1
|
Lovins V, Farias Amorim C, Robles N, Murga-Garrido S, Ting-Chun Pan J, Singh TP, DeNardo E, Carvalho LP, Carvalho EM, Scott P, Grice EA. Staphylococcus aureus promotes strain-dependent immunopathology during cutaneous leishmaniasis through induction of IL-1β. Cell Rep 2025; 44:115624. [PMID: 40293920 DOI: 10.1016/j.celrep.2025.115624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/29/2025] [Accepted: 04/07/2025] [Indexed: 04/30/2025] Open
Abstract
Cutaneous leishmaniasis is a parasitic infection that causes a spectrum of pathology ranging from single, self-healing lesions to disfiguring chronic wounds. In severe disease, uncontrolled inflammation exacerbates tissue damage and delays healing, though the contributing factors are unclear. We previously observed that delayed healing was associated with Staphylococcus aureus in the lesional microbiota of patients with cutaneous leishmaniasis. To investigate how S. aureus impacts immunopathology during leishmania infection, we established a murine model of S. aureus colonization with clinical isolates followed by Leishmania infection. S. aureus triggered early production of interleukin (IL)-1β during Leishmania infection, which was critical for neutrophil recruitment and cutaneous inflammation. S. aureus isolates differentially induced IL-1β and neutrophil recruitment, and isolates that induced greater neutrophil recruitment were resistant to neutrophil killing and persisted longer. We reveal a mechanism whereby S. aureus mediates immunopathology during cutaneous leishmaniasis, suggesting IL-1β as a promising immunomodulatory target for non-healing infections.
Collapse
Affiliation(s)
- Victoria Lovins
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Camila Farias Amorim
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nélida Robles
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sofía Murga-Garrido
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jamie Ting-Chun Pan
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tej P Singh
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Erin DeNardo
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lucas P Carvalho
- Laboratório de Pesquisas Clínicas de Instituto de Pesquisas Gonçalo Muniz, Fiocruz, Bahia, Brazil
| | - Edgar M Carvalho
- Laboratório de Pesquisas Clínicas de Instituto de Pesquisas Gonçalo Muniz, Fiocruz, Bahia, Brazil
| | - Phillip Scott
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Elizabeth A Grice
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Mills KAM, Westermann F, Espinosa V, Rosiek E, Desai JV, Aufiero MA, Guo Y, Liu FL, Mitchell KA, Tuzlak S, De Feo D, Lionakis MS, Rivera A, Becher B, Hohl TM. GM-CSF-mediated epithelial-immune cell cross-talk orchestrates pulmonary immunity to Aspergillus fumigatus. Sci Immunol 2025; 10:eadr0547. [PMID: 40117345 PMCID: PMC12122100 DOI: 10.1126/sciimmunol.adr0547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 02/26/2025] [Indexed: 03/23/2025]
Abstract
Aspergillus fumigatus causes life-threatening mold pneumonia in immunocompromised patients, particularly in those with quantitative or qualitative defects in neutrophils. Whereas innate immune cell cross-talk licenses neutrophil antifungal activity in the lung, the role of epithelial cells in this process is unknown. Here, we find that surfactant protein C (SPC)-expressing lung epithelial cells integrate infection-induced interleukin-1 and type III interferon signaling to produce granulocyte-macrophage colony-stimulating factor (GM-CSF) preferentially at local sites of fungal infection and neutrophil influx. Using in vivo models that distinguish the role of GM-CSF during acute infection from its homeostatic function in alveolar macrophage survival and surfactant catabolism, we demonstrate that epithelial-derived GM-CSF increases the accumulation and fungicidal activity of GM-CSF-responsive neutrophils, which is essential for host survival. Our findings establish SPC+ epithelial cells as a central player in regulating the quality and strength of neutrophil-dependent immunity against inhaled mold pathogens.
Collapse
Affiliation(s)
- Kathleen A. M. Mills
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | | | - Vanessa Espinosa
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers—State University of New Jersey, Newark, NJ, USA
| | - Eric Rosiek
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jigar V. Desai
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mariano A. Aufiero
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yahui Guo
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Fitty L. Liu
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Kennedy A. Mitchell
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Selma Tuzlak
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Donatella De Feo
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Michail S. Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Amariliz Rivera
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers—State University of New Jersey, Newark, NJ, USA
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Tobias M. Hohl
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
3
|
Fan Y, Meng S, Song Y, Zhang Y, Song Y, Chen Z, Xie K. Interaction, diagnosis, and treatment of lung microbiota-NLRP3 inflammasome-target organ axis in sepsis. Int Immunopharmacol 2025; 149:114222. [PMID: 39923579 DOI: 10.1016/j.intimp.2025.114222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/14/2025] [Accepted: 01/31/2025] [Indexed: 02/11/2025]
Abstract
Sepsis is defined as a life-threatening condition caused by a dysregulated host response to infection, leading to multi-organ dysfunction, and representing a significant global health burden. The progression of sepsis is closely linked to disruptions in lung microbiota, including bacterial translocation, impaired barrier function, and local microenvironmental disturbances. Conversely, the worsening of sepsis exacerbates lung microbiota imbalances, contributing to multi-organ dysfunction. Recent culture-independent microbiological techniques have unveiled the complexity of the respiratory tract microbiome, necessitating a reassessment of the interactions between the host, microbes, and pathogenesis in sepsis. This review synthesizes current insights into the causes of microbiota dysbiosis and the regulatory mechanisms of the NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome, as well as their interactions during sepsis and sepsis-induced organ dysfunction. In addition, we summarize novel diagnostic and therapeutic approaches from the current study that may offer promising prospects for the management of sepsis.
Collapse
Affiliation(s)
- Yan Fan
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China
| | - Shuqi Meng
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China
| | - Yu Song
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China
| | - Ying Zhang
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China
| | - Yan Song
- Department of Geriatrics, Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin China
| | - Zhe Chen
- Department of Geriatrics, Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin China.
| | - Keliang Xie
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China; Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of Anesthesiology, Shandong Second Medical University, China.
| |
Collapse
|
4
|
Kumar A, Johnson D, Bukowski A, Noto MJ, Carbonetti NH. Interferon lambda signaling in neutrophils enhances the pathogenesis of Bordetella pertussis infection. J Leukoc Biol 2025; 117:qiae202. [PMID: 39302155 PMCID: PMC11879762 DOI: 10.1093/jleuko/qiae202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/31/2024] [Accepted: 09/18/2024] [Indexed: 09/22/2024] Open
Abstract
Interferon lambda plays diverse roles in bacterial infections. Previously, we showed that interferon lambda is induced in the lungs of Bordetella pertussis-infected adult mice and exacerbates inflammation. Here, we report that mice lacking the interferon lambda receptor 1 specifically on neutrophils (MRP8creIFNLR1fl/fl mice) exhibit reduced lung bacterial load and inflammation compared to wild-type mice during B. pertussis infection. In B. pertussis-infected wild-type mice, lung type I and III IFN responses were higher than in MRP8creIFNLR1fl/fl mice, correlating with increased lung inflammatory pathology. There was an increased proportion of interferon gamma-producing neutrophils in the lungs of MRP8creIFNLR1fl/fl mice compared to wild-type mice. IFNLR1-/- neutrophils incubated with B. pertussis exhibited higher killing compared to wild-type neutrophils. Treatment of wild-type neutrophils with interferon lambda further decreased their bacterial killing capacity and treatment of wild-type mice with interferon lambda increased lung bacterial loads. Contributing to the differential killing, we found that IFNLR1-/- neutrophils exhibit higher levels of reactive oxygen species, myeloperoxidase, matrix metalloproteinase-9 activity, neutrophil extracellular traps, and interferon gamma secretion than wild-type neutrophils, and inhibiting NADPH oxidase inhibited bacterial killing in IFNLR1-/- neutrophils. B. pertussis-induced interferon lambda secretion and IFNLR1 gene expression in mouse and human neutrophils and this was dependent on the bacterial virulence protein pertussis toxin. Pertussis toxin enhanced bacterial loads in wild type but not in MRP8creIFNLR1fl/fl or IFNLR1-/- mice. Thus, pertussis toxin disrupts neutrophil function by enhancing type III IFN signaling, which prevents neutrophils from effectively clearing B. pertussis during infection, leading to higher bacterial loads and exacerbation of lung inflammation.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Da’Kuawn Johnson
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Alicia Bukowski
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Michael J. Noto
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Nicholas H. Carbonetti
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
5
|
Song M, Deng M, Peng Z, Dai F, Wang Y, Shu W, Zhou X, Zhang J, Hou Y, Yu B. Granulocyte colony-stimulating factor mediates bone loss via the activation of IL-1β/JNK signaling pathway in murine Staphylococcus aureus-induced osteomyelitis. Int Immunopharmacol 2024; 141:112959. [PMID: 39163688 DOI: 10.1016/j.intimp.2024.112959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/22/2024]
Abstract
Staphylococcus aureus (S. aureus)-induced bone loss is a significant challenge in the treatment of osteomyelitis. Our previous study was the first to confirm that granulocyte colony-stimulating factor (G-CSF) mediates S. aureus-induced bone loss. However, the underlying mechanism remains unknown. The objective of this study was to elucidate this. We found G-CSF mediated BMSC senescence and increased IL-1β concentration of serum and bone marrow in mice after S. aureus infection. Furthermore, we demonstrated that G-CSF promoted the expression of IL1b in murine bone marrow-derived neutrophils. Notably, we identified that IL-1β mediated BMSC (bone marrow mesenchymal stromal cell) senescence in mice after S. aureus infection. Importantly, IL-1β neutralizing antibody effectively alleviated BMSC senescence and bone loss caused by S. aureus infection in mice. In terms of molecular mechanism, we found IL-1β induced BMSC senescence by JNK/P53 and JNK/BCL2 pathways. Collectively, G-CSF promotes IL-1β production which induces BMSC senescence via JNK/P53 and JNK/BCL2 pathways, leading to S. aureus-induced bone loss. This study identified novel targets for preventing and treating S. aureus-induced bone loss in osteomyelitis.
Collapse
Affiliation(s)
- Mingrui Song
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mingye Deng
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ziyue Peng
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fangfang Dai
- Huiqiao Medical Center, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Yutian Wang
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wen Shu
- Department of Trauma Orthopedics, Liuzhou People's Hospital, Liuzhou, Guangxi, China
| | - Xuyou Zhou
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinye Zhang
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yilong Hou
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Bin Yu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
6
|
Reynolds MB, Klein B, McFadden MJ, Judge NK, Navarrete HE, Michmerhuizen BC, Awad D, Schultz TL, Harms PW, Zhang L, O'Meara TR, Sexton JZ, Lyssiotis CA, Kahlenberg JM, O'Riordan MX. Type I interferon governs immunometabolic checkpoints that coordinate inflammation during Staphylococcal infection. Cell Rep 2024; 43:114607. [PMID: 39126652 PMCID: PMC11590196 DOI: 10.1016/j.celrep.2024.114607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/09/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Macrophage metabolic plasticity is central to inflammatory programming, yet mechanisms of coordinating metabolic and inflammatory programs during infection are poorly defined. Here, we show that type I interferon (IFN) temporally guides metabolic control of inflammation during methicillin-resistant Staphylococcus aureus (MRSA) infection. We find that staggered Toll-like receptor and type I IFN signaling in macrophages permit a transient energetic state of combined oxidative phosphorylation (OXPHOS) and aerobic glycolysis followed by inducible nitric oxide synthase (iNOS)-mediated OXPHOS disruption. This disruption promotes type I IFN, suppressing other pro-inflammatory cytokines, notably interleukin-1β. Upon infection, iNOS expression peaks at 24 h, followed by lactate-driven Nos2 repression via histone lactylation. Type I IFN pre-conditioning prolongs infection-induced iNOS expression, amplifying type I IFN. Cutaneous MRSA infection in mice constitutively expressing epidermal type I IFN results in elevated iNOS levels, impaired wound healing, vasculopathy, and lung infection. Thus, kinetically regulated type I IFN signaling coordinates immunometabolic checkpoints that control infection-induced inflammation.
Collapse
Affiliation(s)
- Mack B Reynolds
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Benjamin Klein
- Department of Internal Medicine, Division of Rheumatology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Michael J McFadden
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Norah K Judge
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Hannah E Navarrete
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Britton C Michmerhuizen
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Dominik Awad
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Tracey L Schultz
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Paul W Harms
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Li Zhang
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Teresa R O'Meara
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jonathan Z Sexton
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - J Michelle Kahlenberg
- Department of Internal Medicine, Division of Rheumatology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Mary X O'Riordan
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
7
|
Antos D, Parks OB, Duray AM, Abraham N, Michel JJ, Kupul S, Westcott R, Alcorn JF. Cell-intrinsic regulation of phagocyte function by interferon lambda during pulmonary viral, bacterial super-infection. PLoS Pathog 2024; 20:e1012498. [PMID: 39178311 PMCID: PMC11376568 DOI: 10.1371/journal.ppat.1012498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 09/05/2024] [Accepted: 08/12/2024] [Indexed: 08/25/2024] Open
Abstract
Influenza infections result in a significant number of severe illnesses annually, many of which are complicated by secondary bacterial super-infection. Primary influenza infection has been shown to increase susceptibility to secondary methicillin-resistant Staphylococcus aureus (MRSA) infection by altering the host immune response, leading to significant immunopathology. Type III interferons (IFNs), or IFNλs, have gained traction as potential antiviral therapeutics due to their restriction of viral replication without damaging inflammation. The role of IFNλ in regulating epithelial biology in super-infection has recently been established; however, the impact of IFNλ on immune cells is less defined. In this study, we infected wild-type and IFNLR1-/- mice with influenza A/PR/8/34 followed by S. aureus USA300. We demonstrated that global IFNLR1-/- mice have enhanced bacterial clearance through increased uptake by phagocytes, which was shown to be cell-intrinsic specifically in myeloid cells in mixed bone marrow chimeras. We also showed that depletion of IFNLR1 on CX3CR1 expressing myeloid immune cells, but not neutrophils, was sufficient to significantly reduce bacterial burden compared to mice with intact IFNLR1. These findings provide insight into how IFNλ in an influenza-infected lung impedes bacterial clearance during super-infection and show a direct cell intrinsic role for IFNλ signaling on myeloid cells.
Collapse
Affiliation(s)
- Danielle Antos
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Olivia B Parks
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Alexis M Duray
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Nevil Abraham
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Joshua J Michel
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Saran Kupul
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Rosemary Westcott
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - John F Alcorn
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
8
|
Pires S, Kaiser K, Parker D. Type III interferon drives pathogenicity to Staphylococcus aureus via the airway epithelium. mBio 2024; 15:e0113024. [PMID: 38934617 PMCID: PMC11253584 DOI: 10.1128/mbio.01130-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Type III interferon signaling contributes to the pathogenesis of the important human pathogen Staphylococcus aureus in the airway. Little is known of the cellular factors important in this response. Using Ifnl2-green fluorescent protein reporter mice combined with flow cytometry and cellular depletion strategies, we demonstrate that the alveolar macrophage is the primary producer of interferon lambda (IFN-λ) in response to S. aureus in the airway. Bone marrow chimeras showed reduced bacterial burden in IFN-λ receptor (IFNLR1)-deficient recipient mice, indicative that non-hematopoietic cells were important for pathogenesis, in addition to significant reductions in pulmonary inflammation. These observations were confirmed through the use of an airway epithelial-specific IFNLR knockout mouse. Our data suggest that upon entry to the airway, S. aureus activates alveolar macrophages to produce type III IFN that is subsequently sensed by the airway epithelium. Future steps will determine how signaling from the epithelium then exerts its influence on bacterial clearance. These results highlight the important, yet sometimes detrimental, role of type III IFN signaling during infection and the impact the airway epithelium plays during host-pathogen interactions.IMPORTANCEThe contribution of type III interferon signaling to the control of bacterial infections is largely unknown. We have previously demonstrated that it contributes to the pathogenesis of acute Staphylococcus aureus respiratory infection. In this report, we document the importance of two cell types that underpin this pathogenesis. We demonstrate that the alveolar macrophage is the cell that is responsible for the production of type III interferon and that this molecule is sensed by airway epithelial cells, which impacts both bacterial clearance and induction of inflammation. This work sheds light on the first two aspects of this important pathogenic cascade.
Collapse
Affiliation(s)
- Silvia Pires
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Katherine Kaiser
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Dane Parker
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
9
|
Narros-Fernández P, Chomanahalli Basavarajappa S, Walsh PT. Interleukin-1 family cytokines at the crossroads of microbiome regulation in barrier health and disease. FEBS J 2024; 291:1849-1869. [PMID: 37300849 DOI: 10.1111/febs.16888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/23/2023] [Accepted: 06/08/2023] [Indexed: 06/12/2023]
Abstract
Recent advances in understanding how the microbiome can influence both the physiology and the pathogenesis of disease in humans have highlighted the importance of gaining a deeper insight into the complexities of the host-microbial dialogue. In tandem with this progress, has been a greater understanding of the biological pathways which regulate both homeostasis and inflammation at barrier tissue sites, such as the skin and the gut. In this regard, the Interleukin-1 family of cytokines, which can be segregated into IL-1, IL-18 and IL-36 subfamilies, have emerged as important custodians of barrier health and immunity. With established roles as orchestrators of various inflammatory diseases in both the skin and intestine, it is now becoming clear that IL-1 family cytokine activity is not only directly influenced by external microbes, but can also play important roles in shaping the composition of the microbiome at barrier sites. This review explores the current knowledge surrounding the evidence that places these cytokines as key mediators at the interface between the microbiome and human health and disease at the skin and intestinal barrier tissues.
Collapse
Affiliation(s)
- Paloma Narros-Fernández
- Trinity Translational Medicine Institute, School of Medicine, Trinity College Dublin, Ireland
- National Children's Research Centre, CHI Crumlin, Dublin 12, Ireland
| | - Shrikanth Chomanahalli Basavarajappa
- Trinity Translational Medicine Institute, School of Medicine, Trinity College Dublin, Ireland
- National Children's Research Centre, CHI Crumlin, Dublin 12, Ireland
| | - Patrick T Walsh
- Trinity Translational Medicine Institute, School of Medicine, Trinity College Dublin, Ireland
- National Children's Research Centre, CHI Crumlin, Dublin 12, Ireland
| |
Collapse
|
10
|
Gonzalez JJI, Hossain MF, Neef J, Zwack EE, Tsai CM, Raafat D, Fechtner K, Herzog L, Kohler TP, Schlüter R, Reder A, Holtfreter S, Liu GY, Hammerschmidt S, Völker U, Torres VJ, van Dijl JM, Lillig CH, Bröker BM, Darisipudi MN. TLR4 sensing of IsdB of Staphylococcus aureus induces a proinflammatory cytokine response via the NLRP3-caspase-1 inflammasome cascade. mBio 2024; 15:e0022523. [PMID: 38112465 PMCID: PMC10790753 DOI: 10.1128/mbio.00225-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 11/07/2023] [Indexed: 12/21/2023] Open
Abstract
IMPORTANCE The prevalence of multidrug-resistant Staphylococcus aureus is of global concern, and vaccines are urgently needed. The iron-regulated surface determinant protein B (IsdB) of S. aureus was investigated as a vaccine candidate because of its essential role in bacterial iron acquisition but failed in clinical trials despite strong immunogenicity. Here, we reveal an unexpected second function for IsdB in pathogen-host interaction: the bacterial fitness factor IsdB triggers a strong inflammatory response in innate immune cells via Toll-like receptor 4 and the inflammasome, thus acting as a novel pathogen-associated molecular pattern of S. aureus. Our discovery contributes to a better understanding of how S. aureus modulates the immune response, which is necessary for vaccine development against the sophisticated pathogen.
Collapse
Affiliation(s)
| | - Md Faruq Hossain
- Institute for Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Jolanda Neef
- Department of Medical Microbiology, University of Groningen, University Medical Center, Groningen, the Netherlands
| | - Erin E. Zwack
- Department of Microbiology, New York University Grossman School of Medicine, New York, USA
| | - Chih-Ming Tsai
- Department of Pediatrics, Division of Infectious Diseases, University of California San Diego, La Jolla, California, USA
| | - Dina Raafat
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Kevin Fechtner
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Luise Herzog
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Thomas P. Kohler
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Rabea Schlüter
- Imaging Center of the Department of Biology, University of Greifswald, Greifswald, Germany
| | - Alexander Reder
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Silva Holtfreter
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - George Y. Liu
- Department of Pediatrics, Division of Infectious Diseases, University of California San Diego, La Jolla, California, USA
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Uwe Völker
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Victor J. Torres
- Department of Microbiology, New York University Grossman School of Medicine, New York, USA
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center, Groningen, the Netherlands
| | - Christopher H. Lillig
- Institute for Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Barbara M. Bröker
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Murty N. Darisipudi
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
11
|
Johnson D, Carbonetti N. Roles and Effects of Interferon Lambda Signaling in the Context of Bacterial Infections. J Interferon Cytokine Res 2023; 43:363-369. [PMID: 37289801 PMCID: PMC10517327 DOI: 10.1089/jir.2023.0037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/28/2023] [Indexed: 06/10/2023] Open
Abstract
Type III interferon, or interferon lambda (IFNλ), was discovered 20 years ago and has been studied primarily for its role in combatting viral infections. However, it is also induced in response to certain bacterial infections but its roles and effects in this context are relatively poorly understood. In this mini review, we discuss the roles of IFNλ signaling in bacterial infections, highlighting its deleterious or protective effects for different infections. We also discuss a couple of recent studies showing that some bacteria possess defense mechanisms against the effects of IFNλ. We hope that this review will spur further investigation into the roles of IFNλ in the context of bacterial infections and will promote considerations of its therapeutic potential for these infections.
Collapse
Affiliation(s)
- Da'Kuawn Johnson
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Nicholas Carbonetti
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
12
|
Antos D, Alcorn JF. IFNλ: balancing the light and dark side in pulmonary infection. mBio 2023; 14:e0285022. [PMID: 37278532 PMCID: PMC10470512 DOI: 10.1128/mbio.02850-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/10/2023] [Indexed: 06/07/2023] Open
Abstract
Interferon (IFN) represents a well-known component of antiviral immunity that has been studied extensively for its mechanisms of action and therapeutic potential when antiviral treatment options are limited. Specifically in the respiratory tract, IFNs are induced directly on viral recognition to limit the spread and transmission of the virus. Recent focus has been on the IFNλ family, which has become an exciting focus in recent years for its potent antiviral and anti-inflammatory activities against viruses infecting barrier sites, including the respiratory tract. However, insights into the interplay between IFNλs and other pulmonary infections are more limited and suggest a more complex role, potentially detrimental, than what was seen during viral infections. Here, we review the role of IFNλs in pulmonary infections, including viral, bacterial, fungal, and multi-pathogen super-infections, and how this may impact future work in the field.
Collapse
Affiliation(s)
- Danielle Antos
- Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - John F. Alcorn
- Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
13
|
Linz MS, Mattappallil A, Finkel D, Parker D. Clinical Impact of Staphylococcus aureus Skin and Soft Tissue Infections. Antibiotics (Basel) 2023; 12:557. [PMID: 36978425 PMCID: PMC10044708 DOI: 10.3390/antibiotics12030557] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
The pathogenic bacterium Staphylococcus aureus is the most common pathogen isolated in skin-and-soft-tissue infections (SSTIs) in the United States. Most S. aureus SSTIs are caused by the epidemic clone USA300 in the USA. These infections can be serious; in 2019, SSTIs with S. aureus were associated with an all-cause, age-standardized mortality rate of 0.5 globally. Clinical presentations of S. aureus SSTIs vary from superficial infections with local symptoms to monomicrobial necrotizing fasciitis, which can cause systemic manifestations and may lead to serious complications or death. In order to cause skin infections, S. aureus employs a host of virulence factors including cytolytic proteins, superantigenic factors, cell wall-anchored proteins, and molecules used for immune evasion. The immune response to S. aureus SSTIs involves initial responders such as keratinocytes and neutrophils, which are supported by dendritic cells and T-lymphocytes later during infection. Treatment for S. aureus SSTIs is usually oral therapy, with parenteral therapy reserved for severe presentations; it ranges from cephalosporins and penicillin agents such as oxacillin, which is generally used for methicillin-sensitive S. aureus (MSSA), to vancomycin for methicillin-resistant S. aureus (MRSA). Treatment challenges include adverse effects, risk for Clostridioides difficile infection, and potential for antibiotic resistance.
Collapse
Affiliation(s)
- Matthew S. Linz
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Arun Mattappallil
- Department of Pharmaceutical Services, University Hospital, Newark, NJ 07103, USA
| | - Diana Finkel
- Division of Infectious Diseases, Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Dane Parker
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
14
|
Resko ZJ, Anderson CM, Federle MJ, Alonzo F. A Staphylococcal Glucosaminidase Drives Inflammatory Responses by Processing Peptidoglycan Chains to Physiological Lengths. Infect Immun 2023; 91:e0050022. [PMID: 36715551 PMCID: PMC9933629 DOI: 10.1128/iai.00500-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/10/2023] [Indexed: 01/31/2023] Open
Abstract
The peptidoglycan of Staphylococcus aureus is a critical cell envelope constituent and virulence factor that subverts host immune defenses and provides protection against environmental stressors. Peptidoglycan chains of the S. aureus cell wall are processed to characteristically short lengths by the glucosaminidase SagB. It is well established that peptidoglycan is an important pathogen-associated molecular pattern (PAMP) that is recognized by the host innate immune system and promotes production of proinflammatory cytokines, including interleukin-1β (IL-1β). However, how bacterial processing of peptidoglycan drives IL-1β production is comparatively unexplored. Here, we tested the involvement of staphylococcal glucosaminidases in shaping innate immune responses and identified SagB as a mediator of IL-1β production. A ΔsagB mutant fails to promote IL-1β production by macrophages and dendritic cells, and processing of peptidoglycan by SagB is essential for this response. SagB-dependent IL-1β production by macrophages is independent of canonical pattern recognition receptor engagement and NLRP3 inflammasome-mediated caspase activity. Instead, treatment of macrophages with heat-killed cells from a ΔsagB mutant leads to reduced caspase-independent cleavage of pro-IL-1β, resulting in accumulation of the pro form in the macrophage cytosol. Furthermore, SagB is required for virulence in systemic infection and promotes IL-1β production in a skin and soft tissue infection model. Taken together, our results suggest that the length of S. aureus cell wall glycan chains can drive IL-1β production by innate immune cells through a previously undescribed mechanism related to IL-1β maturation.
Collapse
Affiliation(s)
- Zachary J. Resko
- Department of Microbiology and Immunology, Loyola University Chicago—Stritch School of Medicine, Maywood, Illinois, USA
| | - Caleb M. Anderson
- Department of Pharmaceutical Sciences, University of Illinois at Chicago—College of Pharmacy, Chicago, Illinois, USA
| | - Michael J. Federle
- Department of Pharmaceutical Sciences, University of Illinois at Chicago—College of Pharmacy, Chicago, Illinois, USA
| | - Francis Alonzo
- Department of Microbiology and Immunology, University of Illinois at Chicago—College of Medicine, Chicago, Illinois, USA
| |
Collapse
|
15
|
Grousd JA, Dresden BP, Riesmeyer AM, Cooper VS, Bomberger JM, Richardson AR, Alcorn JF. Novel Requirement for Staphylococcal Cell Wall-Anchored Protein SasD in Pulmonary Infection. Microbiol Spectr 2022; 10:e0164522. [PMID: 36040164 PMCID: PMC9603976 DOI: 10.1128/spectrum.01645-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/16/2022] [Indexed: 02/04/2023] Open
Abstract
Staphylococcus aureus can complicate preceding viral infections, including influenza virus. A bacterial infection combined with a preceding viral infection, known as superinfection, leads to worse outcomes than a single infection. Most of the pulmonary infection literature focuses on the changes in immune responses to bacteria between homeostatic and virally infected lungs. However, it is unclear how much of an influence bacterial virulence factors have in single or superinfection. Staphylococcal species express a broad range of cell wall-anchored proteins (CWAs) that have roles in host adhesion, nutrient acquisition, and immune evasion. We screened the importance of these CWAs using mutants lacking individual CWAs in vivo in both bacterial pneumonia and influenza superinfection. In bacterial pneumonia, the lack of individual CWAs leads to various decreases in bacterial burden, lung damage, and immune infiltration into the lung. However, the presence of a preceding influenza infection partially abrogates the requirement for CWAs. In the screen, we found that the uncharacterized CWA S. aureus surface protein D (SasD) induced changes in both inflammatory and homeostatic lung markers. We further characterized a SasD mutant (sasD A50.1) in the context of pneumonia. Mice infected with sasD A50.1 have decreased bacterial burden, inflammatory responses, and mortality compared to wild-type S. aureus. Mice also have reduced levels of interleukin-1β (IL-1β), likely derived from macrophages. Reductions in IL-1β transcript levels as well as increased macrophage viability point at differences in cell death pathways. These data identify a novel virulence factor for S. aureus that influences inflammatory signaling within the lung. IMPORTANCE Staphylococcus aureus is a common commensal bacterium that can cause severe infections, such as pneumonia. In the lung, viral infections increase the risk of staphylococcal pneumonia, leading to combined infections known as superinfections. The most common virus associated with S. aureus pneumonia is influenza, and superinfections lead to worse patient outcomes than either infection alone. While there is much known about how the immune system differs between healthy and virally infected lungs, the role of bacterial virulence factors in single and superinfection is less understood. The significance of our research is identifying bacterial components that play a role in the initiation of lung injury, which could lead to future therapies to prevent pulmonary single or superinfection with S. aureus.
Collapse
Affiliation(s)
- Jennifer A. Grousd
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Brooke P. Dresden
- Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Abigail M. Riesmeyer
- Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Vaughn S. Cooper
- Department of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jennifer M. Bomberger
- Department of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anthony R. Richardson
- Department of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - John F. Alcorn
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
16
|
Peng L, Lu Y, Tian H, Jia K, Tao Q, Li G, Wan C, Ye C, Veldhuizen EJA, Chen H, Fang R. Chicken cathelicidin-2 promotes IL-1β secretion via the NLRP3 inflammasome pathway and serine proteases activity in LPS-primed murine neutrophils. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 131:104377. [PMID: 35189160 DOI: 10.1016/j.dci.2022.104377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Cathelicidins have antimicrobial and immunomodulatory activities. Previous studies have shown that chicken cathelicidin-2 (CATH-2) exerts strong anti-inflammatory activity through LPS neutralization. However, it is still unclear whether other intracellular signaling pathways are involved in CATH-2 immunomodulation. Therefore, the CATH-2-meadiated immune response was investigated in LPS-primed neutrophils. Firstly, inflammatory cytokines release was determined in LPS-primed neutrophils. The results showed that CATH-2 significantly promoted secretion of IL-1β and IL-1α while IL-6 and TNF-α were not affected. IL-1β is the key indicator of inflammasome activation. Next, NLRP3 inflammasome signaling pathway was explored using neutrophils of Nlrp3-/-, Asc-/- and Casp1-/- mice and the results showed that the CATH-2-enhanced IL-1β release was completely abrogated, indicating it is NLRP3-dependent. Moreover, CATH-2 significantly induced activation of caspase-1 and gasdermin D (GSDMD) but did not affect LPS-induced mRNA expression of IL-1β and NLRP3, demonstrating that CATH-2 serves as the second signal activating the NLRP3 inflammasome. Furthermore, CATH-2-mediated IL-1β secretion and caspase-1 activation is dependent on potassium efflux but independent of P2X7R. In addition, other signaling pathways including JNK, ERK and SyK were investigated using different inhibitors and the results showed that these signaling pathway inhibitors partially attenuated CATH-2-enhanced IL-1β secretion, especially the JNK inhibitor. Finally, the role of serine protease in CATH-2-mediated NLRP3 inflammasome activation was investigated in neutrophils and the results showed that serine protease activity is involved in CATH-2-enhanced IL-1β secretion and caspase-1 activation. In conclusion, after LPS priming in neutrophils, CATH-2 can be an agonist of the NLRP3 inflammasome. Our study increases the understanding on immunomodulatory effects of chicken cathelicidins and provides new insight on chicken cathelicidins-mediated immune response.
Collapse
Affiliation(s)
- Lianci Peng
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Yi Lu
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Hongliang Tian
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Kaixiang Jia
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Qi Tao
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Gang Li
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Chao Wan
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Chao Ye
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Edwin J A Veldhuizen
- Department of Biomolecular Health Sciences, Division Infectious Diseases & Immunology, Section Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Hongwei Chen
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China.
| | - Rendong Fang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China; Immunology Research Center, Institute of Medical Research, Southwest University, Chongqing, 402460, China.
| |
Collapse
|
17
|
Zhang D, Jin G, Liu W, Dou M, Wang X, Shi W, Bao Y. Salvia miltiorrhiza polysaccharides ameliorates Staphylococcus aureus-induced mastitis in rats by inhibiting activation of the NF-κB and MAPK signaling pathways. BMC Vet Res 2022; 18:201. [PMID: 35624447 PMCID: PMC9137159 DOI: 10.1186/s12917-022-03312-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 05/20/2022] [Indexed: 11/10/2022] Open
Abstract
The lactation capacity of dairy cows is critical to the productivity of the animals. Mastitis is a disease that directly affects the lactation capacity of cows. Staphylococcus aureus (S. aureus) is one of the most important pathogens that causes mastitis in dairy cows. The anti-inflammatory effect of Salvia miltiorrhiza polysaccharides (SMPs) has been demonstrated in mice and chickens. However, the effectiveness of SMPs in preventing and treating mastitis is unclear. Therefore, the purpose of this study was to explore the protective effect and mechanism of SMPs on mastitis caused by S. aureus. S. aureus was used to induce mastitis in rats, and three doses of SMPs (87.5, 175, 350 mg/kg, BW/d) were administered as treatments. The bacterial load, histopathology, and myeloperoxidase (MPO) and N-acetyl-β-D-glucosaminidase (NAGase) activities of mammary glands were observed and measured. Cytokines, including interleukin (IL)-1β, interleukin (IL)-6, and tumor necrosis factor α (TNF-α), were examined by qRT-PCR and ELISA. Key proteins in the NF-κB and MAPK signaling pathways were analyzed by Western blotting. The results showed that SMP supplementation could significantly reduce the colonization of S. aureus and the recruitment of inflammatory cells in mammary glands. S. aureus-induced gene transcription and protein expression of IL-1β, IL-6, and TNF-α were significantly suppressed in mammary glands. In addition, the increase in NF-κB and MAPK protein phosphorylation was inhibited by SMPs. These results revealed that supplementation with SMPs protected the mammary gland of rats against damage caused by S. aureus and alleviated the inflammatory response. This study provides a certain experimental basis for the treatment of S. aureus-induced mastitis with SMPs in the future.
Collapse
Affiliation(s)
- Di Zhang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, 2596, Le Kai South Street, Baoding, 071001, Hebei, China
| | - Guozhong Jin
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, 2596, Le Kai South Street, Baoding, 071001, Hebei, China
| | - Wei Liu
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, 2596, Le Kai South Street, Baoding, 071001, Hebei, China
| | - Mengmeng Dou
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, 2596, Le Kai South Street, Baoding, 071001, Hebei, China
| | - Xiao Wang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, 2596, Le Kai South Street, Baoding, 071001, Hebei, China
| | - Wanyu Shi
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, 2596, Le Kai South Street, Baoding, 071001, Hebei, China.
- Hebei Provincial Veterinary Biotechnology Innovation Center, Baoding, China.
| | - Yongzhan Bao
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, 2596, Le Kai South Street, Baoding, 071001, Hebei, China.
- Hebei Provincial Veterinary Biotechnology Innovation Center, Baoding, China.
| |
Collapse
|
18
|
Akoolo L, Pires S, Kim J, Parker D. The Capsule of Acinetobacter baumannii Protects against the Innate Immune Response. J Innate Immun 2022; 14:543-554. [PMID: 35320810 PMCID: PMC9485954 DOI: 10.1159/000522232] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 01/24/2022] [Indexed: 11/19/2022] Open
Abstract
Acinetobacter baumannii is an opportunistic pathogen that has recently emerged as a global threat associated with high morbidity, mortality, and antibiotic resistance. We determined the role of type I interferon (IFN) signaling in A. baumannii infection. We report that A. baumannii can induce a type I IFN response that is dependent upon TLR4-TRIF-IRF3 and phagocytosis of the bacterium. Phase variants of A. baumannii that have a reduced capsule, lead to enhanced TLR4-dependent type I IFN induction. This was also observed in a capsule-deficient strain. However, we did not observe a role for this pathway in vivo. The enhanced signaling could be accounted for by increased phagocytosis in capsule-deficient strains that also lead to enhanced host cell-mediated killing. The increased cytokine response in the absence of the capsule was not exclusive to type I IFN signaling. Several cytokines, including the proinflammatory IL-6, were increased in cells stimulated with the capsule-deficient strain, also observed in vivo. After 4 h in our acute pneumonia model, the burden of a capsule-null strain was significantly reduced, yet we observed increases in innate immune cells and inflammatory markers compared to wild-type A. baumannii. This study underscores the role of phase variation in the modulation of host immune responses and indicates that the capsule of A. baumannii plays an important role in protection against host cell killing and evasion from activation of the innate immune response.
Collapse
Affiliation(s)
- Lavoisier Akoolo
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Silvia Pires
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Jisun Kim
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Dane Parker
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
19
|
Tomlinson KL, Prince AS, Wong Fok Lung T. Immunometabolites Drive Bacterial Adaptation to the Airway. Front Immunol 2021; 12:790574. [PMID: 34899759 PMCID: PMC8656696 DOI: 10.3389/fimmu.2021.790574] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/08/2021] [Indexed: 12/24/2022] Open
Abstract
Pseudomonas aeruginosa and Staphylococcus aureus are both opportunistic pathogens that are frequently associated with chronic lung infections. While bacterial virulence determinants are critical in initiating infection, the metabolic flexibility of these bacteria promotes their persistence in the airway. Upon infection, these pathogens induce host immunometabolic reprogramming, resulting in an airway milieu replete with immune-signaling metabolites. These metabolites are often toxic to the bacteria and create a steep selection pressure for the emergence of bacterial isolates adapted for long-term survival in the inflamed lung. In this review, we discuss the main differences in the host immunometabolic response to P. aeruginosa and S. aureus, as well as how these pathogens alter their own metabolism to adapt to airway metabolites and cause persistent lung infections.
Collapse
Affiliation(s)
| | | | - Tania Wong Fok Lung
- Department of Pediatrics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, United States
| |
Collapse
|
20
|
Antimicrobial immunotherapeutics: past, present and future. Emerg Top Life Sci 2021; 5:609-628. [PMID: 34196722 DOI: 10.1042/etls20200348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/21/2021] [Accepted: 06/10/2021] [Indexed: 11/17/2022]
Abstract
In this age of antimicrobial resistance (AMR) there is an urgent need for novel antimicrobials. One area of recent interest is in developing antimicrobial effector molecules, and even cell-based therapies, based on those of the immune system. In this review, some of the more interesting approaches will be discussed, including immune checkpoint inhibitors, Interferons (IFNs), Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF), Chimeric Antigen Receptor (CAR) T cells, Antibodies, Vaccines and the potential role of trained immunity in protection from and/or treatment of infection.
Collapse
|
21
|
Growth and Stress Tolerance Comprise Independent Metabolic Strategies Critical for Staphylococcus aureus Infection. mBio 2021; 12:e0081421. [PMID: 34101490 PMCID: PMC8262855 DOI: 10.1128/mbio.00814-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Staphylococcus aureus is an important pathogen that leads to high morbidity and mortality. Although S. aureus produces many factors important for pathogenesis, few have been validated as playing a role in the pathogenesis of S. aureus pneumonia. To gain a better understanding of the genetic elements required for S. aureus pathogenesis in the airway, we performed an unbiased genome-wide transposon sequencing (Tn-seq) screen in a model of acute murine pneumonia. We identified 136 genes important for bacterial survival during infection, with a high proportion involved in metabolic processes. Phenotyping 80 individual deletion mutants through diverse in vitro and in vivo assays demonstrated that metabolism is linked to several processes, which include biofilm formation, growth, and resistance to host stressors. We further validated the importance of 23 mutations in pneumonia. Multivariate and principal-component analyses identified two key metabolic mechanisms enabling infection in the airway, growth (e.g., the ability to replicate and form biofilms) and resistance to host stresses. As deep validation of these hypotheses, we investigated the role of pyruvate carboxylase, which was important across multiple infection models and confirmed a connection between growth and resistance to host cell killing. Pathogenesis is conventionally understood in terms of the host-pathogen interactions that enable a pathogen to neutralize a host’s immune response. We demonstrate with the important bacterial pathogen S. aureus that microbial metabolism influences key traits important for in vivo infection, independent from host immunomodulation.
Collapse
|
22
|
Kim GL, Akoolo L, Parker D. The ClpXP Protease Contributes to Staphylococcus aureus Pneumonia. J Infect Dis 2021; 222:1400-1404. [PMID: 32386322 DOI: 10.1093/infdis/jiaa251] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/05/2020] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus aureus is a leading cause of pneumonia. We show here that the ClpXP protease involved in protein turnover is important for pathogenesis in a murine model of acute pneumonia. Staphylococcus aureus lacking this protease is attenuated in vivo, being rapidly cleared from the airway and leading to decreased immune cell influx and inflammation. Characterization of defined mutations in vitro identified defects in intracellular survival and protection against neutrophil killing. Our results further expand on what is known about ClpXP in the pathogenesis of S. aureus to include the respiratory tract.
Collapse
Affiliation(s)
- Gyu-Lee Kim
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Lavoisier Akoolo
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Dane Parker
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
23
|
Viladomiu M, Metz ML, Lima SF, Jin WB, Chou L, Guo CJ, Diehl GE, Simpson KW, Scherl EJ, Longman RS. Adherent-invasive E. coli metabolism of propanediol in Crohn's disease regulates phagocytes to drive intestinal inflammation. Cell Host Microbe 2021; 29:607-619.e8. [PMID: 33539767 DOI: 10.1016/j.chom.2021.01.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/29/2020] [Accepted: 01/08/2021] [Indexed: 02/06/2023]
Abstract
Adherent-invasive E. coli (AIEC) are enriched in the intestinal microbiota of patients with Crohn's disease (CD) and promote intestinal inflammation. Yet, how AIEC metabolism of nutrients impacts intestinal homeostasis is poorly defined. Here, we show that AIEC encoding the large subunit of propanediol dehydratase (PduC), which facilitates the utilization of fucose fermentation product 1,2-propanediol, are increased in the microbiome of CD patients and drive AIEC-induced intestinal T cell inflammation. In murine models, CX3CR1+ mononuclear phagocytes (MNP) are required for PduC-dependent induction of T helper 17 (Th17) cells and interleukin-1β (IL-1β) production that leads to AIEC-induced inflammatory colitis. Activation of this inflammatory cascade requires the catalytic activity of PduC to generate propionate, which synergizes with lipopolysaccharide (LPS) to induce IL-1β by MNPs. Disrupting fucose availability limits AIEC-induced propionate production and intestinal inflammation. These findings identify MNPs as metabolic sensors linking AIEC metabolism with intestinal inflammation and identify microbial metabolism as a potential therapeutic target in Crohn's disease treatment.
Collapse
Affiliation(s)
- Monica Viladomiu
- Jill Roberts Institute for IBD Research, Weill Cornell Medicine, New York, NY 10021, USA
| | - Maeva L Metz
- Jill Roberts Institute for IBD Research, Weill Cornell Medicine, New York, NY 10021, USA
| | - Svetlana F Lima
- Jill Roberts Institute for IBD Research, Weill Cornell Medicine, New York, NY 10021, USA
| | - Wen-Bing Jin
- Jill Roberts Institute for IBD Research, Weill Cornell Medicine, New York, NY 10021, USA
| | - Lance Chou
- Jill Roberts Institute for IBD Research, Weill Cornell Medicine, New York, NY 10021, USA
| | -
- Jill Roberts Institute for IBD Research, Weill Cornell Medicine, New York, NY 10021, USA
| | - Chun-Jun Guo
- Jill Roberts Institute for IBD Research, Weill Cornell Medicine, New York, NY 10021, USA
| | - Gretchen E Diehl
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Kenneth W Simpson
- College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Ellen J Scherl
- Jill Roberts Center for IBD, Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Randy S Longman
- Jill Roberts Institute for IBD Research, Weill Cornell Medicine, New York, NY 10021, USA; Jill Roberts Center for IBD, Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
24
|
Pidwill GR, Gibson JF, Cole J, Renshaw SA, Foster SJ. The Role of Macrophages in Staphylococcus aureus Infection. Front Immunol 2021; 11:620339. [PMID: 33542723 PMCID: PMC7850989 DOI: 10.3389/fimmu.2020.620339] [Citation(s) in RCA: 180] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/02/2020] [Indexed: 12/23/2022] Open
Abstract
Staphylococcus aureus is a member of the human commensal microflora that exists, apparently benignly, at multiple sites on the host. However, as an opportunist pathogen it can also cause a range of serious diseases. This requires an ability to circumvent the innate immune system to establish an infection. Professional phagocytes, primarily macrophages and neutrophils, are key innate immune cells which interact with S. aureus, acting as gatekeepers to contain and resolve infection. Recent studies have highlighted the important roles of macrophages during S. aureus infections, using a wide array of killing mechanisms. In defense, S. aureus has evolved multiple strategies to survive within, manipulate and escape from macrophages, allowing them to not only subvert but also exploit this key element of our immune system. Macrophage-S. aureus interactions are multifaceted and have direct roles in infection outcome. In depth understanding of these host-pathogen interactions may be useful for future therapeutic developments. This review examines macrophage interactions with S. aureus throughout all stages of infection, with special emphasis on mechanisms that determine infection outcome.
Collapse
Affiliation(s)
- Grace R. Pidwill
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Florey Institute, University of Sheffield, Sheffield, United Kingdom
| | - Josie F. Gibson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Florey Institute, University of Sheffield, Sheffield, United Kingdom
- The Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Joby Cole
- Florey Institute, University of Sheffield, Sheffield, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Stephen A. Renshaw
- Florey Institute, University of Sheffield, Sheffield, United Kingdom
- The Bateson Centre, University of Sheffield, Sheffield, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Simon J. Foster
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Florey Institute, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
25
|
Volk CF, Burgdorf S, Edwardson G, Nizet V, Sakoulas G, Rose WE. Interleukin (IL)-1β and IL-10 Host Responses in Patients With Staphylococcus aureus Bacteremia Determined by Antimicrobial Therapy. Clin Infect Dis 2021; 70:2634-2640. [PMID: 31365924 DOI: 10.1093/cid/ciz686] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/18/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Patient interleukin (IL)-1β and IL-10 responses early in Staphylococcus aureus bacteremia (SaB) are associated with bacteremia duration and mortality. We hypothesized that these responses vary depending on antimicrobial therapy, with particular interest in whether the superiority of β-lactams links to key cytokine pathways. METHODS Three medical centers included 59 patients with SaB (47 methicillin-resistant S. aureus [MRSA], 12 methicillin-sensitive S. aureus [MSSA]) from 2015-2017. In the first 48 hours, patients were treated with either a β-lactam (n = 24), including oxacillin, cefazolin, or ceftaroline, or a glyco-/lipopeptide (n = 35), that is, vancomycin or daptomycin. Patient sera from days 1, 3, and 7 were assayed for IL-1β and IL-10 by enzyme-linked immunosorbent assay and compared using the Mann-Whitney U test. RESULTS On presentation, IL-10 was elevated in mortality (P = .008) and persistent bacteremia (P = .034), while no difference occurred in IL-1β. Regarding treatment groups, IL-1β and IL-10 were similar prior to receiving antibiotic. Patients treated with β-lactam had higher IL-1β on days 3 (median +5.6 pg/mL; P = .007) and 7 (+10.9 pg/mL; P = .016). Ex vivo, addition of the IL-1 receptor antagonist anakinra to whole blood reduced staphylococcal killing, supporting an IL-1β functional significance in SaB clearance. β-lactam-treated patients had sharper declines in IL-10 than vancomycin or daptomycin -treated patients over 7 days. CONCLUSIONS These data underscore the importance of β-lactams for SaB, including consideration that the adjunctive role of β-lactams for MRSA in select patients helps elicit favorable host cytokine responses.
Collapse
Affiliation(s)
- Cecilia F Volk
- School of Pharmacy, University of Wisconsin-Madison, La Jolla
| | - Sarah Burgdorf
- Department of Pediatrics, University of California-San Diego School of Medicine, La Jolla
| | | | - Victor Nizet
- Department of Pediatrics, University of California-San Diego School of Medicine, La Jolla
| | - George Sakoulas
- Department of Pediatrics, University of California-San Diego School of Medicine, La Jolla
| | - Warren E Rose
- School of Pharmacy, University of Wisconsin-Madison, La Jolla
| |
Collapse
|
26
|
Activation of NLRP3 by uropathogenic Escherichia coli is associated with IL-1β release and regulation of antimicrobial properties in human neutrophils. Sci Rep 2020; 10:21837. [PMID: 33318544 PMCID: PMC7736892 DOI: 10.1038/s41598-020-78651-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023] Open
Abstract
The NLRP3 inflammasome and IL-1β have recently been linked to the severity of uropathogenic Escherichia coli (UPEC)-mediated urinary tract infection (UTI). However, not much is known about the contribution of NLRP3 to the antimicrobial properties of neutrophils and the release of IL-1β during UPEC infection. The purpose of this study was to elucidate the mechanisms behind UPEC-induced IL-1β release from human neutrophils, and to investigate the contribution of the NLRP3 inflammasome in neutrophil-mediated inhibition of UPEC growth. We found that the UPEC strain CFT073 increased the expression of NLRP3 and increased caspase-1 activation and IL-1β release from human neutrophils. The IL-1β release was mediated by the NLRP3 inflammasome and by serine proteases in an NF-κB-and cathepsin B-dependent manner. The UPEC virulence factors α-hemolysin, type-1 fimbriae and p-fimbriae were all shown to contribute to UPEC mediated IL-1β release from neutrophils. Furthermore, inhibition of caspase-1 and NLRP3 activation increased neutrophil ROS-production, phagocytosis and the ability of neutrophils to suppress UPEC growth. In conclusion, this study demonstrates that UPEC can induce NLRP3 and serine protease-dependent release of IL-1β from human neutrophils and that NLRP3 and caspase-1 can regulate the antimicrobial activity of human neutrophils against UPEC.
Collapse
|
27
|
Shi Y, Shi X, Liang J, Luo J, Ba J, Chen J, Wu B. Aggravated MRSA pneumonia secondary to influenza A virus infection is derived from decreased expression of IL-1β. J Med Virol 2020; 92:3047-3056. [PMID: 32697385 PMCID: PMC7692898 DOI: 10.1002/jmv.26329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/15/2020] [Indexed: 12/29/2022]
Abstract
Secondary methicillin-resistant Staphylococcus aureus (MRSA) infection is a cause of severe pneumonia with high mortality during influenza A virus (IAV) pandemics. Alveolar macrophages (AMs) mount cellular defenses against IAV and MRSA infection, which occurs via the nucleotide-binding domain-like receptor protein 3 (NLRP3) inflammasome. However, the activity and function of the NLRP3 inflammasome in MRSA pneumonia secondary to IAV infection remain unclear. To clarify this, we studied MRSA infection secondary to IAV both in vitro and in mouse model. The expression of the NLRP3 inflammasome was evaluated by quantitative reverse transcription polymerase chain reaction, immunofluorescence, Western blot, and enzyme-linked immunosorbent assay. The lung pathology and the rate of weight change were observed. We found that IAV infection for 1 week activated NLRP3 inflammasome. The enhanced expression of NLRP3, caspase-1, and cleaved caspase-1 was associated with MRSA infection secondary to IAV, but the expression of interleukin (IL)-1β decreased in superinfection with MRSA both in vitro and in vivo. The aggravated inflammatory pathology in MRSA pneumonia secondary to IAV infection was associated with decreased expression of IL-1β. And increased weight loss in MRSA pneumonia secondary to IAV infection was related to decreased concentration of IL-1β in serum. It infers that superinfection with MRSA reduces expression of IL-1β someway, and decreased expression of IL-1β impairs the host immunity and leads to aggravated pneumonia. These results contributed to our understanding of the detailed activity of the NLRP3 inflammasome, IL-1β, and their relationship with aggravation of MRSA pneumonia secondary to IAV infection. Immunotherapy targeting the IL-1β signaling pathway could be possible therapeutic strategy for secondary MRSA pneumonia.
Collapse
Affiliation(s)
- Yunfeng Shi
- Medical Intensive Care Unit, Department of Respiratory and Critical Care MedicineThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
- Department of Respiratory and Critical Care MedicineInstitute of Respiratory Diseases of Sun Yat‐Sen UniversityGuangzhouChina
| | - Xiaohan Shi
- Medical Intensive Care Unit, Department of Respiratory and Critical Care MedicineThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
- Department of Respiratory and Critical Care MedicineInstitute of Respiratory Diseases of Sun Yat‐Sen UniversityGuangzhouChina
| | - Jingjing Liang
- Department of EmergencyThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Jinmei Luo
- Medical Intensive Care Unit, Department of Respiratory and Critical Care MedicineThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
- Department of Respiratory and Critical Care MedicineInstitute of Respiratory Diseases of Sun Yat‐Sen UniversityGuangzhouChina
| | - Junhui Ba
- Medical Intensive Care Unit, Department of Respiratory and Critical Care MedicineThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
- Department of Respiratory and Critical Care MedicineInstitute of Respiratory Diseases of Sun Yat‐Sen UniversityGuangzhouChina
| | - Jianning Chen
- Department of PathologyThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Benquan Wu
- Medical Intensive Care Unit, Department of Respiratory and Critical Care MedicineThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
- Department of Respiratory and Critical Care MedicineInstitute of Respiratory Diseases of Sun Yat‐Sen UniversityGuangzhouChina
| |
Collapse
|
28
|
Differential Induction of Type I and III Interferons by Staphylococcus aureus. Infect Immun 2020; 88:IAI.00352-20. [PMID: 32690637 DOI: 10.1128/iai.00352-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
Staphylococcus aureus is a leading cause of bacterial pneumonia, and we have shown previously that type I interferon (IFN) contributes to the pathogenesis of this disease. In this study, we screened 75 S. aureus strains for their ability to induce type I and III IFN. Both cytokine pathways were differentially stimulated by various S. aureus strains independently of their isolation sites or methicillin resistance profiles. These induction patterns persisted over time, and type I and III IFN generation differentially correlated with tumor necrosis factor alpha production. Investigation of one isolate, strain 126, showed a significant defect in type I IFN induction that persisted over several time points. The lack of induction was not due to differential phagocytosis, subcellular location, or changes in endosomal acidification. A correlation between reduced type I IFN induction levels and decreased autolysis and lysostaphin sensitivity was found between strains. Strain 126 had a decreased rate of autolysis and increased resistance to lysostaphin degradation and host cell-mediated killing. This strain displayed decreased virulence in a murine model of acute pneumonia compared to USA300 (current epidemic strain and commonly used in research) and had reduced capacity to induce multiple cytokines. We observed this isolate to be a vancomycin-intermediate S. aureus (VISA) strain, and reduced Ifnb was observed with a defined mutation in walK that induces a VISA phenotype. Overall, this study demonstrates the heterogeneity of IFN induction by S. aureus and uncovered an interesting property of a VISA strain in its inability to induce type I IFN production.
Collapse
|
29
|
Donovan C, Liu G, Shen S, Marshall JE, Kim RY, Alemao CA, Budden KF, Choi JP, Kohonen-Corish M, El-Omar EM, Yang IA, Hansbro PM. The role of the microbiome and the NLRP3 inflammasome in the gut and lung. J Leukoc Biol 2020; 108:925-935. [PMID: 33405294 DOI: 10.1002/jlb.3mr0720-472rr] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/15/2022] Open
Abstract
The nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family, pyrin domain-containing protein 3 (NLRP3) inflammasome, is one of the most well-characterized inflammasomes, activated by pathogen-associated molecular patterns and damage-associated molecular patterns, including from commensal or pathogenic bacterial and viral infections. The NLRP3 inflammasome promotes inflammatory cell recruitment and regulates immune responses in tissues such as the gastrointestinal tract and the lung, and is involved in many diseases that affect the gut and lung. Recently, the microbiome in the gut and the lung, and the crosstalk between these organs (gut-lung axis), has been identified as a potential mechanism that may influence disease in a bidirectional manner. In this review, we focus on themes presented in this area at the 2019 World Congress on Inflammation. We discuss recent evidence on how the microbiome can affect NLRP3 inflammasome responses in the gut and lung, the role of this inflammasome in regulating gut and lung inflammation in disease, and its potential role in the gut-lung axis. We highlight the exponential increase in our understanding of the NLRP3 inflammasome due to the synthesis of the NLRP3 inflammasome inhibitor, MCC950, and propose future studies that may further elucidate the roles of the NLRP3 inflammasome in gut and lung diseases.
Collapse
Affiliation(s)
- Chantal Donovan
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, Sydney, New South Wales, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Gang Liu
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, Sydney, New South Wales, Australia
| | - Sj Shen
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, Sydney, New South Wales, Australia
| | - Jacqueline E Marshall
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, Sydney, New South Wales, Australia
| | - Richard Y Kim
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, Sydney, New South Wales, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Charlotte A Alemao
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Kurtis F Budden
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Jaesung P Choi
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, Sydney, New South Wales, Australia
| | - Maija Kohonen-Corish
- Woolcock Institute of Medical Research and Faculty of Science, University of Technology Sydney, Garvan Institute of Medical Research and St George and Sutherland Clinical School, University of New South Wales, Kogarah, New South Wales, Australia
| | - Emad M El-Omar
- Microbiome Research Centre, St George and Sutherland Clinical School, University of New South Wales, Kogarah, New South Wales, Australia
| | - Ian A Yang
- The Prince Charles Hospital and The University of Queensland, Brisbane, Queensland, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, Sydney, New South Wales, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| |
Collapse
|
30
|
Broggi A, Granucci F, Zanoni I. Type III interferons: Balancing tissue tolerance and resistance to pathogen invasion. J Exp Med 2020; 217:132623. [PMID: 31821443 PMCID: PMC7037241 DOI: 10.1084/jem.20190295] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/23/2019] [Accepted: 10/30/2019] [Indexed: 12/12/2022] Open
Abstract
Type III IFNs, or IFN-λ, are the latest addition to the IFN family. Thanks to a restricted pattern of expression of their receptor and to unique immunomodulatory properties, IFN-λ stimulates pathogen clearance while, at the same time, curbing inflammation to maintain barrier integrity. Type III IFNs, or IFN-λ, are the newest members of the IFN family and were long believed to play roles that were redundant with those of type I IFNs. However, IFN-λ displays unique traits that delineate them as primary protectors of barrier integrity at mucosal sites. This unique role stems both from the restricted expression of IFN-λ receptor, confined to epithelial cells and to a limited pool of immune cells, and from unique immunomodulatory properties of IFN-λ. Here, we discuss recent findings that establish the unique capacity of IFN-λ to act at the barriers of the host to balance tissue tolerance and immune resistance against viral and bacterial challenges.
Collapse
Affiliation(s)
- Achille Broggi
- Division of Immunology, Boston Children's Hospital and Harvard Medical School, Boston, MA.,Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA
| | - Francesca Granucci
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.,National Institute of Molecular Genetics "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Ivan Zanoni
- Division of Immunology, Boston Children's Hospital and Harvard Medical School, Boston, MA.,Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA.,Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
31
|
Ahn D, Prince A. Participation of the IL-10RB Related Cytokines, IL-22 and IFN-λ in Defense of the Airway Mucosal Barrier. Front Cell Infect Microbiol 2020; 10:300. [PMID: 32637365 PMCID: PMC7318800 DOI: 10.3389/fcimb.2020.00300] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022] Open
Abstract
The airway epithelial barrier is a major barrier protecting against clinically significant infections of the lung. Its integrity is often compromised due to mechanical, chemical, or infectious causes. Opportunistic bacterial pathogens are poised to cause parenchymal infection and become difficult to eradicate due to adaptive metabolic changes, biofilm formation, and the acquisition of antimicrobial resistance and fitness genes. Enhancing mucosal defenses by modulating the cytokines that regulate barrier functions, such as interleukin-22 (IL-22) and interferon-λ (IFN-λ), members of the IL-10 family of cytokines, is an attractive approach to prevent these infections that are associated with high morbidity and mortality. These cytokines both signal through the cognate receptor IL-10RB, have related protein structures and common downstream signaling suggesting shared roles in host respiratory defense. They are typically co-expressed in multiple models of infections, but with differing kinetics. IL-22 has an important role in the producing antimicrobial peptides, upregulating expression of junctional proteins in the airway epithelium and working in concert with other inflammatory cytokines such as IL-17. Conversely, IFN-λ, a potent antiviral in influenza infection with pro-inflammatory properties, appears to decrease junctional integrity allowing for bacterial and immune cell translocation. The effects of these cytokines are pleotropic, with pathogen and tissue specific consequences. Understanding how these cytokines work in the mucosal defenses of the respiratory system may suggest potential targets to prevent invasive infections of the damaged lung.
Collapse
Affiliation(s)
| | - Alice Prince
- Department of Pediatrics, Columbia University Medical Center, New York, NY, United States
| |
Collapse
|
32
|
Chow SH, Deo P, Yeung ATY, Kostoulias XP, Jeon Y, Gao ML, Seidi A, Olivier FAB, Sridhar S, Nethercott C, Cameron D, Robertson AAB, Robert R, Mackay CR, Traven A, Jin ZB, Hale C, Dougan G, Peleg AY, Naderer T. Targeting NLRP3 and Staphylococcal pore-forming toxin receptors in human-induced pluripotent stem cell-derived macrophages. J Leukoc Biol 2020; 108:967-981. [PMID: 32531864 DOI: 10.1002/jlb.4ma0420-497r] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/28/2020] [Accepted: 05/19/2020] [Indexed: 12/26/2022] Open
Abstract
Staphylococcus aureus causes necrotizing pneumonia by secreting toxins such as leukocidins that target front-line immune cells. The mechanism by which leukocidins kill innate immune cells and trigger inflammation during S. aureus lung infection, however, remains unresolved. Here, we explored human-induced pluripotent stem cell-derived macrophages (hiPSC-dMs) to study the interaction of the leukocidins Panton-Valentine leukocidin (PVL) and LukAB with lung macrophages, which are the initial leukocidin targets during S. aureus lung invasion. hiPSC-dMs were susceptible to the leukocidins PVL and LukAB and both leukocidins triggered NLPR3 inflammasome activation resulting in IL-1β secretion. hiPSC-dM cell death after LukAB exposure, however, was only temporarily dependent of NLRP3, although NLRP3 triggered marked cell death after PVL treatment. CRISPR/Cas9-mediated deletion of the PVL receptor, C5aR1, protected hiPSC-dMs from PVL cytotoxicity, despite the expression of other leukocidin receptors, such as CD45. PVL-deficient S. aureus had reduced ability to induce lung IL-1β levels in human C5aR1 knock-in mice. Unexpectedly, inhibiting NLRP3 activity resulted in increased wild-type S. aureus lung burdens. Our findings suggest that NLRP3 induces macrophage death and IL-1β secretion after PVL exposure and controls S. aureus lung burdens.
Collapse
Affiliation(s)
- Seong H Chow
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Pankaj Deo
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Amy T Y Yeung
- The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Xenia P Kostoulias
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Yusun Jeon
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Mei-Ling Gao
- Laboratory of Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, China.,National Center for International Research in Regenerative Medicine and Neurogenetics, National Clinical Research Center for Ophthalmology, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, China
| | - Azadeh Seidi
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Françios Alwyn Benson Olivier
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Sushmita Sridhar
- The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Cara Nethercott
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - David Cameron
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Avril A B Robertson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Remy Robert
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Charles R Mackay
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Ana Traven
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Zi-Bing Jin
- Laboratory of Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, China.,National Center for International Research in Regenerative Medicine and Neurogenetics, National Clinical Research Center for Ophthalmology, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, China
| | - Christine Hale
- The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Gordon Dougan
- The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.,Department of Medicine, Addenbrookes Hospital, Cambridge, UK
| | - Anton Y Peleg
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia.,Department of Infectious Diseases, the Alfred Hospital and Central Clinical School, Monash University, Melbourne, Australia
| | - Thomas Naderer
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
33
|
Pires S, Peignier A, Seto J, Smyth DS, Parker D. Biological sex influences susceptibility to Acinetobacter baumannii pneumonia in mice. JCI Insight 2020; 5:132223. [PMID: 32191638 DOI: 10.1172/jci.insight.132223] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/11/2020] [Indexed: 12/31/2022] Open
Abstract
Acinetobacter baumannii (A. baumannii) is an extremely versatile multidrug-resistant pathogen with a very high mortality rate; therefore, it has become crucial to understand the host response during its infection. Given the importance of mice for modeling infection and their role in preclinical drug development, equal emphasis should be placed on the use of both sexes. Through our studies using a murine model of acute pneumonia with A. baumannii, we observed that female mice were more susceptible to infection. Likewise, treatment of male mice with estradiol increased their susceptibility to infection. Analysis of the airway compartment revealed enhanced inflammation and reduced neutrophil and alveolar macrophage numbers compared with male mice. Depletion of either neutrophils or alveolar macrophages was important for bacterial clearance; however, depletion of alveolar macrophages further exacerbated female susceptibility because of severe alterations in metabolic homeostasis. Our data highlight the importance of using both sexes when assessing host immune pathways.
Collapse
Affiliation(s)
- Sílvia Pires
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Adeline Peignier
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Jeremy Seto
- Department of Biological Sciences, New York City College of Technology, Brooklyn, New York, New York, USA
| | - Davida S Smyth
- Department of Natural Sciences, Eugene Lang College of Liberal Arts at The New School, New York, New York, USA
| | - Dane Parker
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
34
|
Vlachiotis S, Andreakos E. Lambda interferons in immunity and autoimmunity. J Autoimmun 2019; 104:102319. [DOI: 10.1016/j.jaut.2019.102319] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 01/23/2023]
|
35
|
Mei F, Rolain M, Zhou XY, Singh PK, Thummel R, Kumar A. Zebrafish are Resistant to Staphylococcus aureus Endophthalmitis. Pathogens 2019; 8:207. [PMID: 31717750 PMCID: PMC6963345 DOI: 10.3390/pathogens8040207] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/16/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022] Open
Abstract
Gram-positive bacteria remain the leading cause of endophthalmitis, a blinding infectious disease of the eye. Murine models have been widely used for understanding the pathogenesis of bacterial endophthalmitis. In this study, we sought to develop an alternative zebrafish (Danio rerio) model for Staphylococcus aureus and compare the disease pathobiology to a murine model. Endophthalmitis was induced in zebrafish and C57BL/6 mice through the intravitreal injection of S. aureus. Disease progression was monitored by assessing corneal haze, opacity, bacterial burden, and retinal histology. Our results demonstrated that, unlike the murine models, zebrafish maintained ocular integrity, corneal transparency, and retinal architecture. We found that the zebrafish was capable of clearing S. aureus from the eye via transport through retinal vessels and the optic nerve and by mounting a monocyte/macrophage response beginning at 8 hour post-infection (hpi). The bacterial burden increased up to 8 hpi and significantly decreased thereafter. An assessment of the innate retinal response revealed the induced expression of Il-1β and Il-6 transcripts. Collectively, our study shows that unlike the murine model, zebrafish do not develop endophthalmitis and rapidly clear the pathogen. Hence, a better understanding of the zebrafish protective ocular innate response may provide new insights into the pathobiology of bacterial endophthalmitis.
Collapse
Affiliation(s)
- Frank Mei
- Wayne State University School of Medicine, Detroit, MI 48201, USA; (F.M.); (M.R.)
| | - Matthew Rolain
- Wayne State University School of Medicine, Detroit, MI 48201, USA; (F.M.); (M.R.)
| | - Xiao Yi Zhou
- Wayne State University School of Medicine, Detroit, MI 48201, USA; (F.M.); (M.R.)
| | - Pawan Kumar Singh
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA;
| | - Ryan Thummel
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA;
| | - Ashok Kumar
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA;
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
36
|
Xie W, Xie J, Vince R, More SS. Guanabenz Attenuates Acetaminophen-Induced Liver Toxicity and Synergizes Analgesia in Mice. Chem Res Toxicol 2019; 33:162-171. [DOI: 10.1021/acs.chemrestox.9b00162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Wei Xie
- Center for Drug Design, College of Pharmacy, Academic Health Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jiashu Xie
- Center for Drug Design, College of Pharmacy, Academic Health Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Robert Vince
- Center for Drug Design, College of Pharmacy, Academic Health Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Swati S. More
- Center for Drug Design, College of Pharmacy, Academic Health Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
37
|
Interferon-λ orchestrates innate and adaptive mucosal immune responses. Nat Rev Immunol 2019; 19:614-625. [DOI: 10.1038/s41577-019-0182-z] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2019] [Indexed: 02/07/2023]
|
38
|
Kotenko SV, Rivera A, Parker D, Durbin JE. Type III IFNs: Beyond antiviral protection. Semin Immunol 2019; 43:101303. [PMID: 31771761 PMCID: PMC7141597 DOI: 10.1016/j.smim.2019.101303] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 09/15/2019] [Indexed: 12/29/2022]
Abstract
The unexpected discovery of a novel family of antiviral mediators, type III IFNs or IFN-λs, challenged the widely accepted primacy of type I IFNs in antiviral immunity, and it is now well recognized that the IFN-λ-based antiviral system plays a major role in antiviral protection of epithelial barriers. The recent characterization of previously unknown IFN-λ-mediated activities has prompted further reassessment of the role of type I IFNs in innate and adaptive immune and inflammatory responses. Since type I and type III IFNs are co-produced in response to a variety of stimuli, it is likely that many physiological processes are simultaneously and coordinately regulated by these cytokines in pathological conditions, and likely at steady state, as baseline expression of both IFN types is maintained by microbiota. In this review, we discuss emerging differences in the production and signaling of type I and type III IFNs, and summarize results of recent studies describing the involvement of type III IFNs in anti-bacterial and anti-fungal, as well as antiviral, defenses.
Collapse
Affiliation(s)
- Sergei V Kotenko
- Department of Microbiology, Biochemistry and Molecular Genetics, Newark, NJ, 07103, USA; Center for Cell Signaling, Newark, NJ, 07103, USA; Center for Immunity and Inflammation, Rutgers New Jersey Medical School, RBHS, Newark, NJ, 07103, USA.
| | - Amariliz Rivera
- Department of Pediatrics, Newark, NJ, 07103, USA; Center for Immunity and Inflammation, Rutgers New Jersey Medical School, RBHS, Newark, NJ, 07103, USA
| | - Dane Parker
- Department of Pathology, Immunology and Laboratory Medicine, Newark, NJ, 07103, USA; Center for Immunity and Inflammation, Rutgers New Jersey Medical School, RBHS, Newark, NJ, 07103, USA
| | - Joan E Durbin
- Department of Pathology, Immunology and Laboratory Medicine, Newark, NJ, 07103, USA; Center for Immunity and Inflammation, Rutgers New Jersey Medical School, RBHS, Newark, NJ, 07103, USA.
| |
Collapse
|
39
|
Spolski R, West EE, Li P, Veenbergen S, Yung S, Kazemian M, Oh J, Yu ZX, Freeman AF, Holland SM, Murphy PM, Leonard WJ. IL-21/type I interferon interplay regulates neutrophil-dependent innate immune responses to Staphylococcus aureus. eLife 2019; 8:45501. [PMID: 30969166 PMCID: PMC6504231 DOI: 10.7554/elife.45501] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/09/2019] [Indexed: 12/24/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a major hospital- and community-acquired pathogen, but the mechanisms underlying host-defense to MRSA remain poorly understood. Here, we investigated the role of IL-21 in this process. When administered intra-tracheally into wild-type mice, IL-21 induced granzymes and augmented clearance of pulmonary MRSA but not when neutrophils were depleted or a granzyme B inhibitor was added. Correspondingly, IL-21 induced MRSA killing by human peripheral blood neutrophils. Unexpectedly, however, basal MRSA clearance was also enhanced when IL-21 signaling was blocked, both in Il21r KO mice and in wild-type mice injected with IL-21R-Fc fusion-protein. This correlated with increased type I interferon and an IFN-related gene signature, and indeed anti-IFNAR1 treatment diminished MRSA clearance in these animals. Moreover, we found that IFNβ induced granzyme B and promoted MRSA clearance in a granzyme B-dependent fashion. These results reveal an interplay between IL-21 and type I IFN in the innate immune response to MRSA.
Collapse
Affiliation(s)
- Rosanne Spolski
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States.,Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Erin E West
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States.,Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Peng Li
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States.,Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Sharon Veenbergen
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Sunny Yung
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, United States
| | - Majid Kazemian
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States.,Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Jangsuk Oh
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States.,Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Zu-Xi Yu
- The Pathology Core, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Alexandra F Freeman
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, United States
| | - Stephen M Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, United States
| | - Philip M Murphy
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, United States
| | - Warren J Leonard
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States.,Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| |
Collapse
|
40
|
Andreakos E, Zanoni I, Galani IE. Lambda interferons come to light: dual function cytokines mediating antiviral immunity and damage control. Curr Opin Immunol 2019; 56:67-75. [PMID: 30399529 PMCID: PMC6541392 DOI: 10.1016/j.coi.2018.10.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/10/2018] [Accepted: 10/15/2018] [Indexed: 01/22/2023]
Abstract
Lambda interferons (IFNλs, type III IFNs or interleukins-28/29) were described fifteen years ago as novel cytokines sharing structural and functional homology with IL-10 and type I IFNs, respectively. IFNλs engage a unique receptor complex comprising IFNLR1 and IL10R2, nevertheless they share signaling cascade and many functions with type I IFNs, questioning their possible non-redundant roles and overall biological importance. Here, we review the latest evidence establishing the primacy of IFNλs in front line protection at anatomical barriers, mediating antiviral immunity before type I IFNs. We also discuss their emerging role in regulating inflammation and limiting host damage, a major difference to type I IFNs. IFNλs come thus to light as dual function cytokines mediating antiviral immunity and damage control.
Collapse
Affiliation(s)
- Evangelos Andreakos
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; Airway Disease Infection Section, National Heart and Lung Institute, Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London W2 1NY, United Kingdom.
| | - Ivan Zanoni
- Division of Gastroenterology, Boston Children's Hospital, Harvard University, Boston, MA 02115, USA; Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Ioanna E Galani
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| |
Collapse
|