1
|
Li D, Wang L, Zhao Z, Bai C, Li X. Enhancing prognostic prediction of invasive candidiasis among cancer patients with a serum C5a-based scoring model. Support Care Cancer 2024; 32:356. [PMID: 38750396 DOI: 10.1007/s00520-024-08567-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/10/2024] [Indexed: 06/18/2024]
Abstract
PURPOSE Invasive candidiasis poses a life-threatening risk, and early prognosis assessment is vital for timely interventions to reduce mortality. Serum C5a levels have recently been linked to prognosis, but confirmation in cancer patients is pending. METHODS We detected the concentrations of serum C5a in hospitalized cancer patients with invasive candidiasis from 2020 to 2023, and retrospectively analyzed the clinical data. RESULTS 372 cases were included in this study, with a 90-day mortality rate of 21.8%. Candida albicans (48.7%) remained the predominant pathogen, followed by Candida glabrata (25.5%), Candida tropicalis (12.4%), and Candida parapsilosis (8.3%). Gastrointestinal cancer was the most diagnosed pathology type (37.6%). Serum C5a demonstrated a noteworthy correlation with 90-day mortality, and employing a cutoff value of 36.7 ng/ml revealed significantly higher 90-day mortality in low-C5a patients (41.2%) compared to high-C5a patients (6.3%) (p < 0.001). We also identified no source control, no surgery, metastasis, or chronic renal failure independently correlated with the 90-day mortality. Based on this, a prognostic model combining C5a and clinical parameters was constructed, which performed better than models built solely on C5a or clinical parameters. Furthermore, we weighted scores to each parameter in the model and presented diagnostic sensitivity and specificity corresponding to different score points calculated by the model. CONCLUSION We constructed a prognostic scoring model including serum C5a and clinical parameters, which would contribute to precise prognosis assessment and benefit the outcome among cancer patients.
Collapse
Affiliation(s)
- Ding Li
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huanhu West Road, Hexi District, Tianjin, 300060, China.
| | - Lin Wang
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huanhu West Road, Hexi District, Tianjin, 300060, China
| | - Zhihong Zhao
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huanhu West Road, Hexi District, Tianjin, 300060, China
| | - Changsen Bai
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huanhu West Road, Hexi District, Tianjin, 300060, China
| | - Xichuan Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Binshuixi Road, Xiqing District, Tianjin, 300387, China.
| |
Collapse
|
2
|
Koopman I, Tack RWP, Wunderink HF, Bruns AHW, van der Schaaf IC, Cianci D, Gelderman KA, van de Ridder IM, Hol EM, Rinkel GJE, Vergouwen MDI. Safety and pharmacodynamic efficacy of eculizumab in aneurysmal subarachnoid hemorrhage (CLASH): A phase 2a randomized clinical trial. Eur Stroke J 2023; 8:1097-1106. [PMID: 37606053 PMCID: PMC10683736 DOI: 10.1177/23969873231194123] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/25/2023] [Indexed: 08/23/2023] Open
Abstract
INTRODUCTION Complement C5 antibodies reduce brain injury after experimental subarachnoid hemorrhage. PATIENTS AND METHODS In this randomized, controlled, open-label, phase 2a clinical trial with blinded-outcome assessment, we included adult aneurysmal subarachnoid hemorrhage (aSAH) patients admitted to a tertiary referral center ⩽11 h after ictus. Patients were randomized (1:1) to eculizumab plus care as usual or to care as usual. Eculizumab (1200 mg) was administered <12 h, and on days 3 and 7 after ictus. In the intervention group, all patients received prophylactic antibiotics and, after a protocol amendment, fluconazole if indicated. Primary outcome was C5a concentration in cerebrospinal fluid (CSF) on day 3 after ictus. Safety was monitored during 4 weeks. In each group, 13 patients with CSF assessments were needed to detect a 55% reduction in CSF C5a concentration. RESULTS From October 2018 to May 2021, we enrolled 31 patients of whom 26 with CSF samples, 13 per group. Median C5a concentration in CSF on day 3 was 251 pg/ml [IQR: 103-402] in the intervention group and 371 pg/ml [IQR: 131-534] in the control group (p = 0.29). Infections occurred in two patients in the intervention group and four patients in the control group. One patient in the intervention group developed a C. albicans meningitis prior to the protocol amendment. DISCUSSION AND CONCLUSION One dose of eculizumab did not result in a ⩾ 55% decrease in C5a concentration in CSF on day 3 after aSAH. The study did not reveal new safety concerns, except for a C. albicans drain-related infection prior to antifungal monitoring and treatment. TRIAL REGISTRATION EudraCT 2017-004307-51, https://www.clinicaltrialsregister.eu/.
Collapse
Affiliation(s)
- Inez Koopman
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Reinier WP Tack
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Herman F Wunderink
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Anke HW Bruns
- Department of Internal Medicine and Infectious Diseases, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Irene C van der Schaaf
- Department of Radiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Daniela Cianci
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | | | - Inge M van de Ridder
- Department of Intensive Care Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Elly M Hol
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Gabriel JE Rinkel
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Mervyn DI Vergouwen
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
3
|
Szymańska H, Dzika E, Zabolewicz TJ, Życzko K. The Relationship between Complement Components C1R and C5 Gene Polymorphism and the Values of Blood Indices in Suckling Piglets. Genes (Basel) 2023; 14:2015. [PMID: 38002958 PMCID: PMC10671359 DOI: 10.3390/genes14112015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/21/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
The main mechanism of innate immunity is the complement system. Its components include the protein products of the C1R and C5 genes, which are involved in the classical activation pathway as well as the inflammatory and cytolytic immune responses, respectively. The aim of this study was to determine the relationship between PCR-restriction fragment length polymorphism in C1R (726T > C) and C5 (1044A > C) genes, and the values of hematological and biochemical blood indices in suckling crossbred (Polish Large White × Polish Landrace × Duroc × Pietrain) piglets (n = 473), considering their age (younger, 21 ± 3 days, n = 274; older, 35 ± 3 days, n = 199) and health status. The frequencies of the C5 genotypes deviated from the Hardy-Weinberg expectations. Younger piglets, healthy piglets, piglets that deviated from physiological norms and older piglets with the C1R TT genotype all had lower white and red blood cell indices. In piglets with the C5 CC genotype, younger piglets, piglets that deviated from physiological norms and older piglets, a greater number and/or percentage of monocytes were recorded in the blood. Older piglets also showed an increase in the number of leukocytes and granulocytes, along with a tendency for a decrease in the percentage of lymphocytes in their blood. We concluded that a polymorphism in the C1R gene may exhibit a functional association or genetic linkage with other genes involved in the process of erythropoiesis. Furthermore the relationship between the C5 gene polymorphism and the number and/or percentage of monocytes in the blood may modify the body's defense abilities. Piglets with the CC genotype, having an increased number/proportion of these cells in their blood, probably display a weakened immune response to pathogens or a chronic stimulation of the immune system.
Collapse
Affiliation(s)
- Hanna Szymańska
- Department of Medical Biology, School of Public Health, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Żołnierska 14C, 10-561 Olsztyn, Poland
| | - Ewa Dzika
- Department of Medical Biology, School of Public Health, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Żołnierska 14C, 10-561 Olsztyn, Poland
| | - Tadeusz Jarosław Zabolewicz
- Department of Animal Genetics, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
| | - Krystyna Życzko
- Department of Animal Genetics, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
| |
Collapse
|
4
|
Bakos T, Kozma GT, Szebeni J, Szénási G. Eculizumab suppresses zymosan-induced release of inflammatory cytokines IL-1α, IL-1β, IFN-γ and IL-2 in autologous serum-substituted PBMC cultures: Relevance to cytokine storm in Covid-19. Biomed Pharmacother 2023; 166:115294. [PMID: 37567071 DOI: 10.1016/j.biopha.2023.115294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Cytokine storm (CS) is a major contributor to the fatal outcome of severe infectious diseases, including Covid-19. Treatment with the complement (C) C5 inhibitor eculizumab was beneficial in end-stage Covid-19, however, the mechanism of this effect is unknown. To clarify this, we analyzed the relationship between C activation and production of pro-inflammatory cytokines in a PBMC model. METHODS Human PBMC with or without 20 % autologous serum was incubated with C3a, C5a, zymosan or zymosan-pre-activated serum (ZAS) for 24 h with or without eculizumab or the C5a receptor antagonist, DF2593A. C activation (sC5b-9) and 9 inflammatory cytokines were measured by ELISA. RESULTS In serum-free unstimulated PBMC only IL-8 release could be measured during incubation. Addition of C5a increased IL-8 secretion only, ZAS induced both IL-2 and IL-8, while zymosan led to significant production of all cytokines, most abundantly IL-8. In the presence of serum the above effects were greatly enhanced, and the zymosan-induced rises of IL-1α, IL-1β IFN-γ and IL-2 were significantly attenuated by eculizumab but not by DF2593a. CONCLUSIONS These data highlight the complexity of interrelationships between C activation and cytokine secretion under different experimental conditions. The clinically relevant findings include the abundant formation of the chemokine IL-8, which was stimulated by C5a, and the suppression of numerous inflammatory cytokines by eculizumab, which explains its therapeutic efficacy in severe Covid-19. These data strengthen the clinical relevance of the applied PBMC model for drug screening against CS, enabling the separation of complex innate immune cross-talks.
Collapse
Affiliation(s)
- Tamás Bakos
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | | | - János Szebeni
- SeroScience LTD., Budapest, Hungary; Nanomedicine Research and Education Center, Department of Translational Medicine, Semmelweis University, Budapest 1089, Hungary; Department of Nanobiotechnology and Regenerative Medicine, Faculty of Health Sciences, Miskolc University, Miskolc 2880, Hungary; School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, the Republic of Korea
| | - Gábor Szénási
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
5
|
Wilson A, Bogie B, Chaaban H, Burge K. The Nonbacterial Microbiome: Fungal and Viral Contributions to the Preterm Infant Gut in Health and Disease. Microorganisms 2023; 11:909. [PMID: 37110332 PMCID: PMC10144239 DOI: 10.3390/microorganisms11040909] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/29/2023] Open
Abstract
The intestinal microbiome is frequently implicated in necrotizing enterocolitis (NEC) pathogenesis. While no particular organism has been associated with NEC development, a general reduction in bacterial diversity and increase in pathobiont abundance has been noted preceding disease onset. However, nearly all evaluations of the preterm infant microbiome focus exclusively on the bacterial constituents, completely ignoring any fungi, protozoa, archaea, and viruses present. The abundance, diversity, and function of these nonbacterial microbes within the preterm intestinal ecosystem are largely unknown. Here, we review findings on the role of fungi and viruses, including bacteriophages, in preterm intestinal development and neonatal intestinal inflammation, with potential roles in NEC pathogenesis yet to be determined. In addition, we highlight the importance of host and environmental influences, interkingdom interactions, and the role of human milk in shaping fungal and viral abundance, diversity, and function within the preterm intestinal ecosystem.
Collapse
Affiliation(s)
| | | | - Hala Chaaban
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Kathryn Burge
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
6
|
Cohen A, Jeng EE, Voorhies M, Symington J, Ali N, Rodriguez RA, Bassik MC, Sil A. Genome-scale CRISPR screening reveals that C3aR signaling is critical for rapid capture of fungi by macrophages. PLoS Pathog 2022; 18:e1010237. [PMID: 36174103 PMCID: PMC9578593 DOI: 10.1371/journal.ppat.1010237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 10/18/2022] [Accepted: 07/13/2022] [Indexed: 11/18/2022] Open
Abstract
The fungal pathogen Histoplasma capsulatum (Hc) invades, replicates within, and destroys macrophages. To interrogate the molecular mechanisms underlying this interaction, we conducted a host-directed CRISPR-Cas9 screen and identified 361 genes that modify macrophage susceptibility to Hc infection, greatly expanding our understanding of host gene networks targeted by Hc. We identified pathways that have not been previously implicated in Hc interaction with macrophages, including the ragulator complex (involved in nutrient stress sensing), glycosylation enzymes, protein degradation machinery, mitochondrial respiration genes, solute transporters, and the ER membrane complex (EMC). The highest scoring protective hits included the complement C3a receptor (C3aR), a G-protein coupled receptor (GPCR) that recognizes the complement fragment C3a. Although it is known that complement components react with the fungal surface, leading to opsonization and release of small peptide fragments such as C3a, a role for C3aR in macrophage interactions with fungi has not been elucidated. We demonstrated that whereas C3aR is dispensable for macrophage phagocytosis of bacteria and latex beads, it is critical for optimal macrophage capture of pathogenic fungi, including Hc, the ubiquitous fungal pathogen Candida albicans, and the causative agent of Valley Fever Coccidioides posadasii. We showed that C3aR localizes to the early phagosome during Hc infection where it coordinates the formation of actin-rich membrane protrusions that promote Hc capture. We also showed that the EMC promotes surface expression of C3aR, likely explaining its identification in our screen. Taken together, our results provide new insight into host processes that affect Hc-macrophage interactions and uncover a novel and specific role for C3aR in macrophage recognition of fungi.
Collapse
Affiliation(s)
- Allison Cohen
- University of California San Francisco, Department of Microbiology and Immunology, San Francisco, California, United States of America
| | - Edwin E. Jeng
- Stanford University, Department of Genetics, Palo Alto, California, United States of America
| | - Mark Voorhies
- University of California San Francisco, Department of Microbiology and Immunology, San Francisco, California, United States of America
| | - Jane Symington
- University of California San Francisco, Department of Microbiology and Immunology, San Francisco, California, United States of America
| | - Nebat Ali
- University of California San Francisco, Department of Microbiology and Immunology, San Francisco, California, United States of America
| | - Rosa A. Rodriguez
- University of California San Francisco, Department of Microbiology and Immunology, San Francisco, California, United States of America
| | - Michael C. Bassik
- Stanford University, Department of Genetics, Palo Alto, California, United States of America
| | - Anita Sil
- University of California San Francisco, Department of Microbiology and Immunology, San Francisco, California, United States of America
| |
Collapse
|
7
|
Allert S, Schulz D, Kämmer P, Großmann P, Wolf T, Schäuble S, Panagiotou G, Brunke S, Hube B. From environmental adaptation to host survival: Attributes that mediate pathogenicity of Candida auris. Virulence 2022; 13:191-214. [PMID: 35142597 PMCID: PMC8837256 DOI: 10.1080/21505594.2022.2026037] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Candida species are a major cause of invasive fungal infections. While Candida albicans, C. glabrata, C. parapsilosis, and C. tropicalis are the most dominant species causing life-threatening candidiasis, C. auris recently emerged as a new species causing invasive infections with high rates of clinical treatment failures. To mimic initial phases of systemic Candida infections with dissemination via the bloodstream and to elucidate the pathogenic potential of C. auris, we used an ex vivo whole blood infection model. Similar to other clinically relevant Candida spp., C. auris is efficiently killed in human blood, but showed characteristic patterns of immune cell association, survival rates, and cytokine induction. Dual-species transcriptional profiling of C. auris-infected blood revealed a unique C. auris gene expression program during infection, while the host response proofed similar and conserved compared to other Candida species. C. auris-specific responses included adaptation and survival strategies, such as counteracting oxidative burst of immune cells, but also expression of potential virulence factors, (drug) transporters, and cell surface-associated genes. Despite comparable pathogenicity to other Candida species in our model, C. auris-specific transcriptional adaptations as well as its increased stress resistance and long-term environmental survival, likely contribute to the high risk of contamination and distribution in a nosocomial setting. Moreover, infections of neutrophils with pre-starved C. auris cells suggest that environmental preconditioning can have modulatory effects on the early host interaction. In summary, we present novel insights into C. auris pathogenicity, revealing adaptations to human blood and environmental niches distinctive from other Candida species.
Collapse
Affiliation(s)
- Stefanie Allert
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany
| | - Daniela Schulz
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany
| | - Philipp Kämmer
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany
| | - Peter Großmann
- Systems Biology and Bioinformatics Unit, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany
| | - Thomas Wolf
- Systems Biology and Bioinformatics Unit, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany
| | - Sascha Schäuble
- Systems Biology and Bioinformatics Unit, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany
| | - Gianni Panagiotou
- Systems Biology and Bioinformatics Unit, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany.,Department of Medicine and State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, Hong Kong, China
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany.,Institute of Microbiology, Friedrich-Schiller-University, Jena, Germany
| |
Collapse
|
8
|
Activation of C3 and C5 May Be Involved in the Inflammatory Progression of PCM and GM. Inflammation 2022; 45:739-752. [PMID: 34997873 DOI: 10.1007/s10753-021-01580-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 11/05/2022]
Abstract
Plasma cell mastitis (PCM) and granulomatous mastitis (GM) are the most common inflammatory diseases constituting nonbacterial mastitis (NBM). However, the pathogenesis of NBM remains unclear. In this study, risk factors for NBM were assessed, as well as the pathological features of PCM and GM. The levels of C3/C3a-C3aR and C5/C5a-C5aR1 of tissues were detected by IHC and WB. Exosomes were isolated from serum and identified by transmission electron microscopy. Then, C3 and C5 levels were detected in peripheral blood, and exosomes were assessed by flow cytometry and immunoelectron microscopy. Obesity and prolonged lactation were risk factors for NBM. The infiltration of plasma cells and lymphocytes around the dilated catheter in PCM and the formation of granulomatous structures in GM were the respective pathological features. C3/C3a-C3aR and C5/C5a-C5aR1 levels were elevated in PCM and GM tissue samples. There were no differences in peripheral blood levels of C3 and C5, while C3a and C5a were highly expressed in exosomes. These results suggest that the complement family is activated in PCM and GM, exosomes enrich C3a and C5a, and mediate the spread of inflammation. These findings provide new insights into the molecular mechanisms of PCM and GM and identify therapeutic targets.
Collapse
|
9
|
Candida Cell-Surface-Specific Monoclonal Antibodies Protect Mice against Candida auris Invasive Infection. Int J Mol Sci 2021; 22:ijms22116162. [PMID: 34200478 PMCID: PMC8201314 DOI: 10.3390/ijms22116162] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 01/14/2023] Open
Abstract
Candida auris is a multidrug-resistant fungal pathogen that can cause disseminated bloodstream infections with up to 60% mortality in susceptible populations. Of the three major classes of antifungal drugs, most C. auris isolates show high resistance to azoles and polyenes, with some clinical isolates showing resistance to all three drug classes. We reported in this study a novel approach to treating C. auris disseminated infections through passive transfer of monoclonal antibodies (mAbs) targeting cell surface antigens with high homology in medically important Candida species. Using an established A/J mouse model of disseminated infection that mimics human candidiasis, we showed that C3.1, a mAb that targets β-1,2-mannotriose (β-Man3), significantly extended survival and reduced fungal burdens in target organs, compared to control mice. We also demonstrated that two peptide-specific mAbs, 6H1 and 9F2, which target hyphal wall protein 1 (Hwp1) and phosphoglycerate kinase 1 (Pgk1), respectively, also provided significantly enhanced survival and reduction of fungal burdens. Finally, we showed that passive transfer of a 6H1+9F2 cocktail induced significantly enhanced protection, compared to treatment with either mAb individually. Our data demonstrate the utility of β-Man3- and peptide-specific mAbs as an effective alternative to antifungals against medically important Candida species including multidrug-resistant C. auris.
Collapse
|
10
|
Langereis JD, van der Molen RG, de Kat Angelino C, Henriet SS, de Jonge MI, Joosten I, Simons A, Schuurs-Hoeijmakers JH, van Deuren M, van Aerde K, van der Flier M. Complement factor D haplodeficiency is associated with a reduced complement activation speed and diminished bacterial killing. Clin Transl Immunology 2021; 10:e1256. [PMID: 33841879 PMCID: PMC8019133 DOI: 10.1002/cti2.1256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 01/16/2023] Open
Abstract
Objectives Complete deficiency of alternative pathway (AP) complement factors, explained by homozygous mutations, is a well‐known risk factor for invasive bacterial infections; however, this is less obvious for heterozygous mutations. We describe two siblings with a heterozygous NM_001928.3(CFD):c.125C>A p.(Ser42*) mutation in the complement factor D (fD) gene having a history of recurrent bacterial infections. We determined the effect of heterozygous fD deficiency on AP complement activity. Methods We determined the effect of fD levels on complement activation as measured by AP activity, complement C3 binding to the bacterial surface of Neisseria meningitidis (Nm), Streptococcus pneumoniae (Sp) and non‐typeable Haemophilus influenzae (NTHi), and complement‐mediated killing of Nm and NTHi. In addition, we measured the effect of vaccination of complement C3 binding to the bacterial surface and killing of Nm. Results Reconstitution of fD‐deficient serum with fD increased AP activity in a dose‐ and time‐dependent way. Reconstitution of patient serum with fD to normal levels increased complement C3 binding to Sp, Nm and NTHi, as well as complement‐mediated killing of Nm and NTHi. Vaccination increased complement C3 binding and resulted in complete killing of Nm without fD reconstitution. Conclusion We conclude that low fD serum levels (< 0.5 μg mL−1) lead to a reduced speed of complement activation, which results in diminished bacterial killing, consistent with recurrent bacterial infections observed in our index patients. Specific antibodies induced by vaccination are able to overcome the diminished bacterial killing capacity in patients with low fD levels.
Collapse
Affiliation(s)
- Jeroen D Langereis
- Department of Laboratory Medicine Laboratory of Medical Immunology Radboud Institute for Molecular Life Sciences Radboudumc Nijmegen The Netherlands.,Radboud Center for Infectious Diseases Radboudumc Nijmegen The Netherlands
| | - Renate G van der Molen
- Department of Laboratory Medicine Laboratory of Medical Immunology Radboud Institute for Molecular Life Sciences Radboudumc Nijmegen The Netherlands
| | - Corrie de Kat Angelino
- Department of Laboratory Medicine Laboratory of Medical Immunology Radboud Institute for Molecular Life Sciences Radboudumc Nijmegen The Netherlands
| | - Stefanie S Henriet
- Pediatric Infectious Diseases and Immunology Amalia Children's Hospital Nijmegen The Netherlands.,Expertise Center for Immunodeficiency and Autoinflammation (REIA) Radboudumc Nijmegen The Netherlands
| | - Marien I de Jonge
- Department of Laboratory Medicine Laboratory of Medical Immunology Radboud Institute for Molecular Life Sciences Radboudumc Nijmegen The Netherlands.,Radboud Center for Infectious Diseases Radboudumc Nijmegen The Netherlands
| | - Irma Joosten
- Department of Laboratory Medicine Laboratory of Medical Immunology Radboud Institute for Molecular Life Sciences Radboudumc Nijmegen The Netherlands
| | - Annet Simons
- Department of Human Genetics Radboudumc Nijmegen The Netherlands
| | | | - Marcel van Deuren
- Expertise Center for Immunodeficiency and Autoinflammation (REIA) Radboudumc Nijmegen The Netherlands.,Department of Internal Medicine Division of Infectious Diseases Radboudumc Nijmegen The Netherlands
| | - Koen van Aerde
- Pediatric Infectious Diseases and Immunology Amalia Children's Hospital Nijmegen The Netherlands.,Expertise Center for Immunodeficiency and Autoinflammation (REIA) Radboudumc Nijmegen The Netherlands
| | - Michiel van der Flier
- Pediatric Infectious Diseases and Immunology Amalia Children's Hospital Nijmegen The Netherlands.,Expertise Center for Immunodeficiency and Autoinflammation (REIA) Radboudumc Nijmegen The Netherlands.,Present address: Pediatric Infectious Diseases and Immunology Wilhelmina Children's Hospital UMC Utrecht Utrecht The Netherlands
| |
Collapse
|
11
|
Sanches JM, Rossato L, Lice I, Alves de Piloto Fernandes AM, Bueno Duarte GH, Rosini Silva AA, de Melo Porcari A, de Oliveira Carvalho P, Gil CD. The role of annexin A1 in Candida albicans and Candida auris infections in murine neutrophils. Microb Pathog 2020; 150:104689. [PMID: 33307121 DOI: 10.1016/j.micpath.2020.104689] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 12/18/2022]
Abstract
Annexin A1 (AnxA1) is an anti-inflammatory protein expressed in various cell types, especially macrophages and neutrophils. Because neutrophils play important roles in infections and inflammatory processes and the relationship between AnxA1 and Candida spp. infections is not well-understood, our study examined whether AnxA1 can serve as a target protein for the regulation of the immune response during fungal infections. C57BL/6 wild-type (WT) and AnxA1 knockout (AnxA1-/-) peritoneal neutrophils were coinfected with Candida albicans or Candida auris for 4 h. AnxA1-/- neutrophils exhibited a marked increase in cyclooxygenase 2 (COX-2), phosphorylated extracellular signal-related kinase (ERK), p-38, and c-Jun N-terminal kinase (JNK) levels after coinfection with both Candida spp. A lipidomics approach showed that AnxA1 deficiency produced marked differences in the supernatant lipid profiles of both control neutrophils and neutrophils coinfected with Candida spp. compared with WT cells, especially the levels of glycerophospholipids and glycerolipids. Our results showed that endogenous AnxA1 regulates the neutrophil response under fungal infection conditions, altering lipid membrane organization and metabolism.
Collapse
Affiliation(s)
- José Marcos Sanches
- Departamento de Morfologia e Genética, Universidade Federal de São Paulo - UNIFESP, São Paulo, 04023-900, Brazil
| | - Luana Rossato
- Laboratório Especial de Micologia, Departamento de Medicina, UNIFESP, São Paulo, 04038-032, Brazil
| | - Izabella Lice
- Departamento de Morfologia e Genética, Universidade Federal de São Paulo - UNIFESP, São Paulo, 04023-900, Brazil
| | | | | | - Alex Aparecido Rosini Silva
- Laboratório de Pesquisa Multidisciplinar, Universidade São Francisco, Bragança Paulista, 12916-900, São Paulo, Brazil
| | - Andreia de Melo Porcari
- Laboratório de Pesquisa Multidisciplinar, Universidade São Francisco, Bragança Paulista, 12916-900, São Paulo, Brazil
| | - Patrícia de Oliveira Carvalho
- Laboratório de Pesquisa Multidisciplinar, Universidade São Francisco, Bragança Paulista, 12916-900, São Paulo, Brazil
| | - Cristiane Damas Gil
- Departamento de Morfologia e Genética, Universidade Federal de São Paulo - UNIFESP, São Paulo, 04023-900, Brazil.
| |
Collapse
|
12
|
Harpf V, Rambach G, Würzner R, Lass-Flörl C, Speth C. Candida and Complement: New Aspects in an Old Battle. Front Immunol 2020; 11:1471. [PMID: 32765510 PMCID: PMC7381207 DOI: 10.3389/fimmu.2020.01471] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/05/2020] [Indexed: 01/13/2023] Open
Abstract
Candida is a dominant fungal pathogen in immunocompromised hosts, leading to opportunistic infections. Complement with its multifaceted functions is involved in the immune defense against this yeast, and recently several novel aspects have emerged in this old battle. It is clear that Candida can adopt both roles as a colonizer or as a pathogen. In our article, we focus on the molecular mechanisms of the Candida-complement interplay, which occur in disseminated disease as well as locally on skin or on mucous membranes in mouth and vagina; the mechanisms can be supposed to be the same. Activation of the complement system by Candida is facilitated by directly triggering the three dominant pathways, but also indirectly via the coagulation and fibrinolysis systems. The complement-mediated anti-Candida effects induced thereby clearly extend chemotaxis, opsonization, and phagocytosis, and even the membrane attack complex formed on the fungal surface plays a modulatory role, although lysis of the yeast per se cannot be induced due to the thick fungal cell wall. In order to avoid the hostile action of complement, several evasion mechanisms have evolved during co-evolution, comprising the avoidance of recognition, and destruction. The latter comes in many flavors, in particular the cleavage of complement proteins by yeast enzymes and the exploitation of regulatory proteins by recruiting them on the cell wall, such as factor H. The rationale behind that is that the fluid phase regulators on the fungal cell surface down-regulate complement locally. Interestingly, however, evasion protein knockout strains do not necessarily lead to an attenuated disease, so it is likely more complex in vivo than initially thought. The interactions between complement and non-albicans species also deserve attention, especially Candida auris, a recently identified drug-resistant species of medical importance. This is in particular worth investigating, as deciphering of these interactions may lead to alternative anti-fungal therapies directly targeting the molecular mechanisms.
Collapse
Affiliation(s)
- Verena Harpf
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Günter Rambach
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Reinhard Würzner
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Cornelia Speth
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
13
|
Singh DK, Tóth R, Gácser A. Mechanisms of Pathogenic Candida Species to Evade the Host Complement Attack. Front Cell Infect Microbiol 2020; 10:94. [PMID: 32232011 PMCID: PMC7082757 DOI: 10.3389/fcimb.2020.00094] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/24/2020] [Indexed: 11/13/2022] Open
Abstract
Candida species are common colonizers of the human skin, vagina, and the gut. As human commensals, Candida species do not cause any notable damage in healthy individuals; however, in certain conditions they can initiate a wide range of diseases such as chronic disseminated candidiasis, endocarditis, vaginitis, meningitis, and endophthalmitis. The incidence of Candida caused infections has increased worldwide, with mortality rates exceeding 70% in certain patient populations. C. albicans, C. glabrata, C. tropicalis, C. parapsilosis, and C. krusei are responsible for more than 90% of Candida-related infections. Interestingly, the host immune response against these closely related fungi varies. As part of the innate immune system, complement proteins play a crucial role in host defense, protecting the host by lysing pathogens or by increasing their phagocytosis by phagocytes through opsonization. This review summarizes interactions of host complement proteins with pathogenic Candida species, including C. albicans and non-albicans Candida species such as C. parapsilosis. We will also highlight the various ways of complement activation, describe the antifungal effects of complement cascades and explore the mechanisms adopted by members of pathogenic Candida species for evading complement attack.
Collapse
Affiliation(s)
| | - Renáta Tóth
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Attila Gácser
- Department of Microbiology, University of Szeged, Szeged, Hungary.,MTA-SZTE Lendület Mycobiome Research Group, University of Szeged, Szeged, Hungary
| |
Collapse
|
14
|
Han H, Alagusundaramoorthy S, Swanson K, Gardezi AI, Chan MR. Acute Candida albicans Peritonitis in a Patient with Atypical Hemolytic Uremic Syndrome Treated with Eculizumab. Perit Dial Int 2019; 39:575-576. [PMID: 31690705 DOI: 10.3747/pdi.2019.00094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- H Han
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - S Alagusundaramoorthy
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Division of Nephrology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - K Swanson
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Division of Nephrology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - A I Gardezi
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Division of Nephrology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - M R Chan
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Division of Nephrology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
15
|
Abstract
Disseminated candidiasis is a life-threatening disease and remains the most common bloodstream infection in hospitalized patients in the United States. Despite the availability of modern antifungal therapy, crude mortality in the last decade has remained unacceptably high. In particular, Candida auris is a multidrug-resistant, health care-associated fungal pathogen and has recently emerged as the first fungal pathogen to cause a global public health threat. A reliable animal model for disseminated C. auris candidiasis is therefore needed to study the unique aspects of this little-known host-pathogen interaction. In this study, we established an inbred A/J intravenous model as an appropriate model for human disseminated C. auris infection. We found that C5 deficiency in A/J mice results in a complex phenotype characterized by rapid fungal proliferation in target organs and the development of a unique and rapidly fatal response. In contrast, C57BL/6J mice and mice deficient in neutrophil elastase (NE-/-) survived high-dose C. auris intravenous challenge, even with cyclophosphamide (CY)-induced immunosuppression. Our study is the first to provide insight into the role of C5 in the host responses to C. auris invasive infection and establishes an inbred A/J mouse model of systemic C. auris infection without CY-induced immunosuppression.IMPORTANCE In the last decade, Candida auris has emerged globally as a multidrug-resistant fungal pathogen. Although C. auris was initially isolated from the external ear canal, it can cause outbreaks of invasive infections with very high mortality and comorbidities. Recent reports highlight the ongoing challenges due to organism misidentification, high rates of multifungal drug resistance, and unacceptably high patient mortality. The assessment of C. auris virulence in a specific genetic deficiency mouse model of invasive C. auris infection in this study contributes to the little knowledge of host defense to C. auris infection, which holds promise as a model for investigating the pathogenesis of C. auris invasive infection, exploring the immune responses elicited by the fungus, evaluating the possible induction of immunity to the infection, and targeting candidates for an antifungal vaccine.
Collapse
|
16
|
van den Broek B, van der Flier M, de Groot R, de Jonge MI, Langereis JD. Common Genetic Variants in the Complement System and their Potential Link with Disease Susceptibility and Outcome of Invasive Bacterial Infection. J Innate Immun 2019; 12:131-141. [PMID: 31269507 DOI: 10.1159/000500545] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 04/19/2019] [Indexed: 01/01/2023] Open
Abstract
Streptococcus pneumoniae and Neisseria meningitidis are pathogens that frequently colonize the nasopharynx in an asymptomatic manner but are also a cause of invasive bacterial infections mainly in young children. The complement system plays a crucial role in humoral immunity, complementing the ability of antibodies to clear microbes, thereby protecting the host against bacterial infections, including S. pneumoniae and N. meningitidis. While it is widely accepted that complement deficiencies due to rare genetic variants increase the risk for invasive bacterial infection, not much is known about the common genetic variants in the complement system in relation to disease susceptibility. In this review, we provide an overview of the effects of common genetic variants on complement activation and on complement-mediated inflammation.
Collapse
Affiliation(s)
- Bryan van den Broek
- Paediatric Infectious Diseases and Immunology, Amalia Children's Hospital, Nijmegen, The Netherlands.,Section Paediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases, Radboudumc, Nijmegen, The Netherlands
| | - Michiel van der Flier
- Paediatric Infectious Diseases and Immunology, Amalia Children's Hospital, Nijmegen, The Netherlands.,Expertise Center for Immunodeficiency and Auto inflammation (REIA), Radboudumc, Nijmegen, The Netherlands.,Section Paediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases, Radboudumc, Nijmegen, The Netherlands
| | - Ronald de Groot
- Section Paediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases, Radboudumc, Nijmegen, The Netherlands
| | - Marien I de Jonge
- Section Paediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases, Radboudumc, Nijmegen, The Netherlands
| | - Jeroen D Langereis
- Section Paediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands, .,Radboud Center for Infectious Diseases, Radboudumc, Nijmegen, The Netherlands,
| |
Collapse
|
17
|
Chang CC, Levitz SM. Fungal immunology in clinical practice: Magical realism or practical reality? Med Mycol 2019; 57:S294-S306. [PMID: 31292656 PMCID: PMC7137463 DOI: 10.1093/mmy/myy165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 12/21/2018] [Accepted: 01/28/2019] [Indexed: 12/15/2022] Open
Abstract
Invasive fungal infections (IFIs) occur predominantly in immunocompromised individuals but can also be seen in previously well persons. The human innate immune system recognizes key components of the fungal cell wall as foreign resulting in a myriad of signaling cascades. This triggers release of antifungal molecules as well as adaptive immune responses, which kill or at least contain the invading fungi. However, these defences may fail in hosts with primary or secondary immunodeficiencies resulting in IFIs. Knowledge of a patient's immune status enables the clinician to predict the fungal infections most likely to occur. Moreover, the occurrence of an opportunistic mycosis in a patient without known immunocompromise usually should prompt a search for an occult immune defect. A rapidly expanding number of primary and secondary immunodeficiencies associated with mycoses has been identified. An investigative approach to determining the nature of these immunodeficiencies is suggested to help guide clinicians encountering patients with IFI. Finally, promising adjunctive immunotherapy measures are currently being investigated in IFI.
Collapse
Affiliation(s)
- Christina C Chang
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia
| | - Stuart M Levitz
- Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, United States
| |
Collapse
|
18
|
Thakur R, Shankar J. Proteome Analysis Revealed Jak/Stat Signaling and Cytoskeleton Rearrangement Proteins in Human Lung Epithelial Cells During Interaction with Aspergillus terreus. ACTA ACUST UNITED AC 2019. [DOI: 10.2174/1574362413666180529123513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Aspergillus terreus is an emerging etiological agent of invasive and
allergic aspergillosis in immunocompromised individuals. The main risk groups are individuals
having cancer, acute leukemia and those who undergo bone marrow transplantation. The human
lung epithelial cells constitute the first line of defense against inhaled conidia of A. terreus. The
aim of the study was to understand how human lung epithelial cells respond to A. terreus conidia
during the interaction and to decipher proteins/pathways underlying in host defense.
Methods:
Protein samples were extracted from human lung epithelial cells (A549) infected with
and without A. terreus conidia. Proteins were identified using QTOF-LC-MS/MS followed by
analysis using Protein Lynx Global Services software (2.2.5) against Homo sapiens UniProt
database.
Results:
A total of 1253 proteins in human lung epithelial cells were identified during the
interaction with Aspergillus terreus conidia, whereas 427 proteins were identified in uninfected
lung epithelial cells. We have observed 63 proteins in both the conditions. Gene ontology and
KEEG pathway analysis of proteins from infected lung epithelial cells showed proteins from
cytoskeleton rearrangement, transport, transcription and signal transduction pathways, such as
Jak/Stat, NOD like receptor signaling, Toll–like receptor signaling, NF-kβ signaling and TNF
signaling pathways. These signaling proteins suggested the strong immune response in lung
epithelial cells against A. terreus conidia. Also, cytoskeleton rearrangement proteins depicted the
internalization of A. terreus conidia by human lung epithelial cells.
Conclusion:
Our study has contributed to understand the interaction response of human lung
epithelial cells during A. terreus infection. Also, our study may facilitate the identification of
inflammatory biomarker against A. terreus.
Collapse
Affiliation(s)
- R. Thakur
- Genomic Laboratory, Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat Solan-173234 Himachal Pradesh, India
| | - J. Shankar
- Genomic Laboratory, Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat Solan-173234 Himachal Pradesh, India
| |
Collapse
|
19
|
Abstract
Invasive candidiasis is an important health-care-associated fungal infection that can be caused by several Candida spp.; the most common species is Candida albicans, but the prevalence of these organisms varies considerably depending on geographical location. The spectrum of disease of invasive candidiasis ranges from minimally symptomatic candidaemia to fulminant sepsis with an associated mortality exceeding 70%. Candida spp. are common commensal organisms in the skin and gut microbiota, and disruptions in the cutaneous and gastrointestinal barriers (for example, owing to gastrointestinal perforation) promote invasive disease. A deeper understanding of specific Candida spp. virulence factors, host immune response and host susceptibility at the genetic level has led to key insights into the development of early intervention strategies and vaccine candidates. The early diagnosis of invasive candidiasis is challenging but key to the effective management, and the development of rapid molecular diagnostics could improve the ability to intervene rapidly and potentially reduce mortality. First-line drugs, including echinocandins and azoles, are effective, but the emergence of antifungal resistance, especially among Candida glabrata, is a matter of concern and underscores the need to administer antifungal medications in a judicious manner, avoiding overuse when possible. A newly described pathogen, Candida auris, is an emerging multidrug-resistant organism that poses a global threat.
Collapse
Affiliation(s)
- Peter G Pappas
- Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology, National Institutes of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Maiken Cavling Arendrup
- Unit for Mycology, Statens Serum Institute, Copenhagen, Denmark
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Luis Ostrosky-Zeichner
- Division of Infectious Diseases, University of Texas Health Science Center, Houston, TX, USA
| | - Bart Jan Kullberg
- Department of Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
20
|
Lausen M, Christiansen G, Karred N, Winther R, Poulsen TBG, Palarasah Y, Birkelund S. Complement C3 opsonization of Chlamydia trachomatis facilitates uptake in human monocytes. Microbes Infect 2018; 20:328-336. [PMID: 29729435 DOI: 10.1016/j.micinf.2018.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 03/13/2018] [Accepted: 04/23/2018] [Indexed: 01/08/2023]
Abstract
Chlamydia trachomatis is an obligate intracellular bacterium that causes severe infections, which can lead to infertility and ectopic pregnancy. Although both innate and adaptive immune responses are elicited during chlamydial infection the bacterium succeeds to evade host defense mechanisms establishing chronic infections. Thus, studying the host-pathogen interaction during chlamydial infection is of importance to understand how C. trachomatis can cause chronic infections. Both the complement system and monocytes play essential roles in anti-bacterial defense, and, therefore, we investigated the interaction between the complement system and the human pathogens C. trachomatis D and L2. Complement competent serum facilitated rapid uptake of both chlamydial serovars into monocytes. Using immunoelectron microscopy, we showed that products of complement C3 were loosely deposited on the bacterial surface in complement competent serum and further characterization demonstrated that the deposited C3 product was the opsonin iC3b. Using C3-depleted serum we confirmed that complement C3 facilitates rapid uptake of chlamydiae into monocytes in complement competent serum. Complement facilitated uptake did not influence intracellular survival of C. trachomatis or C. trachomatis-induced cytokine secretion. Hence, C. trachomatis D and L2 activate the complement system leading to chlamydial opsonization by iC3b and subsequent phagocytosis, activation and bacterial elimination by human monocytes.
Collapse
Affiliation(s)
- Mads Lausen
- Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3b, 9220, Aalborg Ø, Denmark
| | - Gunna Christiansen
- Department of Biomedicine, Aarhus University, Wilhelms Meyers Allé 4, 8000, Aarhus, Denmark
| | - Nichlas Karred
- Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3b, 9220, Aalborg Ø, Denmark
| | - Robert Winther
- Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3b, 9220, Aalborg Ø, Denmark
| | - Thomas Bouet Guldbæk Poulsen
- Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3b, 9220, Aalborg Ø, Denmark
| | - Yaseelan Palarasah
- Unit for Thrombosis Research, Institute of Public Health, University of Southern Denmark, Esbjerg, Denmark
| | - Svend Birkelund
- Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3b, 9220, Aalborg Ø, Denmark.
| |
Collapse
|
21
|
Abstract
The complement system is an evolutionarily ancient key component of innate immunity required for the detection and removal of invading pathogens. It was discovered more than 100 years ago and was originally defined as a liver-derived, blood-circulating sentinel system that classically mediates the opsonization and lytic killing of dangerous microbes and the initiation of the general inflammatory reaction. More recently, complement has also emerged as a critical player in adaptive immunity via its ability to instruct both B and T cell responses. In particular, work on the impact of complement on T cell responses led to the surprising discoveries that the complement system also functions within cells and is involved in regulating basic cellular processes, predominantly those of metabolic nature. Here, we review current knowledge about complement's role in T cell biology, with a focus on the novel intracellular and noncanonical activities of this ancient system.
Collapse
Affiliation(s)
- Erin E West
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung and Blood Institute, Bethesda, Maryland 20892, United States; ,
| | - Martin Kolev
- Division of Transplant Immunology and Mucosal Biology, King's College London, London SE1 9RT, United Kingdom;
| | - Claudia Kemper
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung and Blood Institute, Bethesda, Maryland 20892, United States; ,
- Division of Transplant Immunology and Mucosal Biology, King's College London, London SE1 9RT, United Kingdom;
- Institute for Systemic Inflammation Research, University of Lübeck, 23562 Lübeck, Germany
| |
Collapse
|
22
|
Wang Q, Li Y, Ji S, Feng F, Bu B. Immunopathological Characterization of Muscle Biopsy Samples from Immune-Mediated Necrotizing Myopathy Patients. Med Sci Monit 2018; 24:2189-2196. [PMID: 29649184 PMCID: PMC5914276 DOI: 10.12659/msm.907380] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Background Immune-mediated necrotizing myopathy (IMNM) is a relatively new proposed category of idiopathic inflammatory myopathies (IIMs), characterized by the presence of abundant necrotic muscle fibers, myophagocytosis, and sparse inflammatory infiltrates. The aim of our study was to analyze the immunopathological characteristics of IMNM by detecting biopsy samples from a cohort of patients, and to delineate the pathways involved in the pathogenesis. Material/Methods A retrospective evaluation of muscle biopsy samples, clinical and laboratory data, and immunohistochemical analysis of macrophages MHC-I and MAC, was performed for all patients diagnosed as having IMNM but without a prior exposure to statins. Results Immunohistochemical analysis revealed the presence of CD68+ macrophages mainly in the necrotic muscle fibers and the endomysial connective tissue. MHC-I and MAC positively stained not only the necrotic fibers or vessels but also the non-necrotic ones. Conclusions Our data describe general immunological features in IMNM patients, which may be helpful in serving as biomarkers, aid in diagnostic decisions, and provide clues into the underlying mechanisms involved in this disease.
Collapse
Affiliation(s)
- Qiong Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Yue Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Suqiong Ji
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Fang Feng
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Bitao Bu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| |
Collapse
|
23
|
Tang Y, Li H, Li J, Liu Y, Li Y, Zhou J, Zhou J, Lu X, Zhao W, Hou J, Wang XY, Chen Z, Zuo D. Macrophage scavenger receptor 1 contributes to pathogenesis of fulminant hepatitis via neutrophil-mediated complement activation. J Hepatol 2018; 68:733-743. [PMID: 29154963 PMCID: PMC5951742 DOI: 10.1016/j.jhep.2017.11.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 10/30/2017] [Accepted: 11/05/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS The macrophage scavenger receptor 1 (Msr1, also called SRA) is a pattern recognition receptor primarily expressed on myeloid cells, which plays an important role in the maintenance of immune homeostasis. Since MSR1 expression was upregulated in the livers of patients with fulminant hepatitis (FH), we investigated the functional mechanism of Msr1 in FH pathogenesis. METHODS Msr1-deficient (Msr1-/-) mice and their wild-type (WT) littermates were infected with mouse hepatitis virus strain-A59 (MHV-A59) to induce FH, and the levels of tissue damage, serum alanine aminotransferase, inflammatory cytokines and complement component 5a (C5a) were measured and compared. Liver injury was studied after MHV infection with or without neutrophil depletion. RESULTS Our results showed that Msr1-/- mice were resistant to MHV-induced hepatitis. Treatment with the C5a receptor antagonist (C5aRa) diminished the differences in inflammatory responses and liver injury between MHV-infected wild-type and Msr1-/- mice, suggesting that C5a-induced pro-inflammatory response plays a critical role in the Msr1-mediated regulation of FH pathogenesis. We demonstrated that Msr1 efficiently enhanced transforming growth factor-activated kinase-1 phosphorylation in neutrophils upon MHV-A59 stimulation, thereby promoting the activation of the extracellular signal-regulated kinase pathway and subsequent NETosis formation. Moreover, we provided evidence that blockage of Msr1 attenuated the liver damage caused by MHV-A59 infection. CONCLUSIONS Msr1 promotes the pathogenesis of virus-induced FH by enhancing induction of neutrophil NETosis and subsequent complement activation. Targeting Msr1 may be employed as a new immunotherapeutic strategy for FH. LAY SUMMARY Virus-induced fulminant hepatitis (FH) is a disease with a high mortality worldwide. Enhanced levels of macrophage scavenger receptor 1 (Msr1) in the liver of patients with FH and of murine experimental FH indicated Msr1 plays a role in the pathogenesis of FH. Herein, we demonstrate that mice deficient in Msr1 are resistant to FH induced by MHV-A59, and the Msr1 inhibitor fucoidan suppresses the progression of FH in mice. Our study suggests that use of drugs inhibiting MSR1 function could be beneficial to patients with FH.
Collapse
Affiliation(s)
- Yuan Tang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Huifang Li
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Junru Li
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yunzhi Liu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yanli Li
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jing Zhou
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jia Zhou
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiao Lu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Wei Zhao
- Biosafety Level-3 Laboratory, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jinlin Hou
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Zhengliang Chen
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China; Guangdong Provincial Key Laboratory of Proteomics, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Daming Zuo
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China; Guangdong Provincial Key Laboratory of Proteomics, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
24
|
Prauße MTE, Lehnert T, Timme S, Hünniger K, Leonhardt I, Kurzai O, Figge MT. Predictive Virtual Infection Modeling of Fungal Immune Evasion in Human Whole Blood. Front Immunol 2018; 9:560. [PMID: 29619027 PMCID: PMC5871695 DOI: 10.3389/fimmu.2018.00560] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/06/2018] [Indexed: 12/20/2022] Open
Abstract
Bloodstream infections by the human-pathogenic fungi Candida albicans and Candida glabrata increasingly occur in hospitalized patients and are associated with high mortality rates. The early immune response against these fungi in human blood comprises a concerted action of humoral and cellular components of the innate immune system. Upon entering the blood, the majority of fungal cells will be eliminated by innate immune cells, i.e., neutrophils and monocytes. However, recent studies identified a population of fungal cells that can evade the immune response and thereby may disseminate and cause organ dissemination, which is frequently observed during candidemia. In this study, we investigate the so far unresolved mechanism of fungal immune evasion in human whole blood by testing hypotheses with the help of mathematical modeling. We use a previously established state-based virtual infection model for whole-blood infection with C. albicans to quantify the immune response and identified the fungal immune-evasion mechanism. While this process was assumed to be spontaneous in the previous model, we now hypothesize that the immune-evasion process is mediated by host factors and incorporate such a mechanism in the model. In particular, we propose, based on previous studies that the fungal immune-evasion mechanism could possibly arise through modification of the fungal surface by as of yet unknown proteins that are assumed to be secreted by activated neutrophils. To validate or reject any of the immune-evasion mechanisms, we compared the simulation of both immune-evasion models for different infection scenarios, i.e., infection of whole blood with either C. albicans or C. glabrata under non-neutropenic and neutropenic conditions. We found that under non-neutropenic conditions, both immune-evasion models fit the experimental data from whole-blood infection with C. albicans and C. glabrata. However, differences between the immune-evasion models could be observed for the infection outcome under neutropenic conditions with respect to the distribution of fungal cells across the immune cells. Based on these predictions, we suggested specific experimental studies that might allow for the validation or rejection of the proposed immune-evasion mechanism.
Collapse
Affiliation(s)
- Maria T E Prauße
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany.,Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Teresa Lehnert
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany.,Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| | - Sandra Timme
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany.,Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Kerstin Hünniger
- Fungal Septomics, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany.,Institute of Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Ines Leonhardt
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany.,Fungal Septomics, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany
| | - Oliver Kurzai
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany.,Fungal Septomics, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany.,Institute of Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Marc Thilo Figge
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany.,Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany.,Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| |
Collapse
|
25
|
The secreted Candida albicans protein Pra1 disrupts host defense by broadly targeting and blocking complement C3 and C3 activation fragments. Mol Immunol 2017; 93:266-277. [PMID: 28860090 DOI: 10.1016/j.molimm.2017.07.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/12/2017] [Accepted: 07/18/2017] [Indexed: 11/23/2022]
Abstract
Candida albicans the most frequently isolated clinical fungal pathogen can cause local as well as systemic and life-threatening infections particularly in immune-compromised individuals. A better and more detailed understanding how C. albicans evades human immune attack is therefore needed for identifying fungal immune-evasive proteins and develop new therapies. Here, we identified Pra1, the pH-regulated C. albicans antigen as a hierarchical complement inhibitor that targets C3, the central human complement component. Pra1 cleaved C3 at a unique site and further inhibited effector function of the activation fragments. The newly formed C3a-like peptide lacked the C-terminal arginine residue needed for C3a-receptor binding and activation. Moreover, Pra1 also blocked C3a-like antifungal activity as shown in survival assays, and the C3b-like molecule formed by Pra1 was degraded by the host protease Factor I. Pra1 also bound to C3a and C3b generated by human convertases and blocked their effector functions, like C3a antifungal activity shown by fungal survival, blocked C3a binding to human C3a receptor-expressing HEK cells, activation of Fura2-AM loaded cells, intracellular Ca2+ signaling, IL-8 release, C3b deposition, as well as opsonophagocytosis and killing by human neutrophils. Thus, upon infection C. albicans uses Pra1 to destroy C3 and to disrupt host complement attack. In conclusion, candida Pra1 represents the first fungal C3-cleaving protease identified and functions as a fungal master regulator of innate immunity and as a central fungal immune-escape protein.
Collapse
|
26
|
Freeley S, Kemper C, Le Friec G. The "ins and outs" of complement-driven immune responses. Immunol Rev 2017; 274:16-32. [PMID: 27782335 DOI: 10.1111/imr.12472] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The complement system represents an evolutionary old and critical component of innate immunity where it forms the first line of defense against invading pathogens. Originally described as a heat-labile fraction of the serum responsible for the opsonization and subsequent lytic killing of bacteria, work over the last century firmly established complement as a key mediator of the general inflammatory response but also as an acknowledged vital bridge between innate and adaptive immunity. However, recent studies particularly spanning the last decade have provided new insights into the novel modes and locations of complement activation and highlighted unexpected additional biological functions for this ancient system, for example, in regulating basic processes of the cell. In this review, we will cover the current knowledge about complement's established and novel roles in innate and adaptive immunity with a focus on the functional differences between serum circulating and intracellularly active complement and will describe and discuss the newly discovered cross-talks of complement with other cell effector systems particularly during T-cell induction and contraction.
Collapse
Affiliation(s)
- Simon Freeley
- Division of Transplant Immunology and Mucosal Biology, MRC Centre for Transplantation, King's College London, Guy's Hospital, London, UK
| | - Claudia Kemper
- Division of Transplant Immunology and Mucosal Biology, MRC Centre for Transplantation, King's College London, Guy's Hospital, London, UK. .,Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA.
| | - Gaëlle Le Friec
- Division of Transplant Immunology and Mucosal Biology, MRC Centre for Transplantation, King's College London, Guy's Hospital, London, UK
| |
Collapse
|
27
|
Michalski C, Kan B, Lavoie PM. Antifungal Immunological Defenses in Newborns. Front Immunol 2017; 8:281. [PMID: 28360910 PMCID: PMC5350100 DOI: 10.3389/fimmu.2017.00281] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 02/28/2017] [Indexed: 12/28/2022] Open
Abstract
Newborns are prone to fungal infections, largely due to Candida species. The immunological basis for this vulnerability is not yet fully understood. However, useful insights can be gained from the knowledge of the maturation of immune pathways during ontogeny, particularly when placed in context with how rare genetic mutations in humans predispose to fungal diseases. In this article, we review these most current data on immune functions in human newborns, highlighting pathways most relevant to the response to Candida. While discussing these data, we propose a framework of why deficiencies in these pathways make newborns particularly vulnerable to this opportunistic pathogen.
Collapse
Affiliation(s)
- Christina Michalski
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Bernard Kan
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Pascal M Lavoie
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Medicine, University of British Columbia, Vancouver, BC, Canada; Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
28
|
van der Maten E, de Bont CM, de Groot R, de Jonge MI, Langereis JD, van der Flier M. Alternative pathway regulation by factor H modulates Streptococcus pneumoniae induced proinflammatory cytokine responses by decreasing C5a receptor crosstalk. Cytokine 2016; 88:281-286. [PMID: 27721145 DOI: 10.1016/j.cyto.2016.09.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 01/24/2023]
Abstract
Bacterial pathogens not only stimulate innate immune receptors, but also activate the complement system. Crosstalk between complement C5a receptor (C5aR) and other innate immune receptors is known to enhance the proinflammatory cytokine response. An important determinant of the magnitude of complement activation is the activity of the alternative pathway, which serves as an amplification mechanism for complement activation. Both alternative pathway activity as well as plasma levels of factor H, a key inhibitor of the alternative pathway, show large variation within the human population. Here, we studied the effect of factor H-mediated regulation of the alternative pathway on bacterial-induced proinflammatory cytokine responses. We used the human pathogen Streptococcus pneumoniae as a model stimulus to induce proinflammatory cytokine responses in human peripheral blood mononuclear cells. Serum containing active complement enhanced pneumococcal induced proinflammatory cytokine production through C5a release and C5aR crosstalk. We found that inhibition of the alternative pathway by factor H, with a concentration equivalent to a high physiological level, strongly reduced C5a levels and decreased proinflammatory cytokine production in human peripheral blood mononuclear cells. This suggests that variation in alternative pathway activity due to variation in factor H plasma levels affects individual cytokine responses during infection.
Collapse
Affiliation(s)
- Erika van der Maten
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud Institute for Molecular Life Sciences, Radboudumc, 6525 GA Nijmegen, The Netherlands
| | - Cynthia M de Bont
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud Institute for Molecular Life Sciences, Radboudumc, 6525 GA Nijmegen, The Netherlands
| | - Ronald de Groot
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud Institute for Molecular Life Sciences, Radboudumc, 6525 GA Nijmegen, The Netherlands
| | - Marien I de Jonge
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud Institute for Molecular Life Sciences, Radboudumc, 6525 GA Nijmegen, The Netherlands
| | - Jeroen D Langereis
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud Institute for Molecular Life Sciences, Radboudumc, 6525 GA Nijmegen, The Netherlands
| | - Michiel van der Flier
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud Institute for Molecular Life Sciences, Radboudumc, 6525 GA Nijmegen, The Netherlands; Pediatric Infectious Diseases and Immunology, Department of Pediatrics, Radboudumc, 6525 GA Nijmegen, The Netherlands.
| |
Collapse
|
29
|
Novel Mutations Causing C5 Deficiency in Three North-African Families. J Clin Immunol 2016; 36:388-96. [PMID: 27026170 DOI: 10.1007/s10875-016-0275-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/21/2016] [Indexed: 12/22/2022]
Abstract
The complement system plays a central role in defense to encapsulated bacteria through opsonization and membrane attack complex (MAC) dependent lysis. The three activation pathways (classical, lectin, and alternative) converge in the cleavage of C5, which initiates MAC formation and target lysis. C5 deficiency is associated to recurrent infections by Neisseria spp. In the present study, complement deficiency was suspected in three families of North-African origin after one episode of invasive meningitis due to a non-groupable and two uncommon Meningococcal serotypes (E29, Y). Activity of alternative and classical pathways of complement were markedly reduced and the measurement of terminal complement components revealed total C5 absence. C5 gene analysis revealed two novel mutations as causative of the deficiency: Family A propositus carried a homozygous deletion of two adenines in the exon 21 of C5 gene, resulting in a frameshift and a truncated protein (c.2607_2608del/p.Ser870ProfsX3 mutation). Families B and C probands carried the same homozygous deletion of three consecutive nucleotides (CAA) in exon 9 of the C5 gene, leading to the deletion of asparagine 320 (c.960_962del/p.Asn320del mutation). Family studies confirmed an autosomal recessive inheritance pattern. Although sharing the same geographical origin, families B and C were unrelated. This prompted us to investigate this mutation prevalence in a cohort of 768 North-African healthy individuals. We identified one heterozygous carrier of the p.Asn320del mutation (allelic frequency = 0.065 %), indicating that this mutation is present at low frequency in North-African population.
Collapse
|
30
|
Secreted aspartic protease 2 of Candida albicans inactivates factor H and the macrophage factor H-receptors CR3 (CD11b/CD18) and CR4 (CD11c/CD18). Immunol Lett 2015; 168:13-21. [DOI: 10.1016/j.imlet.2015.08.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 08/19/2015] [Indexed: 12/30/2022]
|
31
|
Netea MG, Joosten LAB, van der Meer JWM, Kullberg BJ, van de Veerdonk FL. Immune defence against Candida fungal infections. Nat Rev Immunol 2015; 15:630-42. [DOI: 10.1038/nri3897] [Citation(s) in RCA: 325] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
32
|
Speth C, Rambach G, Würzner R, Lass-Flörl C, Kozarcanin H, Hamad OA, Nilsson B, Ekdahl KN. Complement and platelets: Mutual interference in the immune network. Mol Immunol 2015; 67:108-18. [DOI: 10.1016/j.molimm.2015.03.244] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 03/16/2015] [Accepted: 03/16/2015] [Indexed: 11/28/2022]
|
33
|
Duggan S, Leonhardt I, Hünniger K, Kurzai O. Host response to Candida albicans bloodstream infection and sepsis. Virulence 2015; 6:316-26. [PMID: 25785541 PMCID: PMC4601378 DOI: 10.4161/21505594.2014.988096] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Candida albicans is a major cause of bloodstream infection which may present as sepsis and septic shock - major causes of morbidity and mortality world-wide. After invasion of the pathogen, innate mechanisms govern the early response. Here, we outline the models used to study these mechanisms and summarize our current understanding of innate immune responses during Candida bloodstream infection. This includes protective immunity as well as harmful responses resulting in Candida induced sepsis. Neutrophilic granulocytes are considered principal effector cells conferring protection and recognize C. albicans mainly via complement receptor 3. They possess a range of effector mechanisms, contributing to elimination of the pathogen. Neutrophil activation is closely linked to complement and modulated by activated mononuclear cells. A thorough understanding of these mechanisms will help in creating an individualized approach to patients suffering from systemic candidiasis and aid in optimizing clinical management.
Collapse
Affiliation(s)
- Seána Duggan
- a Septomics Research Center ; Friedrich-Schiller-University and Leibniz-Institute for Natural Product Research and Infection Biology-Hans-Knoell-Institute ; Jena , Germany
| | | | | | | |
Collapse
|
34
|
Hünniger K, Bieber K, Martin R, Lehnert T, Figge MT, Löffler J, Guo RF, Riedemann NC, Kurzai O. A second stimulus required for enhanced antifungal activity of human neutrophils in blood is provided by anaphylatoxin C5a. THE JOURNAL OF IMMUNOLOGY 2014; 194:1199-210. [PMID: 25539819 DOI: 10.4049/jimmunol.1401845] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Polymorphonuclear neutrophilic granulocytes (PMN) as cellular components of innate immunity play a crucial role in the defense against systemic Candida albicans infection. To analyze stimuli that are required for PMN activity during C. albicans infection in a situation similar to in vivo, we used a human whole-blood infection model. In this model, PMN activation 10 min after C. albicans infection was largely dependent on the anaphylatoxin C5a. Most importantly, C5a enabled blood PMN to overcome filament-restricted recognition of C. albicans and allowed efficient elimination of nonfilamentous C. albicans cph1Δ/efg1Δ from blood. Major PMN effector mechanisms, including oxidative burst, release of secondary granule contents and initial fungal phagocytosis could be prevented by blocking C5a receptor signaling. Identical effects were achieved using a humanized Ab specifically targeting human C5a. Phagocytosis of C. albicans 10 min postinfection was mediated by C5a-dependent enhancement of CD11b surface expression on PMN, thus establishing the C5a-C5aR-CD11b axis as a major modulator of early anti-Candida immune responses in human blood. In contrast, phagocytosis of C. albicans by PMN 60 min postinfection occurred almost independently of C5a and mainly contributed to activation of phagocytically active PMN at later time points. Our results show that C5a is a critical mediator in human blood during C. albicans infection.
Collapse
Affiliation(s)
- Kerstin Hünniger
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, 07745 Jena, Germany
| | - Kristin Bieber
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, 07745 Jena, Germany
| | - Ronny Martin
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, 07745 Jena, Germany
| | - Teresa Lehnert
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, 07745 Jena, Germany; Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Marc Thilo Figge
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, 07745 Jena, Germany; Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Jürgen Löffler
- Department of Internal Medicine II, University Hospital Wuerzburg, 97080 Wuerzburg, Germany
| | | | - Niels C Riedemann
- InflaRx GmbH, 07745 Jena, Germany; Department of Anesthesiology and Intensive Care Therapy, Jena University Hospital, 07747 Jena, Germany; Center for Sepsis Control and Care, Jena University Hospital, 07747 Jena, Germany; and
| | - Oliver Kurzai
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, 07745 Jena, Germany; Center for Sepsis Control and Care, Jena University Hospital, 07747 Jena, Germany; and German National Reference Center for Invasive Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, 07745 Jena, Germany
| |
Collapse
|
35
|
Abstract
ABSTRACT
Antibodies can impact pathogens in the presence or in the absence of effector cells or effector molecules such as complement, and experiments can often sort out with precision the mechanisms by which an antibody inhibits a pathogen
in vitro
. In addition,
in vivo
models, particularly those engineered to knock in or knock out effector cells or effector molecules, are excellent tools for understanding antibody functions. However, it is highly likely that multiple antibody functions occur simultaneously or sequentially in the presence of an infecting organism
in vivo
. The most critical incentive for measuring antibody functions is to provide a basis for vaccine development and for the development of therapeutic antibodies. In this respect, some functions, such as virus neutralization, serve to inhibit the acquisition of a pathogen or limit its pathogenesis. However, antibodies can also enhance replication or contribute to pathogenesis. This review emphasizes those antibody functions that are potentially beneficial to the host. In addition, this review will focus on the effects of antibodies on organisms themselves, rather than on the toxins the organisms may produce.
Collapse
|
36
|
Abstract
Systemic infection caused by Candida species is the fourth leading cause of nosocomial bloodstream infection in modern hospitals and carries high morbidity and mortality despite antifungal therapy. A recent surge of immunological studies in the mouse models of systemic candidiasis and the parallel discovery and phenotypic characterization of inherited genetic disorders in antifungal immune factors that are associated with enhanced susceptibility or resistance to the infection have provided new insights into the cellular and molecular basis of protective innate immune responses against Candida. In this review, the new developments in our understanding of how the mammalian immune system responds to systemic Candida challenge are synthesized and important future research directions are highlighted.
Collapse
Affiliation(s)
- Michail S Lionakis
- Fungal Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
37
|
Courtois A, Berthou C, Guézennec J, Boisset C, Bordron A. Exopolysaccharides isolated from hydrothermal vent bacteria can modulate the complement system. PLoS One 2014; 9:e94965. [PMID: 24736648 PMCID: PMC3988086 DOI: 10.1371/journal.pone.0094965] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 03/20/2014] [Indexed: 11/19/2022] Open
Abstract
The complement system is involved in the defence against bacterial infection, or in the elimination of tumour cells. However, disturbances in this system contributes to the pathogenesis of various inflammatory diseases. The efficiency of therapeutic anti-tumour antibodies is enhanced when the complement system is stimulated. In contrast, cancer cells are able to inhibit the complement system and thus proliferate. Some marine molecules are currently being developed as new drugs for use in humans. Among them, known exopolyssacharides (EPSs) generally originate from fungi, but few studies have been performed on bacterial EPSs and even fewer on EPSs extracted from deep-sea hydrothermal vent microbes. For use in humans, these high molecular weight EPSs must be depolymerised. Furthermore, the over-sulphation of EPSs can modify their biological activity. The aim of this study was to investigate the immunodulation of the complement system by either native or over-sulphated low molecular weight EPSs isolated from vent bacteria in order to find pro or anti-activators of complement.
Collapse
Affiliation(s)
- Anthony Courtois
- Biotechnology and Marine Molecules Laboratory, IFREMER, Brest, France
- Cellular Therapy and Immunobiology of Cancer Laboratory, University Hospital of Brest, Brest, France
| | - Christian Berthou
- Cellular Therapy and Immunobiology of Cancer Laboratory, University Hospital of Brest, Brest, France
| | - Jean Guézennec
- Biotechnology and Marine Molecules Laboratory, IFREMER, Brest, France
| | - Claire Boisset
- Biotechnology and Marine Molecules Laboratory, IFREMER, Brest, France
| | - Anne Bordron
- Cellular Therapy and Immunobiology of Cancer Laboratory, University Hospital of Brest, Brest, France
- * E-mail:
| |
Collapse
|
38
|
Hünniger K, Lehnert T, Bieber K, Martin R, Figge MT, Kurzai O. A virtual infection model quantifies innate effector mechanisms and Candida albicans immune escape in human blood. PLoS Comput Biol 2014; 10:e1003479. [PMID: 24586131 PMCID: PMC3930496 DOI: 10.1371/journal.pcbi.1003479] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 01/06/2014] [Indexed: 12/03/2022] Open
Abstract
Candida albicans bloodstream infection is increasingly frequent and can result in disseminated candidiasis associated with high mortality rates. To analyze the innate immune response against C. albicans, fungal cells were added to human whole-blood samples. After inoculation, C. albicans started to filament and predominantly associate with neutrophils, whereas only a minority of fungal cells became attached to monocytes. While many parameters of host-pathogen interaction were accessible to direct experimental quantification in the whole-blood infection assay, others were not. To overcome these limitations, we generated a virtual infection model that allowed detailed and quantitative predictions on the dynamics of host-pathogen interaction. Experimental time-resolved data were simulated using a state-based modeling approach combined with the Monte Carlo method of simulated annealing to obtain quantitative predictions on a priori unknown transition rates and to identify the main axis of antifungal immunity. Results clearly demonstrated a predominant role of neutrophils, mediated by phagocytosis and intracellular killing as well as the release of antifungal effector molecules upon activation, resulting in extracellular fungicidal activity. Both mechanisms together account for almost of C. albicans killing, clearly proving that beside being present in larger numbers than other leukocytes, neutrophils functionally dominate the immune response against C. albicans in human blood. A fraction of C. albicans cells escaped phagocytosis and remained extracellular and viable for up to four hours. This immune escape was independent of filamentation and fungal activity and not linked to exhaustion or inactivation of innate immune cells. The occurrence of C. albicans cells being resistant against phagocytosis may account for the high proportion of dissemination in C. albicans bloodstream infection. Taken together, iterative experiment–model–experiment cycles allowed quantitative analyses of the interplay between host and pathogen in a complex environment like human blood. Candida albicans is the most important fungal pathogen in nosocomial bloodstream infections. So far little is known about the interplay of different cellular and non-cellular immune mechanisms mediating the protective response against C. albicans in blood. The in vivo scenario of C. albicans infection can be mimicked by human whole-blood infection assays to analyze the innate immune response against this pathogen. These experiments reveal the time-evolution of certain mechanisms while leaving the values of other quantities in the dark. To shed light on quantities that are not experimentally accessible, we exploited the descriptive and predictive power of mathematical models to estimate these parameters. The combination of experiment and theory enabled us to identify and quantify the main course of the immune response against C. albicans in human blood. We quantified the central role of neutrophils in the defence against this fungal pathogen, both directly by phagocytosis and indirectly by secreting antimicrobial factors inducing extracellular killing. Other findings include the distribution of C. albicans cells in neutrophils and monocytes as well as the immune escape of C. albicans cells in the course of infection.
Collapse
Affiliation(s)
- Kerstin Hünniger
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology – Hans-Knöll-Institute (HKI), Jena, Germany
| | - Teresa Lehnert
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology – Hans-Knöll-Institute (HKI), Jena, Germany
- Friedrich Schiller University Jena, Jena, Germany
| | - Kristin Bieber
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology – Hans-Knöll-Institute (HKI), Jena, Germany
| | - Ronny Martin
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology – Hans-Knöll-Institute (HKI), Jena, Germany
| | - Marc Thilo Figge
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology – Hans-Knöll-Institute (HKI), Jena, Germany
- Friedrich Schiller University Jena, Jena, Germany
- * E-mail: (MTF); (OK)
| | - Oliver Kurzai
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology – Hans-Knöll-Institute (HKI), Jena, Germany
- * E-mail: (MTF); (OK)
| |
Collapse
|
39
|
Molecular basis for downregulation of C5a-mediated inflammation by IgG1 immune complexes in allergy and asthma. Curr Allergy Asthma Rep 2014; 13:596-606. [PMID: 24013944 DOI: 10.1007/s11882-013-0387-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Allergy and asthma are triggered primarily by the binding of allergen-specific immunoglobulin E (IgE)-allergen complexes to their receptors, recognition of the allergens by antigen-presenting cells, and allergen presentation to the T cells. These events lead to mucus secretions, runny nose, itchy eyes, sneezing, airway hyperresponsiveness, and nasal congestion. Complement 5a (C5a) has emerged as a central molecule that mediates these allergic reactions. Many allergens and allergen-specific IgG immune complexes (IgG-ICs) cause complement activation and C5a generation. C5a interaction with its receptor (C5aR) leads to the infiltration and activation of several immunologic cell types and the secretion of pathogenic inflammatory and proinflammatory mediators. However, IgG1-IC binding to the IgG inhibitory Fc gamma receptor (FcγRIIB) suppresses C5aR-mediated inflammatory signaling and, hence, may reduce the inflammatory immune responses through this FcγRIIB-mediated pathway. Reviews of the IgG1-IC interactions with C5a-mediated inflammatory immune responses suggest that IgG1-IC-C5a inhibitory therapy may reduce inflammation in allergic diseases.
Collapse
|
40
|
Luo S, Skerka C, Kurzai O, Zipfel PF. Complement and innate immune evasion strategies of the human pathogenic fungus Candida albicans. Mol Immunol 2013; 56:161-9. [DOI: 10.1016/j.molimm.2013.05.218] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 05/10/2013] [Indexed: 01/09/2023]
|
41
|
Schejbel L, Fadnes D, Permin H, Lappegård KT, Garred P, Mollnes TE. Primary complement C5 deficiencies – Molecular characterization and clinical review of two families. Immunobiology 2013; 218:1304-10. [DOI: 10.1016/j.imbio.2013.04.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 04/22/2013] [Accepted: 04/26/2013] [Indexed: 10/26/2022]
|
42
|
C3a modulates IL-1β secretion in human monocytes by regulating ATP efflux and subsequent NLRP3 inflammasome activation. Blood 2013; 122:3473-81. [PMID: 23878142 DOI: 10.1182/blood-2013-05-502229] [Citation(s) in RCA: 248] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Interleukin-1β (IL-1β) is a proinflammatory cytokine and a therapeutic target in several chronic autoimmune states. Monocytes and macrophages are the major sources of IL-1β. IL-1β production by these cells requires Toll-like receptor (TLR) and adenosine triphosphate (ATP)-mediated P2X purinoceptor 7 (P2X7) signals, which together activate the inflammasome. However, how TLR signals and ATP availability are regulated during monocyte activation is unclear and the involvement of another danger signal system has been proposed. Here, we demonstrate that both lipopolysaccharide (LPS) and the anaphylatoxin C3a are needed for IL-1β production in human macrophages and dendritic cells, while in monocytes, C3a enhanced the secretion of LPS-induced IL-1β. C3a and LPS-stimulated monocytes increased T helper 17 (Th17) cell induction in vitro, and human rejecting, but not nonrejecting, kidney transplant biopsies were characterized by local generation of C3a and monocyte and Th17 cell infiltration. Mechanistically, C3a drives IL-1β production in monocytes by controlling the release of intracellular ATP into the extracellular space via regulation of as-yet unidentified ATP-releasing channels in an extracellular signal-regulated kinase 1/2-dependent fashion. These data define a novel function for complement in inflammasome activation in monocytes and suggest that C3aR-mediated signaling is a vital component of the IL-1β-Th17 axis.
Collapse
|
43
|
Kolev M, Le Friec G, Kemper C. The role of complement in CD4+ T cell homeostasis and effector functions. Semin Immunol 2013; 25:12-9. [DOI: 10.1016/j.smim.2013.04.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 04/30/2013] [Indexed: 01/22/2023]
|
44
|
Comparison of two Candida mannan vaccines: The role of complement in protection against disseminated candidiasis. Arch Pharm Res 2012; 35:2021-7. [DOI: 10.1007/s12272-012-1120-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 11/05/2012] [Indexed: 10/27/2022]
|
45
|
Ramirez-Ortiz ZG, Means TK. The role of dendritic cells in the innate recognition of pathogenic fungi (A. fumigatus, C. neoformans and C. albicans). Virulence 2012; 3:635-46. [PMID: 23076328 PMCID: PMC3545945 DOI: 10.4161/viru.22295] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Dendritic cells (DCs) are the bridge between the innate and adaptive immune system. DCs are responsible for sensing and patrolling the environment, initiating a host response and instructing the proper adaptive immune response against pathogens. Recent advances in medical treatments have led to increased use of immunosuppressive drugs, leading to the emergence of fungal species that cause life-threatening infections in humans. Three of these opportunistic fungal pathogens: Aspergillus fumigatus, Candida albicans and Cryptococcus neoformans pose the biggest concern for the immune-compromised host. Here we will review the interactions between DCs and these fungal pathogens, the receptors expressed on DCs that mediate these responses and the signaling mechanisms that shape the adaptive host response.
Collapse
Affiliation(s)
- Zaida G Ramirez-Ortiz
- Center for Immunology and Inflammatory Diseases and Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | | |
Collapse
|
46
|
Zipfel PF, Skerka C. Complement, Candida, and cytokines: the role of C5a in host response to fungi. Eur J Immunol 2012; 42:822-5. [PMID: 22531909 DOI: 10.1002/eji.201242466] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Complement is the central host defense system that clears invading microbes and balances homeostasis. Pathogenic microbes such as Candida albicans have to breach this efficient and important immune defense layer in order to propagate within the host and to establish an infection. Knowing exactly how the activated complement cascade responds to and attacks microbial invaders is central to understanding the immune battle and the infection process. This also allows a better understanding of how Candida counteracts the individual steps of host innate immunity. Ultimately this knowledge will allow the design of appropriate therapeutic molecules. In this issue Cheng et al. [Eur. J. Immunol. 2012. 42: 993-1004] identify a new cellular effect of the activated human complement system in the defense against the fungal pathogen C. albicans. The authors show that the complement activation fragment C5a, which is formed in response to Candida infection, induces the cellular release of the inflammatory cytokines IL-6 and IL-1β.
Collapse
Affiliation(s)
- Peter F Zipfel
- Leibniz Institute for Natural Product Research and Infection Biology, Department of Infection Biology, Beutenbergstrasse, Jena, Germany.
| | | |
Collapse
|
47
|
Abstract
Candida albicans is both the most common fungal commensal microorganism in healthy individuals and the major fungal pathogen causing high mortality in at-risk populations, especially immunocompromised patients. In this review, we summarize the interplay between the host innate system and C. albicans, ranging from how the host recognizes, responds, and clears C. albicans infection to how C. albicans evades, dampens, and escapes from host innate immunity.
Collapse
|