1
|
Yang B, Piedfort O, Sanchez-Sanchez G, Lavergne A, Gong M, Peng G, Madrigal A, Petrellis G, Katsandegwaza B, Rodriguez LR, Balthazar A, Meyer SJ, Van Isterdael G, Van Duyse J, Andris F, Bai Q, Marichal T, Machiels B, Nitschke L, Najafabadi HS, King IL, Vermijlen D, Dewals BG. IL-4 induces CD22 expression to restrain the effector program of virtual memory T cells. Sci Immunol 2025; 10:eadk4841. [PMID: 39919198 DOI: 10.1126/sciimmunol.adk4841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/08/2024] [Accepted: 01/13/2025] [Indexed: 02/09/2025]
Abstract
Parasitic helminths induce the production of interleukin-4 (IL-4), which causes the expansion of virtual memory CD8+ T cells (TVM cells), a cell subset that contributes to the control of coinfection with intracellular pathogens. However, the mechanisms regulating IL-4-dependent TVM cell activation and expansion remain ill defined. Here, we used single-cell RNA sequencing of CD8+ T cells to identify pathways that control IL-4-dependent TVM cell responses. Gene signature analysis of CD8+ T cells identified a cell cluster marked by CD22, a canonical regulator of B cell activation, as a selective surface marker of IL-4-induced TVM cells. CD22+ TVM cells were enriched for interferon-γ and granzyme A and retained a diverse TCR repertoire while enriched in self-reactive CDR3 sequences. CD22 intrinsically regulated the IL-4-induced CD8+ T cell effector program, resulting in reduced responsiveness of CD22+ TVM cells and regulatory functions to infection and inflammation. Thus, helminth-induced IL-4 drives the expansion and activation of TVM cells that is counterinhibited by CD22.
Collapse
Affiliation(s)
- Bin Yang
- Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine - FARAH, University of Liège, Liège, Belgium
| | - Ophélie Piedfort
- Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine - FARAH, University of Liège, Liège, Belgium
| | - Guillem Sanchez-Sanchez
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Institute for Medical Immunology (IMI), ULB, Gosselies, Belgium
- ULB Center for Research in Immunology (U-CRI), Gosselies, Belgium
| | - Arnaud Lavergne
- GIGA-Genomics Core Facility, University of Liège, Liège, Belgium
| | - Meijiao Gong
- Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine - FARAH, University of Liège, Liège, Belgium
| | - Garrie Peng
- Department of Microbiology and Immunology, Meakins-Christie Laboratories, Research Institute of McGill University Health Centre, Montreal, Quebec, Canada
- McGill Interdisciplinary Initiative in Infection and Immunity, Montreal, Quebec, Canada
- McGill Centre for Microbiome Research, Montreal, Quebec, Canada
| | - Ariel Madrigal
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
- McGill Genome Centre, Dahdaleh Institute of Genomic Medicine, Montreal, QC H3A 0G1, Canada
| | - Georgios Petrellis
- Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine - FARAH, University of Liège, Liège, Belgium
| | - Brunette Katsandegwaza
- Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine - FARAH, University of Liège, Liège, Belgium
| | - Lucia Rodriguez Rodriguez
- Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine - FARAH, University of Liège, Liège, Belgium
| | - Alexis Balthazar
- Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine - FARAH, University of Liège, Liège, Belgium
| | - Sarah J Meyer
- Division of Genetics, Department of Biology, University of Erlangen, 91058 Erlangen, Germany
| | - Gert Van Isterdael
- VIB Flow Core, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Julie Van Duyse
- VIB Flow Core, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Fabienne Andris
- Institute for Medical Immunology (IMI), ULB, Gosselies, Belgium
| | - Qiang Bai
- Laboratory of Immunophysiology, GIGA Institute, ULiège, Liège, Belgium
- PhyMedExp, INSERM U1046, University of Montpellier, Montpellier, France
| | - Thomas Marichal
- Laboratory of Immunophysiology, GIGA Institute, ULiège, Liège, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO) Department, WEL Research Institute, Wavre, Belgium
| | - Bénédicte Machiels
- Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine - FARAH, University of Liège, Liège, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO) Department, WEL Research Institute, Wavre, Belgium
| | - Lars Nitschke
- Division of Genetics, Department of Biology, University of Erlangen, 91058 Erlangen, Germany
| | - Hamed S Najafabadi
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
- McGill Genome Centre, Dahdaleh Institute of Genomic Medicine, Montreal, QC H3A 0G1, Canada
| | - Irah L King
- Department of Microbiology and Immunology, Meakins-Christie Laboratories, Research Institute of McGill University Health Centre, Montreal, Quebec, Canada
- McGill Interdisciplinary Initiative in Infection and Immunity, Montreal, Quebec, Canada
- McGill Centre for Microbiome Research, Montreal, Quebec, Canada
| | - David Vermijlen
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Institute for Medical Immunology (IMI), ULB, Gosselies, Belgium
- ULB Center for Research in Immunology (U-CRI), Gosselies, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO) Department, WEL Research Institute, Wavre, Belgium
| | - Benjamin G Dewals
- Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine - FARAH, University of Liège, Liège, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO) Department, WEL Research Institute, Wavre, Belgium
| |
Collapse
|
2
|
Choi SM, Park HJ, Boo HJ, Jung KC, Lee JI. Characterization of CD8 + virtual memory T cells in IL-4 knockout mice using single-cell RNA sequencing. Biochem Biophys Res Commun 2024; 738:150950. [PMID: 39515094 DOI: 10.1016/j.bbrc.2024.150950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/20/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
Antigen-inexperienced memory-phenotype CD8+ T cells are categorized as innate memory cells in the thymus or virtual memory (VM) CD8+ T cells in peripheral tissues. The key distinction between these cell types is their differing responses to IL-4, but the minimal effect of IL-4 on VM CD8+ T cell expansion in the periphery is not well understood. To address this, we investigated the development of VM CD8+ T cells in the periphery of IL-4 knockout (KO) C57BL/6 mouse. CD8+ splenocytes were isolated from the spleen of wilt-type (WT) and IL-4 KO mice, followed by single-cell RNA sequencing and Seurat analysis on sorted CD8+ cells using the 10x Genomics platform. This study identified various CD8+ T cell subtypes, including naïve, effector, IFN-stimulated, true memory (TM), and VM T cells. VM CD8+ T cells were characterized by high expression of Cd44, Cxcr3, Il2rb, Eomes, Tbx21, Ly6c2, and low expression of Itga4. In IL-4-deficient mouse, macrophages were significantly reduced, while memory T cell populations showed a slight increase compared to WT mouse. Both Itga4+ TM and Itga4- VM CD8+ T cells were more abundant in IL-4 KO mouse. Within the VM T cell group, Ly6a- VM CD8+ T cells were reduced, while Ly6a + VM CD8+ T cells were increased relative to WT mouse. These Ly6a+ VM CD8+ cells exhibited high expression of genes linked to type I IFN signaling, such as Isg15, Ifit1, and Stat1. Our findings suggest that IFN-influenced Ly6a + VM CD8+ T cells play a role in maintaining the peripheral VM CD8+ T cell population in the absence of IL-4.
Collapse
Affiliation(s)
- Sung Min Choi
- Graduate Course of Translational Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Hi Jung Park
- Graduate Course of Translational Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Hyun Ji Boo
- Graduate Course of Translational Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Kyeong Cheon Jung
- Transplantation Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea; Department of Pathology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea; Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, 03080, Republic of Korea
| | - Jae Il Lee
- Transplantation Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea; Department of Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| |
Collapse
|
3
|
Zhou J, Liu J, Wang B, Li N, Liu J, Han Y, Cao X. Eosinophils promote CD8 + T cell memory generation to potentiate anti-bacterial immunity. Signal Transduct Target Ther 2024; 9:43. [PMID: 38413575 PMCID: PMC10899176 DOI: 10.1038/s41392-024-01752-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/03/2024] [Accepted: 01/22/2024] [Indexed: 02/29/2024] Open
Abstract
Memory CD8+ T cell generation is crucial for pathogen elimination and effective vaccination against infection. The cellular and molecular circuitry that underlies the generation of memory CD8+ T cells remains elusive. Eosinophils can modulate inflammatory allergic responses and interact with lymphocytes to regulate their functions in immune defense. Here we report that eosinophils are required for the generation of memory CD8+ T cells by inhibiting CD8+ T cell apoptosis. Eosinophil-deficient mice display significantly impaired memory CD8+ T cell response and weakened resistance against Listeria monocytogenes (L.m.) infection. Mechanistically, eosinophils secrete interleukin-4 (IL-4) to inhibit JNK/Caspase-3 dependent apoptosis of CD8+ T cells upon L.m. infection in vitro. Furthermore, active eosinophils are recruited into the spleen and secrete more IL-4 to suppress CD8+ T cell apoptosis during early stage of L.m. infection in vivo. Adoptive transfer of wild-type (WT) eosinophils but not IL-4-deficient eosinophils into eosinophil-deficient mice could rescue the impaired CD8+ T cell memory responses. Together, our findings suggest that eosinophil-derived IL-4 promotes the generation of CD8+ T cell memory and enhances immune defense against L.m. infection. Our study reveals a new adjuvant role of eosinophils in memory T cell generation and provides clues for enhancing the vaccine potency via targeting eosinophils and related cytokines.
Collapse
Affiliation(s)
- Jun Zhou
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, 310058, China
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, 200433, China
| | - Jiaqi Liu
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Bingjing Wang
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Nan Li
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, 200433, China
| | - Juan Liu
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, 200433, China
| | - Yanmei Han
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, 200433, China.
| | - Xuetao Cao
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, 200433, China.
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China.
- Institute of Immunology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
4
|
Chen H, Cao Z, Liu M, Diamond MS, Jin X. The impact of helminth-induced immunity on infection with bacteria or viruses. Vet Res 2023; 54:87. [PMID: 37789420 PMCID: PMC10548622 DOI: 10.1186/s13567-023-01216-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/21/2023] [Indexed: 10/05/2023] Open
Abstract
Different human and animal pathogens trigger distinct immune responses in their hosts. The infection of bacteria or viruses can trigger type I pro-inflammatory immune responses (e.g., IFN-γ, TNF-α, TH1 cells), whereas infection by helminths typically elicits a type II host resistance and tolerizing immune response (e.g., IL-4, IL-5, IL-13, TH2 cells). In some respects, the type I and II immune responses induced by these different classes of pathogens are antagonistic. Indeed, recent studies indicate that infection by helminths differentially shapes the response and outcome of subsequent infection by viruses and bacteria. In this review, we summarize the current knowledge on how helminth infections influence concurrent or subsequent microbial infections and also discuss the implications for helminth-mediated immunity on the outcome of SARS-CoV-2 disease.
Collapse
Affiliation(s)
- Hong Chen
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zengguo Cao
- State Key Laboratory of Virology, Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Mingyuan Liu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Michael S Diamond
- Departments of Medicine, Molecular Microbiology, Pathology, and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Xuemin Jin
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China.
| |
Collapse
|
5
|
Hussain T, Nguyen A, Daunt C, Thiele D, Pang ES, Li J, Zaini A, O'Keeffe M, Zaph C, Harris NL, Quinn KM, La Gruta NL. Helminth Infection-Induced Increase in Virtual Memory CD8 T Cells Is Transient, Driven by IL-15, and Absent in Aged Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:297-309. [PMID: 36524995 DOI: 10.4049/jimmunol.2200316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 11/28/2022] [Indexed: 01/04/2023]
Abstract
CD8 virtual memory T (TVM) cells are Ag-naive CD8 T cells that have undergone partial differentiation in response to common γ-chain cytokines, particularly IL-15 and IL-4. TVM cells from young individuals are highly proliferative in response to TCR and cytokine stimulation but, with age, they lose TCR-mediated proliferative capacity and exhibit hallmarks of senescence. Helminth infection can drive an increase in TVM cells, which is associated with improved pathogen clearance during subsequent infectious challenge in young mice. Given the cytokine-dependent profile of TVM cells and their age-associated dysfunction, we traced proliferative and functional changes in TVM cells, compared with true naive CD8 T cells, after helminth infection of young and aged C57BL/6 mice. We show that IL-15 is essential for the helminth-induced increase in TVM cells, which is driven only by proliferation of existing TVM cells, with negligible contribution from true naive cell differentiation. Additionally, TVM cells showed the greatest proliferation in response to helminth infection and IL-15 compared with other CD8 T cells. Furthermore, TVM cells from aged mice did not undergo expansion after helminth infection due to both TVM cell-intrinsic and -extrinsic changes associated with aging.
Collapse
Affiliation(s)
- Tabinda Hussain
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Angela Nguyen
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Carmel Daunt
- Laboratory of Intestinal Immunology, Department of Immunology and Pathology, Central Clinical School, The Alfred Centre, Monash University, Melbourne, Victoria, Australia
| | - Daniel Thiele
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Ee Shan Pang
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jasmine Li
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia.,Cancer Immunology Program, Peter MacCallum Cancer Centre, Parkville, Victoria, Australia; and
| | - Aidil Zaini
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Meredith O'Keeffe
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Colby Zaph
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Nicola L Harris
- Laboratory of Intestinal Immunology, Department of Immunology and Pathology, Central Clinical School, The Alfred Centre, Monash University, Melbourne, Victoria, Australia
| | - Kylie M Quinn
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Bundoora, Victoria, Australia
| | - Nicole L La Gruta
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
6
|
Seok J, Cho SD, Seo SJ, Park SH. Roles of Virtual Memory T Cells in Diseases. Immune Netw 2023; 23:e11. [PMID: 36911806 PMCID: PMC9995991 DOI: 10.4110/in.2023.23.e11] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 03/07/2023] Open
Abstract
Memory T cells that mediate fast and effective protection against reinfections are usually generated upon recognition on foreign Ags. However, a "memory-like" T-cell population, termed virtual memory T (TVM) cells that acquire a memory phenotype in the absence of foreign Ag, has been reported. Although, like innate cells, TVM cells reportedly play a role in first-line defense to bacterial or viral infections, their protective or pathological roles in immune-related diseases are largely unknown. In this review, we discuss the current understanding of TVM cells, focusing on their distinct characteristics, immunological properties, and roles in various immune-related diseases, such as infections and cancers.
Collapse
Affiliation(s)
- Joon Seok
- Department of Dermatology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Sung-Dong Cho
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Seong Jun Seo
- Department of Dermatology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Su-Hyung Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
- The Center for Epidemic Preparedness, KAIST Institute, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| |
Collapse
|
7
|
Viano ME, Baez NS, Savid-Frontera C, Lidon NL, Hodge DL, Herbelin A, Gombert JM, Barbarin A, Rodriguez-Galan MC. Virtual Memory CD8 + T Cells: Origin and Beyond. J Interferon Cytokine Res 2022; 42:624-642. [PMID: 36083273 PMCID: PMC9835308 DOI: 10.1089/jir.2022.0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/19/2022] [Indexed: 01/21/2023] Open
Abstract
The presence of CD8+ T cells with a memory phenotype in nonimmunized mice has been noted for decades, but it was not until about 2 decades ago that they began to be studied in greater depth. Currently called virtual memory CD8+ T cells, they consist of a heterogeneous group of cells with memory characteristics, without any previous contact with their specific antigens. These cells were identified in mice, but a few years ago, a cell type with characteristics equivalent to the murine ones was described in healthy humans. In this review, we address the different aspects of its biology mainly developed in murine models and what is currently known about its cellular equivalent in humans.
Collapse
Affiliation(s)
- Maria Estefania Viano
- Inmunología, CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Natalia Soledad Baez
- Inmunología, CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Constanza Savid-Frontera
- Inmunología, CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Nicolás Leonel Lidon
- Inmunología, CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | - André Herbelin
- Inserm U1313, Poitiers, France
- Université de Poitiers, Poitiers, France
| | - Jean-Marc Gombert
- Inserm U1313, Poitiers, France
- Université de Poitiers, Poitiers, France
- Service d'Immunologie et Inflammation, CHU de Poitiers, Poitiers, France
| | - Alice Barbarin
- Inserm U1313, Poitiers, France
- CHU de Poitiers, Poitiers, France
| | | |
Collapse
|
8
|
Savid-Frontera C, Viano ME, Baez NS, Lidon NL, Fontaine Q, Young HA, Vimeux L, Donnadieu E, Rodriguez-Galan MC. Exploring the immunomodulatory role of virtual memory CD8+ T cells: Role of IFN gamma in tumor growth control. Front Immunol 2022; 13:971001. [PMID: 36330506 PMCID: PMC9623162 DOI: 10.3389/fimmu.2022.971001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/23/2022] [Indexed: 11/24/2022] Open
Abstract
Virtual memory CD8+ T cells (TVM) have been described as cells with a memory-like phenotype but without previous antigen (Ag) exposure. TVM cells have the ability to respond better to innate stimuli rather than by TCR engagement, producing large amounts of interferon gamma (IFNγ) after stimulation with interleukin (IL)-12 plus IL-18. As a result of the phenotypic similarity, TVM cells have been erroneously included in the central memory T cell subset for many years. However, they can now be discriminated via the CD49d receptor, which is up-regulated only on conventional memory T cells (TMEM) and effector T cells (TEFF) after specific cognate Ag recognition by a TCR. In this work we show that systemic expression of IL-12 plus IL-18 induced an alteration in the normal TVM vs TMEM/TEFF distribution in secondary lymphoid organs and a preferential enrichment of TVM cells in the melanoma (B16) and the pancreatic ductal adenocarcinoma (KPC) tumor models. Using our KPC bearing OT-I mouse model, we observed a significant increase in CD8+ T cell infiltrating the tumor islets after IL-12+IL-18 stimulation with a lower average speed when compared to those from control mice. This finding indicates a stronger interaction of T cells with tumor cells after cytokine stimulation. These results correlate with a significant reduction in tumor size in both tumor models in IL-12+IL-18-treated OT-I mice compared to control OT-I mice. Interestingly, the absence of IFNγ completely abolished the high antitumor capacity induced by IL-12+IL-18 expression, indicating an important role for these cytokines in early tumor growth control. Thus, our studies provide significant new information that indicates an important role of TVM cells in the immune response against cancer.
Collapse
Affiliation(s)
- Constanza Savid-Frontera
- Inmunología CIBICI-CONICET Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Maria Estefania Viano
- Inmunología CIBICI-CONICET Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Natalia S. Baez
- Inmunología CIBICI-CONICET Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Nicolas L. Lidon
- Inmunología CIBICI-CONICET Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Quentin Fontaine
- Inmunología CIBICI-CONICET Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Howard A. Young
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Lene Vimeux
- Université Paris Cité, CNRS, INSERM, Equipe Labellisée Ligue Contre le Cancer, Institut Cochin, F-75014 Paris, France
| | - Emmanuel Donnadieu
- Université Paris Cité, CNRS, INSERM, Equipe Labellisée Ligue Contre le Cancer, Institut Cochin, F-75014 Paris, France
| | - Maria Cecilia Rodriguez-Galan
- Inmunología CIBICI-CONICET Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- *Correspondence: Maria Cecilia Rodriguez-Galan,
| |
Collapse
|
9
|
Differences in Expression of Selected Interleukins in HIV-Infected Subjects Undergoing Antiretroviral Therapy. Viruses 2022; 14:v14050997. [PMID: 35632739 PMCID: PMC9144358 DOI: 10.3390/v14050997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/20/2022] [Accepted: 05/05/2022] [Indexed: 11/29/2022] Open
Abstract
The use of combined antiretroviral therapy (cART) inhibits the replication of the Human Immunodeficiency Virus (HIV) and thus may affect the functioning of the immune system, e.g., induce changes in the expression of certain cytokines. The aim was to examine the effect of cART on the expression of selected cytokines: interleukin -4, -7 and -15 in HIV-infected subjects. The test material was the plasma of HIV-infected men and healthy men (C, control group). The levels of interleukin were measured by immunoenzymatic method before cART and one year after treatment in relation to the C group. HIV-infected men were analyzed in subgroups depending on the HIV-RNA viral load, CD4+ and CD8+T-cell counts, and the type of therapeutic regimen. A significantly higher level of IL-4 was demonstrated in HIV-infected men before cART compared to those after treatment and in the control group. The use of cART resulted in a significant decrease in the level of IL-7 in HIV-infected men; however, high levels of IL-7 were associated with a low number of CD4+ T cells and CD8+ T cells. An increase in the level of IL-15 in HIV-infected men was noted after the use of cART. There was no difference in the expression of interleukins depending on the treatment regimen used. The study showed the effect of cART on the expression of interleukins, especially IL-4 and IL-7. Further research in this direction seems promising, confirming the role of these interleukins in the course of the disease.
Collapse
|
10
|
Kwesi-Maliepaard EM, Jacobs H, van Leeuwen F. Signals for antigen-independent differentiation of memory CD8 + T cells. Cell Mol Life Sci 2021; 78:6395-6408. [PMID: 34398252 PMCID: PMC8558200 DOI: 10.1007/s00018-021-03912-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/23/2021] [Accepted: 08/03/2021] [Indexed: 12/18/2022]
Abstract
Conventional CD8+ memory T cells develop upon stimulation with foreign antigen and provide increased protection upon re-challenge. Over the past two decades, new subsets of CD8+ T cells have been identified that acquire memory features independently of antigen exposure. These antigen-inexperienced memory T cells (TAIM) are described under several names including innate memory, virtual memory, and memory phenotype. TAIM cells exhibit characteristics of conventional or true memory cells, including antigen-specific responses. In addition, they show responsiveness to innate stimuli and have been suggested to provide additional levels of protection toward infections and cancer. Here, we discuss the current understanding of TAIM cells, focusing on extrinsic and intrinsic molecular conditions that favor their development, their molecular definitions and immunological properties, as well as their transcriptional and epigenetic regulation.
Collapse
Affiliation(s)
| | - Heinz Jacobs
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, 1066CX, Amsterdam, The Netherlands
| | - Fred van Leeuwen
- Division of Gene Regulation, Netherlands Cancer Institute, 1066CX, Amsterdam, The Netherlands.
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, 1105AZ, Amsterdam, The Netherlands.
| |
Collapse
|
11
|
Moudra A, Niederlova V, Novotny J, Schmiedova L, Kubovciak J, Matejkova T, Drobek A, Pribikova M, Stopkova R, Cizkova D, Neuwirth A, Michalik J, Krizova K, Hudcovic T, Kolar M, Kozakova H, Kreisinger J, Stopka P, Stepanek O. Phenotypic and Clonal Stability of Antigen-Inexperienced Memory-like T Cells across the Genetic Background, Hygienic Status, and Aging. THE JOURNAL OF IMMUNOLOGY 2021; 206:2109-2121. [PMID: 33858960 DOI: 10.4049/jimmunol.2001028] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/01/2021] [Indexed: 12/17/2022]
Abstract
Ag-inexperienced memory-like T (AIMT) cells are functionally unique T cells, representing one of the two largest subsets of murine CD8+ T cells. However, differences between laboratory inbred strains, insufficient data from germ-free mice, a complete lack of data from feral mice, and an unclear relationship between AIMT cells formation during aging represent major barriers for better understanding of their biology. We performed a thorough characterization of AIMT cells from mice of different genetic background, age, and hygienic status by flow cytometry and multiomics approaches, including analyses of gene expression, TCR repertoire, and microbial colonization. Our data showed that AIMT cells are steadily present in mice, independent of their genetic background and hygienic status. Despite differences in their gene expression profiles, young and aged AIMT cells originate from identical clones. We identified that CD122 discriminates two major subsets of AIMT cells in a strain-independent manner. Whereas thymic CD122LOW AIMT cells (innate memory) prevail only in young animals with high thymic IL-4 production, peripheral CD122HIGH AIMT cells (virtual memory) dominate in aged mice. Cohousing with feral mice changed the bacterial colonization of laboratory strains but had only minimal effects on the CD8+ T cell compartment, including AIMT cells.
Collapse
Affiliation(s)
- Alena Moudra
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Veronika Niederlova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jiri Novotny
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.,Department of Informatics and Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Prague, Czech Republic
| | - Lucie Schmiedova
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jan Kubovciak
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.,Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tereza Matejkova
- Department of Zoology, Faculty of Science, BIOCEV, Charles University, Vestec, Czech Republic
| | - Ales Drobek
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michaela Pribikova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.,Laboratory of Immunity & Cell Communication, First Faculty of Medicine, BIOCEV, Charles University, Vestec, Czech Republic
| | - Romana Stopkova
- Department of Zoology, Faculty of Science, BIOCEV, Charles University, Vestec, Czech Republic
| | - Dagmar Cizkova
- Research Facility Studenec, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Ales Neuwirth
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Juraj Michalik
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Katerina Krizova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tomas Hudcovic
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic; and
| | - Michal Kolar
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.,Department of Informatics and Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Prague, Czech Republic
| | - Hana Kozakova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic; and
| | - Jakub Kreisinger
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Pavel Stopka
- Department of Zoology, Faculty of Science, BIOCEV, Charles University, Vestec, Czech Republic
| | - Ondrej Stepanek
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic; .,Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| |
Collapse
|
12
|
Thiele D, La Gruta NL, Nguyen A, Hussain T. Hiding in Plain Sight: Virtually Unrecognizable Memory Phenotype CD8 + T cells. Int J Mol Sci 2020; 21:ijms21228626. [PMID: 33207648 PMCID: PMC7698292 DOI: 10.3390/ijms21228626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 02/07/2023] Open
Abstract
Virtual memory T (TVM) cells are a recently described population of conventional CD8+ T cells that, in spite of their antigen inexperience, express markers of T cell activation. TVM cells exhibit rapid responsiveness to both antigen-specific and innate stimuli in youth but acquire intrinsic antigen-specific response defects in the elderly. In this article, we review how the identification of TVM cells necessitates a re-evaluation of accepted paradigms for conventional memory T (TMEM) cells, the potential for heterogeneity within the TVM population, and the defining characteristics of TVM cells. Further, we highlight recent literature documenting the development of TVM cells as a distinct CD8+ T cell lineage as well their biological significance in the context of disease.
Collapse
|
13
|
White AJ, Lucas B, Jenkinson WE, Anderson G. Invariant NKT Cells and Control of the Thymus Medulla. THE JOURNAL OF IMMUNOLOGY 2019; 200:3333-3339. [PMID: 29735644 DOI: 10.4049/jimmunol.1800120] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 02/20/2018] [Indexed: 12/29/2022]
Abstract
Most αβ T cells that form in the thymus are generated during mainstream conventional thymocyte development and involve the generation and selection of a diverse αβ TCR repertoire that recognizes self-peptide/MHC complexes. Additionally, the thymus also supports the production of T cell subsets that express αβ TCRs but display unique developmental and functional features distinct from conventional αβ T cells. These include multiple lineages of CD1d-restricted invariant NKT (iNKT) cells that express an invariant αβ TCR, branch off from mainstream thymocytes at the CD4+CD8+ stage, and are potent producers of polarizing cytokines. Importantly, and despite their differences, iNKT cells and conventional αβ T cells share common requirements for thymic epithelial microenvironments during their development. Moreover, emerging evidence suggests that constitutive cytokine production by iNKT cells influences both conventional thymocyte development and the intrathymic formation of additional innate CD8+ αβ T cells with memory-like properties. In this article, we review evidence for an intrathymic innate lymphocyte network in which iNKT cells play key roles in multiple aspects of thymus function.
Collapse
Affiliation(s)
- Andrea J White
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, Medical School, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Beth Lucas
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, Medical School, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - William E Jenkinson
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, Medical School, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Graham Anderson
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, Medical School, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
14
|
Virtual memory CD8 T cells expanded by helminth infection confer broad protection against bacterial infection. Mucosal Immunol 2019; 12:258-264. [PMID: 30361537 PMCID: PMC6301144 DOI: 10.1038/s41385-018-0100-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 09/24/2018] [Accepted: 09/30/2018] [Indexed: 02/04/2023]
Abstract
Epidemiological data and animal studies suggest that helminth infection exerts potent immunomodulatory effects that dampen host immunity against unrelated pathogens. Despite this notion, we unexpectedly discovered that prior helminth infection resulted in enhanced protection against subsequent systemic and enteric bacterial infection. A population of virtual memory CD8 T (CD8 TVM) cells underwent marked expansion upon infection with the helminth Heligmosomoides polygurus by an IL-4-regulated, antigen-independent mechanism. CD8 TVM cells disseminated to secondary lymphoid organs and established a major population of the systemic CD8 T cell pool. IL-4 production elicited by protein immunization or selective activation of natural killer T cells also results in the expansion of CD8 TVM cells. Notably, CD8 TVM cells expanded by helminth infection are sufficient to transfer innate non-cognate protection against bacteria to naïve animals. This innate non-cognate "collateral protection" mediated by CD8 TVM might provide parasitized animals an advantage against subsequent unrelated infections, and represents a potential novel strategy for vaccination.
Collapse
|
15
|
Helminth-induced IL-4 expands bystander memory CD8 + T cells for early control of viral infection. Nat Commun 2018; 9:4516. [PMID: 30375396 PMCID: PMC6207712 DOI: 10.1038/s41467-018-06978-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/05/2018] [Indexed: 12/26/2022] Open
Abstract
Infection with parasitic helminths can imprint the immune system to modulate bystander inflammatory processes. Bystander or virtual memory CD8+ T cells (TVM) are non-conventional T cells displaying memory properties that can be generated through responsiveness to interleukin (IL)-4. However, it is not clear if helminth-induced type 2 immunity functionally affects the TVM compartment. Here, we show that helminths expand CD44hiCD62LhiCXCR3hiCD49dlo TVM cells through direct IL-4 signaling in CD8+ T cells. Importantly, helminth-mediated conditioning of TVM cells provided enhanced control of acute respiratory infection with the murid gammaherpesvirus 4 (MuHV-4). This enhanced control of MuHV-4 infection could further be explained by an increase in antigen-specific CD8+ T cell effector responses in the lung and was directly dependent on IL-4 signaling. These results demonstrate that IL-4 during helminth infection can non-specifically condition CD8+ T cells, leading to a subsequently raised antigen-specific CD8+ T cell activation that enhances control of viral infection. Parasitic helminth infection is known to impact upon the host response to other bystander inflammatory processes. Here the authors show that IL4 production induced by helminth infection results in expansion of bystander CD8+ memory T cells and enhanced control to viral infection.
Collapse
|
16
|
Pribikova M, Moudra A, Stepanek O. Opinion: Virtual memory CD8 T cells and lymphopenia-induced memory CD8 T cells represent a single subset: Homeostatic memory T cells. Immunol Lett 2018; 203:57-61. [PMID: 30243945 DOI: 10.1016/j.imlet.2018.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/25/2018] [Accepted: 09/06/2018] [Indexed: 12/15/2022]
Abstract
It is well established that lymphopenia induces the formation of the memory-phenotype T cells without the exposure to foreign antigens. More recently, the memory-phenotype antigen-inexperienced memory T cells were described in lymphoreplete mice and called virtual memory T cells. In this review, we compare multiple aspects of the biology of lymphopenia-induced memory T cells and virtual memory T cells, including cytokine requirements, the role of T-cell receptor specificity in the differentiation process, gene expression signature, and the immune response. Based on this comparison, we conclude that lymphopenia-induced memory T cells and virtual memory T cells most likely represent a single T-cell subset, for which we propose a term 'homeostatic memory T cells'.
Collapse
Affiliation(s)
- Michaela Pribikova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Alena Moudra
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ondrej Stepanek
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
17
|
Drobek A, Moudra A, Mueller D, Huranova M, Horkova V, Pribikova M, Ivanek R, Oberle S, Zehn D, McCoy KD, Draber P, Stepanek O. Strong homeostatic TCR signals induce formation of self-tolerant virtual memory CD8 T cells. EMBO J 2018; 37:embj.201798518. [PMID: 29752423 PMCID: PMC6043851 DOI: 10.15252/embj.201798518] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 03/11/2018] [Accepted: 04/09/2018] [Indexed: 12/12/2022] Open
Abstract
Virtual memory T cells are foreign antigen‐inexperienced T cells that have acquired memory‐like phenotype and constitute 10–20% of all peripheral CD8+ T cells in mice. Their origin, biological roles, and relationship to naïve and foreign antigen‐experienced memory T cells are incompletely understood. By analyzing T‐cell receptor repertoires and using retrogenic monoclonal T‐cell populations, we demonstrate that the virtual memory T‐cell formation is a so far unappreciated cell fate decision checkpoint. We describe two molecular mechanisms driving the formation of virtual memory T cells. First, virtual memory T cells originate exclusively from strongly self‐reactive T cells. Second, the stoichiometry of the CD8 interaction with Lck regulates the size of the virtual memory T‐cell compartment via modulating the self‐reactivity of individual T cells. Although virtual memory T cells descend from the highly self‐reactive clones and acquire a partial memory program, they are not more potent in inducing experimental autoimmune diabetes than naïve T cells. These data underline the importance of the variable level of self‐reactivity in polyclonal T cells for the generation of functional T‐cell diversity.
Collapse
Affiliation(s)
- Ales Drobek
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Alena Moudra
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Daniel Mueller
- Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Martina Huranova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Veronika Horkova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michaela Pribikova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Robert Ivanek
- Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland.,Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Susanne Oberle
- Swiss Vaccine Research Institute, Epalinges, Switzerland
| | - Dietmar Zehn
- Swiss Vaccine Research Institute, Epalinges, Switzerland.,Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Kathy D McCoy
- Department of Clinical Research (DKF), Inselspital, University of Bern, Bern, Switzerland
| | - Peter Draber
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ondrej Stepanek
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic .,Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| |
Collapse
|
18
|
Foreign antigen-independent memory-phenotype CD4 + T cells: a new player in innate immunity? Nat Rev Immunol 2018; 18:1. [PMID: 29480288 DOI: 10.1038/nri.2018.13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Cuenca M, Puñet-Ortiz J, Ruart M, Terhorst C, Engel P. Ly9 (SLAMF3) receptor differentially regulates iNKT cell development and activation in mice. Eur J Immunol 2017; 48:99-105. [PMID: 28980301 DOI: 10.1002/eji.201746925] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 08/22/2017] [Accepted: 09/25/2017] [Indexed: 11/11/2022]
Abstract
Invariant natural killer T (iNKT) cells develop into three subsets (NKT1, NKT2, and NKT17) expressing a distinct transcription factor profile, which regulates cytokine secretion upon activation. iNKT cell development in the thymus is modulated by signaling lymphocytic activation molecule family (SLAMF) receptors. In contrast to other SLAMF members, Ly9 (SLAMF3) is a non-redundant negative regulator of iNKT cell development. Here, we show that Ly9 influences iNKT cell lineage differentiation. Ly9-deficient mice on a BALB/c background contained a significantly expanded population of thymic NKT2 cells, while NKT1 cells were nearly absent in BALB/c.Ly9-/- thymus. Conversely, the number of peripheral NKT1 cells in BALB/c.Ly9-/- mice was comparable to that in wild-type mice, indicating that the homeostasis of the different iNKT cell subsets may have distinct requirements depending on their tissue localization. Importantly, Ly9 absence also promoted NKT2 cell differentiation in the NKT1-skewed C57BL/6 background. Furthermore, treatment of wild-type mice with an agonistic monoclonal antibody directed against Ly9 impaired IL-4 and IFN-γ production and reduced by half the number of spleen iNKT cells, with a significant decrease in the proportion of NKT2 cells. Thus, anti-Ly9 targeting could represent a novel therapeutic approach to modulate iNKT cell numbers and activation.
Collapse
Affiliation(s)
- Marta Cuenca
- Immunology Unit, Department of Biomedical Sciences, University of Barcelona Medical School, Barcelona, Spain
| | - Joan Puñet-Ortiz
- Immunology Unit, Department of Biomedical Sciences, University of Barcelona Medical School, Barcelona, Spain
| | - Maria Ruart
- Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, University of Barcelona Medical School, Barcelona, Spain
| | - Cox Terhorst
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Pablo Engel
- Immunology Unit, Department of Biomedical Sciences, University of Barcelona Medical School, Barcelona, Spain
| |
Collapse
|
20
|
White JT, Cross EW, Kedl RM. Antigen-inexperienced memory CD8 + T cells: where they come from and why we need them. Nat Rev Immunol 2017; 17:391-400. [PMID: 28480897 DOI: 10.1038/nri.2017.34] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Memory-phenotype CD8+ T cells exist in substantial numbers within hosts that have not been exposed to either foreign antigen or overt lymphopenia. These antigen-inexperienced memory-phenotype T cells can be divided into two major subsets: 'innate memory' T cells and 'virtual memory' T cells. Although these two subsets are nearly indistinguishable by surface markers alone, notable developmental and functional differences exist between the two subsets, which suggests that they represent distinct populations. In this Opinion article, we review the available literature on each subset, highlighting the key differences between these populations. Furthermore, we suggest a unifying model for the categorization of antigen-inexperienced memory-phenotype CD8+ T cells.
Collapse
Affiliation(s)
- Jason T White
- Department of Microbiology and Immunology, The Peter Doherty Institute, University of Melbourne, 792 Elizabeth Street, Melbourne, Victoria 3000, Australia
| | - Eric W Cross
- Department of Immunology and Microbiology, University of Colorado Denver at Anschutz Medical Campus, School of Medicine, Mail Stop 8333, Room P18-8115, 12800 East 19th Avenue, Aurora, Colorado 80045-2537, USA
| | - Ross M Kedl
- Department of Immunology and Microbiology, University of Colorado Denver at Anschutz Medical Campus, School of Medicine, Mail Stop 8333, Room P18-8115, 12800 East 19th Avenue, Aurora, Colorado 80045-2537, USA
| |
Collapse
|
21
|
Mathias CB, Schramm CM, Guernsey LA, Wu CA, Polukort SH, Rovatti J, Ser-Dolansky J, Secor E, Schneider SS, Thrall RS, Aguila HL. IL-15-deficient mice develop enhanced allergic responses to airway allergen exposure. Clin Exp Allergy 2017; 47:639-655. [PMID: 28093832 PMCID: PMC5407912 DOI: 10.1111/cea.12886] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 12/15/2016] [Accepted: 12/18/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND Interleukin-15 is a pleiotropic cytokine that is critical for the development and survival of multiple haematopoietic lineages. Mice lacking IL-15 have selective defects in populations of several pro-allergic immune cells including natural killer (NK) cells, NKT cells, and memory CD8+ T cells. We therefore hypothesized that IL-15-/- mice will have reduced inflammatory responses during the development of allergic airway disease (AAD). OBJECTIVE To determine whether IL-15-/- mice have attenuated allergic responses in a mouse model of AAD. METHODS C57BL/6 wild-type (WT) and IL-15-/- mice were sensitized and challenged with ovalbumin (OVA), and the development of AAD was ascertained by examining changes in airway inflammatory responses, Th2 responses, and lung histopathology. RESULTS Here, we report that IL-15-/- mice developed enhanced allergic responses in an OVA-induced model of AAD. In the absence of IL-15, OVA-challenged mice exhibited enhanced bronchial eosinophilic inflammation, elevated IL-13 production, and severe lung histopathology in comparison with WT mice. In addition, increased numbers of CD4+ T and B cells in the spleens and bronchoalveolar lavage (BAL) were also observed. Examination of OVA-challenged IL-15Rα-/- animals revealed a similar phenotype resulting in enhanced airway eosinophilia compared to WT mice. Adoptive transfer of splenic CD8+ T cells from OVA-sensitized WT mice suppressed the enhancement of eosinophilia in IL-15-/- animals to levels observed in WT mice, but had no further effects. CONCLUSION AND CLINICAL RELEVANCE These data demonstrate that mice with an endogenous IL-15 deficiency are susceptible to the development of severe, enhanced Th2-mediated AAD, which can be regulated by CD8+ T cells. Furthermore, the development of disease as well as allergen-specific Th2 responses occurs despite deficiencies in several IL-15-dependent cell types including NK, NKT, and γδ T cells, suggesting that these cells or their subsets are dispensable for the induction of AAD in IL-15-deficient mice.
Collapse
Affiliation(s)
- Clinton B. Mathias
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy, Western New England University, Springfield, MA 01119
| | - Craig M. Schramm
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030
| | - Linda A. Guernsey
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030
| | - Carol A. Wu
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030
| | - Stephanie H. Polukort
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy, Western New England University, Springfield, MA 01119
| | - Jeffrey Rovatti
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy, Western New England University, Springfield, MA 01119
| | - Jennifer Ser-Dolansky
- Pioneer Valley Life Sciences Institute, Baystate Medical Center, Springfield, MA 01199
| | - Eric Secor
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030
| | - Sallie S. Schneider
- Pioneer Valley Life Sciences Institute, Baystate Medical Center, Springfield, MA 01199
| | - Roger S. Thrall
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030
| | - Hector L. Aguila
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030
| |
Collapse
|