1
|
Yuen NKY, Eng M, Hudson NJ, Sole-Guitart A, Coyle MP, Bielefeldt-Ohmann H. Distinct cellular and molecular responses to infection in three target cell types from horses, a species naturally susceptible to Ross River virus. Microb Pathog 2025; 202:107408. [PMID: 40010657 DOI: 10.1016/j.micpath.2025.107408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 02/28/2025]
Abstract
Our current understanding of the pathogenesis of Ross River virus (RRV) infection has been derived from murine models, which do not reproduce clinical disease as experienced by infected humans and horses. This prompted us to establish more relevant host model systems to study host-virus interactions using ex vivo peripheral blood mononuclear cells (PBMCs) and in vitro primary synovial fibroblast and epidermal keratinocyte cultures. Transcriptomic analysis revealed that the expression of the transmembrane protein matrix remodelling associated 8 (mxra8), recently found to be responsible for RRV cell entry, was downregulated in all cell types when infected with RRV, compared to mock-infected controls. Potent antiviral and inflammatory responses were generated by both synovial fibroblasts and epidermal keratinocytes upon RRV infection. Upregulation of multiple genes, inducible by double-stranded RNA, together with upregulation of toll-like receptor (TLR) tlr-3, but not tlr-7, 8 and 9, suggests possible abortive replication of RRV in these cell types and potent antiviral mechanisms. This was corroborated by virus growth kinetic studies which indicated inefficient RRV replication in synovial fibroblasts and epidermal keratinocytes. Cellular metabolic flux studies on PBMCs and synovial fibroblasts showed that RRV infected cells had reduced mitochondrial function. In addition, compared to PBMCs of seronegative horses, an enhanced antiviral state and reduced inflammation related gene expression was seen in PBMCs of seropositive horses infected with RRV. Thus, despite potent antiviral and inflammatory responses via the interferon pathway exhibited in all cell types, restricting virus growth, mitochondria capacity and function of infected cells remained negatively impacted.
Collapse
Affiliation(s)
- Nicholas K Y Yuen
- School of Veterinary Science, Faculty of Science, University of Queensland, Gatton, Queensland, Australia.
| | - Melodie Eng
- School of Veterinary Science, Faculty of Science, University of Queensland, Gatton, Queensland, Australia
| | - Nicholas J Hudson
- School of Agriculture and Food Sustainability, Faculty of Science, University of Queensland, Gatton, Queensland, Australia
| | - Albert Sole-Guitart
- School of Veterinary Science, Faculty of Science, University of Queensland, Gatton, Queensland, Australia
| | - Mitchell P Coyle
- Equine Unit, Office of the Director Gatton Campus, Faculty of Science, University of Queensland, Gatton, Queensland, Australia
| | - Helle Bielefeldt-Ohmann
- School of Chemistry and Molecular Biosciences, Faculty of Science, University of Queensland, St Lucia, Queensland, Australia; Australian Infectious Diseases Research Centre, University of Queensland, St Lucia, Queensland, Australia.
| |
Collapse
|
2
|
Mendes-Monteiro L, Viejo-Borbolla A. Using structure-function information from IFN-γ-binding proteins and biased agonists to uncouple immunostimulatory and immunosuppressive activities. Trends Immunol 2025; 46:284-294. [PMID: 40102163 DOI: 10.1016/j.it.2025.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 03/20/2025]
Abstract
IFN-γ is a pleiotropic antiviral cytokine that coordinates innate and adaptive immune responses and induces both immunostimulatory and immunosuppressive activities, limiting its use in the clinic. Due to its antiviral role, several viruses express proteins that bind IFN-γ, blocking its interaction with the IFN-γ receptor (IFNGR). However, varicella zoster virus glycoprotein C binds IFN-γ and induces the expression of a subset of specific ISGs, similar to biased IFN-γ agonists generated based on the crystal structure of the IFN-γ - IFNGR complex. Here, we propose using structural and mechanistic information from viral proteins and biased agonists to design novel IFN-γ agonists that fine-tune IFN-γ - IFNGR activity, reducing the immunosuppressive and toxic effects of this cytokine.
Collapse
Affiliation(s)
| | - Abel Viejo-Borbolla
- Institute of Virology, Hannover Medical School, Hannover 30625, Germany; RESIST, Hannover Medical School, Hannover 30625, Germany.
| |
Collapse
|
3
|
Boschiero C, Beshah E, Bakshi M, Miramontes E, Hebert D, Thompson PC, Li CJ, Zhu X, Zarlenga D, Liu GE, Tuo W. Transcriptional Profiling of Abomasal Mucosa from Young Calves Experimentally Infected with Ostertagia ostertagi. Int J Mol Sci 2025; 26:2264. [PMID: 40076885 PMCID: PMC11900041 DOI: 10.3390/ijms26052264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Ostertagia ostertagi, also known as the brown stomach worm, causes significant pathology in the abomasum, resulting in production and nutritional losses in cattle. Alternative control measures, such as vaccination, are urgently needed because of rapidly growing anthelmintic drug resistance. There is a need to understand host responses to the infection, especially immune responses, to advance vaccine discovery and design. Therefore, the present study investigated comprehensive changes in gene transcription in the abomasal mucosa of cattle infected with O. ostertagi at 0, 3-5, 7-9, 10, and 21 days post-infection (dpi) using RNA sequencing (RNA-seq). Compared to uninfected controls, infected animals exhibited significant increases in differentially expressed genes (DEGs) throughout the infection period. Infection induced more upregulated than downregulated genes in the abomasal fundic mucosa (FUN) when compared to the abomasal pyloric mucosa (PYL). The largest transcriptional changes occurred between 7-9 and 10 dpi during the final development of the L4 and their emergence from the gastric glands. Most DEGs are associated with host immunity, cellular reorganization, cell migration, and proliferation. Tuft/epithelial cell response to the infection was atypical, lacking an anticipated increase in key alarmin cytokine genes. Numerous genes associated with T helper (Th) 1, Th2, and Th17 responses and T cell exhaustion were upregulated, suggesting altered immune regulation. The data collectively indicate that O. ostertagi infection elicits massive host responses, particularly immune responses, which are intertwined with the parasite's disruption of abomasal function, which likely impairs the nutrient utilization of the host. The infection is characterized by the absence of a dominant Th response and displaying a mixed activation of Th1, Th2, and Th17 pathways. Elevated expression of T cell exhaustion genes and lack of increase in epithelial alarmin cytokine genes suggest a downregulation of, or a deficiency in initiating, effective host immunity to the infection. Understanding mechanisms of parasite-mediated immune evasion and their nutritional consequences will facilitate the rational design of protective vaccines against infections of complex nematode parasites.
Collapse
Affiliation(s)
- Clarissa Boschiero
- Animal Parasitic Diseases Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
- Department of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | - Ethiopia Beshah
- Animal Parasitic Diseases Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Mariam Bakshi
- Animal Parasitic Diseases Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
- Department of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | - Eliseo Miramontes
- Animal Parasitic Diseases Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Deborah Hebert
- Animal Parasitic Diseases Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Peter C. Thompson
- Animal Parasitic Diseases Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Cong-Jun Li
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Xiaoping Zhu
- Department of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | - Dante Zarlenga
- Animal Parasitic Diseases Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - George E. Liu
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Wenbin Tuo
- Animal Parasitic Diseases Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| |
Collapse
|
4
|
Xu R, He X, Xu J, Yu G, Wu Y. Immunometabolism: signaling pathways, homeostasis, and therapeutic targets. MedComm (Beijing) 2024; 5:e789. [PMID: 39492834 PMCID: PMC11531657 DOI: 10.1002/mco2.789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 11/05/2024] Open
Abstract
Immunometabolism plays a central role in sustaining immune system functionality and preserving physiological homeostasis within the organism. During the differentiation and activation, immune cells undergo metabolic reprogramming mediated by complex signaling pathways. Immune cells maintain homeostasis and are influenced by metabolic microenvironmental cues. A series of immunometabolic enzymes modulate immune cell function by metabolizing nutrients and accumulating metabolic products. These enzymes reverse immune cells' differentiation, disrupt intracellular signaling pathways, and regulate immune responses, thereby influencing disease progression. The huge population of immune metabolic enzymes, the ubiquity, and the complexity of metabolic regulation have kept the immune metabolic mechanisms related to many diseases from being discovered, and what has been revealed so far is only the tip of the iceberg. This review comprehensively summarized the immune metabolic enzymes' role in multiple immune cells such as T cells, macrophages, natural killer cells, and dendritic cells. By classifying and dissecting the immunometabolism mechanisms and the implications in diseases, summarizing and analyzing advancements in research and clinical applications of the inhibitors targeting these enzymes, this review is intended to provide a new perspective concerning immune metabolic enzymes for understanding the immune system, and offer novel insight into future therapeutic interventions.
Collapse
Affiliation(s)
- Rongrong Xu
- National Key Laboratory of Immunity and Inflammation & Institute of ImmunologyCollege of Basic Medical SciencesNaval Medical UniversityShanghaiChina
- School of Life SciencesFudan UniversityShanghaiChina
| | - Xiaobo He
- National Key Laboratory of Immunity and Inflammation & Institute of ImmunologyCollege of Basic Medical SciencesNaval Medical UniversityShanghaiChina
| | - Jia Xu
- National Key Laboratory of Immunity and Inflammation & Institute of ImmunologyCollege of Basic Medical SciencesNaval Medical UniversityShanghaiChina
| | - Ganjun Yu
- National Key Laboratory of Immunity and Inflammation & Institute of ImmunologyCollege of Basic Medical SciencesNaval Medical UniversityShanghaiChina
| | - Yanfeng Wu
- National Key Laboratory of Immunity and Inflammation & Institute of ImmunologyCollege of Basic Medical SciencesNaval Medical UniversityShanghaiChina
| |
Collapse
|
5
|
Shen R, Ding Y, Dong Q, Wang Y, Yu J, Pan C, Cai Y, Li Z, Zhang J, Yu K, Zeng Q. IL-4-Induced Gene 1: A Potential Player in Myocardial Infarction. Rev Cardiovasc Med 2024; 25:337. [PMID: 39355609 PMCID: PMC11440439 DOI: 10.31083/j.rcm2509337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/18/2024] [Accepted: 05/06/2024] [Indexed: 10/03/2024] Open
Abstract
Myocardial infarction (MI), a severe outcome of cardiovascular disease, poses a serious threat to human health. Uncontrolled inflammation and excessive cardiomyocyte death, following an infarction event, significantly contribute to both the mortality rate and complications associated with MI. The protein IL-4-induced gene 1 (IL4I1 or FIG1) serves as a natural inhibitor of innate and adaptive immunity, playing a crucial role in CD4+ T cell differentiation, macrophage polarization, and ferroptosis inhibition. Previous studies have linked IL4I1 to acute MI. This review summarizes evidence from both basic and clinical research, highlighting IL4I1 as a critical immunoregulatory enzyme that not only regulates inflammatory responses, but also potentially mitigates MI-induced damage.
Collapse
Affiliation(s)
- Rui Shen
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
| | - Yan Ding
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
| | - Qian Dong
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
| | - Yue Wang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
| | - Jian Yu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
| | - Chengliang Pan
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
| | - Yifan Cai
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
| | - Zhiyang Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
| | - Jiangmei Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
| | - Kunwu Yu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
| | - Qiutang Zeng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, Hubei, China
| |
Collapse
|
6
|
Grobben Y. Targeting amino acid-metabolizing enzymes for cancer immunotherapy. Front Immunol 2024; 15:1440269. [PMID: 39211039 PMCID: PMC11359565 DOI: 10.3389/fimmu.2024.1440269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Despite the immune system's role in the detection and eradication of abnormal cells, cancer cells often evade elimination by exploitation of various immune escape mechanisms. Among these mechanisms is the ability of cancer cells to upregulate amino acid-metabolizing enzymes, or to induce these enzymes in tumor-infiltrating immunosuppressive cells. Amino acids are fundamental cellular nutrients required for a variety of physiological processes, and their inadequacy can severely impact immune cell function. Amino acid-derived metabolites can additionally dampen the anti-tumor immune response by means of their immunosuppressive activities, whilst some can also promote tumor growth directly. Based on their evident role in tumor immune escape, the amino acid-metabolizing enzymes glutaminase 1 (GLS1), arginase 1 (ARG1), inducible nitric oxide synthase (iNOS), indoleamine 2,3-dioxygenase 1 (IDO1), tryptophan 2,3-dioxygenase (TDO) and interleukin 4 induced 1 (IL4I1) each serve as a promising target for immunotherapeutic intervention. This review summarizes and discusses the involvement of these enzymes in cancer, their effect on the anti-tumor immune response and the recent progress made in the preclinical and clinical evaluation of inhibitors targeting these enzymes.
Collapse
|
7
|
Kamathewatta KI, Condello AK, Kulappu Arachchige SN, Young ND, Shil PK, Noormohammadi AH, Tivendale KA, Wawegama NK, Browning GF. Characterisation of the tracheal transcriptional response of chickens to chronic infection with Mycoplasma synoviae. Vet Microbiol 2024; 294:110119. [PMID: 38772075 DOI: 10.1016/j.vetmic.2024.110119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/23/2024]
Abstract
Mycoplasma synoviae causes infectious synovitis and respiratory tract infections in chickens and is responsible for significant economic losses in the poultry industry. Effective attachment and colonisation of the trachea is critical for the persistence of the organism and progression of the disease it causes. The respiratory tract infection is usually sub-clinical, but concurrent infection with infectious bronchitis virus (IBV) is known to enhance the pathogenicity of M. synoviae. This study aimed to explore differentially expressed genes in the tracheal mucosa, and their functional categories, during chronic infection with M. synoviae, using a M. synoviae-IBV infection model. The transcriptional profiles of the trachea were assessed 2 weeks after infection using RNA sequencing. In chickens infected with M. synoviae or IBV, only 1 or 8 genes were differentially expressed compared to uninfected chickens, respectively. In contrast, the M. synoviae-IBV infected chickens had 621 upregulated and 206 downregulated genes compared to uninfected chickens. Upregulated genes and their functional categories were suggestive of uncontrolled lymphoid cell proliferation and an ongoing pro-inflammatory response. Genes associated with anti-inflammatory effects, pathogen removal, apoptosis, regulation of the immune response, airway homoeostasis, cell adhesion and tissue regeneration were downregulated. Overall, transcriptional changes in the trachea, 2 weeks after infection with M. synoviae and IBV, indicate immune dysregulation, robust inflammation and a lack of cytotoxic damage during chronic infection. This model provides insights into the pathogenesis of chronic infection with M. synoviae.
Collapse
Affiliation(s)
- Kanishka I Kamathewatta
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Anna Kanci Condello
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Sathya N Kulappu Arachchige
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Werribee, VIC, Australia
| | - Neil D Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Pollob K Shil
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Werribee, VIC, Australia
| | - Amir H Noormohammadi
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Werribee, VIC, Australia
| | - Kelly A Tivendale
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Nadeeka K Wawegama
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Glenn F Browning
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
8
|
Jacobsen C, Plückebaum N, Ssebyatika G, Beyer S, Mendes-Monteiro L, Wang J, Kropp KA, González-Motos V, Steinbrück L, Ritter B, Rodríguez-González C, Böning H, Nikolouli E, Kinchington PR, Lachmann N, Depledge DP, Krey T, Viejo-Borbolla A. Viral modulation of type II interferon increases T cell adhesion and virus spread. Nat Commun 2024; 15:5318. [PMID: 38909022 PMCID: PMC11193720 DOI: 10.1038/s41467-024-49657-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/13/2024] [Indexed: 06/24/2024] Open
Abstract
During primary varicella zoster virus (VZV) infection, infected lymphocytes drive primary viremia, causing systemic dissemination throughout the host, including the skin. This results in cytokine expression, including interferons (IFNs), which partly limit infection. VZV also spreads from skin keratinocytes to lymphocytes prior to secondary viremia. It is not clear how VZV achieves this while evading the cytokine response. Here, we show that VZV glycoprotein C (gC) binds IFN-γ and modifies its activity, increasing the expression of a subset of IFN-stimulated genes (ISGs), including intercellular adhesion molecule 1 (ICAM1), chemokines and immunomodulatory genes. The higher ICAM1 protein level at the plasma membrane of keratinocytes facilitates lymphocyte function-associated antigen 1-dependent T cell adhesion and expression of gC during infection increases VZV spread to peripheral blood mononuclear cells. This constitutes the discovery of a strategy to modulate IFN-γ activity, upregulating a subset of ISGs, promoting enhanced lymphocyte adhesion and virus spread.
Collapse
Affiliation(s)
- Carina Jacobsen
- Institute of Virology, Hannover Medical School, Hannover, 30625, Germany
| | - Nina Plückebaum
- Institute of Virology, Hannover Medical School, Hannover, 30625, Germany
| | - George Ssebyatika
- Institute of Virology, Hannover Medical School, Hannover, 30625, Germany
- Institute of Biochemistry, University of Lübeck, Lübeck, 23562, Germany
| | - Sarah Beyer
- Institute of Virology, Hannover Medical School, Hannover, 30625, Germany
| | | | - Jiayi Wang
- Institute of Virology, Hannover Medical School, Hannover, 30625, Germany
| | - Kai A Kropp
- Institute of Virology, Hannover Medical School, Hannover, 30625, Germany
| | - Víctor González-Motos
- Institute of Virology, Hannover Medical School, Hannover, 30625, Germany
- University of Veterinary Medicine Hannover, Foundation, Hannover, 30559, Germany
| | - Lars Steinbrück
- Institute of Virology, Hannover Medical School, Hannover, 30625, Germany
| | - Birgit Ritter
- Institute of Virology, Hannover Medical School, Hannover, 30625, Germany
| | - Claudio Rodríguez-González
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, 30625, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Heike Böning
- Institute of Virology, Hannover Medical School, Hannover, 30625, Germany
| | - Eirini Nikolouli
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, 30625, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Paul R Kinchington
- Departments of Ophthalmology and of Molecular Microbiology and Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nico Lachmann
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, 30625, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Nikolai-Fuchs-Str. 1, 30625, Hannover, Germany
| | - Daniel P Depledge
- Institute of Virology, Hannover Medical School, Hannover, 30625, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
- German, Center for Infection Research (DZIF), Hannover, Germany
| | - Thomas Krey
- Institute of Virology, Hannover Medical School, Hannover, 30625, Germany
- Institute of Biochemistry, University of Lübeck, Lübeck, 23562, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
- Centre for Structural Systems Biology (CSSB), 22607, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 22607, Hamburg, Germany
| | - Abel Viejo-Borbolla
- Institute of Virology, Hannover Medical School, Hannover, 30625, Germany.
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.
| |
Collapse
|
9
|
Zhu L, Wang J, Hu J. High expression of IL4I1 is correlated with poor prognosis and immune infiltration in thyroid cancer. BMC Endocr Disord 2023; 23:148. [PMID: 37434155 DOI: 10.1186/s12902-023-01407-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 07/06/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND Thyroid cancer-related deaths mostly result from metastasis. It was reported that the immunometabolism associated enzyme interleukin-4-induced-1 (IL4I1) was related to tumor metastasis. The present study was intended to investigate the effects of IL4I1 on thyroid cancer metastasis and its relationship with the prognosis. METHODS Data from Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) were analyzed to find out the different mRNA expressions of IL4I1 between thyroid cancer and normal tissues. And Human Protein Atlas (HPA) was used to assess IL4I1 protein expression. To further differentiate thyroid cancer from normal tissues and estimate the impact of IL4I1 on the prognosis, the receiver operating characteristic curve (ROC) and Kaplan-Meier (KM) method was performed. The protein-protein interaction (PPI) network was established using STRING, and functional enrichment analyses were conducted by "clusterProfiler" package. Then, we assayed the correlation between IL4I1 and some related molecules. The relationship between IL4I1 and immune infiltration was performed using "Gene Set Variation Analysis (GSVA)" package in TCGA and tumor-immune system interaction database (TISIDB). Finally, we did in vitro experiments in order to further prove the bioeffects of IL4I1 on metastasis. RESULTS The expression of IL4I1 mRNA and IL4I1 protein was significantly upregulated in thyroid cancer tissues. The increment of IL4I1 mRNA expression was related to high-grade malignancy, lymph node metastases and extrathyroidal extension. The ROC curve displayed the cutoff value of 0.782, with the sensitivity of 77.5% and the specificity of 77.8%. KM survival analysis showed that there was a worse PFS in patients with high IL4I1 expression than those with low IL4I1 expression (p = 0.013). Further study indicated that IL4I1 was associated with lactate, body fluid secretion, positive regulation of T cell differentiation, and cellular response to nutrients in Gene Ontology (GO) analysis. Moreover, IL4I1 was found correlated with immune infiltration. Finally, the in vitro experiments revealed the promotion of IL4I1 on cancer cell proliferation, migration and invasion. CONCLUSIONS The increased IL4I1 expression is markedly correlated with the immune imbalance in the tumor microenvironment (TME) and predicts poor survival in thyroid cancer. This study reveals the potential clinical biomarker of poor prognosis and the target of immune therapy in thyroid cancer.
Collapse
Affiliation(s)
- Liying Zhu
- Department of Geratology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Jun Wang
- Department of Otolaryngology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia'an Hu
- Department of Geratology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin 2nd Road, Shanghai, 200025, China.
| |
Collapse
|
10
|
Seo SK, Kwon B. Immune regulation through tryptophan metabolism. Exp Mol Med 2023; 55:1371-1379. [PMID: 37394584 PMCID: PMC10394086 DOI: 10.1038/s12276-023-01028-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 07/04/2023] Open
Abstract
Amino acids are fundamental units of molecular components that are essential for sustaining life; however, their metabolism is closely interconnected to the control systems of cell function. Tryptophan (Trp) is an essential amino acid catabolized by complex metabolic pathways. Several of the resulting Trp metabolites are bioactive and play central roles in physiology and pathophysiology. Additionally, various physiological functions of Trp metabolites are mutually regulated by the gut microbiota and intestine to coordinately maintain intestinal homeostasis and symbiosis under steady state conditions and during the immune response to pathogens and xenotoxins. Cancer and inflammatory diseases are associated with dysbiosis- and host-related aberrant Trp metabolism and inactivation of the aryl hydrocarbon receptor (AHR), which is a receptor of several Trp metabolites. In this review, we focus on the mechanisms through which Trp metabolism converges to AHR activation for the modulation of immune function and restoration of tissue homeostasis and how these processes can be targeted using therapeutic approaches for cancer and inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Su-Kil Seo
- Department of Microbiology and Immunology, College of Medicine Inje University, Busan, 47392, Republic of Korea.
- Parenchyma Biotech, Busan, 47392, Republic of Korea.
| | - Byungsuk Kwon
- Parenchyma Biotech, Busan, 47392, Republic of Korea.
- School of Biological Sciences, University of Ulsan, Ulsan, 44610, Republic of Korea.
| |
Collapse
|
11
|
Jürgens C, Ssebyatika G, Beyer S, Plückebaum N, Kropp KA, González-Motos V, Ritter B, Böning H, Nikolouli E, Kinchington PR, Lachmann N, Depledge DP, Krey T, Viejo-Borbolla A. Viral modulation of type II interferon increases T cell adhesion and virus spread. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.26.542397. [PMID: 37292914 PMCID: PMC10246016 DOI: 10.1101/2023.05.26.542397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
During primary infection, varicella zoster virus (VZV) infects epithelial cells in the respiratory lymphoid organs and mucosa. Subsequent infection of lymphocytes, T cells in particular, causes primary viremia allowing systemic spread throughout the host, including the skin. This results in the expression of cytokines, including interferons (IFNs) which partly limit primary infection. VZV also spreads from skin keratinocytes to lymphocytes prior to secondary viremia. How VZV infects lymphocytes from epithelial cells while evading the cytokine response has not been fully established. Here, we show that VZV glycoprotein C (gC) binds IFN-γ and modifies its activity. Transcriptomic analysis revealed that gC in combination with IFN-γ increased the expression of a small subset of IFN-stimulated genes (ISGs), including intercellular adhesion molecule 1 (ICAM1), as well as several chemokines and immunomodulatory genes. The higher ICAM1 protein level at the plasma membrane of epithelial cells resulted in lymphocyte function-associated antigen 1 (LFA-1)-dependent T cell adhesion. This gC activity required a stable interaction with IFN-γ and signalling through the IFN-γ receptor. Finally, the presence of gC during infection increased VZV spread from epithelial cells to peripheral blood mononuclear cells. This constitutes the discovery of a novel strategy to modulate the activity of IFN-γ, inducing the expression of a subset of ISGs, leading to enhanced T cell adhesion and virus spread.
Collapse
Affiliation(s)
- Carina Jürgens
- Institute of Virology, Hannover Medical School, Hannover 30625, Germany
| | - George Ssebyatika
- Institute of Virology, Hannover Medical School, Hannover 30625, Germany
- Institute of Biochemistry, University of Lübeck, Lübeck 23562, Germany
| | - Sarah Beyer
- Institute of Virology, Hannover Medical School, Hannover 30625, Germany
| | - Nina Plückebaum
- Institute of Virology, Hannover Medical School, Hannover 30625, Germany
| | - Kai A. Kropp
- Institute of Virology, Hannover Medical School, Hannover 30625, Germany
| | - Víctor González-Motos
- Institute of Virology, Hannover Medical School, Hannover 30625, Germany
- University of Veterinary Medicine Hannover, Foundation, Hannover 30559, Germany
| | - Birgit Ritter
- Institute of Virology, Hannover Medical School, Hannover 30625, Germany
| | - Heike Böning
- Institute of Virology, Hannover Medical School, Hannover 30625, Germany
| | - Eirini Nikolouli
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover 30625, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Nikolai-Fuchs-Str. 1, 30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
- Excellence Cluster 2155 RESIST, Hannover Medical School, Hannover 30625, Germany
| | - Paul R. Kinchington
- Department of Ophthalmology and of Molecular Microbiology and Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Nico Lachmann
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover 30625, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Nikolai-Fuchs-Str. 1, 30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
- Excellence Cluster 2155 RESIST, Hannover Medical School, Hannover 30625, Germany
| | - Daniel Pearce Depledge
- Institute of Virology, Hannover Medical School, Hannover 30625, Germany
- Excellence Cluster 2155 RESIST, Hannover Medical School, Hannover 30625, Germany
- German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, Hannover, Germany
| | - Thomas Krey
- Institute of Virology, Hannover Medical School, Hannover 30625, Germany
- Institute of Biochemistry, University of Lübeck, Lübeck 23562, Germany
- Excellence Cluster 2155 RESIST, Hannover Medical School, Hannover 30625, Germany
- Centre for Structural Systems Biology (CSSB), 22607 Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 22607 Hamburg, Germany
| | - Abel Viejo-Borbolla
- Institute of Virology, Hannover Medical School, Hannover 30625, Germany
- Excellence Cluster 2155 RESIST, Hannover Medical School, Hannover 30625, Germany
| |
Collapse
|
12
|
Li W, Ling L, Xiang L, Ding P, Yue W. Identification and validation of a risk model and molecular subtypes based on tryptophan metabolism-related genes to predict the clinical prognosis and tumor immune microenvironment in lower-grade glioma. Front Cell Neurosci 2023; 17:1146686. [PMID: 36925967 PMCID: PMC10011102 DOI: 10.3389/fncel.2023.1146686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/13/2023] [Indexed: 03/04/2023] Open
Abstract
Background Lower-grade glioma (LGG) is one of the most common malignant tumors in the central nervous system (CNS). Accumulating evidence have demonstrated that tryptophan metabolism is significant in tumor. Therefore, this study aims to comprehensively clarify the relationship between tryptophan metabolism-related genes (TRGs) and LGGs. Methods The expression level of TRGs in LGG and normal tissues was first analyzed. Next, the key TRGs with prognostic value and differential expression in LGGs were identified using the least absolute shrinkage and selection operator (LASSO) regression analysis. Subsequently, a risk model was constructed and Consensus clustering analysis was conducted based on the expression level of key TRGs. Then, the prognostic value, clinicopathological factors, and tumor immune microenvironment (TIME) characteristics between different risk groups and molecular subtypes were analyzed. Finally, the expression, prognosis, and TIME of each key TRGs were analyzed separately in LGG patients. Results A total of 510 patients with LGG from The Cancer Genome Atlas (TCGA) dataset and 1,152 normal tissues from the Genotype-Tissue Expression (GTEx) dataset were included to evaluate the expression level of TRGs. After LASSO regression analysis, we identified six key TRGs and constructed a TRGs risk model. The survival analysis revealed that the risk model was the independent predictor in LGG patients. And the nomogram containing risk scores and independent clinicopathological factors could accurately predict the prognosis of LGG patients. In addition, the results of the Consensus cluster analysis based on the expression of the six TRGs showed that it could classify the LGG patients into two distinct clusters, with significant differences in prognosis, clinicopathological factors and TIME between these two clusters. Finally, we validated the expression, prognosis and immune infiltration of six key TRGs in patients with LGG. Conclusion This study demonstrated that tryptophan metabolism plays an important role in the progression of LGG. In addition, the risk model and the molecular subtypes we constructed not only could be used as an indicator to predict the prognosis of LGG patients but also were closely related to the clinicopathological factors and TIME of LGG patients. Overall, our study provides theoretical support for the ultimate realization of precision treatment for patients with LGG.
Collapse
Affiliation(s)
- Wenxia Li
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Ling Ling
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Lei Xiang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Peng Ding
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Wei Yue
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China.,Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| |
Collapse
|
13
|
Gatineau J, Nidercorne C, Dupont A, Puiffe ML, Cohen JL, Molinier-Frenkel V, Niedergang F, Castellano F. IL4I1 binds to TMPRSS13 and competes with SARS-CoV-2 spike. Front Immunol 2022; 13:982839. [PMID: 36131918 PMCID: PMC9483092 DOI: 10.3389/fimmu.2022.982839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/09/2022] [Indexed: 11/26/2022] Open
Abstract
The secreted enzyme interleukin four-induced gene 1 (IL4I1) is involved in the negative control of the adaptive immune response. IL4I1 expression in human cancer is frequent and correlates with poor survival and resistance to immunotherapy. Nevertheless, its mechanism of action remains partially unknown. Here, we identified transmembrane serine protease 13 (TMPRSS13) as an immune cell-expressed surface protein that binds IL4I1. TMPRSS13 is a paralog of TMPRSS2, of which the protease activity participates in the cleavage of SARS-CoV-2 spike protein and facilitates virus induced-membrane fusion. We show that TMPRSS13 is expressed by human lymphocytes, monocytes and monocyte-derived macrophages, can cleave the spike protein and allow SARS-CoV-2 spike pseudotyped virus entry into cells. We identify regions of homology between IL4I1 and spike and demonstrate competition between the two proteins for TMPRSS13 binding. These findings may be relevant for both interfering with SARS-CoV-2 infection and limiting IL4I1-dependent immunosuppressive activity in cancer.
Collapse
Affiliation(s)
| | | | | | | | - José L. Cohen
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France
- AP-HP, Hopital H Mondor, CIC Biotherapies, Créteil, France
| | - Valérie Molinier-Frenkel
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France
- AP-HP, Hopital Henri Mondor, Departement d’Hematologie-Immunologie, Créteil, France
- *Correspondence: Flavia Castellano, ; Florence Niedergang, ; Valérie Molinier-Frenkel,
| | - Florence Niedergang
- Université Paris Cité, CNRS, INSERM, Institut Cochin, CNRS, Paris, France
- *Correspondence: Flavia Castellano, ; Florence Niedergang, ; Valérie Molinier-Frenkel,
| | - Flavia Castellano
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France
- AP-HP, Hopital Henri Mondor, Plateforme des Ressources Biologiques, Créteil, France
- *Correspondence: Flavia Castellano, ; Florence Niedergang, ; Valérie Molinier-Frenkel,
| |
Collapse
|
14
|
Hlaka L, Ozturk M, Chia JE, Jones SS, Pillay S, Poswayo SKL, Mpotje T, Nono JK, Simelane S, Parihar SP, Roy S, Suzuki H, Brombacher F, Guler R. IL-4i1 regulates immune protection during Mycobacterium tuberculosis infection. J Infect Dis 2021; 224:2170-2180. [PMID: 34739044 PMCID: PMC8672763 DOI: 10.1093/infdis/jiab558] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 11/01/2021] [Indexed: 11/24/2022] Open
Abstract
Background Interleukin 4 (IL-4i1)–induced gene 1 encodes L-phenylalanine oxidase that catabolizes phenylalanine into phenylpyruvate. IL-4i1 is mainly expressed by antigen-presenting cells (APCs), inhibits T-cell proliferation, regulates B-cell activation, modulates T cell responses, and drives macrophage polarization, but its role in bacterial infections is understudied. Methods We evaluated IL-4i1 deletion in macrophages and mice on infection with virulent H37Rv and W-Beijing lineage hypervirulent HN878 Mycobacterium tuberculosis (Mtb) strains. The bacterial growth and proinflammatory responses were measured in vitro and in vivo. Histopathological analysis, lung immune cell recruitment, and macrophage activation were assessed at the early and chronic stages of Mtb infection. Results IL-4i1–deficient (IL-4i1−/−) mice displayed increased protection against acute H37Rv, HN878 and chronic HN878 Mt infections, with reduced lung bacterial burdens and altered APC responses compared with wild-type mice. Moreover, “M1-like” interstitial macrophage numbers, and nitrite and Interferon-γ production were significantly increased in IL-4i1−/− mice compared with wild-type mice during acute Mtb HN878 infection. Conclusions Together, these data suggest that IL-4i1 regulates APC-mediated inflammatory responses during acute and chronic Mtb infection. Hence, IL-4i1 targeting has potential as an immunomodulatory target for host-directed therapy.
Collapse
Affiliation(s)
- Lerato Hlaka
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town 7925, South Africa.,Department of Pathology, University of Cape Town, Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa.,The Jackson Laboratory for Genomic Medicine, Connecticut, 06032, United States
| | - Mumin Ozturk
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town 7925, South Africa.,Department of Pathology, University of Cape Town, Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Julius E Chia
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town 7925, South Africa.,Department of Pathology, University of Cape Town, Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Shelby-Sara Jones
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town 7925, South Africa.,Department of Pathology, University of Cape Town, Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Shandre Pillay
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town 7925, South Africa.,Department of Pathology, University of Cape Town, Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Sibongiseni K L Poswayo
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town 7925, South Africa.,Department of Pathology, University of Cape Town, Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Thabo Mpotje
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town 7925, South Africa.,Department of Pathology, University of Cape Town, Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Justin K Nono
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town 7925, South Africa.,Department of Pathology, University of Cape Town, Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa.,Laboratory of ImmunoBiology and Helminth Infections (IBHI), Institute of Medical Research and Medicinal Plant Studies, Ministry of Scientific Research and Innovation, Yaoundé, 13033, Cameroon
| | - Simphiwe Simelane
- Department of Pathology, University of Cape Town, Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Suraj P Parihar
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town 7925, South Africa.,Department of Pathology, University of Cape Town, Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa.,Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Sugata Roy
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Harukazu Suzuki
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Frank Brombacher
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town 7925, South Africa.,Department of Pathology, University of Cape Town, Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa.,Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Reto Guler
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town 7925, South Africa.,Department of Pathology, University of Cape Town, Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa.,Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
15
|
Zhao H, Teng Y, Hao W, Li J, Li Z, Chen Q, Yin C, Yue W. Single-cell analysis revealed that IL4I1 promoted ovarian cancer progression. J Transl Med 2021; 19:454. [PMID: 34717685 PMCID: PMC8557560 DOI: 10.1186/s12967-021-03123-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/21/2021] [Indexed: 12/27/2022] Open
Abstract
Background Ovarian cancer was one of the leading causes of female deaths. Patients with OC were essentially incurable and portends a poor prognosis, presumably because of profound genetic heterogeneity limiting reproducible prognostic classifications. Methods We comprehensively analyzed an ovarian cancer single-cell RNA sequencing dataset, GSE118828, and identified nine major cell types. Relationship between the clusters was explored with CellPhoneDB. A malignant epithelial cluster was confirmed using pseudotime analysis, CNV and GSVA. Furthermore, we constructed the prediction model (i.e., RiskScore) consisted of 10 prognosis-specific genes from 2397 malignant epithelial genes using the LASSO Cox regression algorithm based on public datasets. Then, the prognostic value of Riskscore was assessed with Kaplan–Meier survival analysis and time-dependent ROC curves. At last, a series of in-vitro assays were conducted to explore the roles of IL4I1, an important gene in Riskscore, in OC progression. Results We found that macrophages possessed the most interaction pairs with other clusters, and M2-like TAMs were the dominant type of macrophages. C0 was identified as the malignant epithelial cluster. Patients with a lower RiskScore had a greater OS (log-rank P < 0.01). In training set, the AUC of RiskScore was 0.666, 0.743 and 0.809 in 1-year, 3-year and 5-year survival, respectively. This was also validated in another two cohorts. Moreover, downregulation of IL4I1 inhibited OC cells proliferation, migration and invasion. Conclusions Our work provide novel insights into our understanding of the heterogeneity among OCs, and would help elucidate the biology of OC and provide clinical guidance in prognosis for OC patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-03123-7.
Collapse
Affiliation(s)
- Hongyu Zhao
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China
| | - Yu Teng
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China
| | - Wende Hao
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China
| | - Jie Li
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China
| | - Zhefeng Li
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China
| | - Qi Chen
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China
| | - Chenghong Yin
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China.
| | - Wentao Yue
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China.
| |
Collapse
|
16
|
Kasai K, Nakano M, Ohishi M, Nakamura T, Miura T. Antimicrobial properties of L-amino acid oxidase: biochemical features and biomedical applications. Appl Microbiol Biotechnol 2021; 105:4819-4832. [PMID: 34106313 PMCID: PMC8188536 DOI: 10.1007/s00253-021-11381-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/17/2021] [Accepted: 05/28/2021] [Indexed: 12/19/2022]
Abstract
Abstract Mucus layer that covers the body surface of various animal functions as a defense barrier against microbes, environmental xenobiotics, and predators. Previous studies have reported that L-amino acid oxidase (LAAO), present in several animal fluids, has potent properties against pathogenic bacteria, viruses, and parasites. LAAO catalyzes the oxidative deamination of specific L-amino acids with the generation of hydrogen peroxide and L-amino acid metabolites. Further, the generated hydrogen peroxide is involved in oxidation (direct effect) while the metabolites activate immune responses (indirect effect). Therefore, LAAO exhibits two different mechanisms of bioactivation. Previously, we described the selective, specific, and local oxidative and potent antibacterial actions of various LAAOs as potential therapeutic strategies. In this review, we focus on their biochemical features, enzymatic regulations, and biomedical applications with a view of describing their probable role as biochemical agents and biomarkers for microbial infections, cancer, and autoimmune-mediated diseases. We consider that LAAOs hold implications in biomedicine owing to their antimicrobial activity wherein they can be used in treatment of infectious diseases and as diagnostic biomarkers in the above-mentioned diseased conditions. Key points •Focus on biochemical features, enzymatic regulation, and biomedical applications of LAAOs. •Mechanisms of antimicrobial activity, inflammatory regulation, and immune responses of LAAOs. •Potential biomedical application as an antimicrobial and anti-infection agent, and disease biomarker.
Collapse
Affiliation(s)
- Kosuke Kasai
- Department of Biomedical Sciences, Division of Medical Life Sciences, Graduate School of Health Sciences, Hirosaki University, 66-1, Hon-cho, 036-8564, Hirosaki, Aomori, Japan
| | - Manabu Nakano
- Department of Biomedical Sciences, Division of Medical Life Sciences, Graduate School of Health Sciences, Hirosaki University, 66-1, Hon-cho, 036-8564, Hirosaki, Aomori, Japan
| | | | - Toshiya Nakamura
- Department of Biomedical Sciences, Division of Medical Life Sciences, Graduate School of Health Sciences, Hirosaki University, 66-1, Hon-cho, 036-8564, Hirosaki, Aomori, Japan
| | - Tomisato Miura
- Department of Risk Analysis and Biodosimetry, Institute of Radiation Emergency Medicine, Hirosaki University, 66-1, Hon-cho, 036-8564, Hirosaki, Aomori, Japan.
| |
Collapse
|
17
|
Castellano F, Prevost-Blondel A, Cohen JL, Molinier-Frenkel V. What role for AHR activation in IL4I1-mediated immunosuppression ? Oncoimmunology 2021; 10:1924500. [PMID: 34026337 PMCID: PMC8118450 DOI: 10.1080/2162402x.2021.1924500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The amino-acid catabolizing enzyme Interleukin-4 induced gene 1 (IL4I1) remains poorly characterized despite it is emerging as a pertinent therapeutic target for cancer. IL4I1 is secreted in the synaptic cleft by antigen-presenting cells. It inhibits TCR signaling, modulates naïve T cell differentiation and limits effector T cell proliferation. IL4I1 expression in tumors shapes the tumor microenvironment and impairs the antitumor cytotoxic T cell response, thereby facilitating cancer immune escape. Several mechanisms participate in these effects. Recent data suggest a role of new IL4I1 metabolites in activation of the aryl-hydrocarbon receptor (AHR). Here, we observe that expression of IL4I1 is poorly correlated with that of validated targets of AHR in human cancers. Moreover, dendritic cells do not upregulate AHR target genes in relation with IL4I1 expression in vivo. Finally, IL4I1 activity toward tryptophan leading to production of AHR-activating products is very low, and should be negligible when tryptophan-degrading enzymes of higher affinity compete for the substrate. We recently showed that IL4I1 expression by dendritic cells directly regulates immune synapse formation and modulates the repertoire and memory differentiation of responding CD8 T cells after viral infection. Thus, IL4I1 may restrain tumor control through regulating the priming of tumor-specific CD8 T cells, independently of AHR activation.
Collapse
Affiliation(s)
- Flavia Castellano
- INSERM, IMRB, Univ Paris Est Creteil, Creteil, France.,Departement d'Hematologie-Immunologie, AP-HP, Hopital Henri Mondor, Créteil, France
| | | | - José L Cohen
- INSERM, IMRB, Univ Paris Est Creteil, Creteil, France.,Centre d'investigation Clinique en Biothérapie, AP-HP, Hopital Henri Mondor, Créteil, France
| | - Valérie Molinier-Frenkel
- INSERM, IMRB, Univ Paris Est Creteil, Creteil, France.,Departement d'Hematologie-Immunologie, AP-HP, Hopital Henri Mondor, Créteil, France
| |
Collapse
|
18
|
Zeitler L, Fiore A, Meyer C, Russier M, Zanella G, Suppmann S, Gargaro M, Sidhu SS, Seshagiri S, Ohnmacht C, Köcher T, Fallarino F, Linkermann A, Murray PJ. Anti-ferroptotic mechanism of IL4i1-mediated amino acid metabolism. eLife 2021; 10:64806. [PMID: 33646117 PMCID: PMC7946422 DOI: 10.7554/elife.64806] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/26/2021] [Indexed: 12/13/2022] Open
Abstract
Interleukin-4-induced-1 (IL4i1) is an amino acid oxidase secreted from immune cells. Recent observations have suggested that IL4i1 is pro-tumorigenic via unknown mechanisms. As IL4i1 has homologs in snake venoms (L-amino acid oxidases [LAAO]), we used comparative approaches to gain insight into the mechanistic basis of how conserved amino acid oxidases regulate cell fate and function. Using mammalian expressed recombinant proteins, we found that venom LAAO kills cells via hydrogen peroxide generation. By contrast, mammalian IL4i1 is non-cytotoxic and instead elicits a cell protective gene expression program inhibiting ferroptotic redox death by generating indole-3-pyruvate (I3P) from tryptophan. I3P suppresses ferroptosis by direct free radical scavenging and through the activation of an anti-oxidative gene expression program. Thus, the pro-tumor effects of IL4i1 are likely mediated by local anti-ferroptotic pathways via aromatic amino acid metabolism, arguing that an IL4i1 inhibitor may modulate tumor cell death pathways.
Collapse
Affiliation(s)
- Leonie Zeitler
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | - Claudia Meyer
- Universitätsklinikum Carl Gustav Carus Dresden, Dresden, Germany
| | - Marion Russier
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Gaia Zanella
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | | | - Sachdev S Sidhu
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
| | | | - Caspar Ohnmacht
- Helmholtz Zentrum München Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Munich, Germany
| | - Thomas Köcher
- Vienna BioCenter Core Facilities GmbH, Vienna, Austria
| | | | | | - Peter J Murray
- Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
19
|
Anderson G, Carbone A, Mazzoccoli G. Tryptophan Metabolites and Aryl Hydrocarbon Receptor in Severe Acute Respiratory Syndrome, Coronavirus-2 (SARS-CoV-2) Pathophysiology. Int J Mol Sci 2021; 22:ijms22041597. [PMID: 33562472 PMCID: PMC7915649 DOI: 10.3390/ijms22041597] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
The metabolism of tryptophan is intimately associated with the differential regulation of diverse physiological processes, including in the regulation of responses to severe acute respiratory syndrome, coronavirus-2 (SARS-CoV-2) infection that underpins the COVID-19 pandemic. Two important products of tryptophan metabolism, viz kynurenine and interleukin (IL)4-inducible1 (IL41)-driven indole 3 pyruvate (I3P), activate the aryl hydrocarbon receptor (AhR), thereby altering the nature of immune responses to SARS-CoV-2 infection. AhR activation dysregulates the initial pro-inflammatory cytokines production driven by neutrophils, macrophages, and mast cells, whilst AhR activation suppresses the endogenous antiviral responses of natural killer cells and CD8+ T cells. Such immune responses become further dysregulated by the increased and prolonged pro-inflammatory cytokine suppression of pineal melatonin production coupled to increased gut dysbiosis and gut permeability. The suppression of pineal melatonin and gut microbiome-derived butyrate, coupled to an increase in circulating lipopolysaccharide (LPS) further dysregulates the immune response. The AhR mediates its effects via alterations in the regulation of mitochondrial function in immune cells. The increased risk of severe/fatal SARS-CoV-2 infection by high risk conditions, such as elderly age, obesity, and diabetes are mediated by these conditions having expression levels of melatonin, AhR, butyrate, and LPS that are closer to those driven by SARS-CoV-2 infection. This has a number of future research and treatment implications, including the utilization of melatonin and nutraceuticals that inhibit the AhR, including the polyphenols, epigallocatechin gallate (EGCG), and resveratrol.
Collapse
Affiliation(s)
- George Anderson
- CRC Scotland & London, Eccleston Square, London SW1V 1PX, UK
| | - Annalucia Carbone
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS "Casa Sollievo della Sofferenza", 71013 San Giovanni Rotondo, Italy
| | - Gianluigi Mazzoccoli
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS "Casa Sollievo della Sofferenza", 71013 San Giovanni Rotondo, Italy
| |
Collapse
|
20
|
Castellano F, Molinier-Frenkel V. Control of T-Cell Activation and Signaling by Amino-Acid Catabolizing Enzymes. Front Cell Dev Biol 2020; 8:613416. [PMID: 33392202 PMCID: PMC7773816 DOI: 10.3389/fcell.2020.613416] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
Amino acids are essential for protein synthesis, epigenetic modification through the methylation of histones, and the maintenance of a controlled balance of oxidoreduction via the production of glutathione and are precursors of certain neurotransmitters. T lymphocytes are particularly sensitive to fluctuations in amino acid levels. During evolution, the production of amino-acid catabolizing enzymes by mainly antigen-presenting cells has become a physiological mechanism to control T-cell activation and polarization. The action of these enzymes interferes with TCR and co-stimulation signaling, allowing tuning of the T-cell response. These capacities can be altered in certain pathological conditions, with relevant consequences for the development of disease.
Collapse
Affiliation(s)
- Flavia Castellano
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France.,AP-HP, Hopital Henri Mondor, Departement Immunologie-Hématologie, Creteil, France
| | - Valérie Molinier-Frenkel
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France.,AP-HP, Hopital Henri Mondor, Departement Immunologie-Hématologie, Creteil, France
| |
Collapse
|
21
|
Puiffe ML, Dupont A, Sako N, Gatineau J, Cohen JL, Mestivier D, Lebon A, Prévost-Blondel A, Castellano F, Molinier-Frenkel V. IL4I1 Accelerates the Expansion of Effector CD8 + T Cells at the Expense of Memory Precursors by Increasing the Threshold of T-Cell Activation. Front Immunol 2020; 11:600012. [PMID: 33343572 PMCID: PMC7746639 DOI: 10.3389/fimmu.2020.600012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/03/2020] [Indexed: 12/25/2022] Open
Abstract
IL4I1 is an immunoregulatory enzyme that inhibits CD8 T-cell proliferation in vitro and in the tumoral context. Here, we dissected the effect of IL4I1 on CD8 T-cell priming by studying the differentiation of a transgenic CD8 T-cell clone and the endogenous repertoire in a mouse model of acute lymphocytic choriomeningitis virus (LCMV) infection. Unexpectedly, we show that IL4I1 accelerates the expansion of functional effector CD8 T cells during the first several days after infection and increases the average affinity of the elicited repertoire, supporting more efficient LCMV clearance in WT mice than IL4I1-deficient mice. Conversely, IL4I1 restrains the differentiation of CD8 T-cells into long-lived memory precursors and favors the memory response to the most immunodominant peptides. IL4I1 expression does not affect the phenotype or antigen-presenting functions of dendritic cells (DCs), but directly reduces the stability of T-DC immune synapses in vitro, thus dampening T-cell activation. Overall, our results support a model in which IL4I1 increases the threshold of T-cell activation, indirectly promoting the priming of high-affinity clones while limiting memory T-cell differentiation.
Collapse
Affiliation(s)
- Marie-Line Puiffe
- Virus-Immunity-Cancer Department, Institut Mondor de Recherche Biomédicale (IMRB), INSERM U955, Université Paris-Est Créteil, Créteil, France
| | - Aurélie Dupont
- Virus-Immunity-Cancer Department, Institut Mondor de Recherche Biomédicale (IMRB), INSERM U955, Université Paris-Est Créteil, Créteil, France
| | - Nouhoum Sako
- Virus-Immunity-Cancer Department, Institut Mondor de Recherche Biomédicale (IMRB), INSERM U955, Université Paris-Est Créteil, Créteil, France
| | - Jérôme Gatineau
- Virus-Immunity-Cancer Department, Institut Mondor de Recherche Biomédicale (IMRB), INSERM U955, Université Paris-Est Créteil, Créteil, France
| | - José L Cohen
- Virus-Immunity-Cancer Department, Institut Mondor de Recherche Biomédicale (IMRB), INSERM U955, Université Paris-Est Créteil, Créteil, France
| | - Denis Mestivier
- Bioinformatics Core Laboratory, Institut Mondor de Recherche Biomédicale (IMRB), INSERM U955, Université Paris-Est Créteil, Créteil, France
| | - Agnès Lebon
- INSERM U1016, CNRS UMR8104, Institut Cochin, Université de Paris, Paris, France
| | | | - Flavia Castellano
- Virus-Immunity-Cancer Department, Institut Mondor de Recherche Biomédicale (IMRB), INSERM U955, Université Paris-Est Créteil, Créteil, France.,Pathobiology Department, Groupe Hospitalo-Universitaire Chenevier-Mondor, AP-HP, Créteil, France
| | - Valérie Molinier-Frenkel
- Virus-Immunity-Cancer Department, Institut Mondor de Recherche Biomédicale (IMRB), INSERM U955, Université Paris-Est Créteil, Créteil, France.,Pathobiology Department, Groupe Hospitalo-Universitaire Chenevier-Mondor, AP-HP, Créteil, France
| |
Collapse
|
22
|
Zheng J, Guo Y, Hu B, Zhu L, Yang Y, Li S, Li N, Liu H. Serum metabolomic profiles reveal the impact of BuZangTongLuo formula on metabolic pathways in diabetic mice with hindlimb ischemia. JOURNAL OF ETHNOPHARMACOLOGY 2020; 258:112928. [PMID: 32371144 DOI: 10.1016/j.jep.2020.112928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/18/2020] [Accepted: 04/26/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE BuZangTongLuo Formula (BZTLF) was the decoction of eight traditional Chinese medicines including Astragalus membranaceus, Dioscorea opposita, Salvia miltiorrhiza, Scrophularia ningpoensis, Ophiopogon japonicus, Panax ginseng, Fritillariae cirrhosae and Whitmania pigra. This formula has been used as an effective remedy for treatment of diabetic ischemia clinically. AIM OF THE STUDY In previous study, we have reported the therapeutic effect of BZTLF on diabetic vascular dysfunction. However, it remains obscure about the role of metabolic pathways in BZTLF-initiated improvement on hindlimb ischemia. MATERIALS AND METHODS Diabetic mice with hindlimb ischemia were orally administrated with BZTLF by gavage. The serum samples were prepared for untargeted metabolomic analysis by ultra-performance liquid chromatography-mass spectrometer. The metabolic network was built by integrating metabolite data with the Gene Expression Omnibus (GEO) dataset (GSE3313). Further, quantitative PCR was used to confirm the key target genes. RESULTS BZTLF treatment remarkably led to the reversal of changed metabolite levels in serum of diabetic mice with hindlimb ischemia, which mainly derived from bacteria, plant and signaling molecules. Also, BZTLF reshaped the metabolic pathways, especially those responsible for metabolism of lipid, gluthanine and tryptophan. In addition, BZTLF led to the reduction of lysophosphatidic acids (LPAs) and increment of triglycerides (TGs) conjugation with non-saturated fatty acids in serum. BZTLF significantly restored the down-regulation of vascular endothelial growth factor receptor 2 (VEGFR2) and endothelial nitric oxide synthase (eNOS) or the up-regulation of interleukin 4-induced 1 (IL4I1) and cytochrome P450 family 1 subfamily B member 1 (CYP1B1) at mRNA level, which were key regulatory genes located in metabolic pathways of glutamate and tryptophan. CONCLUSIONS BZTLF improved hindlimb ischemia in diabetic mice by the positive regulation of metabolome changes in serum.
Collapse
Affiliation(s)
- Junping Zheng
- Chongqing Academy of Chinese Materia Medica, Nanshan Road 34, Chongqing, 400065, China; College of Life Sciences, Wuchang University of Technology, Jiangxia Avenue 16, Wuhan, 430223, China; College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu 16, Wuhan, 430065, China
| | - Yanlei Guo
- Chongqing Academy of Chinese Materia Medica, Nanshan Road 34, Chongqing, 400065, China
| | - Baifei Hu
- Chongqing Academy of Chinese Materia Medica, Nanshan Road 34, Chongqing, 400065, China; College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu 16, Wuhan, 430065, China
| | - Lin Zhu
- Chongqing Academy of Chinese Materia Medica, Nanshan Road 34, Chongqing, 400065, China; College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu 16, Wuhan, 430065, China
| | - Yong Yang
- Chongqing Academy of Chinese Materia Medica, Nanshan Road 34, Chongqing, 400065, China
| | - Shengrong Li
- Chongqing Academy of Chinese Materia Medica, Nanshan Road 34, Chongqing, 400065, China
| | - Na Li
- Chongqing Academy of Chinese Materia Medica, Nanshan Road 34, Chongqing, 400065, China
| | - Hongtao Liu
- Chongqing Academy of Chinese Materia Medica, Nanshan Road 34, Chongqing, 400065, China; College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu 16, Wuhan, 430065, China.
| |
Collapse
|
23
|
Elsheimer-Matulova M, Polansky O, Seidlerova Z, Varmuzova K, Stepanova H, Fedr R, Rychlik I. Interleukin 4 inducible 1 gene (IL4I1) is induced in chicken phagocytes by Salmonella Enteritidis infection. Vet Res 2020; 51:67. [PMID: 32404145 PMCID: PMC7222322 DOI: 10.1186/s13567-020-00792-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 04/29/2020] [Indexed: 12/18/2022] Open
Abstract
In attempt to identify genes that are induced in chickens by Salmonella Enteritidis we identified a new highly inducible gene, interleukin 4 induced 1 gene (IL4I1). IL4I1 reached its peak expression (458× induction) in the cecum of newly hatched chickens 4 days post-infection and remained upregulated for an additional 10 days. IL4I1 was expressed and induced in macrophages and granulocytes, both at the mRNA and protein level. IL4I1 was expressed and induced also in CD4 and γδ T-lymphocytes though at a 50-fold lower level than in phagocytes. Expression of IL4I1 was not detected in CD8 T lymphocytes or B lymphocytes. Mutation of IL4I1 in chicken HD11 macrophages did not affect their bactericidal capacity against S. Enteritidis but negatively affected their oxidative burst after PMA stimulation. We therefore propose that IL4I1 is not directly involved in bactericidal activity of phagocytes and, instead, it is likely involved in the control of inflammatory response and signaling to T and B lymphocytes.
Collapse
Affiliation(s)
| | - Ondrej Polansky
- Veterinary Research Institute, Hudcova 70, 621 00, Brno, Czech Republic
| | - Zuzana Seidlerova
- Veterinary Research Institute, Hudcova 70, 621 00, Brno, Czech Republic
| | | | - Hana Stepanova
- Veterinary Research Institute, Hudcova 70, 621 00, Brno, Czech Republic
| | - Radek Fedr
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65, Brno, Czech Republic
| | - Ivan Rychlik
- Veterinary Research Institute, Hudcova 70, 621 00, Brno, Czech Republic.
| |
Collapse
|
24
|
Hurdayal R, Nieuwenhuizen NE, Khutlang R, Brombacher F. Inflammatory Dendritic Cells, Regulated by IL-4 Receptor Alpha Signaling, Control Replication, and Dissemination of Leishmania major in Mice. Front Cell Infect Microbiol 2020; 9:479. [PMID: 32039054 PMCID: PMC6992597 DOI: 10.3389/fcimb.2019.00479] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/27/2019] [Indexed: 11/16/2022] Open
Abstract
Leishmaniasis is a vector-borne disease caused by Leishmania parasites. Macrophages are considered the primary parasite host cell, but dendritic cells (DCs) play a critical role in initiating adaptive immunity and controlling Leishmania infection. Accordingly, our previous study in CD11ccreIL-4Rα−/lox mice, which have impaired IL-4 receptor alpha (IL-4Rα) expression on CD11c+ cells including DCs, confirmed a protective role for IL-4/IL-13-responsive DCs in replication and dissemination of parasites during cutaneous leishmaniasis. However, it was unclear which DC subset/s was executing this function. To investigate this, we infected CD11ccreIL-4Rα−/lox and control mice with L. major GFP+ parasites and identified subsets of infected DCs by flow cytometry. Three days after infection, CD11b+ DCs and CD103+ DCs were the main infected DC subsets in the footpad and draining lymph node, respectively and by 4 weeks post-infection, Ly6C+ and Ly6C− CD11b+ DCs were the main infected DC populations in both the lymph nodes and footpads. Interestingly, Ly6C+CD11b+ inflammatory monocyte-derived DCs but not Ly6C−CD11b+ DCs hosted parasites in the spleen. Importantly, intracellular parasitism was significantly higher in IL-4Rα-deficient DCs. In terms of DC effector function, we found no change in the expression of pattern-recognition receptors (TLR4 and TLR9) nor in expression of the co-stimulatory marker, CD80, but MHCII expression was lower in CD11ccreIL-4Rα−/lox mice at later time-points compared to the controls. Interestingly, in CD11ccreIL-4Rα−/lox mice, which have reduced Th1 responses, CD11b+ DCs had impaired iNOS production, suggesting that DC IL-4Rα expression and NO production is important for controlling parasite numbers and preventing dissemination. Expression of the alternative activation marker arginase was unchanged in CD11b+ DCs in CD11creIL-4Rα−/lox mice compared to littermate controls, but RELM-α was upregulated, suggesting IL-4Rα-independent alternative activation. In summary, L. major parasites may use Ly6C+CD11b+ inflammatory DCs derived from monocytes recruited to infection as “Trojan horses” to migrate to secondary lymphoid organs and peripheral sites, and DC IL-4Rα expression is important for controlling infection.
Collapse
Affiliation(s)
- Ramona Hurdayal
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa.,International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa.,Division of Immunology, Department of Pathology, Faculty of Health Sciences, South African Medical Research Council on Immunology of Infectious Diseases, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Faculty of Health Sciences, Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Natalie Eva Nieuwenhuizen
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa.,Division of Immunology, Department of Pathology, Faculty of Health Sciences, South African Medical Research Council on Immunology of Infectious Diseases, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Rethabile Khutlang
- Identity Authentication Research Group, Defence and Security, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Frank Brombacher
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa.,Division of Immunology, Department of Pathology, Faculty of Health Sciences, South African Medical Research Council on Immunology of Infectious Diseases, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Faculty of Health Sciences, Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
25
|
Molinier-Frenkel V, Prévost-Blondel A, Castellano F. The IL4I1 Enzyme: A New Player in the Immunosuppressive Tumor Microenvironment. Cells 2019; 8:E757. [PMID: 31330829 PMCID: PMC6678094 DOI: 10.3390/cells8070757] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 12/14/2022] Open
Abstract
The high metabolic needs of T lymphocytes in response to activation make them particularly vulnerable to modifications of their biochemical milieu. Immunosuppressive enzymes produced in the tumor microenvironment modify nutrient availability by catabolizing essential or semi-essential amino acids and producing toxic catabolites, thus participating in the local sabotage of the antitumor immune response. L-amino-acid oxidases are FAD-bound enzymes found throughout evolution, from bacteria to mammals, and are often endowed with anti-infectious properties. IL4I1 is a secreted L-phenylalanine oxidase mainly produced by inflammatory antigen-presenting cells-in particular, macrophages present in T helper type 1 granulomas and in various types of tumors. In the last decade, it has been shown that IL4I1 is involved in the fine control of B- and T-cell adaptive immune responses. Preclinical models have revealed its role in cancer immune evasion. Recent clinical data highlight IL4I1 as a new potential prognostic marker in human melanoma. As a secreted enzyme, IL4I1 may represent an easily targetable molecule for cancer immunotherapy.
Collapse
Affiliation(s)
- Valérie Molinier-Frenkel
- INSERM, U955, Team 09, 94010 Créteil, France.
- Faculty of Medicine, University Paris Est, 94010 Créteil, France.
- AP-HP, H. Mondor - A. Chenevier Hospital, Biological Immunology Service, 94010 Créteil, France.
| | - Armelle Prévost-Blondel
- INSERM, U1016, Institute Cochin, 75014 Paris, France
- CNRS, UMR8104, 75014 Paris, France
- University Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France
| | - Flavia Castellano
- INSERM, U955, Team 09, 94010 Créteil, France.
- Faculty of Medicine, University Paris Est, 94010 Créteil, France.
| |
Collapse
|
26
|
Solbakken MH, Jentoft S, Reitan T, Mikkelsen H, Gregers TF, Bakke O, Jakobsen KS, Seppola M. Disentangling the immune response and host-pathogen interactions in Francisella noatunensis infected Atlantic cod. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 30:333-346. [PMID: 31054474 DOI: 10.1016/j.cbd.2019.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 03/08/2019] [Accepted: 04/12/2019] [Indexed: 12/15/2022]
Abstract
The genetic repertoire underlying teleost immunity has been shown to be highly variable. A rare example is Atlantic cod and its relatives Gadiformes that lacks a hallmark of vertebrate immunity: Major Histocompatibility Complex class II. No immunological studies so far have fully unraveled the functionality of this particular immune system. Through global transcriptomic profiling, we investigate the immune response and host-pathogen interaction of Atlantic cod infected with the facultative intracellular bacterium Francisella noatunensis. We find that Atlantic cod displays an overall classic innate immune response with inflammation, acute-phase proteins and cell recruitment through up-regulation of e.g. IL1B, fibrinogen, cathelicidin, hepcidin and several chemotactic cytokines such as the neutrophil attractants CXCL1 and CXCL8. In terms of adaptive immunity, we observe up-regulation of interferon gamma followed by up-regulation of several MHCI transcripts and genes related to antigen transport and loading. Finally, we find up-regulation of immunoglobulins and down-regulation of T-cell and NK-like cell markers. Our analyses also uncover some contradictory transcriptional findings such as up-regulation of anti-inflammatory IL10 as well as down-regulation of the NADPH oxidase complex and myeloperoxidase. This we interpret as the result of host-pathogen interactions where F. noatunensis modulates the immune response. In summary, our results suggest that Atlantic cod mounts a classic innate immune response as well as a neutrophil-driven response. In terms of adaptive immunity, both endogenous and exogenous antigens are being presented on MHCI and antibody production is likely enabled through direct B-cell stimulation with possible neutrophil help. Collectively, we have obtained novel insight in the orchestration of the Atlantic cod immune system and determined likely targets of F. noatunensis host-pathogen interactions.
Collapse
Affiliation(s)
- Monica Hongrø Solbakken
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway
| | - Sissel Jentoft
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway.
| | - Trond Reitan
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway
| | | | - Tone F Gregers
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Oddmund Bakke
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Kjetill S Jakobsen
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway
| | - Marit Seppola
- Department of Medical Biology, The Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
27
|
Ramspott JP, Bekkat F, Bod L, Favier M, Terris B, Salomon A, Djerroudi L, Zaenker KS, Richard Y, Molinier-Frenkel V, Castellano F, Avril MF, Prévost-Blondel A. Emerging Role of IL-4–Induced Gene 1 as a Prognostic Biomarker Affecting the Local T-Cell Response in Human Cutaneous Melanoma. J Invest Dermatol 2018; 138:2625-2634. [DOI: 10.1016/j.jid.2018.06.178] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 06/04/2018] [Accepted: 06/18/2018] [Indexed: 12/28/2022]
|
28
|
An Overview of l-Amino Acid Oxidase Functions from Bacteria to Mammals: Focus on the Immunoregulatory Phenylalanine Oxidase IL4I1. Molecules 2017; 22:molecules22122151. [PMID: 29206151 PMCID: PMC6149928 DOI: 10.3390/molecules22122151] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 11/23/2017] [Accepted: 11/29/2017] [Indexed: 01/04/2023] Open
Abstract
l-amino acid oxidases are flavin adenine dinucleotide-dependent enzymes present in all major kingdom of life, from bacteria to mammals. They participate in defense mechanisms by limiting the growth of most bacteria and parasites. A few mammalian LAAOs have been described, of which the enzyme “interleukin-4 induced gene 1” (IL4I1) is the best characterized. IL4I1 mainly oxidizes l-phenylalanine. It is a secreted enzyme physiologically produced by antigen presenting cells of the myeloid and B cell lineages and T helper type (Th) 17 cells. Important roles of IL4I1 in the fine control of the adaptive immune response in mice and humans have emerged during the last few years. Indeed, IL4I1 inhibits T cell proliferation and cytokine production and facilitates naïve CD4+ T-cell differentiation into regulatory T cells in vitro by limiting the capacity of T lymphocytes to respond to clonal receptor stimulation. It may also play a role in controlling the germinal center reaction for antibody production and limiting Th1 and Th17 responses. IL4I1 is expressed in tumor-associated macrophages of most human cancers and in some tumor cell types. Such expression, associated with its capacity to facilitate tumor growth by inhibiting the anti-tumor T-cell response, makes IL4I1 a new potential druggable target in the field of immunomodulation in cancer.
Collapse
|