599. [PMID: 32433540 DOI: 10.1038/s41423-020-0465-0] [Citation(s) in RCA: 237] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/10/2020] [Indexed: 12/20/2022] Open
Abstract
Dendritic cells are powerful antigen-presenting cells that are essential for the priming of T cell responses. In addition to providing T-cell-receptor ligands and co-stimulatory molecules for naive T cell activation and expansion, dendritic cells are thought to also provide signals for the differentiation of CD4+ T cells into effector T cell populations. The mechanisms by which dendritic cells are able to adapt and respond to the great variety of infectious stimuli they are confronted with, and prime an appropriate CD4+ T cell response, are only partly understood. It is known that in the steady-state dendritic cells are highly heterogenous both in phenotype and transcriptional profile, and that this variability is dependent on developmental lineage, maturation stage, and the tissue environment in which dendritic cells are located. Exposure to infectious agents interfaces with this pre-existing heterogeneity by providing ligands for pattern-recognition and toll-like receptors that are variably expressed on different dendritic cell subsets, and elicit production of cytokines and chemokines to support innate cell activation and drive T cell differentiation. Here we review current information on dendritic cell biology, their heterogeneity, and the properties of different dendritic cell subsets. We then consider the signals required for the development of different types of Th immune responses, and the cellular and molecular evidence implicating different subsets of dendritic cells in providing such signals. We outline how dendritic cell subsets tailor their response according to the infectious agent, and how such transcriptional plasticity enables them to drive different types of immune responses.
Collapse
Affiliation(s)
- Kerry L Hilligan
- Malaghan Institute of Medical Research, Wellington, 6012, New Zealand.,Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Franca Ronchese
- Malaghan Institute of Medical Research, Wellington, 6012, New Zealand.
| |
Collapse
|
8
|
Characterization of Host Responses during Pseudomonas aeruginosa Acute Infection in the Lungs and Blood and after Treatment with the Synthetic Immunomodulatory Peptide IDR-1002. Infect Immun 2018; 87:IAI.00661-18. [PMID: 30323028 PMCID: PMC6300642 DOI: 10.1128/iai.00661-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/02/2018] [Indexed: 12/26/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes nosocomial pneumonia and infects patients with cystic fibrosis. P. aeruginosa lung infections are difficult to treat due to bacterial resistance to antibiotics, and strains with multidrug resistance are becoming more prevalent. Pseudomonas aeruginosa is an opportunistic pathogen that causes nosocomial pneumonia and infects patients with cystic fibrosis. P. aeruginosa lung infections are difficult to treat due to bacterial resistance to antibiotics, and strains with multidrug resistance are becoming more prevalent. Here, we examined the use of a small host defense peptide, innate defense regulator 1002 (IDR-1002), in an acute P. aeruginosa lung infection in vivo. IDR-1002 significantly reduced the bacterial burden in bronchoalveolar lavage fluid (BALF), as well as MCP-1 in BALF and serum, KC in serum, and interleukin 6 (IL-6) in BALF. Transcriptome sequencing (RNA-Seq) was conducted on lungs and whole blood, and the effects of P. aeruginosa, IDR-1002, and the combination of P. aeruginosa and IDR-1002 were evaluated. Differential gene expression analysis showed that P. aeruginosa increased multiple inflammatory and innate immune pathways, as well as affected hemostasis, matrix metalloproteinases, collagen biosynthesis, and various metabolism pathways in the lungs and/or blood. Infected mice treated with IDR-1002 had significant changes in gene expression compared to untreated infected mice, with fewer differentially expressed genes associated with the inflammatory and innate immune responses to microbial infection, and treatment also affected morphogenesis, certain metabolic pathways, and lymphocyte activation. Overall, these results showed that IDR-1002 was effective in treating P. aeruginosa acute lung infections and associated inflammation.
Collapse
|
9
|
Bravo-Blas A, Utriainen L, Clay SL, Kästele V, Cerovic V, Cunningham AF, Henderson IR, Wall DM, Milling SWF. Salmonella enterica Serovar Typhimurium Travels to Mesenteric Lymph Nodes Both with Host Cells and Autonomously. THE JOURNAL OF IMMUNOLOGY 2018; 202:260-267. [PMID: 30487173 PMCID: PMC6305795 DOI: 10.4049/jimmunol.1701254] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/29/2018] [Indexed: 12/31/2022]
Abstract
Salmonella infection is a globally important cause of gastroenteritis and systemic disease and is a useful tool to study immune responses in the intestine. Although mechanisms leading to immune responses against Salmonella have been extensively studied, questions remain about how bacteria travel from the intestinal mucosa to the mesenteric lymph nodes (MLN), a key site for Ag presentation. In this study, we used a mouse model of infection with Salmonella enterica serovar Typhimurium (STM) to identify changes in intestinal immune cells induced during early infection. We then used fluorescently labeled STM to identify interactions with immune cells from the site of infection through migration in lymph to the MLN. We show that viable STM can be carried in the lymph by any subset of migrating dendritic cells but not by macrophages. Moreover, approximately half of the STM in lymph are not associated with cells at all and travel autonomously. Within the MLN, STM associates with dendritic cells and B cells but predominantly with MLN-resident macrophages. In conclusion, we describe the routes used by STM to spread systemically in the period immediately postinfection. This deeper understanding of the infection process could open new avenues for controlling it.
Collapse
Affiliation(s)
- Alberto Bravo-Blas
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom;
| | - Lotta Utriainen
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Slater L Clay
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Verena Kästele
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Vuk Cerovic
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Adam F Cunningham
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, United Kingdom; and
| | - Ian R Henderson
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Daniel M Wall
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Simon W F Milling
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
| |
Collapse
|
10
|
Salmonella-induced thrombi in mice develop asynchronously in the spleen and liver and are not effective bacterial traps. Blood 2018; 133:600-604. [PMID: 30401709 DOI: 10.1182/blood-2018-08-867267] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 10/28/2018] [Indexed: 11/20/2022] Open
Abstract
Thrombosis is a frequent, life-threatening complication of systemic infection associated with multiple organ damage. We have previously described a novel mechanism of inflammation-driven thrombosis induced by Salmonella Typhimurium infection of mice. Thrombosis in the liver develops 7 days after infection, persisting after the infection resolves, and is monocytic cell dependent. Unexpectedly, thrombosis was not prominent in the spleen at this time, despite carrying a similar bacterial burden as the liver. In this study, we show that thrombosis does occur in the spleen but with strikingly accelerated kinetics compared with the liver, being evident by 24 hours and resolving rapidly thereafter. The distinct kinetics of thrombosis and bacterial burden provides a test of the hypothesis that thrombi form in healthy vessels to trap or remove bacteria from the circulation, often termed immunothrombosis. Remarkably, despite bacteria being detected throughout infected spleens and livers in the early days of infection, immunohistological analysis of tissue sections show that thrombi contain very low numbers of bacteria. In contrast, bacteria are present throughout platelet aggregates induced by Salmonella in vitro. Therefore, we show that thrombosis develops with organ-specific kinetics and challenge the universality of immunothrombosis as a mechanism to capture bacteria in vivo.
Collapse
|
11
|
Heyde S, Philipsen L, Formaglio P, Fu Y, Baars I, Höbbel G, Kleinholz CL, Seiß EA, Stettin J, Gintschel P, Dudeck A, Bousso P, Schraven B, Müller AJ. CD11c-expressing Ly6C+CCR2+ monocytes constitute a reservoir for efficient Leishmania proliferation and cell-to-cell transmission. PLoS Pathog 2018; 14:e1007374. [PMID: 30346994 PMCID: PMC6211768 DOI: 10.1371/journal.ppat.1007374] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/01/2018] [Accepted: 10/02/2018] [Indexed: 11/30/2022] Open
Abstract
The virulence of intracellular pathogens such as Leishmania major (L. major) relies largely on their ability to undergo cycles of replication within phagocytes, release, and uptake into new host cells. While all these steps are critical for successful establishment of infection, neither the cellular niche of efficient proliferation, nor the spread to new host cells have been characterized in vivo. Here, using a biosensor for measuring pathogen proliferation in the living tissue, we found that monocyte-derived Ly6C+CCR2+ phagocytes expressing CD11c constituted the main cell type harboring rapidly proliferating L. major in the ongoing infection. Synchronization of host cell recruitment and intravital 2-photon imaging showed that these high proliferating parasites preferentially underwent cell-to-cell spread. However, newly recruited host cells were infected irrespectively of their cell type or maturation state. We propose that among these cells, CD11c-expressing monocytes are most permissive for pathogen proliferation, and thus mainly fuel the cycle of intracellular proliferation and cell-to-cell transfer during the acute infection. Thus, besides the well-described function for priming and activating T cell effector functions against L. major, CD11c-expressing monocyte-derived cells provide a reservoir for rapidly proliferating parasites that disseminate at the site of infection. Infection with Leishmania parasites can result in chronic disease of several months duration, often accompanied with disfiguring and disabling pathologies. Central to Leishmania virulence is the capability to survive and multiply within professional phagocytes. While it is assumed that the parasites at some point have to exit the infected cell and infect new cells, the cycle of intracellular multiplication, release, and uptake into new host cells has never been studied in the ongoing infection. Therefore, it is unclear whether efficient growth of the pathogen takes place in a specific host cell type, or in a specific phase during the residency within, or during transfer to new cells. Here, we used a pathogen-encoded biosensor for measuring Leishmania proliferation in the ongoing infection, and in combination with a detailed analysis of the infected host cells involved. We could show that a monocyte-derived dendritic cell-like phagocyte subset, which is known for its role in inducing adaptive immune responses against Leishmania, represents a reservoir for efficient intracellular multiplication and spread to new host cells. These findings are important for our understanding of how the residency within a specific the cellular niche enables Leishmania parasites to efficiently multiply and persist at the site of infection.
Collapse
Affiliation(s)
- Sandrina Heyde
- Institute of Molecular and Clinical Immunology, Health Campus Immunology Infectiology and Inflammation (GC-I), Otto-von-Guericke-University, Magdeburg, Germany
| | - Lars Philipsen
- Institute of Molecular and Clinical Immunology, Health Campus Immunology Infectiology and Inflammation (GC-I), Otto-von-Guericke-University, Magdeburg, Germany
| | - Pauline Formaglio
- Institute of Molecular and Clinical Immunology, Health Campus Immunology Infectiology and Inflammation (GC-I), Otto-von-Guericke-University, Magdeburg, Germany
| | - Yan Fu
- Institute of Molecular and Clinical Immunology, Health Campus Immunology Infectiology and Inflammation (GC-I), Otto-von-Guericke-University, Magdeburg, Germany
| | - Iris Baars
- Institute of Molecular and Clinical Immunology, Health Campus Immunology Infectiology and Inflammation (GC-I), Otto-von-Guericke-University, Magdeburg, Germany
| | - Guido Höbbel
- Institute of Molecular and Clinical Immunology, Health Campus Immunology Infectiology and Inflammation (GC-I), Otto-von-Guericke-University, Magdeburg, Germany
| | - Corinna L. Kleinholz
- Institute of Molecular and Clinical Immunology, Health Campus Immunology Infectiology and Inflammation (GC-I), Otto-von-Guericke-University, Magdeburg, Germany
| | - Elena A. Seiß
- Institute of Molecular and Clinical Immunology, Health Campus Immunology Infectiology and Inflammation (GC-I), Otto-von-Guericke-University, Magdeburg, Germany
| | - Juliane Stettin
- Institute of Molecular and Clinical Immunology, Health Campus Immunology Infectiology and Inflammation (GC-I), Otto-von-Guericke-University, Magdeburg, Germany
| | - Patricia Gintschel
- Institute of Molecular and Clinical Immunology, Health Campus Immunology Infectiology and Inflammation (GC-I), Otto-von-Guericke-University, Magdeburg, Germany
| | - Anne Dudeck
- Institute of Molecular and Clinical Immunology, Health Campus Immunology Infectiology and Inflammation (GC-I), Otto-von-Guericke-University, Magdeburg, Germany
| | - Philippe Bousso
- Dynamics of Immune Responses Unit, Department of Immunology, Institut Pasteur, Paris, France
| | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Health Campus Immunology Infectiology and Inflammation (GC-I), Otto-von-Guericke-University, Magdeburg, Germany
- Department of Immune Control, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, Braunschweig, Germany
| | - Andreas J. Müller
- Institute of Molecular and Clinical Immunology, Health Campus Immunology Infectiology and Inflammation (GC-I), Otto-von-Guericke-University, Magdeburg, Germany
- Research Group Intravital Microscopy of Infection and Immunity, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, Braunschweig, Germany
- * E-mail:
| |
Collapse
|
12
|
Snapper CM. Distinct Immunologic Properties of Soluble Versus Particulate Antigens. Front Immunol 2018; 9:598. [PMID: 29619034 PMCID: PMC5871672 DOI: 10.3389/fimmu.2018.00598] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/09/2018] [Indexed: 12/14/2022] Open
Abstract
Antigens in particulate form have distinct immunologic properties relative to soluble antigens. An understanding of the mechanisms and functional consequences of the distinct immunologic pathways engaged by these different forms of antigen is particularly relevant to the design of vaccines. It is also relevant regarding the use of therapeutic human proteins in clinical medicine that have been shown to aggregate, and perhaps as a result, elicit autoantibodies.
Collapse
Affiliation(s)
- Clifford M Snapper
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
13
|
Desai P, Tahiliani V, Stanfield J, Abboud G, Salek-Ardakani S. Inflammatory monocytes contribute to the persistence of CXCR3 hi CX3CR1 lo circulating and lung-resident memory CD8 + T cells following respiratory virus infection. Immunol Cell Biol 2018; 96:370-378. [PMID: 29363162 DOI: 10.1111/imcb.12006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/01/2018] [Accepted: 01/02/2018] [Indexed: 12/24/2022]
Abstract
Phenotypically diverse memory CD8+ T cells are present in the lungs that either re-circulate or reside within the tissue. Understanding the key cellular interactions that regulate the generation and then persistence of these different subsets is of great interest. Recently, DNGR-1+ dendritic cell (DC) mediated priming was reported to control the generation of lung-resident but not circulating memory cells following respiratory viral infection. Here, we report an important role for Ly6C+ inflammatory monocytes (IMs) in contributing to the persistence of memory CD8+ T cells but not their generation. Effector CD8+ T cells expanded and contracted normally in the absence of IMs, but the memory compartment declined significantly over time. Quite unexpectedly, this defect was confined to tissue resident and circulating CXCR3hi CX3CR1lo memory cells but not CXCR3hi CX3CR1int and CXCR3lo CX3CR1hi subsets. Thus, two developmentally distinct innate cells orchestrate the generation and persistence of memory T cell subsets following a respiratory virus infection. See also: News and Commentary by Lafouresse & Groom.
Collapse
Affiliation(s)
- Pritesh Desai
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Vikas Tahiliani
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Jessica Stanfield
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Georges Abboud
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Shahram Salek-Ardakani
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
14
|
James KR, Soon MSF, Sebina I, Fernandez-Ruiz D, Davey G, Liligeto UN, Nair AS, Fogg LG, Edwards CL, Best SE, Lansink LIM, Schroder K, Wilson JAC, Austin R, Suhrbier A, Lane SW, Hill GR, Engwerda CR, Heath WR, Haque A. IFN Regulatory Factor 3 Balances Th1 and T Follicular Helper Immunity during Nonlethal Blood-Stage Plasmodium Infection. THE JOURNAL OF IMMUNOLOGY 2018; 200:1443-1456. [PMID: 29321276 DOI: 10.4049/jimmunol.1700782] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 12/12/2017] [Indexed: 11/19/2022]
Abstract
Differentiation of CD4+ Th cells is critical for immunity to malaria. Several innate immune signaling pathways have been implicated in the detection of blood-stage Plasmodium parasites, yet their influence over Th cell immunity remains unclear. In this study, we used Plasmodium-reactive TCR transgenic CD4+ T cells, termed PbTII cells, during nonlethal P. chabaudi chabaudi AS and P. yoelii 17XNL infection in mice, to examine Th cell development in vivo. We found no role for caspase1/11, stimulator of IFN genes, or mitochondrial antiviral-signaling protein, and only modest roles for MyD88 and TRIF-dependent signaling in controlling PbTII cell expansion. In contrast, IFN regulatory factor 3 (IRF3) was important for supporting PbTII expansion, promoting Th1 over T follicular helper (Tfh) differentiation, and controlling parasites during the first week of infection. IRF3 was not required for early priming by conventional dendritic cells, but was essential for promoting CXCL9 and MHC class II expression by inflammatory monocytes that supported PbTII responses in the spleen. Thereafter, IRF3-deficiency boosted Tfh responses, germinal center B cell and memory B cell development, parasite-specific Ab production, and resolution of infection. We also noted a B cell-intrinsic role for IRF3 in regulating humoral immune responses. Thus, we revealed roles for IRF3 in balancing Th1- and Tfh-dependent immunity during nonlethal infection with blood-stage Plasmodium parasites.
Collapse
Affiliation(s)
- Kylie R James
- Malaria Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia.,Ph.D. Program, School of Medicine, University of Queensland, Herston, Queensland 4006, Australia
| | - Megan S F Soon
- Malaria Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia.,Ph.D. Program, School of Medicine, University of Queensland, Herston, Queensland 4006, Australia
| | - Ismail Sebina
- Malaria Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia.,Ph.D. Program, School of Medicine, University of Queensland, Herston, Queensland 4006, Australia
| | - Daniel Fernandez-Ruiz
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria 8008, Australia
| | - Gayle Davey
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria 8008, Australia
| | - Urijah N Liligeto
- Malaria Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia
| | - Arya Sheela Nair
- Malaria Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia
| | - Lily G Fogg
- Malaria Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia
| | - Chelsea L Edwards
- Malaria Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia.,Ph.D. Program, School of Medicine, University of Queensland, Herston, Queensland 4006, Australia
| | - Shannon E Best
- Malaria Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia
| | - Lianne I M Lansink
- Malaria Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia
| | - Kate Schroder
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland 4072, Australia.,Australian Infectious Diseases Research Centre, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Jane A C Wilson
- Inflammation Biology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia
| | - Rebecca Austin
- Gordon and Jesse Gilmour Leukaemia Research Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia
| | - Andreas Suhrbier
- Inflammation Biology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia
| | - Steven W Lane
- Gordon and Jesse Gilmour Leukaemia Research Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia
| | - Geoffrey R Hill
- Bone Marrow Transplantation Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia; and
| | - Christian R Engwerda
- Australian Infectious Diseases Research Centre, University of Queensland, St. Lucia, Queensland 4072, Australia.,Immunology and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia
| | - William R Heath
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria 8008, Australia
| | - Ashraful Haque
- Malaria Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia; .,Australian Infectious Diseases Research Centre, University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
15
|
Antigen Localization Influences the Magnitude and Kinetics of Endogenous Adaptive Immune Response to Recombinant Salmonella Vaccines. Infect Immun 2017; 85:IAI.00593-17. [PMID: 28893919 PMCID: PMC5695123 DOI: 10.1128/iai.00593-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 08/19/2017] [Indexed: 11/30/2022] Open
Abstract
The use of recombinant attenuated Salmonella vaccine (RASV) strains is a promising strategy for presenting heterologous antigens to the mammalian immune system to induce both cellular and humoral immune responses. However, studies on RASV development differ on where heterologous antigens are expressed and localized within the bacterium, and it is unclear how antigen localization modulates the immune response. Previously, we exploited the plasmid-encoded toxin (Pet) autotransporter system for accumulation of heterologous antigens in cell culture supernatant. In the present study, this Pet system was used to express early secretory antigen 6 (ESAT-6), an immunodominant and diagnostic antigen from Mycobacterium tuberculosis, in Salmonella enterica serovar Typhimurium strain SL3261. Three strains were generated, whereby ESAT-6 was expressed as a cytoplasmic (SL3261/cyto), surface-bound (SL3261/surf), or secreted (SL3261/sec) antigen. Using these RASVs, the relationship between antigen localization and immunogenicity in infected C57BL/6 mice was systematically examined. Using purified antigen and specific tetramers, we showed that mice infected with the SL3261/surf or SL3261/sec strain generated large numbers of Th1 CD4+ ESAT-6+ splenic T cells compared to those of mice infected with SL3261/cyto. While all mice showed ESAT-6-specific antibody responses when infected with SL3261/surf or SL3261/sec, peak total serum IgG antibody titers were reached more rapidly in mice that received SL3261/sec. Thus, how antigen is localized after production within bacteria has a more marked effect on the antibody response than on the CD4+ T cell response, which might influence the chosen strategy to localize recombinant antigen in RASVs.
Collapse
|
16
|
Zhang Y, Dominguez-Medina C, Cumley NJ, Heath JN, Essex SJ, Bobat S, Schager A, Goodall M, Kracker S, Buckley CD, May RC, Kingsley RA, MacLennan CA, López-Macías C, Cunningham AF, Toellner KM. IgG1 Is Required for Optimal Protection after Immunization with the Purified Porin OmpD from Salmonella Typhimurium. THE JOURNAL OF IMMUNOLOGY 2017; 199:4103-4109. [PMID: 29127147 PMCID: PMC5713499 DOI: 10.4049/jimmunol.1700952] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 10/16/2017] [Indexed: 12/25/2022]
Abstract
In mice, the IgG subclass induced after Ag encounter can reflect the nature of the Ag. Th2 Ags such as alum-precipitated proteins and helminths induce IgG1, whereas Th1 Ags, such as Salmonella Typhimurium, predominantly induce IgG2a. The contribution of different IgG isotypes to protection against bacteria such as S. Typhimurium is unclear, although as IgG2a is induced by natural infection, it is assumed this isotype is important. Previously, we have shown that purified S. Typhimurium porins including outer membrane protein OmpD, which induce both IgG1 and IgG2a in mice, provide protection to S. Typhimurium infection via Ab. In this study we report the unexpected finding that mice lacking IgG1, but not IgG2a, are substantially less protected after porin immunization than wild-type controls. IgG1-deficient mice produce more porin-specific IgG2a, resulting in total IgG levels that are similar to wild-type mice. The decreased protection in IgG1-deficient mice correlates with less efficient bacterial opsonization and uptake by macrophages, and this reflects the low binding of outer membrane protein OmpD–specific IgG2a to the bacterial surface. Thus, the Th2-associated isotype IgG1 can play a role in protection against Th1-associated organisms such as S. Typhimurium. Therefore, individual IgG subclasses to a single Ag can provide different levels of protection and the IgG isotype induced may need to be a consideration when designing vaccines and immunization strategies.
Collapse
Affiliation(s)
- Yang Zhang
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Coral Dominguez-Medina
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Nicola J Cumley
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Jennifer N Heath
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Sarah J Essex
- School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Saeeda Bobat
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Anna Schager
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Margaret Goodall
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Sven Kracker
- Deutsches Rheuma-Forschungszentrum Berlin, Berlin 10117, Germany
| | - Christopher D Buckley
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Robin C May
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | | | - Calman A MacLennan
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Constantino López-Macías
- Medical Research Unit on Immunochemistry, Specialties Hospital, National Medical Centre Siglo XXI, Mexican Social Security Institute, 06720 México, DF, Mexico; and
| | - Adam F Cunningham
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, United Kingdom; .,Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Kai-Michael Toellner
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, United Kingdom;
| |
Collapse
|
17
|
Inflammatory monocytes regulate Th1 oriented immunity to CpG adjuvanted protein vaccines through production of IL-12. Sci Rep 2017; 7:5986. [PMID: 28729715 PMCID: PMC5519561 DOI: 10.1038/s41598-017-06236-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 06/12/2017] [Indexed: 01/26/2023] Open
Abstract
Due to their capacity to skew T cell responses towards Th1 oriented immunity, oligonucleotides containing unmethylated CpG motifs (CpG) have emerged as interesting adjuvants for vaccination. Whereas the signalling pathways in response to CpG mediated TLR9 activation have been extensively documented at the level of the individual cell, little is however known on the precise identity of the innate immune cells that govern T cell priming and polarisation to CpG adjuvanted protein antigens in vivo. In this study, we demonstrate that optimal induction of Th1 oriented immunity to CpG adjuvanted protein vaccines requires the coordinated actions of conventional DCs and of monocytes. Whilst conventional DCs were required for antigen presentation and initial T cell priming, monocytes constitute the main source of the Th1 polarising cytokine IL-12.
Collapse
|
18
|
|
19
|
Lönnberg T, Svensson V, James KR, Fernandez-Ruiz D, Sebina I, Montandon R, Soon MSF, Fogg LG, Nair AS, Liligeto U, Stubbington MJT, Ly LH, Bagger FO, Zwiessele M, Lawrence ND, Souza-Fonseca-Guimaraes F, Bunn PT, Engwerda CR, Heath WR, Billker O, Stegle O, Haque A, Teichmann SA. Single-cell RNA-seq and computational analysis using temporal mixture modelling resolves Th1/Tfh fate bifurcation in malaria. Sci Immunol 2017; 2:eaal2192. [PMID: 28345074 PMCID: PMC5365145 DOI: 10.1126/sciimmunol.aal2192] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Differentiation of naïve CD4+ T cells into functionally distinct T helper subsets is crucial for the orchestration of immune responses. Due to extensive heterogeneity and multiple overlapping transcriptional programs in differentiating T cell populations, this process has remained a challenge for systematic dissection in vivo. By using single-cell transcriptomics and computational analysis using a temporal mixtures of Gaussian processes model, termed GPfates, we reconstructed the developmental trajectories of Th1 and Tfh cells during blood-stage Plasmodium infection in mice. By tracking clonality using endogenous TCR sequences, we first demonstrated that Th1/Tfh bifurcation had occurred at both population and single-clone levels. Next, we identified genes whose expression was associated with Th1 or Tfh fates, and demonstrated a T-cell intrinsic role for Galectin-1 in supporting a Th1 differentiation. We also revealed the close molecular relationship between Th1 and IL-10-producing Tr1 cells in this infection. Th1 and Tfh fates emerged from a highly proliferative precursor that upregulated aerobic glycolysis and accelerated cell cycling as cytokine expression began. Dynamic gene expression of chemokine receptors around bifurcation predicted roles for cell-cell in driving Th1/Tfh fates. In particular, we found that precursor Th cells were coached towards a Th1 but not a Tfh fate by inflammatory monocytes. Thus, by integrating genomic and computational approaches, our study has provided two unique resources, a database www.PlasmoTH.org, which facilitates discovery of novel factors controlling Th1/Tfh fate commitment, and more generally, GPfates, a modelling framework for characterizing cell differentiation towards multiple fates.
Collapse
Affiliation(s)
- Tapio Lönnberg
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, UK
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Valentine Svensson
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Kylie R. James
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, Queensland, Australia
| | - Daniel Fernandez-Ruiz
- Department of Microbiology and Immunology, The Peter Doherty Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Ismail Sebina
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, Queensland, Australia
| | - Ruddy Montandon
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Megan S. F. Soon
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, Queensland, Australia
| | - Lily G. Fogg
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, Queensland, Australia
| | - Arya Sheela Nair
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, Queensland, Australia
| | - Urijah Liligeto
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, Queensland, Australia
| | - Michael J. T. Stubbington
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, UK
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Lam-Ha Ly
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Frederik Otzen Bagger
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, UK
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- National Health Service (NHS) Blood and Transplant, Cambridge Biomedical Campus, Long Road, Cambridge, UK
| | - Max Zwiessele
- Department of Computer Science, University of Sheffield, Sheffield, UK
| | - Neil D. Lawrence
- Department of Computer Science, University of Sheffield, Sheffield, UK
| | | | - Patrick T. Bunn
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, Queensland, Australia
| | | | - William R. Heath
- Department of Microbiology and Immunology, The Peter Doherty Institute, University of Melbourne, Parkville, Victoria, Australia
- The Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Melbourne, Parkville, Victoria, Australia
| | - Oliver Billker
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Oliver Stegle
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Ashraful Haque
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, Queensland, Australia
| | - Sarah A. Teichmann
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, UK
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| |
Collapse
|
20
|
Cinobufagin enhances the protective efficacy of formalin-inactivated Salmonella typhimurium vaccine through Th1 immune response. Microb Pathog 2016; 99:264-270. [PMID: 27574776 DOI: 10.1016/j.micpath.2016.08.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 08/24/2016] [Accepted: 08/25/2016] [Indexed: 11/23/2022]
Abstract
Cinobufagin (CBG), one active ingredient isolated from Venenum Bufonis, has been demonstrated to have immunoregulatory effect. The aim of this study was to investigate whether CBG can enhance the protective efficacy of formalin-inactivated Salmonella typhimurium (FIST) in mice. ICR mice were immunized with FIST (106 CFU/mouse) alone or mixed with CBG (10, 20, and 40 μg) or alum (200 μg) on day 1 and day 15. Two weeks after the second immunization, serum and spleen were sampled for measuring FIST-specific antibody levels, cytokine levels, and splenocyte proliferation. The results showed that CBG enhanced FIST-specific IgG and IgG2a, the levels of interferon-gamma (IFNγ) and nitric oxide (NO), and the splenocyte proliferation response induced by concanavalin A, lipopolysaccharide, and FIST. In vivo protection studies showed that CBG significantly decreased the bacterial burdens in the spleen and prolonged the survival time of FIST-immunized mice challenged with live Salmonella typhimurium. In vivo IFNγ neutralization led to a significant reduction in FIST-specific IgG2a and IFNγ levels, and in the protective efficacy in CBG/FIST-immunized mice. In conclusion, CBG enhances the protective efficacy of formalin-inactivated Salmonella typhimurium vaccine by promoting the Th1 immune response.
Collapse
|
21
|
Kar S, Colino J, Snapper CM. Distinct Cellular Pathways for Induction of CD4+ T Cell-Dependent Antibody Responses to Antigen Expressed by Intact Bacteria Versus Isolated Soluble Antigen. THE JOURNAL OF IMMUNOLOGY 2016; 196:4204-13. [PMID: 27059596 DOI: 10.4049/jimmunol.1502550] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 03/14/2016] [Indexed: 12/23/2022]
Abstract
Uptake of intact bacteria and soluble Ags by APCs is mediated by phagocytosis and endocytosis or pinocytosis, respectively. Thus, we predicted that injection of clodronate-containing liposomes (CLs), which selectively deplete cells efficient in phagocytosis, would inhibit murine CD4(+) T cell-dependent IgG responses to Ags expressed by intact bacteria but not isolated soluble Ags. Surprisingly, injection of CLs markedly inhibited protein-specific IgG responses to intact, heat-killed Streptococcus pneumoniae, as well as a soluble OVA-polysaccharide conjugate or OVA alone. IgG anti-polysaccharide responses to bacteria and conjugate were also reduced, but more modestly. In both instances, CL-mediated inhibition was associated with a significant reduction in induced germinal centers and CD4(+) germinal center T follicular helper cells. However, CL injection, which largely abrogated the proliferative response of adoptively transferred OVA peptide-specific-transgenic CD4(+) T cells in response to immunization with S. pneumoniae expressing OVA peptide, did not inhibit T cell proliferation in response to OVA-polysaccharide conjugate or OVA. In this regard, monocyte-derived cells, depleted by CLs, internalized S. pneumoniae in vivo, whereas CD11c(low) dendritic cells, unaffected by CL injection, internalized soluble OVA. Ex vivo isolation and coculture of these respective APCs from S. pneumoniae- or OVA-immunized mice with OVA-specific T cells, in the absence of exogenous Ag, demonstrated their selective ability to induce T cell activation. These data suggest that, although distinct APCs initiate CD4(+) T cell activation in response to Ag expressed by intact bacteria versus Ag in soluble form, CL-sensitive cells appear to be necessary for the subsequent IgG responses to both forms of Ag.
Collapse
Affiliation(s)
- Swagata Kar
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Jesus Colino
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Clifford M Snapper
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| |
Collapse
|
22
|
Flores‐Langarica A, Bobat S, Marshall JL, Yam‐Puc JC, Cook CN, Serre K, Kingsley RA, Flores‐Romo L, Uematsu S, Akira S, Henderson IR, Toellner KM, Cunningham AF. Soluble flagellin coimmunization attenuates Th1 priming to Salmonella and clearance by modulating dendritic cell activation and cytokine production. Eur J Immunol 2015; 45:2299-311. [PMID: 26036767 PMCID: PMC4973836 DOI: 10.1002/eji.201545564] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 05/01/2015] [Accepted: 05/29/2015] [Indexed: 12/25/2022]
Abstract
Soluble flagellin (sFliC) from Salmonella Typhimurium (STm) can induce a Th2 response to itself and coadministered antigens through ligation of TLR5. These properties suggest that sFliC could potentially modulate responses to Th1 antigens like live STm if both antigens are given concurrently. After coimmunization of mice with sFliC and STm there was a reduction in Th1 T cells (T-bet(+) IFN-γ(+) CD4 T cells) compared to STm alone and there was impaired clearance of STm. In contrast, there was no significant defect in the early extrafollicular B-cell response to STm. These effects are dependent upon TLR5 and flagellin expression by STm. The mechanism for these effects is not related to IL-4 induced to sFliC but rather to the effects of sFliC coimmunization on DCs. After coimmunization with STm and sFliC, splenic DCs had a lower expression of costimulatory molecules and profoundly altered kinetics of IL-12 and TNFα expression. Ex vivo experiments using in vivo conditioned DCs confirmed the effects of sFliC were due to altered DC function during a critical window in the coordinated interplay between DCs and naïve T cells. This has marked implications for understanding how limits in Th1 priming can be achieved during infection-induced, Th1-mediated inflammation.
Collapse
Affiliation(s)
- Adriana Flores‐Langarica
- Division of Immunity and InfectionInstitute of Biomedical ResearchUniversity of BirminghamBirminghamUK
| | - Saeeda Bobat
- Division of Immunity and InfectionInstitute of Biomedical ResearchUniversity of BirminghamBirminghamUK
| | - Jennifer L. Marshall
- Division of Immunity and InfectionInstitute of Biomedical ResearchUniversity of BirminghamBirminghamUK
| | | | - Charlotte N. Cook
- Division of Immunity and InfectionInstitute of Biomedical ResearchUniversity of BirminghamBirminghamUK
| | - Karine Serre
- Instituto de Medicina MolecularFaculdade de Medicina, Universidade de LisboaLisbonPortugal
| | | | | | - Satoshi Uematsu
- International Research and Development Centre for Mucosal VaccineInstitute for Medical ScienceThe University of TokyoTokyoJapan
| | - Shizuo Akira
- Laboratory of Host DefenseWorld Premier International Immunology Frontier Research CenterOsaka UniversitySuita OsakaJapan
- Department of Host DefenseResearch Institute for Microbial DiseasesOsaka UniversitySuita OsakaJapan
| | - Ian R. Henderson
- Division of Immunity and InfectionInstitute of Biomedical ResearchUniversity of BirminghamBirminghamUK
| | - Kai M. Toellner
- Division of Immunity and InfectionInstitute of Biomedical ResearchUniversity of BirminghamBirminghamUK
| | - Adam F. Cunningham
- Division of Immunity and InfectionInstitute of Biomedical ResearchUniversity of BirminghamBirminghamUK
| |
Collapse
|
23
|
Ross EA, Smallie T, Ding Q, O'Neil JD, Cunliffe HE, Tang T, Rosner DR, Klevernic I, Morrice NA, Monaco C, Cunningham AF, Buckley CD, Saklatvala J, Dean JL, Clark AR. Dominant Suppression of Inflammation via Targeted Mutation of the mRNA Destabilizing Protein Tristetraprolin. THE JOURNAL OF IMMUNOLOGY 2015; 195:265-76. [PMID: 26002976 PMCID: PMC4472942 DOI: 10.4049/jimmunol.1402826] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 04/27/2015] [Indexed: 02/07/2023]
Abstract
In myeloid cells, the mRNA-destabilizing protein tristetraprolin (TTP) is induced and extensively phosphorylated in response to LPS. To investigate the role of two specific phosphorylations, at serines 52 and 178, we created a mouse strain in which those residues were replaced by nonphosphorylatable alanine residues. The mutant form of TTP was constitutively degraded by the proteasome and therefore expressed at low levels, yet it functioned as a potent mRNA destabilizing factor and inhibitor of the expression of many inflammatory mediators. Mice expressing only the mutant form of TTP were healthy and fertile, and their systemic inflammatory responses to LPS were strongly attenuated. Adaptive immune responses and protection against infection by Salmonella typhimurium were spared. A single allele encoding the mutant form of TTP was sufficient for enhanced mRNA degradation and underexpression of inflammatory mediators. Therefore, the equilibrium between unphosphorylated and phosphorylated TTP is a critical determinant of the inflammatory response, and manipulation of this equilibrium may be a means of treating inflammatory pathologies.
Collapse
Affiliation(s)
- Ewan A Ross
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Tim Smallie
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Qize Ding
- Imperial College London, Hammersmith Hospital, London W12 0NN, United Kingdom
| | - John D O'Neil
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Helen E Cunliffe
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Tina Tang
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Dalya R Rosner
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Iva Klevernic
- Unit of Signal Transduction, Interdisciplinary Cluster for Applied Genoproteomics, University of Liege, University Hospital, 4000 Liege, Belgium
| | - Nicholas A Morrice
- Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, United Kingdom; and
| | - Claudia Monaco
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Adam F Cunningham
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Christopher D Buckley
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Jeremy Saklatvala
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Jonathan L Dean
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Andrew R Clark
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom;
| |
Collapse
|
24
|
Wu SC, Fu BD, Shen HQ, Yi PF, Zhang LY, Lv S, Guo X, Xia F, Wu YL, Wei XB. Telocinobufagin enhances the Th1 immune response and protects against Salmonella typhimurium infection. Int Immunopharmacol 2015; 25:353-62. [PMID: 25687199 DOI: 10.1016/j.intimp.2015.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 01/24/2015] [Accepted: 02/03/2015] [Indexed: 11/19/2022]
Abstract
Ideal potential vaccine adjuvants to stimulate a Th1 immune response are urgently needed to control intracellular infections in clinical applications. Telocinobufagin (TBG), an active component of Venenum bufonis, exhibits immunomodulatory activity. Therefore, we investigated whether TBG enhances the Th1 immune response to ovalbumin (OVA) and formalin-inactivated Salmonella typhimurium (FIST) in mice. TBG augmented serum OVA- and FIST-specific IgG and IgG2a and the production of IFNγ by antigen-restimulated splenocytes. TBG also dramatically enhanced splenocyte proliferative responses to concanavalin A, lipopolysaccharide, and OVA and substantially increased T-bet mRNA levels and the CD3(+)/CD3(+)CD4(+)/CD3(+)CD8(+) phenotype in splenocytes from OVA-immunized mice. In in vivo protection studies, TBG significantly decreased the bacterial burdens in the spleen and prolonged the survival time of FIST-immunized mice challenged with live S. typhimurium. In vivo neutralization of IFNγ with anti-IFNγ mAbs led to a significant reduction in FIST-specific IgG2a and IFNγ levels and in anti-Salmonella effect in TBG/FIST-immunized mice. In conclusion, these results suggest that TBG enhances a Th1 immune response to control intracellular infections.
Collapse
Affiliation(s)
- Shuai-Cheng Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, No. 5333, Xi'an Road, Changchun, Jilin 130062, PR China
| | - Ben-Dong Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, No. 5333, Xi'an Road, Changchun, Jilin 130062, PR China
| | - Hai-Qing Shen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, No. 5333, Xi'an Road, Changchun, Jilin 130062, PR China
| | - Peng-Fei Yi
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, No. 5333, Xi'an Road, Changchun, Jilin 130062, PR China
| | - Li-Yan Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, No. 5333, Xi'an Road, Changchun, Jilin 130062, PR China
| | - Shuang Lv
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, No. 5333, Xi'an Road, Changchun, Jilin 130062, PR China
| | - Xun Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, No. 5333, Xi'an Road, Changchun, Jilin 130062, PR China
| | - Fang Xia
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, No. 5333, Xi'an Road, Changchun, Jilin 130062, PR China
| | - Yong-Li Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, No. 5333, Xi'an Road, Changchun, Jilin 130062, PR China
| | - Xu-Bin Wei
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, No. 5333, Xi'an Road, Changchun, Jilin 130062, PR China.
| |
Collapse
|
25
|
Abstract
Salmonella are a common source of food- or water-borne infection and cause a wide range of clinical disease in human and animal hosts. Salmonella are relatively easy to culture and manipulate in a laboratory setting, and the infection of laboratory animals induces robust innate and adaptive immune responses. Thus, immunologists have frequently turned to Salmonella infection models to expand understanding of host immunity to intestinal pathogens. In this review, I summarize current knowledge of innate and adaptive immunity to Salmonella and highlight features of this response that have emerged from recent studies. These include the heterogeneity of the antigen-specific T-cell response to intestinal infection, the prominence of microbial mechanisms to impede T- and B-cell responses, and the contribution of non-cognate pathways for elicitation of T-cell effector functions. Together, these different issues challenge an overly simplistic view of host-pathogen interaction during mucosal infection, but also allow deeper insight into the real-world dynamic of protective immunity to intestinal pathogens.
Collapse
Affiliation(s)
- Stephen J McSorley
- Center for Comparative Medicine, Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| |
Collapse
|
26
|
Cunningham AF, Flores-Langarica A, Bobat S, Dominguez Medina CC, Cook CNL, Ross EA, Lopez-Macias C, Henderson IR. B1b cells recognize protective antigens after natural infection and vaccination. Front Immunol 2014; 5:535. [PMID: 25400633 PMCID: PMC4215630 DOI: 10.3389/fimmu.2014.00535] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 10/10/2014] [Indexed: 12/18/2022] Open
Abstract
There are multiple, distinct B-cell populations in human beings and other animals such as mice. In the latter species, there is a well-characterized subset of B-cells known as B1 cells, which are enriched in peripheral sites such as the peritoneal cavity but are rare in the blood. B1 cells can be further subdivided into B1a and B1b subsets. There may be additional B1 subsets, though it is unclear if these are distinct populations or stages in the developmental process to become mature B1a and B1b cells. A limitation in understanding B1 subsets is the relative paucity of specific surface markers. In contrast to mice, the existence of B1 cells in human beings is controversial and more studies are needed to investigate the nature of these enigmatic cells. Examples of B1b antigens include pneumococcal polysaccharide and the Vi antigen from Salmonella Typhi, both used routinely as vaccines in human beings and experimental antigens such as haptenated-Ficoll. In addition to inducing classical T-dependent responses some proteins are B1b antigens and can induce T-independent (TI) immunity, examples include factor H binding protein from Borrelia hermsii and porins from Salmonella. Therefore, B1b antigens can be proteinaceous or non-proteinaceous, induce TI responses, memory, and immunity, they exist in a diverse range of pathogenic bacteria, and a single species can contain multiple B1b antigens. An unexpected benefit to studying B1b cells is that they appear to have a propensity to recognize protective antigens in bacteria. This suggests that studying B1b cells may be rewarding for vaccine design as immunoprophylactic and immunotherapeutic interventions become more important due to the decreasing efficacy of small molecule antimicrobials.
Collapse
Affiliation(s)
- Adam F Cunningham
- MRC Centre for Immune Regulation, Institute for Microbiology and Infection, School of Immunity and Infection, Institute for Biomedical Research, Medical School, University of Birmingham , Birmingham , UK
| | - Adriana Flores-Langarica
- MRC Centre for Immune Regulation, Institute for Microbiology and Infection, School of Immunity and Infection, Institute for Biomedical Research, Medical School, University of Birmingham , Birmingham , UK
| | - Saeeda Bobat
- MRC Centre for Immune Regulation, Institute for Microbiology and Infection, School of Immunity and Infection, Institute for Biomedical Research, Medical School, University of Birmingham , Birmingham , UK
| | - Carmen C Dominguez Medina
- MRC Centre for Immune Regulation, Institute for Microbiology and Infection, School of Immunity and Infection, Institute for Biomedical Research, Medical School, University of Birmingham , Birmingham , UK
| | - Charlotte N L Cook
- MRC Centre for Immune Regulation, Institute for Microbiology and Infection, School of Immunity and Infection, Institute for Biomedical Research, Medical School, University of Birmingham , Birmingham , UK
| | - Ewan A Ross
- MRC Centre for Immune Regulation, Institute for Microbiology and Infection, School of Immunity and Infection, Institute for Biomedical Research, Medical School, University of Birmingham , Birmingham , UK
| | - Constantino Lopez-Macias
- Medical Research Unit on Immunochemistry, National Medical Centre "Siglo XXI", Specialties Hospital, Mexican Institute for Social Security (IMSS) , Mexico City , Mexico
| | - Ian R Henderson
- MRC Centre for Immune Regulation, Institute for Microbiology and Infection, School of Immunity and Infection, Institute for Biomedical Research, Medical School, University of Birmingham , Birmingham , UK
| |
Collapse
|
27
|
Ross EA, Flores-Langarica A, Bobat S, Coughlan RE, Marshall JL, Hitchcock JR, Cook CN, Carvalho-Gaspar MM, Mitchell AM, Clarke M, Garcia P, Cobbold M, Mitchell TJ, Henderson IR, Jones ND, Anderson G, Buckley CD, Cunningham AF. Resolving Salmonella infection reveals dynamic and persisting changes in murine bone marrow progenitor cell phenotype and function. Eur J Immunol 2014; 44:2318-30. [PMID: 24825601 PMCID: PMC4209805 DOI: 10.1002/eji.201344350] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 04/07/2014] [Accepted: 05/08/2014] [Indexed: 11/15/2022]
Abstract
The generation of immune cells from BM precursors is a carefully regulated process. This is essential to limit the potential for oncogenesis and autoimmunity yet protect against infection. How infection modulates this is unclear. Salmonella can colonize systemic sites including the BM and spleen. This resolving infection has multiple IFN-γ-mediated acute and chronic effects on BM progenitors, and during the first week of infection IFN-γ is produced by myeloid, NK, NKT, CD4(+) T cells, and some lineage-negative cells. After infection, the phenotype of BM progenitors rapidly but reversibly alters, with a peak ∼ 30-fold increase in Sca-1(hi) progenitors and a corresponding loss of Sca-1(lo/int) subsets. Most strikingly, the capacity of donor Sca-1(hi) cells to reconstitute an irradiated host is reduced; the longer donor mice are exposed to infection, and Sca-1(hi) c-kit(int) cells have an increased potential to generate B1a-like cells. Thus, Salmonella can have a prolonged influence on BM progenitor functionality not directly related to bacterial persistence. These results reflect changes observed in leucopoiesis during aging and suggest that BM functionality can be modulated by life-long, periodic exposure to infection. Better understanding of this process could offer novel therapeutic opportunities to modulate BM functionality and promote healthy aging.
Collapse
Affiliation(s)
- Ewan A Ross
- MRC Centre for Immune Regulation, Institute for Microbiology and Infection, School of Immunity and Infection, Institute for Biomedical Research, Medical School, University of BirminghamEdgbaston, Birmingham, UK
| | - Adriana Flores-Langarica
- MRC Centre for Immune Regulation, Institute for Microbiology and Infection, School of Immunity and Infection, Institute for Biomedical Research, Medical School, University of BirminghamEdgbaston, Birmingham, UK
| | - Saeeda Bobat
- MRC Centre for Immune Regulation, Institute for Microbiology and Infection, School of Immunity and Infection, Institute for Biomedical Research, Medical School, University of BirminghamEdgbaston, Birmingham, UK
| | - Ruth E Coughlan
- MRC Centre for Immune Regulation, Institute for Microbiology and Infection, School of Immunity and Infection, Institute for Biomedical Research, Medical School, University of BirminghamEdgbaston, Birmingham, UK
| | - Jennifer L Marshall
- MRC Centre for Immune Regulation, Institute for Microbiology and Infection, School of Immunity and Infection, Institute for Biomedical Research, Medical School, University of BirminghamEdgbaston, Birmingham, UK
| | - Jessica R Hitchcock
- MRC Centre for Immune Regulation, Institute for Microbiology and Infection, School of Immunity and Infection, Institute for Biomedical Research, Medical School, University of BirminghamEdgbaston, Birmingham, UK
| | - Charlotte N Cook
- MRC Centre for Immune Regulation, Institute for Microbiology and Infection, School of Immunity and Infection, Institute for Biomedical Research, Medical School, University of BirminghamEdgbaston, Birmingham, UK
| | - Manuela M Carvalho-Gaspar
- MRC Centre for Immune Regulation, Institute for Microbiology and Infection, School of Immunity and Infection, Institute for Biomedical Research, Medical School, University of BirminghamEdgbaston, Birmingham, UK
| | - Andrea M Mitchell
- MRC Centre for Immune Regulation, Institute for Microbiology and Infection, School of Immunity and Infection, Institute for Biomedical Research, Medical School, University of BirminghamEdgbaston, Birmingham, UK
| | - Mary Clarke
- MRC Centre for Immune Regulation, Institute for Microbiology and Infection, School of Immunity and Infection, Institute for Biomedical Research, Medical School, University of BirminghamEdgbaston, Birmingham, UK
| | - Paloma Garcia
- MRC Centre for Immune Regulation, Institute for Microbiology and Infection, School of Immunity and Infection, Institute for Biomedical Research, Medical School, University of BirminghamEdgbaston, Birmingham, UK
| | - Mark Cobbold
- MRC Centre for Immune Regulation, Institute for Microbiology and Infection, School of Immunity and Infection, Institute for Biomedical Research, Medical School, University of BirminghamEdgbaston, Birmingham, UK
| | - Tim J Mitchell
- MRC Centre for Immune Regulation, Institute for Microbiology and Infection, School of Immunity and Infection, Institute for Biomedical Research, Medical School, University of BirminghamEdgbaston, Birmingham, UK
| | - Ian R Henderson
- MRC Centre for Immune Regulation, Institute for Microbiology and Infection, School of Immunity and Infection, Institute for Biomedical Research, Medical School, University of BirminghamEdgbaston, Birmingham, UK
| | - Nick D Jones
- MRC Centre for Immune Regulation, Institute for Microbiology and Infection, School of Immunity and Infection, Institute for Biomedical Research, Medical School, University of BirminghamEdgbaston, Birmingham, UK
| | - Graham Anderson
- MRC Centre for Immune Regulation, Institute for Microbiology and Infection, School of Immunity and Infection, Institute for Biomedical Research, Medical School, University of BirminghamEdgbaston, Birmingham, UK
| | - Christopher D Buckley
- MRC Centre for Immune Regulation, Institute for Microbiology and Infection, School of Immunity and Infection, Institute for Biomedical Research, Medical School, University of BirminghamEdgbaston, Birmingham, UK
| | - Adam F Cunningham
- MRC Centre for Immune Regulation, Institute for Microbiology and Infection, School of Immunity and Infection, Institute for Biomedical Research, Medical School, University of BirminghamEdgbaston, Birmingham, UK
| |
Collapse
|
28
|
Didierlaurent AM, Collignon C, Bourguignon P, Wouters S, Fierens K, Fochesato M, Dendouga N, Langlet C, Malissen B, Lambrecht BN, Garçon N, Van Mechelen M, Morel S. Enhancement of adaptive immunity by the human vaccine adjuvant AS01 depends on activated dendritic cells. THE JOURNAL OF IMMUNOLOGY 2014; 193:1920-30. [PMID: 25024381 DOI: 10.4049/jimmunol.1400948] [Citation(s) in RCA: 190] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Adjuvant System AS01 is a liposome-based vaccine adjuvant containing 3-O-desacyl-4'-monophosphoryl lipid A and the saponin QS-21. AS01 has been selected for the clinical development of several candidate vaccines including the RTS,S malaria vaccine and the subunit glycoprotein E varicella zoster vaccine (both currently in phase III). Given the known immunostimulatory properties of MPL and QS-21, the objective of this study was to describe the early immune response parameters after immunization with an AS01-adjuvanted vaccine and to identify relationships with the vaccine-specific adaptive immune response. Cytokine production and innate immune cell recruitment occurred rapidly and transiently at the muscle injection site and draining lymph node postinjection, consistent with the rapid drainage of the vaccine components to the draining lymph node. The induction of Ag-specific Ab and T cell responses was dependent on the Ag being injected at the same time or within 24 h after AS01, suggesting that the early events occurring postinjection were required for these elevated adaptive responses. In the draining lymph node, after 24 h, the numbers of activated and Ag-loaded monocytes and MHCII(high) dendritic cells were higher after the injection of the AS01-adjuvanted vaccine than after Ag alone. However, only MHCII(high) dendritic cells appeared efficient at and necessary for direct Ag presentation to T cells. These data suggest that the ability of AS01 to improve adaptive immune responses, as has been demonstrated in clinical trials, is linked to a transient stimulation of the innate immune system leading to the generation of high number of efficient Ag-presenting dendritic cells.
Collapse
Affiliation(s)
| | | | | | | | - Kaat Fierens
- Vlaams Instituut voor Biotechnologie Inflammation Research Center, Ghent University, 9052 Ghent, Belgium; and
| | | | | | | | - Bernard Malissen
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université, INSERM U1104, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7280, 13288 Marseille cedex 9, France
| | - Bart N Lambrecht
- Vlaams Instituut voor Biotechnologie Inflammation Research Center, Ghent University, 9052 Ghent, Belgium; and
| | | | | | - Sandra Morel
- GlaxoSmithKline Vaccines, 1330 Rixensart, Belgium
| |
Collapse
|
29
|
IL-4Rα-associated antigen processing by B cells promotes immunity in Nippostrongylus brasiliensis infection. PLoS Pathog 2013; 9:e1003662. [PMID: 24204255 PMCID: PMC3812011 DOI: 10.1371/journal.ppat.1003662] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 08/04/2013] [Indexed: 12/20/2022] Open
Abstract
In this study, B cell function in protective TH2 immunity against N. brasiliensis infection was investigated. Protection against secondary infection depended on IL-4Rα and IL-13; but not IL-4. Protection did not associate with parasite specific antibody responses. Re-infection of B cell-specific IL-4Rα−/− mice resulted in increased worm burdens compared to control mice, despite their equivalent capacity to control primary infection. Impaired protection correlated with reduced lymphocyte IL-13 production and B cell MHC class II and CD86 surface expression. Adoptive transfer of in vivo N. brasiliensis primed IL-4Rα expressing B cells into naïve BALB/c mice, but not IL-4Rα or IL-13 deficient B cells, conferred protection against primary N. brasiliensis infection. This protection required MHC class II compatibility on B cells suggesting cognate interactions by B cells with CD4+ T cells were important to co-ordinate immunity. Furthermore, the rapid nature of these protective effects by B cells suggested non-BCR mediated mechanisms, such as via Toll Like Receptors, was involved, and this was supported by transfer experiments using antigen pulsed Myd88−/− B cells. These data suggest TLR dependent antigen processing by IL-4Rα-responsive B cells producing IL-13 contribute significantly to CD4+ T cell-mediated protective immunity against N. brasiliensis infection. Parasitic nematode infections are an extremely important global public health problem. Infections by hookworms and roundworms for example cause anemia, widespread developmental problems and devalued immunity against bacterial infections such as salmonella and tuberculosis. Although treatable with drugs, parasitic nematode re-infections occur as humans do not develop protective immunity. Ultimately, the public health burden caused by these infections will be best controlled by the development of vaccines against nematode infections. For these to be effective, it is important to understand how the various components of the immune system can respond to infection. In this study, we show that B cells, which typically protect against infection by producing antibodies, can also protect against an experimental hookworm like nematode infection by additional mechanisms. This form of protection instead depended on B cells producing cytokines associated with parasitic nematode expulsion and also by providing T cells with specific instruction. Together, these B cell driven responses lead to a rapid resolution of the infection. These important findings indicate that vaccination strategies against nematode parasites such as hookworms need to understand immune responses other than antibody to be optimally protective.
Collapse
|
30
|
Helmersson S, Sundstedt A, Deronic A, Leanderson T, Ivars F. Amelioration of experimental autoimmune encephalomyelitis by the quinoline-3-carboxamide paquinimod: reduced priming of proinflammatory effector CD4(+) T cells. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:1671-80. [PMID: 23506849 DOI: 10.1016/j.ajpath.2013.01.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 01/18/2013] [Accepted: 01/23/2013] [Indexed: 01/26/2023]
Abstract
Quinoline-3-carboxamide compounds (Q compounds) have demonstrated efficacy in treating autoimmune disease in both humans and mice. However, the mode of action of these compounds is poorly understood. Here, we show that preventive treatment with the Q compound paquinimod (ABR-215757) during the first 5 days after induction of experimental autoimmune encephalomyelitis is sufficient to significantly ameliorate disease symptoms. Parallel cell-depletion experiments demonstrated that Ly6C(hi) inflammatory monocytes play an essential role in this phase. The paquinimod-induced amelioration correlated with reduced priming of antigen-specific CD4(+) T cells and reduced frequency of IFN-γ- and IL-17-producing cells in draining lymph nodes. Importantly, the treatment did not inhibit T-cell division per se. In mice with established experimental autoimmune encephalomyelitis, the numbers of Ly6C(hi) CD115(+) inflammatory monocytes and CD11b(+)CD11c(+) dendritic cells (DCs) were reduced in spleen, but not in bone marrow or draining lymph nodes of treated mice. Inflammatory monocyte-derived DCs and CD4(+) T cells were also reduced in the brain. In contrast, there was no decrease in DC subsets previously shown to be critical for effector CD4(+) T-cell development in lymph nodes. Taken together, these data indicate that preventive treatment with paquinimod ameliorates experimental autoimmune encephalomyelitis by reducing effector T-cell priming and, on prolonged treatment, displays a selective effect by decreasing distinct subpopulations of splenic CD11b(+) myeloid cells.
Collapse
Affiliation(s)
- Sofia Helmersson
- Immunology Group, Section for Immunology, Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
| | | | | | | | | |
Collapse
|
31
|
Jackson NP, Kang YH, Lapaque N, Janssen H, Trowsdale J, Kelly AP. Salmonella polarises peptide-MHC-II presentation towards an unconventional Type B CD4+ T-cell response. Eur J Immunol 2013; 43:897-906. [PMID: 23319341 PMCID: PMC3816330 DOI: 10.1002/eji.201242983] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 12/03/2012] [Accepted: 01/08/2013] [Indexed: 11/07/2022]
Abstract
Distinct peptide-MHC-II complexes, recognised by Type A and B CD4(+) T-cell subsets, are generated when antigen is loaded in different intracellular compartments. Conventional Type A T cells recognize their peptide epitope regardless of the route of processing, whereas unconventional Type B T cells only recognise exogenously supplied peptide. Type B T cells are implicated in autoimmune conditions and may break tolerance by escaping negative selection. Here we show that Salmonella differentially influences presentation of antigen to Type A and B T cells. Infection of bone marrow-derived dendritic cells (BMDCs) with Salmonella enterica serovar Typhimurium (S. Typhimurium) reduced presentation of antigen to Type A T cells but enhanced presentation of exogenous peptide to Type B T cells. Exposure to S. Typhimurium was sufficient to enhance Type B T-cell activation. Salmonella Typhimurium infection reduced surface expression of MHC-II, by an invariant chain-independent trafficking mechanism, resulting in accumulation of MHC-II in multi-vesicular bodies. Reduced MHC-II surface expression in S. Typhimurium-infected BMDCs correlated with reduced antigen presentation to Type A T cells. Salmonella infection is implicated in reactive arthritis. Therefore, polarisation of antigen presentation towards a Type B response by Salmonella may be a predisposing factor in autoimmune conditions such as reactive arthritis.
Collapse
Affiliation(s)
- Nicola P Jackson
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | | | | | | | | | | |
Collapse
|
32
|
Hespel C, Moser M. Role of inflammatory dendritic cells in innate and adaptive immunity. Eur J Immunol 2013; 42:2535-43. [PMID: 23042650 DOI: 10.1002/eji.201242480] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The major role of cells of the dendritic family in immunity and tolerance has been amply documented. Since their discovery in 1973, these cells have gained increasing interest from immunologists, as they are able to detect infectious agents, migrate to secondary lymphoid tissue, and prime naive T lymphocytes, thereby driving immune responses. Surprisingly, they can also have the opposite function, that is, preventing immune responses, as they are involved in central and peripheral tolerance. Most dendritic cells (DCs) derive from a common precursor and do not arise from monocytes and are considered "conventional" DCs. However, a new population of DCs, namely "inflammatory" DCs, has recently been identified, which is not present in the steady state but differentiates from monocytes during infection/inflammation. In this review, we summarize the role of these "inflammatory" DCs in innate and adaptive immunity.
Collapse
Affiliation(s)
- Cindy Hespel
- Laboratory of Immunobiology, Department of Molecular Biology, Université Libre de Bruxelles, Gosselies, Belgium
| | | |
Collapse
|
33
|
Flores-Langarica A, Marshall JL, Hitchcock J, Cook C, Jobanputra J, Bobat S, Ross EA, Coughlan RE, Henderson IR, Uematsu S, Akira S, Cunningham AF. Systemic flagellin immunization stimulates mucosal CD103+ dendritic cells and drives Foxp3+ regulatory T cell and IgA responses in the mesenteric lymph node. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 189:5745-54. [PMID: 23152564 DOI: 10.4049/jimmunol.1202283] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mucosal immunity is poorly activated after systemic immunization with protein Ags. Nevertheless, induction of mucosal immunity in such a manner would be an attractive and simple way to overcome the intrinsic difficulties in delivering Ag to such sites. Flagellin from Salmonella enterica serovar Typhimurium (FliC) can impact markedly on host immunity, in part via its recognition by TLR5. In this study, we show that systemic immunization with soluble FliC (sFliC) drives distinct immune responses concurrently in the mesenteric lymph nodes (MLN) and the spleen after i.p. and s.c. immunization. In the MLN, but not the spleen, sFliC drives a TLR5-dependent recruitment of CD103(+) dendritic cells (DCs), which correlates with a diminution in CD103(+) DC numbers in the lamina propria. In the MLN, CD103(+) DCs carry Ag and are the major primers of endogenous and transgenic T cell priming. A key consequence of these interactions with CD103(+) DCs in the MLN is an increase in local regulatory T cell differentiation. In parallel, systemic sFliC immunization results in a pronounced switching of FliC-specific B cells to IgA in the MLN but not elsewhere. Loss of TLR5 has more impact on MLN than splenic Ab responses, reflected in an ablation of IgA, but not IgG, serum Ab titers. Therefore, systemic sFliC immunization targets CD103(+) DCs and drives distinct mucosal T and B cell responses. This offers a potential "Trojan horse" approach to modulate mucosal immunity by systemically immunizing with sFliC.
Collapse
Affiliation(s)
- Adriana Flores-Langarica
- Medical Research Council Centre for Immune Regulation, Division of Immunity and Infection, Institute of Biomedical Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Nishimori JH, Newman TN, Oppong GO, Rapsinski GJ, Yen JH, Biesecker SG, Wilson RP, Butler BP, Winter MG, Tsolis RM, Ganea D, Tükel Ç. Microbial amyloids induce interleukin 17A (IL-17A) and IL-22 responses via Toll-like receptor 2 activation in the intestinal mucosa. Infect Immun 2012; 80:4398-408. [PMID: 23027540 PMCID: PMC3497426 DOI: 10.1128/iai.00911-12] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 09/25/2012] [Indexed: 12/16/2022] Open
Abstract
The Toll-like receptor 2 (TLR2)/TLR1 receptor complex responds to amyloid fibrils, a common component of biofilm material produced by members of the phyla Firmicutes, Bacteroidetes, and Proteobacteria. To determine whether this TLR2/TLR1 ligand stimulates inflammatory responses when bacteria enter intestinal tissue, we investigated whether expression of curli amyloid fibrils by the invasive enteric pathogen Salmonella enterica serotype Typhimurium contributes to T helper 1 and T helper 17 responses by measuring cytokine production in the mouse colitis model. A csgBA mutant, deficient in curli production, elicited decreased expression of interleukin 17A (IL-17A) and IL-22 in the cecal mucosa compared to the S. Typhimurium wild type. In TLR2-deficient mice, IL-17A and IL-22 expression was blunted during S. Typhimurium infection, suggesting that activation of the TLR2 signaling pathway contributes to the expression of these cytokines. T cells incubated with supernatants from bone marrow-derived dendritic cells (BMDCs) treated with curli fibrils released IL-17A in a TLR2-dependent manner in vitro. Lower levels of IL-6 and IL-23 production were detected in the supernatants of the TLR2-deficient BMDCs treated with curli fibrils. Consistent with this, three distinct T-cell populations-CD4(+) T helper cells, cytotoxic CD8(+) T cells, and γδ T cells-produced IL-17A in response to curli fibrils in the intestinal mucosa during S. Typhimurium infection. Notably, decreased IL-6 expression by the dendritic cells and decreased IL-23 expression by the dendritic cells and macrophages were observed in the cecal mucosa of mice infected with the curli mutant. We conclude that TLR2 recognition of bacterial amyloid fibrils in the intestinal mucosa represents a novel mechanism of immunoregulation, which contributes to the generation of inflammatory responses, including production of IL-17A and IL-22, in response to bacterial entry into the intestinal mucosa.
Collapse
Affiliation(s)
- Jessalyn H. Nishimori
- Department of Microbiology and Immunology, School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Tiffanny N. Newman
- Department of Microbiology and Immunology, School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Gertrude O. Oppong
- Department of Microbiology and Immunology, School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Glenn J. Rapsinski
- Department of Microbiology and Immunology, School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Jui-Hung Yen
- Department of Microbiology and Immunology, School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Steven G. Biesecker
- Department of Microbiology and Immunology, School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - R. Paul Wilson
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, California, USA
| | - Brian P. Butler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, California, USA
| | - Maria G. Winter
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, California, USA
| | - Renee M. Tsolis
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, California, USA
| | - Doina Ganea
- Department of Microbiology and Immunology, School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Çagla Tükel
- Department of Microbiology and Immunology, School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
35
|
Ross EA, Coughlan RE, Flores-Langarica A, Lax S, Nicholson J, Desanti GE, Marshall JL, Bobat S, Hitchcock J, White A, Jenkinson WE, Khan M, Henderson IR, Lavery GG, Buckley CD, Anderson G, Cunningham AF. Thymic function is maintained during Salmonella-induced atrophy and recovery. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 189:4266-74. [PMID: 22993205 PMCID: PMC3912538 DOI: 10.4049/jimmunol.1200070] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Thymic atrophy is a frequent consequence of infection with bacteria, viruses, and parasites and is considered a common virulence trait between pathogens. Multiple reasons have been proposed to explain this atrophy, including premature egress of immature thymocytes, increased apoptosis, or thymic shutdown to prevent tolerance to the pathogen from developing. The severe loss in thymic cell number can reflect an equally dramatic reduction in thymic output, potentially reducing peripheral T cell numbers. In this study, we examine the relationship between systemic Salmonella infection and thymic function. During infection, naive T cell numbers in peripheral lymphoid organs increase. Nevertheless, this occurs despite a pronounced thymic atrophy caused by viable bacteria, with a peak 50-fold reduction in thymocyte numbers. Thymic atrophy is not dependent upon homeostatic feedback from peripheral T cells or on regulation of endogenous glucocorticoids, as demonstrated by infection of genetically altered mice. Once bacterial numbers fall, thymocyte numbers recover, and this is associated with increases in the proportion and proliferation of early thymic progenitors. During atrophy, thymic T cell maturation is maintained, and single-joint TCR rearrangement excision circle analysis reveals there is only a modest fall in recent CD4(+) thymic emigrants in secondary lymphoid tissues. Thus, thymic atrophy does not necessarily result in a matching dysfunctional T cell output, and thymic homeostasis can constantly adjust to systemic infection to ensure that naive T cell output is maintained.
Collapse
Affiliation(s)
- Ewan A. Ross
- MRC centre for Immune Regulation, School of Immunity and Infection, Medical School, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Ruth E. Coughlan
- MRC centre for Immune Regulation, School of Immunity and Infection, Medical School, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Adriana Flores-Langarica
- MRC centre for Immune Regulation, School of Immunity and Infection, Medical School, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Sian Lax
- MRC centre for Immune Regulation, School of Immunity and Infection, Medical School, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Julia Nicholson
- MRC centre for Immune Regulation, School of Immunity and Infection, Medical School, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Guillaume E. Desanti
- MRC centre for Immune Regulation, School of Immunity and Infection, Medical School, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Jennifer L. Marshall
- MRC centre for Immune Regulation, School of Immunity and Infection, Medical School, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Saeeda Bobat
- MRC centre for Immune Regulation, School of Immunity and Infection, Medical School, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Jessica Hitchcock
- MRC centre for Immune Regulation, School of Immunity and Infection, Medical School, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Andrea White
- MRC centre for Immune Regulation, School of Immunity and Infection, Medical School, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - William E. Jenkinson
- MRC centre for Immune Regulation, School of Immunity and Infection, Medical School, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Mahmood Khan
- MRC centre for Immune Regulation, School of Immunity and Infection, Medical School, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Ian R. Henderson
- MRC centre for Immune Regulation, School of Immunity and Infection, Medical School, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Gareth G. Lavery
- Centre for Endocrinology, Diabetes and Metabolism, School of Clinical and Experimental Medicine, Institute for Biomedical Research, Medical School, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Christopher D. Buckley
- MRC centre for Immune Regulation, School of Immunity and Infection, Medical School, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Graham Anderson
- MRC centre for Immune Regulation, School of Immunity and Infection, Medical School, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Adam F. Cunningham
- MRC centre for Immune Regulation, School of Immunity and Infection, Medical School, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|