1
|
Couturaud B, Doix B, Carretero-Iglesia L, Allard M, Pradervand S, Hebeisen M, Rufer N. Overall avidity declines in TCR repertoires during latent CMV but not EBV infection. Front Immunol 2023; 14:1293090. [PMID: 38053994 PMCID: PMC10694213 DOI: 10.3389/fimmu.2023.1293090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
Introduction The avidity of the T-cell receptor (TCR) for antigenic peptides presented by the MHC (pMHC) on cells is an essential parameter for efficient T cell-mediated immunity. Yet, whether the TCR-ligand avidity can drive the clonal evolution of virus antigen-specific CD8 T cells, and how this process is determined in latent Cytomegalovirus (CMV)- against Epstein-Barr virus (EBV)-mediated infection remains largely unknown. Methods To address these issues, we quantified monomeric TCR-pMHC dissociation rates on CMV- and EBV-specific individual TCRαβ clonotypes and polyclonal CD8 T cell populations in healthy donors over a follow-up time of 15-18 years. The parameters involved during the long-term persistence of virus-specific T cell clonotypes were further evaluated by gene expression profiling, phenotype and functional analyses. Results Within CMV/pp65-specific T cell repertoires, a progressive contraction of clonotypes with high TCR-pMHC avidity and low CD8 binding dependency was observed, leading to an overall avidity decline during long-term antigen exposure. We identified a unique transcriptional signature preferentially expressed by high-avidity CMV/pp65-specific T cell clonotypes, including the inhibitory receptor LILRB1. Interestingly, T cell clonotypes of high-avidity showed higher LILRB1 expression than the low-avidity ones and LILRB1 blockade moderately increased T cell proliferation. Similar findings were made for CD8 T cell repertoires specific for the CMV/IE-1 epitope. There was a gradual in vivo loss of high-avidity T cells with time for both CMV specificities, corresponding to virus-specific CD8 T cells expressing enhanced LILRB1 levels. In sharp contrast, the EBV/BMFL1-specific T cell clonal composition and distribution, once established, displayed an exceptional stability, unrelated to TCR-pMHC binding avidity or LILRB1 expression. Conclusions These findings reveal an overall long-term avidity decline of CMV- but not EBV-specific T cell clonal repertoires, highlighting the differing role played by TCR-ligand avidity over the course of these two latent herpesvirus infections. Our data further suggest that the inhibitor receptor LILRB1 potentially restricts the clonal expansion of high-avidity CMV-specific T cell clonotypes during latent infection. We propose that the mechanisms regulating the long-term outcome of CMV- and EBV-specific memory CD8 T cell clonotypes in humans are distinct.
Collapse
Affiliation(s)
- Barbara Couturaud
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| | - Bastien Doix
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| | - Laura Carretero-Iglesia
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| | - Mathilde Allard
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| | - Sylvain Pradervand
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
- Lausanne Genomic Technologies Facility (LGTF), University of Lausanne, Lausanne, Switzerland
| | - Michael Hebeisen
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| | - Nathalie Rufer
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
2
|
Britsch I, van Wijngaarden AP, Helfrich W. Applications of Anti-Cytomegalovirus T Cells for Cancer (Immuno)Therapy. Cancers (Basel) 2023; 15:3767. [PMID: 37568582 PMCID: PMC10416821 DOI: 10.3390/cancers15153767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Infection with cytomegalovirus (CMV) is highly prevalent in the general population and largely controlled by CD8pos T cells. Intriguingly, anti-CMV T cells accumulate over time to extraordinarily high numbers, are frequently present as tumor-resident 'bystander' T cells, and remain functional in cancer patients. Consequently, various strategies for redirecting anti-CMV CD8pos T cells to eliminate cancer cells are currently being developed. Here, we provide an overview of these strategies including immunogenic CMV peptide-loading onto endogenous HLA complexes on cancer cells and the use of tumor-directed fusion proteins containing a preassembled CMV peptide/HLA-I complex. Additionally, we discuss conveying the advantageous characteristics of anti-CMV T cells in adoptive cell therapy. Utilization of anti-CMV CD8pos T cells to generate CAR T cells promotes their in vivo persistence and expansion due to appropriate co-stimulation through the endogenous (CMV-)TCR signaling complex. Designing TCR-engineered T cells is more challenging, as the artificial and endogenous TCR compete for expression. Moreover, the use of expanded/reactivated anti-CMV T cells to target CMV peptide-expressing glioblastomas is discussed. This review highlights the most important findings and compares the benefits, disadvantages, and challenges of each strategy. Finally, we discuss how anti-CMV T cell therapies can be further improved to enhance treatment efficacy.
Collapse
Affiliation(s)
| | | | - Wijnand Helfrich
- Department of Surgery, Translational Surgical Oncology, University of Groningen, UMC Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (I.B.)
| |
Collapse
|
3
|
Zhang S, Springer LE, Rao HZ, Espinosa Trethewy RG, Bishop LM, Hancock MH, Grey F, Snyder CM. Hematopoietic cell-mediated dissemination of murine cytomegalovirus is regulated by NK cells and immune evasion. PLoS Pathog 2021; 17:e1009255. [PMID: 33508041 PMCID: PMC7872266 DOI: 10.1371/journal.ppat.1009255] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/09/2021] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
Cytomegalovirus (CMV) causes clinically important diseases in immune compromised and immune immature individuals. Based largely on work in the mouse model of murine (M)CMV, there is a consensus that myeloid cells are important for disseminating CMV from the site of infection. In theory, such dissemination should expose CMV to cell-mediated immunity and thus necessitate evasion of T cells and NK cells. However, this hypothesis remains untested. We constructed a recombinant MCMV encoding target sites for the hematopoietic specific miRNA miR-142-3p in the essential viral gene IE3. This virus disseminated poorly to the salivary gland following intranasal or footpad infections but not following intraperitoneal infection in C57BL/6 mice, demonstrating that dissemination by hematopoietic cells is essential for specific routes of infection. Remarkably, depletion of NK cells or T cells restored dissemination of this virus in C57BL/6 mice after intranasal infection, while dissemination occurred normally in BALB/c mice, which lack strong NK cell control of MCMV. These data show that cell-mediated immunity is responsible for restricting MCMV to hematopoietic cell-mediated dissemination. Infected hematopoietic cells avoided cell-mediated immunity via three immune evasion genes that modulate class I MHC and NKG2D ligands (m04, m06 and m152). MCMV lacking these 3 genes spread poorly to the salivary gland unless NK cells were depleted, but also failed to replicate persistently in either the nasal mucosa or salivary gland unless CD8+ T cells were depleted. Surprisingly, CD8+ T cells primed after intranasal infection required CD4+ T cell help to expand and become functional. Together, our data suggest that MCMV can use both hematopoietic cell-dependent and -independent means of dissemination after intranasal infection and that cell mediated immune responses restrict dissemination to infected hematopoietic cells, which are protected from NK cells during dissemination by viral immune evasion. In contrast, viral replication within mucosal tissues depends on evasion of T cells. Cytomegalovirus (CMV) is a common cause of disease in immune compromised individuals as well as a common cause of congenital infections leading to disease in newborns. The virus is thought to enter primarily via mucosal barrier tissues, such as the oral and nasal mucosa. However, it is not clear how the virus escapes these barrier tissues to reach distant sites. In this study, we used a mouse model of CMV infection. Our data illustrate a complex balance between the immune system and viral infection of “myeloid cells”, which are most commonly thought to carry the virus around the body after infection. In particular, our data suggest that robust immune responses at the site of infection force the virus to rely on myeloid cells to escape the site of infection. Moreover, viral genes designed to evade these immune responses were needed to protect the virus during and after its spread to distant sites. Together, this work sheds light on the mechanisms of immune control and viral survival during CMV infection of mucosal tissues and spread to distant sites of the body.
Collapse
Affiliation(s)
- Shunchuan Zhang
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Lauren E. Springer
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Han-Zhi Rao
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Renee G. Espinosa Trethewy
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Lindsey M. Bishop
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Meaghan H. Hancock
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Finn Grey
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
- * E-mail: (FG); (CMS)
| | - Christopher M. Snyder
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- * E-mail: (FG); (CMS)
| |
Collapse
|
4
|
Mondino A, Manzo T. To Remember or to Forget: The Role of Good and Bad Memories in Adoptive T Cell Therapy for Tumors. Front Immunol 2020; 11:1915. [PMID: 32973794 PMCID: PMC7481451 DOI: 10.3389/fimmu.2020.01915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 07/16/2020] [Indexed: 12/17/2022] Open
Abstract
The generation of immunological memory is a hallmark of adaptive immunity by which the immune system "remembers" a previous encounter with an antigen expressed by pathogens, tumors, or normal tissues; and, upon secondary encounters, mounts faster and more effective recall responses. The establishment of T cell memory is influenced by both cell-intrinsic and cell-extrinsic factors, including genetic, epigenetic and environmental triggers. Our current knowledge of the mechanisms involved in memory T cell differentiation has instructed new opportunities to engineer T cells with enhanced anti-tumor activity. The development of adoptive T cell therapy has emerged as a powerful approach to cure a subset of patients with advanced cancers. Efficacy of this approach often requires long-term persistence of transferred T cell products, which can vary according to their origin and manufacturing conditions. Host preconditioning and post-transfer supporting strategies have shown to promote their engraftment and survival by limiting the competition with a hostile tumor microenvironment and between pre-existing immune cell subsets. Although in the general view pre-existing memory can confer a selective advantage to adoptive T cell therapy, here we propose that also "bad memories"-in the form of antigen-experienced T cell subsets-co-evolve with consequences on newly transferred lymphocytes. In this review, we will first provide an overview of selected features of memory T cell subsets and, then, discuss their putative implications for adoptive T cell therapy.
Collapse
Affiliation(s)
- Anna Mondino
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Teresa Manzo
- Department of Experimental Oncology, IRCCS European Institute of Oncology, Milan, Italy
| |
Collapse
|
5
|
Smith CJ, Venturi V, Quigley MF, Turula H, Gostick E, Ladell K, Hill BJ, Himelfarb D, Quinn KM, Greenaway HY, Dang THY, Seder RA, Douek DC, Hill AB, Davenport MP, Price DA, Snyder CM. Stochastic Expansions Maintain the Clonal Stability of CD8 + T Cell Populations Undergoing Memory Inflation Driven by Murine Cytomegalovirus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:112-121. [PMID: 31818981 PMCID: PMC6920548 DOI: 10.4049/jimmunol.1900455] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 10/16/2019] [Indexed: 11/19/2022]
Abstract
CMV is an obligate and persistent intracellular pathogen that continually drives the production of highly differentiated virus-specific CD8+ T cells in an Ag-dependent manner, a phenomenon known as memory inflation. Extensive proliferation is required to generate and maintain inflationary CD8+ T cell populations, which are counterintuitively short-lived and typically exposed to limited amounts of Ag during the chronic phase of infection. An apparent discrepancy therefore exists between the magnitude of expansion and the requirement for ongoing immunogenic stimulation. To address this issue, we explored the clonal dynamics of memory inflation. First, we tracked congenically marked OT-I cell populations in recipient mice infected with murine CMV (MCMV) expressing the cognate Ag OVA. Irrespective of numerical dominance, stochastic expansions were observed in each population, such that dominant and subdominant OT-I cells were maintained at stable frequencies over time. Second, we characterized endogenous CD8+ T cell populations specific for two classic inflationary epitopes, M38 and IE3. Multiple clonotypes simultaneously underwent Ag-driven proliferation during latent infection with MCMV. In addition, the corresponding CD8+ T cell repertoires were stable over time and dominated by persistent clonotypes, many of which also occurred in more than one mouse. Collectively, these data suggest that stochastic encounters with Ag occur frequently enough to maintain oligoclonal populations of inflationary CD8+ T cells, despite intrinsic constraints on epitope display at individual sites of infection with MCMV.
Collapse
Affiliation(s)
- Corinne J Smith
- Department of Microbiology and Immunology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107
| | - Vanessa Venturi
- Infection Analytics Program, Kirby Institute for Infection and Immunity, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Maire F Quigley
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Holly Turula
- Department of Microbiology and Immunology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107
| | - Emma Gostick
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff CF14 4XN, United Kingdom
| | - Kristin Ladell
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff CF14 4XN, United Kingdom
| | - Brenna J Hill
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Danielle Himelfarb
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Kylie M Quinn
- Cellular Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Hui Yee Greenaway
- Infection Analytics Program, Kirby Institute for Infection and Immunity, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Thurston H Y Dang
- Infection Analytics Program, Kirby Institute for Infection and Immunity, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Robert A Seder
- Cellular Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Daniel C Douek
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Ann B Hill
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239
| | - Miles P Davenport
- Infection Analytics Program, Kirby Institute for Infection and Immunity, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - David A Price
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892;
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff CF14 4XN, United Kingdom
| | - Christopher M Snyder
- Department of Microbiology and Immunology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107;
| |
Collapse
|
6
|
Baumann NS, Welten SPM, Torti N, Pallmer K, Borsa M, Barnstorf I, Oduro JD, Cicin-Sain L, Oxenius A. Early primed KLRG1- CMV-specific T cells determine the size of the inflationary T cell pool. PLoS Pathog 2019; 15:e1007785. [PMID: 31083700 PMCID: PMC6532941 DOI: 10.1371/journal.ppat.1007785] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 05/23/2019] [Accepted: 04/23/2019] [Indexed: 11/18/2022] Open
Abstract
Memory T cell inflation is a process in which a subset of cytomegalovirus (CMV) specific CD8 T cells continuously expands mainly during latent infection and establishes a large and stable population of effector memory cells in peripheral tissues. Here we set out to identify in vivo parameters that promote and limit CD8 T cell inflation in the context of MCMV infection. We found that the inflationary T cell pool comprised mainly high avidity CD8 T cells, outcompeting lower avidity CD8 T cells. Furthermore, the size of the inflationary T cell pool was not restricted by the availability of specific tissue niches, but it was directly related to the number of virus-specific CD8 T cells that were activated during priming. In particular, the amount of early-primed KLRG1- cells and the number of inflationary cells with a central memory phenotype were a critical determinant for the overall magnitude of the inflationary T cell pool. Inflationary memory CD8 T cells provided protection from a Vaccinia virus challenge and this protection directly correlated with the size of the inflationary memory T cell pool in peripheral tissues. These results highlight the remarkable protective potential of inflationary CD8 T cells that can be harnessed for CMV-based T cell vaccine approaches. Cytomegalovirus induces a lifelong infection in the majority of the world's population, due to the ability of the virus to establish latency. Upon CMV infection, large numbers of effector memory T cells are induced in peripheral tissues, a process that is termed memory inflation. As inflationary T cells are highly functional, CMV-based vaccines have gained substantial interest for vaccination purposes. Here we examine factors that promote and limit memory T cell inflation. We found that there were no constraints on the availability of specific niches for inflationary T cells in tissues and that high avidity T cells predominately contribute to the inflationary T cell population in the beginning of infection. Moreover, the number of early primed KLRG1- CMV-specific T cells in the acute phase of infection set the limit for memory T cell inflation. Furthermore, we show that inflationary T cells provided protection from a pathogenic challenge in peripheral tissues such as the ovaries. Thus, inflationary T cells comprise a population of T cells that can protect peripheral tissues from pathogenic infections and their efficacy can be regulated by balancing the number of KLRG1- CMV-specific cells during priming.
Collapse
Affiliation(s)
- Nicolas S Baumann
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, Zürich, Switzerland
| | - Suzanne P M Welten
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, Zürich, Switzerland
| | - Nicole Torti
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, Zürich, Switzerland
| | - Katharina Pallmer
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, Zürich, Switzerland
| | - Mariana Borsa
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, Zürich, Switzerland
| | - Isabel Barnstorf
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, Zürich, Switzerland
| | - Jennifer D Oduro
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Luka Cicin-Sain
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Annette Oxenius
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, Zürich, Switzerland
| |
Collapse
|
7
|
Lérias JR, Paraschoudi G, Silva I, Martins J, de Sousa E, Condeço C, Figueiredo N, Carvalho C, Dodoo E, Jäger E, Rao M, Maeurer M. Clinically Relevant Immune Responses against Cytomegalovirus: Implications for Precision Medicine. Int J Mol Sci 2019; 20:ijms20081986. [PMID: 31018546 PMCID: PMC6514820 DOI: 10.3390/ijms20081986] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 12/12/2022] Open
Abstract
Immune responses to human cytomegalovirus (CMV) can be used to assess immune fitness in an individual. Further to its clinical significance in posttransplantation settings, emerging clinical and translational studies provide examples of immune correlates of protection pertaining to anti-CMV immune responses in the context of cancer or infectious diseases, e.g., tuberculosis. In this viewpoint, we provide a brief overview about CMV-directed immune reactivity and immune fitness in a clinical context and incorporate some of our own findings obtained from peripheral blood or tumour-infiltrating lymphocytes (TIL) from patients with advanced cancer. Observations in patients with solid cancers whose lesions contain both CMV and tumour antigen-specific T-cell subsets are highlighted, due to a possible CMV-associated “bystander” effect in amplifying local inflammation and subsequent tumour rejection. The role of tumour-associated antibodies recognising diverse CMV-derived epitopes is also discussed in light of anti-cancer immune responses. We discuss here the use of anti-CMV immune responses as a theranostic tool—combining immunodiagnostics with a personalised therapeutic potential—to improve treatment outcomes in oncological indications.
Collapse
Affiliation(s)
- Joana R Lérias
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Av. Brasília, 1400-038 Lisbon, Portugal.
| | - Georgia Paraschoudi
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Av. Brasília, 1400-038 Lisbon, Portugal.
| | - Inês Silva
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Av. Brasília, 1400-038 Lisbon, Portugal.
| | - João Martins
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Av. Brasília, 1400-038 Lisbon, Portugal.
| | - Eric de Sousa
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Av. Brasília, 1400-038 Lisbon, Portugal.
| | - Carolina Condeço
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Av. Brasília, 1400-038 Lisbon, Portugal.
| | - Nuno Figueiredo
- Digestive Unit, Champalimaud Centre for the Unknown, Av. Brasília, 1400-038 Lisbon, Portugal.
| | - Carlos Carvalho
- Digestive Unit, Champalimaud Centre for the Unknown, Av. Brasília, 1400-038 Lisbon, Portugal.
| | - Ernest Dodoo
- Department of Oncology and Haematology, Krankenhaus Nordwest, Steinbacher Hohl 2-26, 60488 Frankfurt am Main, Germany.
| | - Elke Jäger
- Department of Oncology and Haematology, Krankenhaus Nordwest, Steinbacher Hohl 2-26, 60488 Frankfurt am Main, Germany.
| | - Martin Rao
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Av. Brasília, 1400-038 Lisbon, Portugal.
| | - Markus Maeurer
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Av. Brasília, 1400-038 Lisbon, Portugal.
- Department of Oncology and Haematology, Krankenhaus Nordwest, Steinbacher Hohl 2-26, 60488 Frankfurt am Main, Germany.
| |
Collapse
|
8
|
Generation, maintenance and tissue distribution of T cell responses to human cytomegalovirus in lytic and latent infection. Med Microbiol Immunol 2019; 208:375-389. [PMID: 30895366 PMCID: PMC6647459 DOI: 10.1007/s00430-019-00598-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 03/12/2019] [Indexed: 12/13/2022]
Abstract
Understanding how the T cell memory response directed towards human cytomegalovirus (HCMV) develops and changes over time while the virus persists is important. Whilst HCMV primary infection and periodic reactivation is well controlled by T cell responses in healthy people, when the immune system is compromised such as post-transplantation, during pregnancy, or underdeveloped such as in new-born infants and children, CMV disease can be a significant problem. In older people, HCMV infection is associated with increased risk of mortality and despite overt disease rarely being seen there are increases in HCMV-DNA in urine of older people suggesting that there is a change in the efficacy of the T cell response following lifelong infection. Therefore, understanding whether phenomenon such as “memory inflation” of the immune response is occurring in humans and if this is detrimental to the overall health of individuals would enable the development of appropriate treatment strategies for the future. In this review, we present the evidence available from human studies regarding the development and maintenance of memory CD8 + and CD4 + T cell responses to HCMV. We conclude that there is only limited evidence supportive of “memory inflation” occurring in humans and that future studies need to investigate immune cells from a broad range of human tissue sites to fully understand the nature of HCMV T cell memory responses to lytic and latent infection.
Collapse
|
9
|
Welten SPM, Baumann NS, Oxenius A. Fuel and brake of memory T cell inflation. Med Microbiol Immunol 2019; 208:329-338. [PMID: 30852648 DOI: 10.1007/s00430-019-00587-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 02/21/2019] [Indexed: 11/24/2022]
Abstract
Memory T cell inflation is a process in which a large number of effector memory T cells accumulates in peripheral tissues. This phenomenon is observed upon certain low level persistent virus infections, but it is most commonly described upon infection with the β-herpesvirus Cytomegalovirus. Due to the induction of this large pool of functional effector CD8 T cells in peripheral tissues, the interest in using CMV-based vaccine vectors for vaccination purposes is rising. However, the exact mechanisms of memory T cell inflation are not yet fully understood. It is clear that repetitive exposure to antigen is a key determinant for memory inflation, and therefore the viral inoculum dose and the subsequent number of viral reactivation events strongly impact on the magnitude of the inflationary T cell pool. In addition, the number of CMV-specific CD8 T cells that is able to sense these reactivation events affects the size of the inflationary T cell pool. In the following, we will discuss factors that either promote or limit T cell inflation from both the virus and host perspective. These factors mostly operate by influencing the amount of available antigen or by affecting the T cell pool that is able to respond to the antigen. Furthermore, we will discuss the recent use of CMV-based vaccines in pre-clinical experimental settings, where these vectors have shown promising results by inducing prolonged effector memory T cell responses to foreign-introduced epitopes and thereby provided protection from subsequent virus or tumour challenges.
Collapse
Affiliation(s)
- Suzanne P M Welten
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Nicolas S Baumann
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Annette Oxenius
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland.
| |
Collapse
|
10
|
Zhang S, Caldeira-Dantas S, Smith CJ, Snyder CM. Persistent viral replication and the development of T-cell responses after intranasal infection by MCMV. Med Microbiol Immunol 2019; 208:457-468. [PMID: 30848361 DOI: 10.1007/s00430-019-00589-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/01/2019] [Indexed: 12/15/2022]
Abstract
Natural transmission of cytomegalovirus (CMV) has been difficult to observe. However, recent work using the mouse model of murine (M)CMV demonstrated that MCMV initially infects the nasal mucosa after transmission from mothers to pups. We found that intranasal (i.n.) inoculation of C57BL/6J mice resulted in reliable recovery of replicating virus from the nasal mucosa as assessed by plaque assay. After i.n. inoculation, CD8+ T-cell priming occurred in the mandibular, deep-cervical, and mediastinal lymph nodes within 3 days of infection. Although i.n. infection induced "memory inflation" of T cells specific for the M38316-323 epitope, there were no detectable CD8+ T-cell responses against the late-appearing IE3416-423 epitope, which contrasts with intraperitoneal (i.p.) infection. MCMV-specific T cells migrated into the nasal mucosa where they developed a tissue-resident memory (TRM) phenotype and this could occur independently of local virus infection or antigen. Strikingly however, virus replication was poorly controlled in the nasal mucosa and MCMV was detectable by plaque assay for at least 4 months after primary infection, making the nasal mucosa a second site for MCMV persistence. Unlike in the salivary glands, the persistence of MCMV in the nasal mucosa was not modulated by IL-10. Taken together, our data characterize the development of local and systemic T-cell responses after intranasal infection by MCMV and define the nasal mucosa, a natural site of viral entry, as a novel site of viral persistence.
Collapse
Affiliation(s)
- Shunchuan Zhang
- Department of Microbiology and Immunology, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College, Thomas Jefferson University, 19107, Philadelphia, PA, USA
| | - Sofia Caldeira-Dantas
- Department of Microbiology and Immunology, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College, Thomas Jefferson University, 19107, Philadelphia, PA, USA.,Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.,PT Government Associate Laboratory, ICVS/3B's, Braga/Guimarães, Portugal
| | - Corinne J Smith
- Department of Microbiology and Immunology, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College, Thomas Jefferson University, 19107, Philadelphia, PA, USA
| | - Christopher M Snyder
- Department of Microbiology and Immunology, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College, Thomas Jefferson University, 19107, Philadelphia, PA, USA.
| |
Collapse
|
11
|
Schober K, Buchholz VR, Busch DH. TCR repertoire evolution during maintenance of CMV-specific T-cell populations. Immunol Rev 2019; 283:113-128. [PMID: 29664573 DOI: 10.1111/imr.12654] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
During infections and cancer, the composition of the T-cell receptor (TCR) repertoire of antigen-specific CD8+ T cells changes over time. TCR avidity is thought to be a major driver of this process, thereby interacting with several additional regulators of T-cell responses to form a composite immune response architecture. Infections with latent viruses, such as cytomegalovirus (CMV), can lead to large T-cell responses characterized by an oligoclonal TCR repertoire. Here, we review the current status of experimental studies and theoretical models of TCR repertoire evolution during CMV infection. We will particularly discuss the degree to which this process may be determined through structural TCR avidity. As engineered TCR-redirected T cells have moved into the spotlight for providing more effective immunotherapies, it is essential to understand how the key features of a given TCR influence T-cell expansion and maintenance in settings of infection or malignancy. Deeper insights into these mechanisms will improve our basic understanding of T-cell immunology and help to identify optimal TCRs for immunotherapy.
Collapse
Affiliation(s)
- Kilian Schober
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Veit R Buchholz
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany.,Focus Group 'Clinical Cell Processing and Purification', Institute for Advanced Study, TUM, Munich, Germany.,National Centre for Infection Research (DZIF), Munich, Germany
| |
Collapse
|
12
|
Palermo B, Franzese O, Donna CD, Panetta M, Quintarelli C, Sperduti I, Gualtieri N, Foddai ML, Proietti E, Ferraresi V, Ciliberto G, Nisticò P. Antigen-specificity and DTIC before peptide-vaccination differently shape immune-checkpoint expression pattern, anti-tumor functionality and TCR repertoire in melanoma patients. Oncoimmunology 2018; 7:e1465163. [PMID: 30524882 PMCID: PMC6279427 DOI: 10.1080/2162402x.2018.1465163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/09/2018] [Accepted: 04/09/2018] [Indexed: 10/31/2022] Open
Abstract
We have recently described that DNA-damage inducing drug DTIC, administered before peptide (Melan-A and gp100)-vaccination, improves anti-tumor CD8+ Melan-A-specific T-cell functionality, enlarges the Melan-A+ TCR repertoire and impacts the overall survival of melanoma patients. To identify whether the two Ags employed in the vaccination differently shape the anti-tumor response, herein we have carried out a detailed analysis of phenotype, anti-tumor functionality and TCR repertoire in treatment-driven gp100-specific CD8+ T cells, in the same patients previously analyzed for Melan-A. We found that T-cell clones isolated from patients treated with vaccination alone possessed an Early/intermediate differentiated phenotype, whereas T cells isolated after DTIC plus vaccination were late-differentiated. Sequencing analysis of the TCRBV chains of 29 treatment-driven gp100-specific CD8+ T-cell clones revealed an oligoclonal TCR repertoire irrespective of the treatment schedule. The high anti-tumor activity observed in T cells isolated after chemo-immunotherapy was associated with low PD-1 expression. Differently, T-cell clones isolated after peptide-vaccination alone expressed a high level of PD-1, along with LAG-3 and TIM-3, and were neither tumor-reactive nor polyfunctional. Blockade of PD-1 reversed gp100-specific CD8+ T-cell dysfunctionality, confirming the direct role of this co-inhibitory molecule in suppressing anti-tumor activity, differently from what we have previously observed for Melan-A+CD8+ T cells, expressing PD-1 but highly functional. These findings indicate that the functional advantage induced by combined chemo-immunotherapy is determined by the tumor antigen nature, T-cell immune-checkpoints phenotype, TCR repertoire diversity and anti-tumor T-cell quality and highlights the importance of integrating these parameters to develop effective immunotherapeutic strategies.
Collapse
Affiliation(s)
- Belinda Palermo
- Unit of Tumor Immunology and Immunotherapy, Department of Research, Advanced Diagnostics and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Ornella Franzese
- Department of Systems Medicine, School of Medicine, University of Tor Vergata, Rome, Italy
| | - Cosmo Di Donna
- Unit of Tumor Immunology and Immunotherapy, Department of Research, Advanced Diagnostics and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Mariangela Panetta
- Unit of Tumor Immunology and Immunotherapy, Department of Research, Advanced Diagnostics and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Concetta Quintarelli
- Department of Pediatric Haematology and Oncology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | | | - Novella Gualtieri
- Unit of Tumor Immunology and Immunotherapy, Department of Research, Advanced Diagnostics and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | | | - Enrico Proietti
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome
| | | | | | - Paola Nisticò
- Unit of Tumor Immunology and Immunotherapy, Department of Research, Advanced Diagnostics and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
13
|
Morabito KM, Ruckwardt TJ, Bar-Haim E, Nair D, Moin SM, Redwood AJ, Price DA, Graham BS. Memory Inflation Drives Tissue-Resident Memory CD8 + T Cell Maintenance in the Lung After Intranasal Vaccination With Murine Cytomegalovirus. Front Immunol 2018; 9:1861. [PMID: 30154789 PMCID: PMC6102355 DOI: 10.3389/fimmu.2018.01861] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/27/2018] [Indexed: 12/30/2022] Open
Abstract
Tissue-resident memory T (TRM) cells provide first-line defense against invading pathogens encountered at barrier sites. In the lungs, TRM cells protect against respiratory infections, but wane more quickly than TRM cells in other tissues. This lack of a sustained TRM population in the lung parenchyma explains, at least in part, why infections with some pathogens, such as influenza virus and respiratory syncytial virus (RSV), recur throughout life. Intranasal (IN) vaccination with a murine cytomegalovirus (MCMV) vector expressing the M protein of RSV (MCMV-M) has been shown to elicit robust populations of CD8+ TRM cells that accumulate over time and mediate early viral clearance. To extend this finding, we compared the inflationary CD8+ T cell population elicited by MCMV-M vaccination with a conventional CD8+ T cell population elicited by an MCMV vector expressing the M2 protein of RSV (MCMV-M2). Vaccination with MCMV-M2 induced a population of M2-specific CD8+ TRM cells that waned rapidly, akin to the M2-specific CD8+ TRM cell population elicited by infection with RSV. In contrast to the natural immunodominance profile, however, coadministration of MCMV-M and MCMV-M2 did not suppress the M-specific CD8+ T cell response, suggesting that progressive expansion was driven by continuous antigen presentation, irrespective of the competitive or regulatory effects of M2-specific CD8+ T cells. Moreover, effective viral clearance mediated by M-specific CD8+ TRM cells was not affected by the coinduction of M2-specific CD8+ T cells. These data show that memory inflation is required for the maintenance of CD8+ TRM cells in the lungs after IN vaccination with MCMV.
Collapse
Affiliation(s)
- Kaitlyn M Morabito
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States.,Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, United States
| | - Tracy J Ruckwardt
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Erez Bar-Haim
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States.,Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Deepika Nair
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Syed M Moin
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Alec J Redwood
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA, Australia
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom.,Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Barney S Graham
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
14
|
Grenier JM, Yeung ST, Qiu Z, Jellison ER, Khanna KM. Combining Adoptive Cell Therapy with Cytomegalovirus-Based Vaccine Is Protective against Solid Skin Tumors. Front Immunol 2018; 8:1993. [PMID: 29387061 PMCID: PMC5775971 DOI: 10.3389/fimmu.2017.01993] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 12/22/2017] [Indexed: 12/16/2022] Open
Abstract
Despite many years of research, cancer vaccines have largely been ineffective in the treatment of established cancers. Many barriers to immune-mediated destruction of malignant cells exist, and these likely limit the efficacy of cancer vaccines. In this study, we sought to enhance the efficacy of a cytomegalovirus (CMV)-based vaccine targeting melanoma by combining vaccination with other forms of immunotherapy. Adoptive cell therapy in humans and in animal models has been shown to be effective for tumor regression. Thus, in this study, we assessed whether CMV-based vaccines in combination with adoptively transferred antitumor T cells could provide greater antitumor protection than either therapy alone. Our results show that adoptive cell therapy greatly enhanced the antitumor effects of CMV-based vaccines targeting the foreign model antigen, OVA, or the melanoma differentiation antigen, gp100. Combination adoptive cell therapy and vaccination induced the upregulation of the inhibitory ligands, PD-L1, and Qa-1b, on B16 tumor cells. This expression paralleled the infiltration of tumors by vaccine-stimulated T cells which also expressed high levels of the receptors PD-1 and NKG2A/C/E, suggesting a potential mechanism of tumor immune evasion. Surprisingly, therapeutic blockade of the PD-1/PD-L1 and NKG2A/Qa-1b axes did not delay tumor growth following vaccination, suggesting that the presence of inhibitory ligands within malignant tissue may not be an effective biomarker for successful combination therapy with CMV-based vaccines. Overall, our studies show that therapeutic CMV-based vaccines in combination with adoptive T cell transfer alone are effective for tumor rejection.
Collapse
Affiliation(s)
- Jeremy M Grenier
- Department of Immunology, University of Connecticut Health, Farmington, CT, United States
| | - Stephen T Yeung
- Department of Immunology, University of Connecticut Health, Farmington, CT, United States
| | - Zhijuan Qiu
- Department of Molecular Genetics and Microbiology, Center for Infectious Diseases, Stony Brook University, Stony Brook, New York, NY, United States
| | - Evan R Jellison
- Department of Immunology, University of Connecticut Health, Farmington, CT, United States
| | - Kamal M Khanna
- Department of Immunology, University of Connecticut Health, Farmington, CT, United States
| |
Collapse
|
15
|
Caldeira-Dantas S, Furmanak T, Smith C, Quinn M, Teos LY, Ertel A, Kurup D, Tandon M, Alevizos I, Snyder CM. The Chemokine Receptor CXCR3 Promotes CD8 + T Cell Accumulation in Uninfected Salivary Glands but Is Not Necessary after Murine Cytomegalovirus Infection. THE JOURNAL OF IMMUNOLOGY 2017; 200:1133-1145. [PMID: 29288198 DOI: 10.4049/jimmunol.1701272] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/17/2017] [Indexed: 01/24/2023]
Abstract
Recent work indicates that salivary glands are able to constitutively recruit CD8+ T cells and retain them as tissue-resident memory T cells, independently of local infection, inflammation, or Ag. To understand the mechanisms supporting T cell recruitment to the salivary gland, we compared T cell migration to the salivary gland in mice that were infected or not with murine CMV (MCMV), a herpesvirus that infects the salivary gland and promotes the accumulation of salivary gland tissue-resident memory T cells. We found that acute MCMV infection increased rapid T cell recruitment to the salivary gland but that equal numbers of activated CD8+ T cells eventually accumulated in infected and uninfected glands. T cell recruitment to uninfected salivary glands depended on chemokines and the integrin α4 Several chemokines were expressed in the salivary glands of infected and uninfected mice, and many of these could promote the migration of MCMV-specific T cells in vitro. MCMV infection increased the expression of chemokines that interact with the receptors CXCR3 and CCR5, but neither receptor was needed for T cell recruitment to the salivary gland during MCMV infection. Unexpectedly, however, the chemokine receptor CXCR3 was critical for T cell accumulation in uninfected salivary glands. Together, these data suggest that CXCR3 and the integrin α4 mediate T cell recruitment to uninfected salivary glands but that redundant mechanisms mediate T cell recruitment after MCMV infection.
Collapse
Affiliation(s)
- Sofia Caldeira-Dantas
- Department of Immunology and Microbiology, Thomas Jefferson University, Philadelphia, PA 19107.,Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal.,Life and Health Sciences Research Institute (ICVS)/3B's Associate Laboratory, 4710-057 Braga, Portugal
| | - Thomas Furmanak
- Department of Immunology and Microbiology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Corinne Smith
- Department of Immunology and Microbiology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Michael Quinn
- Department of Immunology and Microbiology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Leyla Y Teos
- Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892; and
| | - Adam Ertel
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107
| | - Drishya Kurup
- Department of Immunology and Microbiology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Mayank Tandon
- Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892; and
| | - Ilias Alevizos
- Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892; and
| | - Christopher M Snyder
- Department of Immunology and Microbiology, Thomas Jefferson University, Philadelphia, PA 19107;
| |
Collapse
|
16
|
Saunderson SC, McLellan AD. Role of Lymphocyte Subsets in the Immune Response to Primary B Cell-Derived Exosomes. THE JOURNAL OF IMMUNOLOGY 2017; 199:2225-2235. [PMID: 28842467 DOI: 10.4049/jimmunol.1601537] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 07/26/2017] [Indexed: 12/15/2022]
Abstract
Exosomes are lipid nanovesicles released after fusion of the endosomal limiting membrane with the plasma membrane. In this study, we investigated the requirement for CD4 T cells, B cells, and NK cells to provide help for CD8 T cell-mediated response to B cell-derived exosomes. CTL responses to Ag-loaded exosomes were dependent on host MHC class I, with a critical role for splenic langerin+ CD8α+ dendritic cells (DCs) in exosomal Ag cross-presentation. In addition, there was an absolute dependence on the presence of CD4 T cells, CD8 T cells, and NK cells, where the loss of any one of these subsets led to a complete loss of CTL response. Interestingly, NK cell depletion experiments demonstrated a critical cutoff point for depletion efficacy, with low-level residual NK cells providing sufficient help to allow optimal CD8 T cell proliferative responses to exosomal protein. Despite the potential role for B cells in the response to B cell-derived exosomal proteins, B cell depletion did not alter the exosome-induced CTL response. Similarly, a possible role for the BCR or circulating Ab in mediating CTL responses to B cell-derived exosomes was ruled out using DHLMP2A mice, which lack secreted and membrane-bound Ab, yet harbor marginal zone and follicular B cells. In contrast, CTL responses to DC-derived exosomes were significantly inhibited within Ab-deficient DHLMP2A mice compared with wild-type mice. However, this response was not restored upon serum transfer, implicating a role for the BCR, but not circulating Ab, in DC-derived exosome responses.
Collapse
Affiliation(s)
- Sarah C Saunderson
- Department of Microbiology and Immunology, University of Otago, Dunedin 9010, Otago, New Zealand
| | - Alexander D McLellan
- Department of Microbiology and Immunology, University of Otago, Dunedin 9010, Otago, New Zealand
| |
Collapse
|
17
|
Erkes DA, Wilski NA, Snyder CM. Intratumoral infection by CMV may change the tumor environment by directly interacting with tumor-associated macrophages to promote cancer immunity. Hum Vaccin Immunother 2017; 13:1778-1785. [PMID: 28604162 DOI: 10.1080/21645515.2017.1331795] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cytomegalovirus (CMV) is a herpesvirus that induces an extremely robust and sustained immune response. For this reason, CMV has been proposed as a vaccine vector to promote immunity to both pathogens and cancer. However, exploration of CMV as a vaccine vector is at an early stage and there are many questions. Using a mouse melanoma model, we recently found that a CMV-based vaccine induced large populations of melanoma-specific T cells, but was not effective at slowing tumor growth unless it was injected directly into the tumor. These surprising results have led us to hypothesize that CMV may be adept at modulating the tumor micro-environment through its infection of macrophages. Importantly, injection of CMV into the growing tumor synergized with blockade of the PD-1 checkpoint to clear well-established tumors. Here, we discuss our results in the context of CMV-based vaccines for pathogens and cancer.
Collapse
Affiliation(s)
- Dan A Erkes
- a Department of Microbiology and Immunology, Sidney Kimmel Cancer Center , Thomas Jefferson University , Philadelphia , PA , USA
| | - Nicole A Wilski
- a Department of Microbiology and Immunology, Sidney Kimmel Cancer Center , Thomas Jefferson University , Philadelphia , PA , USA
| | - Christopher M Snyder
- a Department of Microbiology and Immunology, Sidney Kimmel Cancer Center , Thomas Jefferson University , Philadelphia , PA , USA
| |
Collapse
|
18
|
Erkes DA, Smith CJ, Wilski NA, Caldeira-Dantas S, Mohgbeli T, Snyder CM. Virus-Specific CD8 + T Cells Infiltrate Melanoma Lesions and Retain Function Independently of PD-1 Expression. THE JOURNAL OF IMMUNOLOGY 2017; 198:2979-2988. [PMID: 28202614 DOI: 10.4049/jimmunol.1601064] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 01/20/2017] [Indexed: 12/27/2022]
Abstract
It is well known that CD8+ tumor-infiltrating lymphocytes (TILs) are correlated with positive prognoses in cancer patients and are used to determine the efficacy of immune therapies. Although it is generally assumed that CD8+ TILs will be tumor-associated Ag (TAA) specific, it is unknown whether CD8+ T cells with specificity for common pathogens also infiltrate tumors. If so, the presence of these T cells could alter the interpretation of prognostic and diagnostic TIL assays. We compared TAA-specific and virus-specific CD8+ T cells in the same tumors using murine CMV, a herpesvirus that causes a persistent/latent infection, and vaccinia virus, a poxvirus that is cleared by the host. Virus-specific CD8+ TILs migrated into cutaneous melanoma lesions during acute infection with either virus, after a cleared vaccinia virus infection, and during a persistent/latent murine CMV infection. Virus-specific TILs developed independently of viral Ag in the tumor and, interestingly, expressed low or intermediate levels of full-length PD-1 in the tumor environment. Importantly, PD-1 expression could be markedly induced by Ag but did not correlate with dysfunction for virus-specific TILs, in sharp contrast to TAA-specific TILs in the same tumors. These data suggest that CD8+ TILs can reflect an individual's immune status, rather than exclusively representing TAA-specific T cells, and that PD-1 expression on CD8+ TILs is not always associated with repeated Ag encounter or dysfunction. Thus, functional virus-specific CD8+ TILs could skew the results of prognostic or diagnostic TIL assays.
Collapse
Affiliation(s)
- Dan A Erkes
- Department of Microbiology and Immunology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107
| | - Corinne J Smith
- Department of Microbiology and Immunology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107
| | - Nicole A Wilski
- Department of Microbiology and Immunology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107
| | - Sofia Caldeira-Dantas
- Department of Microbiology and Immunology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107.,Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal; and.,ICVS/3Bs, PT Government Associated Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Toktam Mohgbeli
- Department of Microbiology and Immunology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107
| | - Christopher M Snyder
- Department of Microbiology and Immunology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107;
| |
Collapse
|
19
|
Erkes DA, Xu G, Daskalakis C, Zurbach KA, Wilski NA, Moghbeli T, Hill AB, Snyder CM. Intratumoral Infection with Murine Cytomegalovirus Synergizes with PD-L1 Blockade to Clear Melanoma Lesions and Induce Long-term Immunity. Mol Ther 2016; 24:1444-55. [PMID: 27434584 PMCID: PMC5023369 DOI: 10.1038/mt.2016.121] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 06/03/2016] [Indexed: 01/21/2023] Open
Abstract
Cytomegalovirus is an attractive cancer vaccine platform because it induces strong, functional CD8(+) T-cell responses that accumulate over time and migrate into most tissues. To explore this, we used murine cytomegalovirus expressing a modified gp100 melanoma antigen. Therapeutic vaccination by the intraperitoneal and intradermal routes induced tumor infiltrating gp100-specific CD8(+) T-cells, but provided minimal benefit for subcutaneous lesions. In contrast, intratumoral infection of established tumor nodules greatly inhibited tumor growth and improved overall survival in a CD8(+) T-cell-dependent manner, even in mice previously infected with murine cytomegalovirus. Although murine cytomegalovirus could infect and kill B16F0s in vitro, infection was restricted to tumor-associated macrophages in vivo. Surprisingly, the presence of a tumor antigen in the virus only slightly increased the efficacy of intratumoral infection and tumor-specific CD8(+) T-cells in the tumor remained dysfunctional. Importantly, combining intratumoral murine cytomegalovirus infection with anti-PD-L1 therapy was synergistic, resulting in tumor clearance from over half of the mice and subsequent protection against tumor challenge. Thus, while a murine cytomegalovirus-based vaccine was poorly effective against established subcutaneous tumors, direct infection of tumor nodules unexpectedly delayed tumor growth and synergized with immune checkpoint blockade to promote tumor clearance and long-term protection.
Collapse
Affiliation(s)
- Dan A Erkes
- Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Guangwu Xu
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, USA
| | - Constantine Daskalakis
- Division of Biostatistics, Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Katherine A Zurbach
- Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Nicole A Wilski
- Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Toktam Moghbeli
- Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Ann B Hill
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, USA
| | - Christopher M Snyder
- Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
20
|
Abstract
Human cytomegalovirus (HCMV) establishes a latent infection that generally remains asymptomatic in immune-competent hosts for decades but can cause serious illness in immune-compromised individuals. The long-term control of CMV requires considerable effort from the host immune system and has a lasting impact on the profile of the immune system. One hallmark of CMV infection is the maintenance of large populations of CMV-specific memory CD8(+) T cells - a phenomenon termed memory inflation - and emerging data suggest that memory inflation is associated with impaired immunity in the elderly. In this Review, we discuss the molecular triggers that promote memory inflation, the idea that memory inflation could be considered a natural pathway of T cell maturation that could be harnessed in vaccination, and the broader implications of CMV infection and the T cell responses it elicits.
Collapse
|
21
|
Hebeisen M, Allard M, Gannon PO, Schmidt J, Speiser DE, Rufer N. Identifying Individual T Cell Receptors of Optimal Avidity for Tumor Antigens. Front Immunol 2015; 6:582. [PMID: 26635796 PMCID: PMC4649060 DOI: 10.3389/fimmu.2015.00582] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 10/30/2015] [Indexed: 02/02/2023] Open
Abstract
Cytotoxic T cells recognize, via their T cell receptors (TCRs), small antigenic peptides presented by the major histocompatibility complex (pMHC) on the surface of professional antigen-presenting cells and infected or malignant cells. The efficiency of T cell triggering critically depends on TCR binding to cognate pMHC, i.e., the TCR–pMHC structural avidity. The binding and kinetic attributes of this interaction are key parameters for protective T cell-mediated immunity, with stronger TCR–pMHC interactions conferring superior T cell activation and responsiveness than weaker ones. However, high-avidity TCRs are not always available, particularly among self/tumor antigen-specific T cells, most of which are eliminated by central and peripheral deletion mechanisms. Consequently, systematic assessment of T cell avidity can greatly help distinguishing protective from non-protective T cells. Here, we review novel strategies to assess TCR–pMHC interaction kinetics, enabling the identification of the functionally most-relevant T cells. We also discuss the significance of these technologies in determining which cells within a naturally occurring polyclonal tumor-specific T cell response would offer the best clinical benefit for use in adoptive therapies, with or without T cell engineering.
Collapse
Affiliation(s)
- Michael Hebeisen
- Department of Oncology, Lausanne University Hospital Center (CHUV), University of Lausanne , Epalinges , Switzerland
| | - Mathilde Allard
- Department of Oncology, Lausanne University Hospital Center (CHUV), University of Lausanne , Epalinges , Switzerland
| | - Philippe O Gannon
- Department of Oncology, Lausanne University Hospital Center (CHUV), University of Lausanne , Epalinges , Switzerland
| | - Julien Schmidt
- Ludwig Center for Cancer Research, University of Lausanne , Epalinges , Switzerland ; TCMetrix Sàrl , Epalinges , Switzerland
| | - Daniel E Speiser
- Department of Oncology, Lausanne University Hospital Center (CHUV), University of Lausanne , Epalinges , Switzerland ; Ludwig Center for Cancer Research, University of Lausanne , Epalinges , Switzerland
| | - Nathalie Rufer
- Department of Oncology, Lausanne University Hospital Center (CHUV), University of Lausanne , Epalinges , Switzerland ; Ludwig Center for Cancer Research, University of Lausanne , Epalinges , Switzerland
| |
Collapse
|
22
|
Smith CJ, Caldeira-Dantas S, Turula H, Snyder CM. Murine CMV Infection Induces the Continuous Production of Mucosal Resident T Cells. Cell Rep 2015; 13:1137-1148. [PMID: 26526996 PMCID: PMC4648370 DOI: 10.1016/j.celrep.2015.09.076] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 09/15/2015] [Accepted: 09/24/2015] [Indexed: 01/08/2023] Open
Abstract
Cytomegalovirus (CMV) is a herpesvirus that persists for life and maintains extremely large numbers of T cells with select specificities in circulation. However, it is unknown how viral persistence impacts T cell populations in mucosal sites. We found that many murine (M)CMV-specific CD8s in mucosal tissues became resident memory T cells (TRM). These cells adopted an intraepithelial localization in the salivary gland that correlated with, but did not depend on, expression of the integrin CD103. MCMV-specific TRM cells formed early after infection, and spleen-localized cells had reduced capacities to become TRM at late times. Surprisingly, however, small numbers of new TRM cells were formed from the circulating pool throughout infection, favoring populations maintained at high levels in the blood and shifting the immunodominance within the TRM populations over time. These data show that mucosal TRM populations can be dynamically maintained by a persistent infection.
Collapse
Affiliation(s)
- Corinne J Smith
- Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Sofia Caldeira-Dantas
- Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Holly Turula
- Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Christopher M Snyder
- Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
23
|
Jaigirdar SA, MacLeod MKL. Development and Function of Protective and Pathologic Memory CD4 T Cells. Front Immunol 2015; 6:456. [PMID: 26441961 PMCID: PMC4561815 DOI: 10.3389/fimmu.2015.00456] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/24/2015] [Indexed: 12/27/2022] Open
Abstract
Immunological memory is one of the defining features of the adaptive immune system. As key orchestrators and mediators of immunity, CD4 T cells are central to the vast majority of adaptive immune responses. Generated following an immune response, memory CD4 T cells retain pertinent information about their activation environment enabling them to make rapid effector responses upon reactivation. These responses can either benefit the host by hastening the control of pathogens or cause damaging immunopathology. Here, we will discuss the diversity of the memory CD4 T cell pool, the signals that influence the transition of activated T cells into that pool, and highlight how activation requirements differ between naïve and memory CD4 T cells. A greater understanding of these factors has the potential to aid the design of more effective vaccines and to improve regulation of pathologic CD4 T cells, such as in the context of autoimmunity and allergy.
Collapse
Affiliation(s)
- Shafqat Ahrar Jaigirdar
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, University of Glasgow , Glasgow , UK
| | - Megan K L MacLeod
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, University of Glasgow , Glasgow , UK
| |
Collapse
|
24
|
Kim J, Kim AR, Shin EC. Cytomegalovirus Infection and Memory T Cell Inflation. Immune Netw 2015; 15:186-90. [PMID: 26330804 PMCID: PMC4553256 DOI: 10.4110/in.2015.15.4.186] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 08/08/2015] [Accepted: 08/10/2015] [Indexed: 12/24/2022] Open
Abstract
Cytomegalovirus (CMV) infection in healthy individuals is usually asymptomatic and results in latent infection. CMV reactivation occasionally occurs in healthy individuals according to their immune status over time. T cell responses to CMV are restricted to a limited number of immunodominant epitopes, as compared to responses to other chronic or persistent viruses. This response results in progressive, prolonged expansion of CMV-specific CD8+ T cells, termed 'memory inflation'. The expanded CMV-specific CD8+ T cell population is extraordinarily large and is more prominent in the elderly. CMV-specific CD8+ T cells possess rather similar phenotypic and functional features to those of replicative senescent T cells. In this review, we discuss the general features of CMV-specific inflationary memory T cells and the factors involved in memory inflation.
Collapse
Affiliation(s)
- Jihye Kim
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Korea
| | - A-Reum Kim
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Korea
| | - Eui-Cheol Shin
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Korea
| |
Collapse
|
25
|
Quinn M, Turula H, Tandon M, Deslouches B, Moghbeli T, Snyder CM. Memory T cells specific for murine cytomegalovirus re-emerge after multiple challenges and recapitulate immunity in various adoptive transfer scenarios. THE JOURNAL OF IMMUNOLOGY 2015; 194:1726-1736. [PMID: 25595792 DOI: 10.4049/jimmunol.1402757] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Reconstitution of CMV-specific immunity after transplant remains a primary clinical objective to prevent CMV disease, and adoptive immunotherapy of CMV-specific T cells can be an effective therapeutic approach. Because of viral persistence, most CMV-specific CD8(+) T cells become terminally differentiated effector phenotype CD8(+) T cells (TEFF). A minor subset retains a memory-like phenotype (memory phenotype CD8(+) T cells [TM]), but it is unknown whether these cells retain memory function or persist over time. Interestingly, recent studies suggest that CMV-specific CD8(+) T cells with different phenotypes have different abilities to reconstitute sustained immunity after transfer. The immunology of human CMV infections is reflected in the murine CMV (MCMV) model. We found that human CMV- and MCMV-specific T cells displayed shared genetic programs, validating the MCMV model for studies of CMV-specific T cells in vivo. The MCMV-specific TM population was stable over time and retained a proliferative capacity that was vastly superior to TEFF. Strikingly, after transfer, TM established sustained and diverse T cell populations even after multiple challenges. Although both TEFF and TM could protect Rag(-/-) mice, only TM persisted after transfer into immune replete, latently infected recipients and responded if recipient immunity was lost. Interestingly, transferred TM did not expand until recipient immunity was lost, supporting that competition limits the Ag stimulation of TM. Ultimately, these data show that CMV-specific TM retain memory function during MCMV infection and can re-establish CMV immunity when necessary. Thus, TM may be a critical component for consistent, long-term adoptive immunotherapy success.
Collapse
Affiliation(s)
- Michael Quinn
- Department of Immunology and Microbial Pathogenesis, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - Holly Turula
- Department of Immunology and Microbial Pathogenesis, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - Mayank Tandon
- Department of Immunology and Microbial Pathogenesis, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - Berthony Deslouches
- Department of Immunology and Microbial Pathogenesis, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - Toktam Moghbeli
- Department of Immunology and Microbial Pathogenesis, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - Christopher M Snyder
- Department of Immunology and Microbial Pathogenesis, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
26
|
Smith CJ, Turula H, Snyder CM. Systemic hematogenous maintenance of memory inflation by MCMV infection. PLoS Pathog 2014; 10:e1004233. [PMID: 24992722 PMCID: PMC4081724 DOI: 10.1371/journal.ppat.1004233] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 05/20/2014] [Indexed: 12/02/2022] Open
Abstract
Several low-grade persistent viral infections induce and sustain very large numbers of virus-specific effector T cells. This was first described as a response to cytomegalovirus (CMV), a herpesvirus that establishes a life-long persistent/latent infection, and sustains the largest known effector T cell populations in healthy people. These T cells remain functional and traffic systemically, which has led to the recent exploration of CMV as a persistent vaccine vector. However, the maintenance of this remarkable response is not understood. Current models propose that reservoirs of viral antigen and/or latently infected cells in lymph nodes stimulate T cell proliferation and effector differentiation, followed by migration of progeny to non-lymphoid tissues where they control CMV reactivation. We tested this model using murine CMV (MCMV), a natural mouse pathogen and homologue of human CMV (HCMV). While T cells within draining lymph nodes divided at a higher rate than cells elsewhere, antigen-dependent proliferation of MCMV-specific effector T cells was observed systemically. Strikingly, inhibition of T cell egress from lymph nodes failed to eliminate systemic T cell division, and did not prevent the maintenance of the inflationary populations. In fact, we found that the vast majority of inflationary cells, including most cells undergoing antigen-driven division, had not migrated into the parenchyma of non-lymphoid tissues but were instead exposed to the blood supply. Indeed, the immunodominance and effector phenotype of inflationary cells, both of which are primary hallmarks of memory inflation, were largely confined to blood-localized T cells. Together these results support a new model of MCMV-driven memory inflation in which most immune surveillance occurs in circulation, and in which most inflationary effector T cells are produced in response to viral antigen presented by cells that are accessible to the blood supply. Herpesviruses persist for the life of the host and must be continuously controlled by a robust immune surveillance effort. In the case of the cytomegalovirus (CMV), this ongoing immune surveillance promotes the accumulation of CMV-specific T cells in a process known as “memory inflation”. We and others have proposed that the ability to induce memory inflation may be an important benefit of CMV-based vaccine vectors that persist within the host and continuously boost the immune response. However, it has been difficult to determine where T cells are encountering CMV in the body, leading to many unanswered questions about the maintenance of this remarkable response. Previous models proposed that T cells encountered viral antigen within lymph nodes and then migrated to other tissues to prevent CMV reactivation. However, we found that the majority of T cells stimulated by CMV were present in circulation, where they could be sustained without the input from T cells localized to lymph nodes. In fact, two of the defining features of memory inflation - inflated numbers and an effector phenotype - were restricted to cells that were exposed to the blood. Thus, we propose that memory inflation during CMV infection is largely the result of immune surveillance that occurs in circulation.
Collapse
Affiliation(s)
- Corinne J. Smith
- Department of Microbiology and Immunology, Jefferson Medical College, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Holly Turula
- Department of Microbiology and Immunology, Jefferson Medical College, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Christopher M. Snyder
- Department of Microbiology and Immunology, Jefferson Medical College, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|