1
|
Huang F, Sun K, Zhou J, Bao J, Xie G, Lu K, Fan Y. Decoding tryptophan: Pioneering new frontiers in systemic lupus erythematosus. Autoimmun Rev 2025; 24:103809. [PMID: 40158642 DOI: 10.1016/j.autrev.2025.103809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/26/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025]
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease that affects multiple organ systems, with its pathogenesis intricately tied to genetic, environmental, and immune regulatory factors. In recent years, the aberration of tryptophan metabolism has emerged as a key player in the disease, particularly through the activation of the kynurenine pathway and its influence on immune regulation. This review delves into the critical pathways of tryptophan metabolism and its profound impact on the multi-system manifestations of SLE, including its connections to the nervous system, kidneys, skin, and other organs. Additionally, it examines how tryptophan metabolism modulates the function of various immune cell types. The review also explores potential therapeutic avenues targeting tryptophan metabolism, such as dietary interventions, probiotic modulation, IDO expression inhibition, and immunoadsorption techniques. While current research has underscored the pivotal role of tryptophan metabolism in the onset and progression of SLE, its full therapeutic potential remains to be fully elucidated. This review aims to provide a solid scientific foundation for therapeutic strategies based on modulating tryptophan metabolism in SLE, offering a comprehensive overview of both clinical and basic research in this rapidly evolving field.
Collapse
Affiliation(s)
- Fugang Huang
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Ke Sun
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Jiawang Zhou
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Jie Bao
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Guanqun Xie
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, PR China.
| | - Keda Lu
- The Third Affiliated Hospital of Zhejiang Chinese Medical University (Zhongshan Hospital of Zhejiang Province), Hangzhou 310005, Zhejiang, China.
| | - Yongsheng Fan
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, PR China.
| |
Collapse
|
2
|
Huo R, Yang Y, Huo X, Meng D, Huang R, Yang Y, Lin J, Huang Y, Zhu X, Wei C, Huang X. Potential of resveratrol in the treatment of systemic lupus erythematosus (Review). Mol Med Rep 2024; 30:182. [PMID: 39155862 PMCID: PMC11350626 DOI: 10.3892/mmr.2024.13306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 07/12/2024] [Indexed: 08/20/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a multi‑system chronic autoimmune disease with a complex occurrence and development process, associated with immune disorders, uncertain prognosis, and treatment modalities which vary by patient and disease activity. At present, the clinical treatment of SLE mainly focuses on hormones and immunosuppressants. In recent years, the research on new treatment strategies for SLE has been booming, and strong preclinical results and clinical research have promoted the development of numerous drugs (such as rituximab and orencia), but numerous of these drugs have failed to achieve effectiveness in clinical trials, and there are some adverse reactions. Recent evidence suggests that resveratrol (RSV) has the effect of ameliorating immune disorders by inhibiting overactivation of immune cells. In the present review, advances in research on the protective effects and potential mechanisms of RSV against SLE are summarized and the potential potency of RSV and its use as a promising therapeutic option for the treatment of SLE are highlighted.
Collapse
Affiliation(s)
- Rongxiu Huo
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| | - Yanting Yang
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| | - Xiaocong Huo
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| | - Danli Meng
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| | - Rongjun Huang
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| | - Yang Yang
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| | - Jinying Lin
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| | - Yijia Huang
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| | - Xia Zhu
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| | - Chengcheng Wei
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| | - Xinxiang Huang
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| |
Collapse
|
3
|
Hanlon N, Gillan N, Neil J, Seidler K. The role of the aryl hydrocarbon receptor (AhR) in modulating intestinal ILC3s to optimise gut pathogen resistance in lupus and benefits of nutritional AhR ligands. Clin Nutr 2024; 43:1199-1215. [PMID: 38631087 DOI: 10.1016/j.clnu.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/28/2024] [Accepted: 04/04/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND AND AIMS Dysbiosis is emerging as a potential trigger of systemic lupus erythematosus (SLE). Group 3 innate lymphoid cells (ILC3s) are recognised as key regulators of intestinal homeostasis. The aryl hydrocarbon receptor (AhR) is critical to intestinal ILC3 development and function. This mechanistic review aimed to investigate whether AhR activation of gut ILC3s facilitates IL-22-mediated antimicrobial peptide (AMP) production to enhance colonisation resistance and ameliorate SLE pathology associated with intestinal dysbiosis. Furthermore, nutritional AhR ligand potential to enhance pathogen resistance was explored. METHODOLOGY This mechanistic review involved a three-tranche systematic literature search (review, mechanism, intervention) using PubMed with critical appraisal. Data was synthesised into themes and summarised in a narrative analysis. RESULTS Preclinical mechanistic data indicate that AhR modulation of intestinal ILC3s optimises pathogen resistance via IL-22-derived AMPs. Pre-clinical research is required to validate this mechanism in SLE. Data on systemic immune consequences of AhR modulation in lupus suggest UVB-activated ligands induce aberrant AhR signalling while many dietary ligands exert beneficial effects. Data on xenobiotic-origin ligands is varied, although considerable evidence has demonstrated negative effects on Th17 to Treg balance. Limited human evidence supports the role of nutritional AhR ligands in modulating SLE pathology. Preclinical and clinical data support anti-inflammatory effects of dietary AhR ligands. CONCLUSION Current evidence is insufficient to fully validate the hypothesis that AhR modulation of intestinal ILC3s can enhance pathogen resistance to ameliorate lupus pathology driven by dysbiosis. However, anti-inflammatory effects of dietary AhR ligands suggest a promising role as a therapeutic intervention for SLE.
Collapse
Affiliation(s)
- Niamh Hanlon
- CNELM (Centre for Nutrition Education and Lifestyle Management), 14 Rectory Road, Wokingham, Berkshire RG40 1DH, UK.
| | - Natalie Gillan
- CNELM (Centre for Nutrition Education and Lifestyle Management), 14 Rectory Road, Wokingham, Berkshire RG40 1DH, UK.
| | - James Neil
- CNELM (Centre for Nutrition Education and Lifestyle Management), 14 Rectory Road, Wokingham, Berkshire RG40 1DH, UK.
| | - Karin Seidler
- CNELM (Centre for Nutrition Education and Lifestyle Management), 14 Rectory Road, Wokingham, Berkshire RG40 1DH, UK.
| |
Collapse
|
4
|
Congues F, Wang P, Lee J, Lin D, Shahid A, Xie J, Huang Y. Targeting aryl hydrocarbon receptor to prevent cancer in barrier organs. Biochem Pharmacol 2024; 223:116156. [PMID: 38518996 PMCID: PMC11144369 DOI: 10.1016/j.bcp.2024.116156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/08/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
The skin, lung, and gut are important barrier organs that control how the body reacts to environmental stressors such as ultraviolet (UV) radiation, air pollutants, dietary components, and microorganisms. The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that plays an important role in maintaining homeostasis of barrier organs. AhR was initially discovered as a receptor for environmental chemical carcinogens such as polycyclic aromatic hydrocarbons (PAHs). Activation of AhR pathways by PAHs leads to increased DNA damage and mutations which ultimately lead to carcinogenesis. Ongoing evidence reveals an ever-expanding role of AhR. Recently, AhR has been linked to immune systems by the interaction with the development of natural killer (NK) cells, regulatory T (Treg) cells, and T helper 17 (Th17) cells, as well as the production of immunosuppressive cytokines. However, the role of AhR in carcinogenesis is not as straightforward as we initially thought. Although AhR activation has been shown to promote carcinogenesis in some studies, others suggest that it may act as a tumor suppressor. In this review, we aim to explore the role of AhR in the development of cancer that originates from barrier organs. We also examined the preclinical efficacy data of AhR agonists and antagonists on carcinogenesis to determine whether AhR modulation can be a viable option for cancer chemoprevention.
Collapse
Affiliation(s)
- Francoise Congues
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Pengcheng Wang
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA; Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Joshua Lee
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Daphne Lin
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Ayaz Shahid
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Jianming Xie
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Ying Huang
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA.
| |
Collapse
|
5
|
Ahmadi M, Soleimanifar N, Rostamian A, Sadr M, Mojtahedi H, Mazari A, Hossein Nicknam M, Assadiasl S. Aryl hydrocarbon receptor gene expression in ankylosing spondylitis and its correlation with interleukin-17, RAR-related orphan receptor gamma t expression, and disease activity indices. Arch Rheumatol 2024; 39:123-132. [PMID: 38774696 PMCID: PMC11104753 DOI: 10.46497/archrheumatol.2023.10203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 06/01/2023] [Indexed: 05/24/2024] Open
Abstract
Objectives Considering the role of T helper (Th)17 cells in the pathogenesis of ankylosing spondylitis (AS), the aim of this study was to determine the correlation between aryl hydrocarbon receptor (AHR) gene expression and the expression of Th17-related genes including interleukin (IL)-17 and RAR-related orphan receptor gamma t (RORγt) transcription factor. Patients and methods Thirty patients with AS (26 males, 4 females; mean age: 36.1±8.1 years) and 30 age- and sex-matched healthy individuals (26 males, 4 females; mean age: 36.2±14.6 years) were recruited for the case-control study between June 2021 and January 2022. Ribonucleic acid (RNA) was extracted from peripheral blood cells and expression levels of AHR, IL-17, RORγt, and AHR repressor (AHRR) genes were evaluated using real-time polymerase chain reaction technique. The serum level of IL-17 was evaluated with enzyme-linked immunosorbent assay. Results The results showed a nonsignificant elevation of AHR, IL-17, and RORγt gene expression in the patient group compared to the control. There was a direct correlation between AHR gene expression and IL-17 and RORγt genes and a negative correlation between AHR and AHRR expression. Moreover, AHR gene expression showed a weak correlation with disease activity indices, including Bath Ankylosing Spondylitis Disease Activity Index, Bath Ankylosing Spondylitis Functional Index, Bath Ankylosing Spondylitis Metrology Index, Bath Ankylosing Spondylitis Global Score, and Ankylosing Spondylitis Quality of Life. Moreover, the serum level of IL-17 was higher in AS patients compared to the healthy group (p=0.02). Conclusion Upregulated expression of the AHR gene in ankylosing spondylitis and its correlation with IL-17 and ROR-γ t gene expression suggests that it could be a potential diagnostic and therapeutic target for AS.
Collapse
Affiliation(s)
- Maryam Ahmadi
- Department of Immunology, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Narjes Soleimanifar
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdolrahman Rostamian
- Department of Rheumatology, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Sadr
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hanieh Mojtahedi
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Abeda Mazari
- Department of Immunology, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Mohammad Hossein Nicknam
- Department of Immunology, School of Medicine, Tehran University of Medical Science, Tehran, Iran
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Assadiasl
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Gutierrez F, Murphy QM, Swartwout BK, Read KA, Edwards MR, Abdelhamid L, Cabana-Puig X, Testerman JC, Xu T, Lu R, Amin P, Cecere TE, Reilly CM, Oestreich KJ, Ciupe SM, Luo XM. TCDD and CH223191 Alter T Cell Balance but Fail to Induce Anti-Inflammatory Response in Adult Lupus Mice. Immunohorizons 2024; 8:172-181. [PMID: 38353996 PMCID: PMC10916358 DOI: 10.4049/immunohorizons.2300023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 01/16/2024] [Indexed: 02/16/2024] Open
Abstract
Aryl hydrocarbon receptor (AhR) responds to endogenous and exogenous ligands as a cytosolic receptor, transcription factor, and E3 ubiquitin ligase. Several studies support an anti-inflammatory effect of AhR activation. However, exposure to the AhR agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) during early stages of development results in an autoimmune phenotype and exacerbates lupus. The effects of TCDD on lupus in adults with pre-existing autoimmunity have not been described. We present novel evidence that AhR stimulation by TCDD alters T cell responses but fails to impact lupus-like disease using an adult mouse model. Interestingly, AhR antagonist CH223191 also changed T cell balance in our model. We next developed a conceptual framework for identifying cellular and molecular factors that contribute to physiological outcomes in lupus and created models that describe cytokine dynamics that were fed into a system of differential equations to predict the kinetics of T follicular helper (Tfh) and regulatory T (Treg) cell populations. The model predicted that Tfh cells expanded to larger values following TCDD exposure compared with vehicle and CH223191. Following the initial elevation, both Tfh and Treg cell populations continuously decayed over time. A function based on the ratio of predicted Treg/Tfh cells showed that Treg cells exceed Tfh cells in all groups, with TCDD and CH223191 showing lower Treg/Tfh cell ratios than the vehicle and that the ratio is relatively constant over time. We conclude that AhR ligands did not induce an anti-inflammatory response to attenuate autoimmunity in adult lupus mice. This study challenges the dogma that TCDD supports an immunosuppressive phenotype.
Collapse
Affiliation(s)
- Fernando Gutierrez
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Quiyana M. Murphy
- Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Brianna K. Swartwout
- Translational Biology Medicine and Health Graduate Program, Virginia Polytechnic Institute and State University, Roanoke, VA
| | - Kaitlin A. Read
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Michael R. Edwards
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Leila Abdelhamid
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Xavier Cabana-Puig
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - James C. Testerman
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Tian Xu
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Ran Lu
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Pavly Amin
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Thomas E. Cecere
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Christopher M. Reilly
- Department of Biomedical Sciences, Edward Via College of Osteopathic Medicine, Blacksburg, VA
| | - Kenneth J. Oestreich
- Department of Microbial Infection and Immunity, Ohio State University College of Medicine, Columbus, OH
| | - Stanca M. Ciupe
- Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Xin M. Luo
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA
| |
Collapse
|
7
|
Tao Z, Jin Z, Wu J, Cai G, Yu X. Sirtuin family in autoimmune diseases. Front Immunol 2023; 14:1186231. [PMID: 37483618 PMCID: PMC10357840 DOI: 10.3389/fimmu.2023.1186231] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/15/2023] [Indexed: 07/25/2023] Open
Abstract
In recent years, epigenetic modifications have been widely researched. As humans age, environmental and genetic factors may drive inflammation and immune responses by influencing the epigenome, which can lead to abnormal autoimmune responses in the body. Currently, an increasing number of studies have emphasized the important role of epigenetic modification in the progression of autoimmune diseases. Sirtuins (SIRTs) are class III nicotinamide adenine dinucleotide (NAD)-dependent histone deacetylases and SIRT-mediated deacetylation is an important epigenetic alteration. The SIRT family comprises seven protein members (namely, SIRT1-7). While the catalytic core domain contains amino acid residues that have remained stable throughout the entire evolutionary process, the N- and C-terminal regions are structurally divergent and contribute to differences in subcellular localization, enzymatic activity and substrate specificity. SIRT1 and SIRT2 are localized in the nucleus and cytoplasm. SIRT3, SIRT4, and SIRT5 are mitochondrial, and SIRT6 and SIRT7 are predominantly found in the nucleus. SIRTs are key regulators of various physiological processes such as cellular differentiation, apoptosis, metabolism, ageing, immune response, oxidative stress, and mitochondrial function. We discuss the association between SIRTs and common autoimmune diseases to facilitate the development of more effective therapeutic strategies.
Collapse
Affiliation(s)
- Zhengjie Tao
- Science and Education Section, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
- Department of Ultrasonics, The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
| | - Zihan Jin
- Clinical Lab, Changzhou Second People’s Hospital Affiliated to Nanjing Medical University, Changzhou, China
| | - Jiabiao Wu
- Department of Immunology, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
| | - Gaojun Cai
- Cardiology, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
| | - Xiaolong Yu
- Science and Education Section, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
- Department of Ultrasonics, The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
| |
Collapse
|
8
|
Huang W, Rui K, Wang X, Peng N, Zhou W, Shi X, Lu L, Hu D, Tian J. The aryl hydrocarbon receptor in immune regulation and autoimmune pathogenesis. J Autoimmun 2023; 138:103049. [PMID: 37229809 DOI: 10.1016/j.jaut.2023.103049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/10/2023] [Accepted: 04/18/2023] [Indexed: 05/27/2023]
Abstract
As a ligand-activated transcription factor, the aryl hydrocarbon receptor (AhR) is activated by structurally diverse ligands derived from the environment, diet, microorganisms, and metabolic activity. Recent studies have demonstrated that AhR plays a key role in modulating both innate and adaptive immune responses. Moreover, AhR regulates innate immune and lymphoid cell differentiation and function, which is involved in autoimmune pathogenesis. In this review, we discuss recent advances in understanding the mechanism of activation of AhR and its mediated functional regulation in various innate immune and lymphoid cell populations, as well as the immune-regulatory effect of AhR in the development of autoimmune diseases. In addition, we highlight the identification of AhR agonists and antagonists that may serve as potential therapeutic targets for the treatment of autoimmune disorders.
Collapse
Affiliation(s)
- Wei Huang
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China; Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Ke Rui
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China; Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| | - Xiaomeng Wang
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China; Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Na Peng
- Department of Rheumatology and Nephrology, The Second People's Hospital, China Three Gorges University, Yichang, China
| | - Wenhao Zhou
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiaofei Shi
- Department of Rheumatology and Immunology, The First Affiliated Hospital and School of Medicine, Henan University of Science and Technology, Luoyang, China
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Chongqing International Institute for Immunology, China
| | - Dajun Hu
- Department of Rheumatology and Nephrology, The Second People's Hospital, China Three Gorges University, Yichang, China.
| | - Jie Tian
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China; Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
9
|
Yu YY, Jin H, Lu Q. Effect of polycyclic aromatic hydrocarbons on immunity. J Transl Autoimmun 2022; 5:100177. [PMID: 36561540 PMCID: PMC9763510 DOI: 10.1016/j.jtauto.2022.100177] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 09/06/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Nearly a quarter of the total number of deaths in the world are caused by unhealthy living or working environments. Therefore, we consider it significant to introduce the effect of a widely distributed component of air/water/food-source contaminants, polycyclic aromatic hydrocarbons (PAHs), on the human body, especially on immunity in this review. PAHs are a large class of organic compounds containing two or more benzene rings. PAH exposure could occur in most people through breath, smoke, food, and direct skin contact, resulting in both cellular immunosuppression and humoral immunosuppression. PAHs usually lead to the exacerbation of autoimmune diseases by regulating the balance of T helper cell 17 and regulatory T cells, and promoting type 2 immunity. However, the receptor of PAHs, aryl hydrocarbon receptor (AhR), appears to exhibit duality in the immune response, which seems to explain some seemingly opposite experimental results. In addition, PAH exposure was also able to exacerbate allergic reactions and regulate monocytes to a certain extent. The specific regulation mechanisms of immune system include the assistance of AhR, the activation of the CYP-ROS axis, the recruitment of intracellular calcium, and some epigenetic mechanisms. This review aims to summarize our current understanding on the impact of PAHs in the immune system and some related diseases such as cancer, autoimmune diseases (rheumatoid arthritis, type 1 diabetes, multiple sclerosis, and systemic lupus erythematosus), and allergic diseases (asthma and atopic dermatitis). Finally, we also propose future research directions for the prevention or treatment on environmental induced diseases.
Collapse
Affiliation(s)
- Yang-yiyi Yu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China,Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences (2019RU027), Changsha, China
| | - Hui Jin
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China,Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences (2019RU027), Changsha, China,Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China,Corresponding author. Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China.
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China,Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences (2019RU027), Changsha, China,Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China,Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China,Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu, 210042, China,Corresponding author. Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
10
|
Xu N, Liu J, Li X. Lupus nephritis: The regulatory interplay between epigenetic and MicroRNAs. Front Physiol 2022; 13:925416. [PMID: 36187762 PMCID: PMC9523357 DOI: 10.3389/fphys.2022.925416] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
MicroRNAs (miRNAs) are endogenous, small, non-coding RNA molecules that act as epigenetic modifiers to regulate the protein levels of target messenger RNAs without altering their genetic sequences. The highly complex role of miRNAs in the epigenetics of lupus nephritis (LN) is increasingly being recognized. DNA methylation and histone modifications are focal points of epigenetic research. miRNAs play a critical role in renal development and physiology, and dysregulation may result in abnormal renal cell proliferation, inflammation, and fibrosis of the kidneys in LN. However, epigenetic and miRNA-mediated regulation are not mutually exclusive. Further research has established a link between miRNA expression and epigenetic regulation in various disorders, including LN. This review summarizes the most recent evidence regarding the interaction between miRNAs and epigenetics in LN and highlights potential therapeutic and diagnostic targets.
Collapse
Affiliation(s)
- Ning Xu
- School of Clinical Medicine, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Jie Liu
- School of Clinical Medicine, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xiangling Li
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang, China
- *Correspondence: Xiangling Li,
| |
Collapse
|
11
|
Wu J, Pang T, Lin Z, Zhao M, Jin H. The key player in the pathogenesis of environmental influence of systemic lupus erythematosus: Aryl hydrocarbon receptor. Front Immunol 2022; 13:965941. [PMID: 36110860 PMCID: PMC9468923 DOI: 10.3389/fimmu.2022.965941] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/01/2022] [Indexed: 11/28/2022] Open
Abstract
The aryl hydrocarbon receptor was previously known as an environmental receptor that modulates the cellular response to external environmental changes. In essence, the aryl hydrocarbon receptor is a cytoplasmic receptor and transcription factor that is activated by binding to the corresponding ligands, and they transmit relevant information by binding to DNA, thereby activating the transcription of various genes. Therefore, we can understand the development of certain diseases and discover new therapeutic targets by studying the regulation and function of AhR. Several autoimmune diseases, including systemic lupus erythematosus (SLE), have been connected to AhR in previous studies. SLE is a classic autoimmune disease characterized by multi-organ damage and disruption of immune tolerance. We discuss here the homeostatic regulation of AhR and its ligands among various types of immune cells, pathophysiological roles, in addition to the roles of various related cytokines and signaling pathways in the occurrence and development of SLE.
Collapse
|
12
|
Wang W, Fan Y, Wang X. Lactobacillus: Friend or Foe for Systemic Lupus Erythematosus? Front Immunol 2022; 13:883747. [PMID: 35677055 PMCID: PMC9168270 DOI: 10.3389/fimmu.2022.883747] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/26/2022] [Indexed: 12/03/2022] Open
Abstract
The cause of Systemic Lupus Erythematosus (SLE) remains largely unknown, despite the fact that it is well understood that a complex interaction between genes and environment is required for disease development. Microbiota serve as activators and are essential to immune homeostasis. Lactobacillus is thought to be an environmental agent affecting the development of SLE. However, beneficial therapeutic and anti-inflammatory effects of Lactobacillus on SLE were also explored. The discovery of Lactobacillus involvement in SLE will shed light on how SLE develops, as well as finding microbiota-targeted biomarkers and novel therapies. In this review, we attempt to describe the two sides of Lactobacillus in the occurrence, development, treatment and prognosis of SLE. We also discuss the effect of different strains Lactobacillus on immune cells, murine lupus, and patients. Finally, we try to illustrate the potential immunological mechanisms of Lactobacillus on SLE and provide evidence for further microbiota-targeted therapies.
Collapse
Affiliation(s)
- Weijie Wang
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yongsheng Fan
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinchang Wang
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
13
|
Cutaneous drug-induced lupus erythematosus: Clinical and immunological characteristics and update on new associated drugs. Ann Dermatol Venereol 2021; 148:211-220. [PMID: 34711400 DOI: 10.1016/j.annder.2021.02.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/24/2021] [Accepted: 02/26/2021] [Indexed: 02/06/2023]
Abstract
Cutaneous drug-induced lupus erythematosus (CDILE) is a lupus-like syndrome related to drug exposure which typically resolves after drug discontinuation. It can present as a systemic or a sole cutaneous form and different drugs may be associated with each form. CDILE pharmacoepidemiology is constantly changing. Indeed, older drugs primarily associated with systemic CDILE are no longer prescribed and new drugs associated with either cutaneous or systemic CDILE have emerged. The present study discusses the clinical and laboratory aspects of CDILE and the postulated pathogenesis, and it provides an update on implicated drugs. We performed a literature review to single out the new drugs associated with CDILE in the past decade (January 2010-June 2020). Among 109 drugs reported to induce CDILE in 472 patients, we identified anti-TNFα, proton-pump inhibitors, antineoplastic drugs, and, in particular, checkpoint inhibitors, as emerging drugs in CDILE. Most of the published studies are cases reports or small case series, and further larger studies as well as the development of validated classification criteria are needed to better understand and characterize their implication in CDILE.
Collapse
|
14
|
Kunishita Y, Yoshimi R, Kamiyama R, Kishimoto D, Komiya T, Sakurai N, Sugiyama Y, Takase-Minegishi K, Kirino Y, Nagaoka S, Nakajima H. Anti-TRIM21 antibody is associated with aberrant B-cell function and type I interferon production in systemic lupus erythematosus. Lupus 2021; 30:2054-2065. [PMID: 34565210 DOI: 10.1177/09612033211042293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND TRIM21 is a member of the tripartite motif family proteins and is one of the autoantigens which react with anti-SS-A antibody (Ab) present in sera of patients with systemic lupus erythematosus (SLE) and Sjögren's syndrome. Previous studies have shown that TRIM21 dysfunction promotes aberrant B-cell differentiation and Ab production in SLE, and anti-TRIM21 Ab may be related to the TRIM21 dysfunction in human SLE pathogenesis. Here, we examined the relationship between anti-TRIM21 Ab and clinical and immunological characteristics in SLE patients. METHODS Twenty-seven patients with SLE (23 women and four men) before immunosuppressive therapies, who fulfilled the revised 1997 American College of Rheumatology criteria for SLE, and four healthy controls (3 women and one man) were enrolled in the study. SLE patients were divided into two groups according to the seropositivity for anti-TRIM21 Ab. Serum anti-TRIM21 Ab levels were measured using enzyme-linked immunosorbent assays. The serum levels of cytokines and immunoglobulins were measured by cytometer beads arrays. The expression levels of TRIM21 protein in peripheral mononuclear cells (PBMCs) from SLE patients were evaluated by Western blotting. RESULTS Sixteen and 9 patients showed seronegativity and seropositivity for anti-TRIM21 Ab, respectively. There were no significant differences in the background parameters, including female ratio, age, disease duration, SLE activity, and laboratory data between the two groups. The serum levels of interferon (IFN)-β were significantly higher in patients with anti-TRIM21 Ab as compared with those without anti-TRIM21 Ab (P = .043). The levels of IgG1 and IgA were significantly higher in SLE patients with anti-TRIM21 Ab as compared with those without anti-TRIM21 Ab (P = .0022 and .032, respectively). The PBMCs of patients with anti-TRIM21 Ab showed a significantly lower expression of TRIM21 protein as compared with those of patients without anti-TRIM21 Ab (P = .014). CONCLUSIONS Anti-TRIM21 Ab seropositivity was related to B-cell abnormalities and type I IFN overproduction in SLE patients. These findings suggest that anti-TRIM21 Ab may have an inhibitory effect on TRIM21 functions and be a novel biomarker for the level of dependence on type I IFN overproduction and B-cell abnormalities.
Collapse
Affiliation(s)
- Yosuke Kunishita
- Department of Stem Cell and Immune Regulation, 26438Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Department of Rheumatology, 73663Yokohama Minami Kyosai Hospital, Yokohama, Japan
| | - Ryusuke Yoshimi
- Department of Stem Cell and Immune Regulation, 26438Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Reikou Kamiyama
- Department of Stem Cell and Immune Regulation, 26438Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Daiga Kishimoto
- Center for Rheumatic Diseases, Yokohama City University Medical Center, Yokohama, Japan
| | - Takaaki Komiya
- Department of Stem Cell and Immune Regulation, 26438Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Natsuki Sakurai
- Department of Stem Cell and Immune Regulation, 26438Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yumiko Sugiyama
- Department of Rheumatology, 73663Yokohama Minami Kyosai Hospital, Yokohama, Japan
| | - Kaoru Takase-Minegishi
- Department of Stem Cell and Immune Regulation, 26438Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yohei Kirino
- Department of Stem Cell and Immune Regulation, 26438Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Shouhei Nagaoka
- Department of Rheumatology, 73663Yokohama Minami Kyosai Hospital, Yokohama, Japan
| | - Hideaki Nakajima
- Department of Stem Cell and Immune Regulation, 26438Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
15
|
Yu Y, Liu L, Hu LL, Yu LL, Li JP, Rao JA, Zhu LJ, Liang Q, Zhang RW, Bao HH, Cheng XS. Potential therapeutic target genes for systemic lupus erythematosus: a bioinformatics analysis. Bioengineered 2021; 12:2810-2819. [PMID: 34180358 PMCID: PMC8806421 DOI: 10.1080/21655979.2021.1939637] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease involving multiple organs. However, the underlying etiology and mechanisms remain unclear. This study was performed to identify potential therapeutic targets for SLE using bioinformatics methods. First, 584 differentially expressed genes were identified based on the GSE61635 dataset. Tissue-specific analyses, enrichment analyses, and Protein–Protein interaction network were successively conducted. Furthermore, ELISA was performed to confirm the expression levels of key genes in the control and SLE blood samples. The findings revealed that tissue-specific expression of markers of the hematological system (25.5%, 28/110) varied significantly. CCL2, MMP9, and RSAD2 expression was markedly increased in the SLE samples compared with controls. In conclusion, the identified key genes (CCL2, MMP9, and RSAD2) may act as possible therapeutic targets for the treatment of SLE.
Collapse
Affiliation(s)
- Yun Yu
- Department of Cardiovascular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Liang Liu
- Department of Cardiovascular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Long-Long Hu
- Department of Cardiovascular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ling-Ling Yu
- Department of Rehabilitation, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jun-Pei Li
- Department of Cardiovascular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jing-An Rao
- Department of Cardiovascular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ling-Juan Zhu
- Department of Cardiovascular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qian Liang
- Department of Cardiovascular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Rong-Wei Zhang
- Department of Rheumatology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Hui-Hui Bao
- Department of Cardiovascular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiao-Shu Cheng
- Department of Cardiovascular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
16
|
Mohammadi H, Daryabor G, Ghaffarian Bahraman A, Keshavarzi M, Kalantar K, Mohammadi-Bardbori A. Aryl hydrocarbon receptor engagement during redox alteration determines the fate of CD4 + T cells in C57BL/6 mice. J Biochem Mol Toxicol 2021; 35:e22821. [PMID: 34036678 DOI: 10.1002/jbt.22821] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 01/09/2021] [Accepted: 05/18/2021] [Indexed: 01/01/2023]
Abstract
The preservation of the redox homeostasis is critical for cell survival and functionality. Redox imbalance is an essential inducer of several pathological states. CD4+ /helper T cells are highly dependent on the redox state of their surrounding milieu. The potential of the aryl hydrocarbon receptor (AhR) engagement in controlling CD4+ T-cell fate during redox alteration is still challenging. C57BL/6 mice were treated with AhR agonist 6-formylindolo[3,2-b]carbazole (FICZ), AhR antagonist CH223191, an inhibitor of glutathione biosynthesis buthionine sulfoximine (BSO), and the antioxidant N-acetylcysteine (NAC) alone or in combination. Six days later, splenocytes were evaluated for the expression of the redox-related genes and the possible changes in T-cell subsets. FICZ like BSO significantly elevated the expression of HMOX1, GCLC, and GCLM genes but it failed to increase the expression of the Nrf2 gene. Moreover, FICZ + BSO increased while FICZ + CH223191 or NAC decreased the expression of these genes. FICZ also significantly increased Th1 cell numbers but decreased Tregs in a dose-dependent manner. Furthermore, a high dose of FICZ + CH223191 + NAC significantly enhanced Th1, Th17, and Treg cells but its low dose in such a situation increased Th2 and Th17 while decreased Treg cells. AhR engagement during redox alteration can determine the fate of CD4 + T cells, so, AhR agonists or antagonists might be useful in assessing immune responses. However, these results need further verifications in vitro and in animal models of various diseases.
Collapse
Affiliation(s)
- Hamidreza Mohammadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholamreza Daryabor
- Autoimmune Diseases Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Ghaffarian Bahraman
- Occupational Environment Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Majid Keshavarzi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kurosh Kalantar
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Afshin Mohammadi-Bardbori
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
17
|
Qiu Y, Zhou X, Liu Y, Tan S, Li Y. The Role of Sirtuin-1 in Immune Response and Systemic Lupus Erythematosus. Front Immunol 2021; 12:632383. [PMID: 33981300 PMCID: PMC8110204 DOI: 10.3389/fimmu.2021.632383] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/19/2021] [Indexed: 12/13/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a potentially fatal multisystem inflammatory chronic disorder, the etiology and pathogenesis of which remain unclear. The loss of immune tolerance in SLE patients contributes to the production of autoantibodies that attack multiple organs and tissues, such as the skin, joints, and kidneys. Immune cells play important roles in the occurrence and progression of SLE through amplified immune responses. Sirtuin-1 (SIRT1), an NAD+-dependent histone deacetylase, has been shown to be a pivotal regulator in various physiological processes, including cell differentiation, apoptosis, metabolism, aging, and immune responses, via modulation of different signaling pathways, such as the nuclear factor κ-light-chain-enhancer of activated B cells and activator protein 1 pathways. Recent studies have provided evidence that SIRT1 could be a regulatory element in the immune system, whose altered functions are likely relevant to SLE development. This review aims to illustrate the functions of SIRT1 in different types of immune cells and the potential roles of SIRT1 in the SLE pathogenesis and its therapeutic perspectives.
Collapse
Affiliation(s)
- Yueqi Qiu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Xingyu Zhou
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yu Liu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Siqi Tan
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yaping Li
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
18
|
Abstract
Background Childhood-onset systemic lupus erythematosus (cSLE) is a kind of chronic inflammatory disease characterized by a highly abnormal immune system. This study aimed to detect the serum levels of Th (T helper) cytokines (IL-2, IL-4, IL-5, IL-6, IL-9, IL-10, IL-13, IL-17A, IL-17F, IL-21, IL-22, IFN-γ and TNF-α) in cSLE and healthy controls, and then to elucidate their association with clinical manifestations, disease activity and laboratory parameters. In order to provide clues for early diagnosis and timely intervention treatment of cSLE patients. Methods A total of 33 children with cSLE and 30 healthy children were enrolled in this study. Children in the cSLE group were classified into the inactive or active cSLE group according to their SLE disease activity index 2000 (SLEDAI-2 K) score. Th cytokine profiles in the peripheral blood were detected and analysed. Results Levels of IL-2, IL-10 and IL-21 in the cSLE group were significantly higher than those in the healthy control group (P < 0.05, P < 0.01 and P < 0.01, respectively). Expression of IL-2, IL-10 and IL-21 in the active cSLE group was significantly higher than that in the healthy control group (P < 0.05, P < 0.01 and P < 0.05, respectively), but that of IL-22 expression was markedly lower in the active cSLE group than in the healthy control group (P < 0.001). IL-21 in the inactive SLE group was significantly higher than that in the healthy control group (P < 0.05), and levels of IL-2 and IL-10 in the active cSLE group were significantly higher than those in the inactive cSLE group (P < 0.01 and P < 0.05). In-depth analysis showed that after excluding age, gender and drug interference, the levels of IL-2 (P < 0.05), IL-6 (P < 0.05) and IL-10 (P < 0.05) were still positively correlated with SLEDAI-2 K scores. However, the levels of IL-6 (P < 0.05) and IFN- γ (P < 0.05) were still negatively correlated with CD4+/CD8+, and the concentration of IL-6 (P < 0.05) was still positively correlated with the occurrence of nephritis. Conclusion This study provides a theoretical basis for the discovery of effective methods to regulate imbalance in T lymphocyte subsets in cSLE, which may lead to new approaches for the diagnosis of cSLE.
Collapse
|
19
|
Baccino D, Merlo G, Cozzani E, Rosa GM, Tini G, Burlando M, Parodi A. Cutaneous effects of antihypertensive drugs. GIORN ITAL DERMAT V 2020; 155:202-211. [DOI: 10.23736/s0392-0488.19.06360-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
20
|
Kunishita Y, Yoshimi R, Kamiyama R, Kishimoto D, Yoshida K, Hashimoto E, Komiya T, Sakurai N, Sugiyama Y, Kirino Y, Ozato K, Nakajima H. TRIM21 Dysfunction Enhances Aberrant B-Cell Differentiation in Autoimmune Pathogenesis. Front Immunol 2020; 11:98. [PMID: 32117252 PMCID: PMC7020776 DOI: 10.3389/fimmu.2020.00098] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/14/2020] [Indexed: 01/06/2023] Open
Abstract
TRIM21 is one of the autoantigens that reacts with an anti-SS-A antibody (Ab) present in patients with systemic lupus erythematosus (SLE) and Sjögren's syndrome. TRIM21 is thought to play a role in B-cell proliferation and apoptosis, among other activities. Here we examined a pathological role of TRIM21 in SLE. Trim21-deficient MRL/lpr mice were generated by backcrossing Trim21-deficient C57BL/6 mice to MRL/lpr mice. The levels of serum anti-dsDNA Ab and urine protein at 28 weeks of age were significantly higher in Trim21-deficient MRL/lpr mice as compared to wild-type MRL/lpr mice (p = 0.029 and 0.003, respectively). Resting B cells from Trim21-deficient mice showed significantly higher abilities to differentiate into plasmablasts and to produce Ab as compared with control mice. Due to the reduction of TRIM21-mediated ubiquitylation, IRF5 protein expression was increased in Trim21-deficient MRL/lpr mice (p = 0.021), which correlated with increased plasmablast generation and immunoglobulin production. B cells from SLE patients with anti-TRIM21 Ab seropositivity also showed a significantly higher ability to differentiate into plasmablasts as compared with those without anti-TRIM21 Ab or healthy controls. These results suggest that TRIM21 dysfunction contributes to SLE pathogenesis by promoting B-cell differentiation, for which anti-TRIM21 Ab may be partly responsible.
Collapse
Affiliation(s)
- Yosuke Kunishita
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ryusuke Yoshimi
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Reikou Kamiyama
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Daiga Kishimoto
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Koji Yoshida
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Eijin Hashimoto
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takaaki Komiya
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Natsuki Sakurai
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yumiko Sugiyama
- Center for Rheumatic Diseases, Yokohama City University Medical Center, Yokohama, Japan
| | - Yohei Kirino
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Keiko Ozato
- Program in Genomics of Differentiation, National Institute of Child Health and Human Development, National Institute of Health, Bethesda, MD, United States
| | - Hideaki Nakajima
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
21
|
Solimani F, Meier K, Ghoreschi K. Emerging Topical and Systemic JAK Inhibitors in Dermatology. Front Immunol 2019; 10:2847. [PMID: 31849996 PMCID: PMC6901833 DOI: 10.3389/fimmu.2019.02847] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 11/19/2019] [Indexed: 12/12/2022] Open
Abstract
Accumulating data on cellular and molecular pathways help to develop novel therapeutic strategies in skin inflammation and autoimmunity. Examples are psoriasis and atopic dermatitis, two clinically and immunologically well-defined disorders. Here, the elucidation of key pathogenic factors such as IL-17A/IL-23 on the one hand and IL-4/IL-13 on the other hand profoundly changed our therapeutic practice. The knowledge on intracellular pathways and governing factors is shifting our attention to new druggable molecules. Multiple cytokine receptors signal through Janus kinases (JAKs) and associated signal transducer and activators of transcription (STATs). Inhibition of JAKs can simultaneously block the function of multiple cytokines. Therefore, JAK inhibitors (JAKi) are emerging as a new class of drugs, which in dermatology can either be used systemically as oral drugs or locally in topical formulations. Inhibition of JAKs has been shown to be effective in various skin disorders. The first oral JAKi have been recently approved for the treatment of rheumatoid arthritis and psoriatic arthritis. Currently, multiple inhibitors of the JAK/STAT pathway are being investigated for skin diseases like alopecia areata, atopic dermatitis, dermatomyositis, graft-versus-host-disease, hidradenitis suppurativa, lichen planus, lupus erythematosus, psoriasis, and vitiligo. Here, we aim to discuss the immunological basis and current stage of development of JAKi in dermatology.
Collapse
Affiliation(s)
- Farzan Solimani
- Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Katharina Meier
- Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Kamran Ghoreschi
- Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
22
|
Abstract
Introduction: There is a growing list of drugs implicated in inducing both subacute and chronic forms of cutaneous lupus erythematosus. It is important to recognize these drugs in order to quickly treat patients with drug induced disease.Areas covered: This paper reviews the current literature describing drugs implicated in causing cutaneous lupus erythematosus. A Pubmed search was used to compile a list of medications implicated up to August 2019. It reviews new classes of drugs identified as causing cutaneous lupus erythematosus, the pathophysiology of the disease process, and current recommendations for treatment of the disease.Expert opinion: Many drugs have been identified as inducing lupus, and many more continue to be described in new reports. Further research is needed to understand this phenomenon, which will aid in the diagnosis and treatment of affected patients.
Collapse
Affiliation(s)
- Robert Borucki
- Department of Dermatology, Corporal Michael J. Crescenz VAMC, Philadelphia, PA, USA.,Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Victoria P Werth
- Department of Dermatology, Corporal Michael J. Crescenz VAMC, Philadelphia, PA, USA.,Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
23
|
Su YJ, Chen TH, Hsu CY, Chiu WT, Lin YS, Chi CC. Safety of Metformin in Psoriasis Patients With Diabetes Mellitus: A 17-Year Population-Based Real-World Cohort Study. J Clin Endocrinol Metab 2019; 104:3279-3286. [PMID: 30779846 DOI: 10.1210/jc.2018-02526] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/14/2019] [Indexed: 02/08/2023]
Abstract
CONTEXT The safety of metformin usage by diabetic psoriasis patients is unclear. OBJECTIVE To investigate the real-world safety of metformin in psoriatic patients with type 2 diabetes mellitus (T2DM). DESIGN We used the National Health Insurance Research Database to perform a cohort study. Based on metformin and other antidiabetic agent prescriptions, we divided all psoriasis patients with T2DM into the metformin group and the nonmetformin group. The outcomes included all-cause mortality, severe psoriasis, hospitalization due to psoriasis, and any cause for readmission. RESULTS The metformin group (n = 5520) and the nonmetformin group (n = 3062) did not significantly differ in the risk of all-cause mortality [hazard ratio (HR) 1.08; 95% CI, 0.90 to 1.30], severe psoriasis (HR, 0.95; 95% CI, 0.80 to 1.09), psoriasis-related admission (HR, 1.32; 95% CI, 0.90 to 1.93), and any-cause readmission (HR, 0.99; 95% CI, 0.90 to 1.11). The dose-response analysis found no significant increase in the risk of severe psoriasis and psoriasis-related admission, even with more than 80 defined daily doses or 1000 mg daily dose of metformin prescribed (P for linear trend > 0.05). CONCLUSION Metformin can be prescribed for diabetic psoriasis patients without safety concerns.
Collapse
Affiliation(s)
- Yu-Jih Su
- Division of Rheumatology, Allergy, and Immunology, Department of Internal Medicine, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tien-Hsing Chen
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Chung-Yuan Hsu
- Division of Rheumatology, Allergy, and Immunology, Department of Internal Medicine, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wen-Tsen Chiu
- Division of Rheumatology, Allergy, and Immunology, Department of Internal Medicine, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Sheng Lin
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Ching-Chi Chi
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Dermatology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| |
Collapse
|
24
|
O'Driscoll CA, Mezrich JD. The Aryl Hydrocarbon Receptor as an Immune-Modulator of Atmospheric Particulate Matter-Mediated Autoimmunity. Front Immunol 2018; 9:2833. [PMID: 30574142 PMCID: PMC6291477 DOI: 10.3389/fimmu.2018.02833] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/16/2018] [Indexed: 12/22/2022] Open
Abstract
This review examines the current literature on the effects of atmospheric particulate matter (PM) on autoimmune disease and proposes a new role for the aryl hydrocarbon receptor (AHR) as a modulator of T cells in PM-mediated autoimmune disease. There is a significant body of literature regarding the strong epidemiologic correlations between PM exposures and worsened autoimmune diseases. Genetic predispositions account for 30% of all autoimmune disease leaving environmental factors as major contributors. Increases in incidence and prevalence of autoimmune disease have occurred concurrently with an increase in air pollution. Currently, atmospheric PM is considered to be the greatest environmental health risk worldwide. Atmospheric PM is a complex heterogeneous mixture composed of diverse adsorbed organic compounds such as polycyclic aromatic hydrocarbons (PAHs) and dioxins, among others. Exposure to atmospheric PM has been shown to aggravate several autoimmune diseases. Despite strong correlations between exposure to atmospheric PM and worsened autoimmune disease, the mechanisms underlying aggravated disease are largely unknown. The AHR is a ligand activated transcription factor that responds to endogenous and exogenous ligands including toxicants present in PM, such as PAHs and dioxins. A few studies have investigated the effects of atmospheric PM on AHR activation and immune function and demonstrated that atmospheric PM can activate the AHR, change cytokine expression, and alter T cell differentiation. Several studies have found that the AHR modulates the balance between regulatory and effector T cell functions and drives T cell differentiation in vitro and in vivo using murine models of autoimmune disease. However, there are very few studies on the role of AHR in PM-mediated autoimmune disease. The AHR plays a critical role in the balance of effector and regulatory T cells and in autoimmune disease. With increased incidence and prevalence of autoimmune disease occurring concurrently with increases in air pollution, potential mechanisms that drive inflammatory and exacerbated disease need to be elucidated. This review focuses on the AHR as a potential mechanistic target for modulating T cell responses associated with PM-mediated autoimmune disease providing the most up-to-date literature on the role of AHR in autoreactive T cell function and autoimmune disease.
Collapse
Affiliation(s)
- Chelsea A. O'Driscoll
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Molecular and Environmental Toxicology Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Joshua D. Mezrich
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
25
|
Wolf SJ, Estadt SN, Gudjonsson JE, Kahlenberg JM. Human and Murine Evidence for Mechanisms Driving Autoimmune Photosensitivity. Front Immunol 2018; 9:2430. [PMID: 30405625 PMCID: PMC6205973 DOI: 10.3389/fimmu.2018.02430] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/02/2018] [Indexed: 01/29/2023] Open
Abstract
Ultraviolet (UV) light is an important environmental trigger for systemic lupus erythematosus (SLE) patients, yet the mechanisms by which UV light impacts disease are not fully known. This review covers evidence in both human and murine systems for the impacts of UV light on DNA damage, apoptosis, autoantigen exposure, cytokine production, inflammatory cell recruitment, and systemic flare induction. In addition, the role of the circadian clock is discussed. Evidence is compared in healthy individuals and SLE patients as well as in wild-type and lupus-prone mice. Further research is needed into the effects of UV light on cutaneous and systemic immune responses to understand how to prevent UV-light mediated lupus flares.
Collapse
Affiliation(s)
- Sonya J. Wolf
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
- Immunology Program, University of Michigan, Ann Arbor, MI, United States
| | - Shannon N. Estadt
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
- Immunology Program, University of Michigan, Ann Arbor, MI, United States
| | | | - J. Michelle Kahlenberg
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
26
|
Rannug A, Rannug U. The tryptophan derivative 6-formylindolo[3,2-b]carbazole, FICZ, a dynamic mediator of endogenous aryl hydrocarbon receptor signaling, balances cell growth and differentiation. Crit Rev Toxicol 2018; 48:555-574. [PMID: 30226107 DOI: 10.1080/10408444.2018.1493086] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The aryl hydrocarbon receptor (AHR) is not essential to survival, but does act as a key regulator of many normal physiological events. The role of this receptor in toxicological processes has been studied extensively, primarily employing the high-affinity ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). However, regulation of physiological responses by endogenous AHR ligands remains to be elucidated. Here, we review developments in this field, with a focus on 6-formylindolo[3,2-b]carbazole (FICZ), the endogenous ligand with the highest affinity to the receptor reported to date. The binding of FICZ to different isoforms of the AHR seems to be evolutionarily well conserved and there is a feedback loop that controls AHR activity through metabolic degradation of FICZ via the highly inducible cytochrome P450 1A1. Several investigations provide strong evidence that FICZ plays a critical role in normal physiological processes and can ameliorate immune diseases with remarkable efficiency. Low levels of FICZ are pro-inflammatory, providing resistance to pathogenic bacteria, stimulating the anti-tumor functions, and promoting the differentiation of cancer cells by repressing genes in cancer stem cells. In contrast, at high concentrations FICZ behaves in a manner similar to TCDD, exhibiting toxicity toward fish and bird embryos, immune suppression, and activation of cancer progression. The findings are indicative of a dual role for endogenously activated AHR in barrier tissues, aiding clearance of infections and suppressing immunity to terminate a vicious cycle that might otherwise lead to disease. There is not much support for the AHR ligand-specific immune responses proposed, the differences between FICZ and TCDD in this context appear to be explained by the rapid metabolism of FICZ.
Collapse
Affiliation(s)
- Agneta Rannug
- a Karolinska Institutet, Institute of Environmental Medicine , Stockholm , Sweden
| | - Ulf Rannug
- b Department of Molecular Biosciences , The Wenner-Gren Institute, Stockholm University , Stockholm , Sweden
| |
Collapse
|
27
|
Janosik T, Rannug A, Rannug U, Wahlström N, Slätt J, Bergman J. Chemistry and Properties of Indolocarbazoles. Chem Rev 2018; 118:9058-9128. [PMID: 30191712 DOI: 10.1021/acs.chemrev.8b00186] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The indolocarbazoles are an important class of nitrogen heterocycles which has evolved significantly in recent years, with numerous studies focusing on their diverse biological effects, or targeting new materials with potential applications in organic electronics. This review aims at providing a broad survey of the chemistry and properties of indolocarbazoles from an interdisciplinary point of view, with particular emphasis on practical synthetic aspects, as well as certain topics which have not been previously accounted for in detail, such as the occurrence, formation, biological activities, and metabolism of indolo[3,2- b]carbazoles. The literature of the past decade forms the basis of the text, which is further supplemented with older key references.
Collapse
Affiliation(s)
- Tomasz Janosik
- Research Institutes of Sweden , Bioscience and Materials, RISE Surface, Process and Formulation , SE-151 36 Södertälje , Sweden
| | - Agneta Rannug
- Institute of Environmental Medicine , Karolinska Institutet , SE-171 77 Stockholm , Sweden
| | - Ulf Rannug
- Department of Molecular Biosciences, The Wenner-Gren Institute , Stockholm University , SE-106 91 Stockholm , Sweden
| | | | - Johnny Slätt
- Department of Chemistry, Applied Physical Chemistry , KTH Royal Institute of Technology , SE-100 44 Stockholm , Sweden
| | - Jan Bergman
- Karolinska Institutet , Department of Biosciences and Nutrition , SE-141 83 Huddinge , Sweden
| |
Collapse
|
28
|
Kim Y, Shim SC. Wolves Trapped in the NETs–The Pathogenesis of Lupus Nephritis. JOURNAL OF RHEUMATIC DISEASES 2018. [DOI: 10.4078/jrd.2018.25.2.81] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Young Kim
- Division of Internal Medicine, Daejeon Veterans Hospital, Daejeon, Korea
| | - Seung Cheol Shim
- Division of Rheumatology, Department of Internal Medicine, Daejeon Rheumatoid and Degenerative Arthritis Center, Chungnam National University Hospital, Chungnam National University College of Medicine, Daejeon, Korea
| |
Collapse
|
29
|
Welsch K, Holstein J, Laurence A, Ghoreschi K. Targeting JAK/STAT signalling in inflammatory skin diseases with small molecule inhibitors. Eur J Immunol 2017; 47:1096-1107. [DOI: 10.1002/eji.201646680] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/08/2017] [Accepted: 05/24/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Katharina Welsch
- Department of Dermatology; University Medical Center, Eberhard Karls University Tübingen; Germany
| | - Julia Holstein
- Department of Dermatology; University Medical Center, Eberhard Karls University Tübingen; Germany
| | - Arian Laurence
- Department of Haemato-Oncology, Northern Centre for Cancer Care; Newcastle University; UK
| | - Kamran Ghoreschi
- Department of Dermatology; University Medical Center, Eberhard Karls University Tübingen; Germany
| |
Collapse
|
30
|
Tsokos GC, Lo MS, Costa Reis P, Sullivan KE. New insights into the immunopathogenesis of systemic lupus erythematosus. Nat Rev Rheumatol 2017; 12:716-730. [PMID: 27872476 DOI: 10.1038/nrrheum.2016.186] [Citation(s) in RCA: 838] [Impact Index Per Article: 104.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The aetiology of systemic lupus erythematosus (SLE) is multifactorial, and includes contributions from the environment, stochastic factors, and genetic susceptibility. Great gains have been made in understanding SLE through the use of genetic variant identification, mouse models, gene expression studies, and epigenetic analyses. Collectively, these studies support the concept that defective clearance of immune complexes and biological waste (such as apoptotic cells), neutrophil extracellular traps, nucleic acid sensing, lymphocyte signalling, and interferon production pathways are all central to loss of tolerance and tissue damage. Increased understanding of the pathogenesis of SLE is driving a renewed interest in targeted therapy, and researchers are now on the verge of developing targeted immunotherapy directed at treating either specific organ system involvement or specific subsets of patients with SLE. Accordingly, this Review places these insights within the context of our current understanding of the pathogenesis of SLE and highlights pathways that are ripe for therapeutic targeting.
Collapse
Affiliation(s)
- George C Tsokos
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Boston, Massachusetts 02215, USA
| | - Mindy S Lo
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Patricia Costa Reis
- Department of Pediatrics, Lisbon Medical School, Lisbon University, Santa Maria Hospital, Avenida Professor Egas Moniz, 1649-035 Lisbon, Portugal
| | - Kathleen E Sullivan
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia, The University of Pennsylvania Perelman School of Medicine, 3615 Civic Center Boulevard, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
31
|
Wu Z, Mei X, Ying Z, Sun Y, Song J, Shi W. Ultraviolet B inhibition of DNMT1 activity via AhR activation dependent SIRT1 suppression in CD4+ T cells from systemic lupus erythematosus patients. J Dermatol Sci 2017; 86:230-237. [PMID: 28336124 DOI: 10.1016/j.jdermsci.2017.03.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/22/2017] [Accepted: 03/08/2017] [Indexed: 12/01/2022]
Abstract
BACKGROUND Previous studies have reported that ultraviolet B (UVB) inhibits DNA methyltransferase1 (DNMT1) activity in CD4+ T cells from systemic lupus erythematosus (SLE) patients. Silent mating type information regulation 2 homolog 1 (SIRT1) is a type of Class III histone deacetylases (HDACs), and has been reported to play roles in the pathogenesis of different autoimmune diseases and can modulate DNMT1 activity. Moreover, aryl hydrocarbon receptor (AhR) has been reported to link UVB with SLE. However, the exact mechanisms by which DNMT1 activity is inhibited by UVB in lupus CD4+ T cells remain largely unknown. OBJECTIVE To elucidate the exact mechanisms by which DNMT1 activity is inhibited by UVB in lupus CD4+ T cells. METHODS Twenty-two newly diagnosed active SLE patients and 30 healthy controls were enrolled in the study. CD4+ T cells were isolated, cultured and treated. DNMT1 activity assay, quantitative real-time PCR (qRT-PCR), Western blotting, RNA interference using small interfering RNA and Chromatin Immunoprecipitation (ChIP) assay were employed. RESULTS DNMT1 activity was inhibited in si-SIRT1-transfected CD4+ T cells, and increased by the established SIRT1 activator, SRT1720. Moreover, the mRNA and protein expression of SIRT1 were suppressed by UVB exposure in lupus CD4+ T cells. UVB-inhibited DNMT1 activity was reversed by SRT1720 in si-control-transfected lupus CD4+ T cells, but not in si-SIRT1-transfected lupus CD4 + T cells. Furthermore, AhR activation by VAF347 reduced the mRNA and protein expression of SIRT1. ChIP using an antibody against AhR in normal CD4+ T cells revealed a 16-fold stronger signal at the site about 1.6kb upstream from the translation start site of the SIRT1 promoter. Finally, UVB could activate AhR and inhibit the mRNA and protein expression of SIRT1. AhR knockdown abrogated the inhibition of UVB-mediated SIRT1 mRNA and protein expression and DNMT1 activity in lupus CD4+ T cells. CONCLUSION UVB suppressed SIRT1 expression via activating AhR, and subsequently inhibited DNMT1 activity in CD4+ T cells from SLE patients.
Collapse
Affiliation(s)
- Zhouwei Wu
- Department of Dermatology, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, China.
| | - Xingyu Mei
- Department of Dermatology, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Zuolin Ying
- Department of Dermatology, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yue Sun
- Department of Dermatology, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Jun Song
- Department of Dermatology, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Weimin Shi
- Department of Dermatology, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
32
|
Laquinimod arrests experimental autoimmune encephalomyelitis by activating the aryl hydrocarbon receptor. Proc Natl Acad Sci U S A 2016; 113:E6145-E6152. [PMID: 27671624 DOI: 10.1073/pnas.1607843113] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Laquinimod is an oral drug currently being evaluated for the treatment of relapsing, remitting, and primary progressive multiple sclerosis and Huntington's disease. Laquinimod exerts beneficial activities on both the peripheral immune system and the CNS with distinctive changes in CNS resident cell populations, especially astrocytes and microglia. Analysis of genome-wide expression data revealed activation of the aryl hydrocarbon receptor (AhR) pathway in laquinimod-treated mice. The AhR pathway modulates the differentiation and function of several cell populations, many of which play an important role in neuroinflammation. We therefore tested the consequences of AhR activation in myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE) using AhR knockout mice. We demonstrate that the pronounced effect of laquinimod on clinical score, CNS inflammation, and demyelination in EAE was abolished in AhR-/- mice. Furthermore, using bone marrow chimeras we show that deletion of AhR in the immune system fully abrogates, whereas deletion within the CNS partially abrogates the effect of laquinimod in EAE. These data strongly support the idea that AhR is necessary for the efficacy of laquinimod in EAE and that laquinimod may represent a first-in-class drug targeting AhR for the treatment of multiple sclerosis and other neurodegenerative diseases.
Collapse
|
33
|
Oxidative Stress and Treg and Th17 Dysfunction in Systemic Lupus Erythematosus. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:2526174. [PMID: 27597882 PMCID: PMC4997077 DOI: 10.1155/2016/2526174] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/15/2016] [Accepted: 05/23/2016] [Indexed: 12/19/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease that involves multiple organ systems. The pathogenic mechanisms that cause SLE remain unclear; however, it is well recognized that the immune balance is disturbed and that this imbalance contributes to the autoimmune symptoms of SLE. Oxidative stress represents an imbalance between the production and manifestation of reactive oxygen species and the ability of the biological system to readily detoxify the reactive intermediates or to repair the resulting damage. In humans, oxidative stress is involved in many diseases, including atherosclerosis, myocardial infarction, and autoimmune diseases. Numerous studies have confirmed that oxidative stress plays an important role in the pathogenesis of SLE. This review mainly focuses on the recent research advances with respect to oxidative stress and regulatory T (Treg)/helper T 17 (Th17) cell dysfunction in the pathogenesis of SLE.
Collapse
|
34
|
Cochez PM, Michiels C, Hendrickx E, Van Belle AB, Lemaire MM, Dauguet N, Warnier G, de Heusch M, Togbe D, Ryffel B, Coulie PG, Renauld JC, Dumoutier L. AhR modulates the IL-22-producing cell proliferation/recruitment in imiquimod-induced psoriasis mouse model. Eur J Immunol 2016; 46:1449-59. [PMID: 27000947 DOI: 10.1002/eji.201546070] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 02/11/2016] [Accepted: 03/14/2016] [Indexed: 12/21/2022]
Abstract
IL-22 has a detrimental role in skin inflammatory processes, for example in psoriasis. As transcription factor, AhR controls the IL-22 production by several cell types (i.e. Th17 cells). Here, we analyzed the role of Ahr in IL-22 production by immune cells in the inflamed skin, using an imiquimod-induced psoriasis mouse model. Our results indicate that IL-22 is expressed in the ear of imiquimod-treated Ahr(-/-) mice but less than in wild-type mice. We then studied the role of AhR on three cell populations known to produce IL-22 in the skin: γδ T cells, Th17 cells, and ILC3, and a novel IL-22-producing cell type identified in this setting: CD4(-) CD8(-) TCRβ(+) T cells. We showed that AhR is required for IL-22 production by Th17, but not by the three other cell types, in the imiquimod-treated ears. Moreover, AhR has a role in the recruitment of γδ T cells, ILC3, and CD4(-) CD8(-) TCRβ(+) T cells into the inflamed skin or in their local proliferation. Taken together, AhR has a direct role in IL-22 production by Th17 cells in the mouse ear skin, but not by γδ T cells, CD4(-) CD8(-) TCRβ(+) T cells and ILCs.
Collapse
MESH Headings
- Aminoquinolines/adverse effects
- Animals
- Cell Proliferation
- Chemotaxis/genetics
- Chemotaxis/immunology
- Disease Models, Animal
- Imiquimod
- Immunity, Innate/genetics
- Immunity, Innate/immunology
- Interleukins/biosynthesis
- Interleukins/genetics
- Mice
- Mice, Knockout
- Psoriasis/etiology
- Psoriasis/metabolism
- Psoriasis/pathology
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Aryl Hydrocarbon/deficiency
- Receptors, Aryl Hydrocarbon/genetics
- Receptors, Aryl Hydrocarbon/metabolism
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Th17 Cells/immunology
- Th17 Cells/metabolism
- Interleukin-22
Collapse
Affiliation(s)
- Perrine M Cochez
- Ludwig Institute for Cancer Research, Brussels Branch, Belgium
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Camille Michiels
- Ludwig Institute for Cancer Research, Brussels Branch, Belgium
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Emilie Hendrickx
- Ludwig Institute for Cancer Research, Brussels Branch, Belgium
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Astrid B Van Belle
- Ludwig Institute for Cancer Research, Brussels Branch, Belgium
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Muriel M Lemaire
- Ludwig Institute for Cancer Research, Brussels Branch, Belgium
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Nicolas Dauguet
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Guy Warnier
- Ludwig Institute for Cancer Research, Brussels Branch, Belgium
| | - Magali de Heusch
- Ludwig Institute for Cancer Research, Brussels Branch, Belgium
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Dieudonnée Togbe
- INEM-UMR7355, Molecular Immunology, University of Orleans, Orleans, France
- CNRS, UMR7355 and Artimmune SAS, Orleans, France
| | - Bernhard Ryffel
- INEM-UMR7355, Molecular Immunology, University of Orleans, Orleans, France
- CNRS, UMR7355 and Artimmune SAS, Orleans, France
| | - Pierre G Coulie
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Jean-Christophe Renauld
- Ludwig Institute for Cancer Research, Brussels Branch, Belgium
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Laure Dumoutier
- Ludwig Institute for Cancer Research, Brussels Branch, Belgium
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|