1
|
Shen Y, Li Q, Ding N, Yu M, Gu X, Sun W, Tang Y, Chen C, Zhang Y, Zhu H. Bipoladisins A-G, Uncommon Sesterterpenoids with Three Types of Carbon Skeletons from Bipolaris maydis and Their Reversal Activity on Paclitaxel Resistance. JOURNAL OF NATURAL PRODUCTS 2025. [PMID: 40397792 DOI: 10.1021/acs.jnatprod.5c00024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
Bipoladisins A-G (1-7), seven sesterterpenoids featuring three distinct carbon skeletons, were isolated from the fungus Bipolaris maydis. Their structures were elucidated by spectroscopic data, HRESIMS, ECD/ORD calculations, and single-crystal X-ray diffraction analyses. Bipoladisin C (3) contained a unique C-5-C-14 oxygen bridge that formed a complex caged structure. Bipoladisins D (4) and E (5) were a pair of C-17 stereoisomers, both decorated by an oxygen bridge. Bipoladisins F (6) and G (7), possessing a 4/9 bicyclic ring system, were first reported from the genus Bipolaris. Compound 4 could reverse the resistance of cancer cells to paclitaxel (PTX) with the reverse fold of 24 and inhibit the efflux function of P-gp.
Collapse
Affiliation(s)
- Yong Shen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Qin Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Nanjin Ding
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Mengru Yu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Xiaoxia Gu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Weiguang Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Ying Tang
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Chunmei Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Hucheng Zhu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| |
Collapse
|
2
|
Iobbi V, Parisi V, Giacomini M, De Riccardis F, Brun P, Núñez-Pons L, Drava G, Giordani P, Monti MC, Poggi R, Murgia Y, De Tommasi N, Bisio A. Sesterterpenoids: sources, structural diversity, biological activity, and data management. Nat Prod Rep 2025; 42:443-481. [PMID: 39832137 DOI: 10.1039/d4np00041b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Reviewing the literature published up to October 2024.Sesterterpenoids are one of the most chemically diverse and biologically promising subgroup of terpenoids, the largest family of secondary metabolites. The present review article summarizes more than seven decades of studies on isolation and characterization of more than 1600 structurally novel sesterterpenoids, supplemented by biological, pharmacological, ecological, and geographic distribution data. All the information have been implemented in eight tables available on the web and a relational database https://sesterterpenoids.unige.net/. The interface has two sections, one open to the public for reading only and the other, protected by an authentication mechanism, for timely updating of published results.
Collapse
Affiliation(s)
- Valeria Iobbi
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy.
| | - Valentina Parisi
- Department of Pharmacy, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy.
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Mauro Giacomini
- Department of Informatics, Bioengineering, Robotics and System Science, University of Genova, Via all'Opera Pia 13, 16146 Genova, Italy
| | - Francesco De Riccardis
- Department of Chemistry and Biology "A. Zambelli", Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
| | - Paola Brun
- Department of Molecular Medicine, Section of Microbiology, University of Padova, Via A. Gabelli, 63, 35121 Padova, Italy
| | - Laura Núñez-Pons
- Department of Integrative Marine Ecology (EMI), Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Giuliana Drava
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy.
| | - Paolo Giordani
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy.
| | - Maria Chiara Monti
- Department of Pharmacy, University of Napoli "Federico II", Via T. De Amicis 95, 80131 Napoli, Italy
| | - Roberto Poggi
- Museo Civico di Storia Naturale Giacomo Doria, Via Brigata Liguria 9, 16121 Genova, Italy
| | - Ylenia Murgia
- Department of Informatics, Bioengineering, Robotics and System Science, University of Genova, Via all'Opera Pia 13, 16146 Genova, Italy
| | - Nunziatina De Tommasi
- Department of Pharmacy, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy.
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Angela Bisio
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy.
| |
Collapse
|
3
|
Yuan Y, Lei Y, Xu M, Zhao B, Xu S. Bioactive Terpenes from Marine Sponges and Their Associated Organisms. Mar Drugs 2025; 23:96. [PMID: 40137282 PMCID: PMC11943499 DOI: 10.3390/md23030096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/13/2025] [Accepted: 02/19/2025] [Indexed: 03/27/2025] Open
Abstract
In recent years, marine natural products have continued to serve as a pivotal resource for novel drug discovery. Globally, the number of studies focusing on Porifera has been on the rise, underscoring their considerable importance and research value. Marine sponges are prolific producers of a vast array of bioactive compounds, including terpenes, alkaloids, peptides, and numerous secondary metabolites. Over the past fifteen years, a substantial number of sponge-derived terpenes have been identified, exhibiting extensive structural diversity and notable biological activities. These terpenes have been isolated from marine sponges or their associated symbiotic microorganisms, with several demonstrating multifaceted biological activities, such as anti-inflammatory, antibacterial, cytotoxic, anticancer, and antioxidant properties. In this review, we summarize 997 novel terpene metabolites, detailing their structures, sources, and activities, from January 2009 to December 2024. The structural features and structure-activity relationship (SAR) of different types of terpenes are broadly analyzed and summarized. This systematic and comprehensive review will contribute to the summary of and speculation on the taxonomy, activity profiles, and SAR of terpenes and the development of sponge-derived terpenes as potential lead drugs.
Collapse
Affiliation(s)
- Yuan Yuan
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China; (Y.Y.); (Y.L.)
| | - Yu Lei
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China; (Y.Y.); (Y.L.)
| | - Muwu Xu
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY 14260, USA;
| | - Bingxin Zhao
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China; (Y.Y.); (Y.L.)
| | - Shihai Xu
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China; (Y.Y.); (Y.L.)
| |
Collapse
|
4
|
Ding YF, Liu LY, Tang J, Fan DX, Ji YY, Lin HW, Wang J, Hong LL. Hipposponols A and B, two new 9, 11-secosterols from the marine sponge Hippospongia lachne de Laubenfels. Nat Prod Res 2024; 38:2562-2568. [PMID: 36905167 DOI: 10.1080/14786419.2023.2188588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/02/2023] [Indexed: 03/12/2023]
Abstract
Two new 9,11-secosterols, hipposponols A (1) and B (2), together with five known analogues, aplidiasterol B (3), (3β,5α,6β)-3,5,6-triol-cholest-7-ene (4), (3β,5α,6β,22E)-3,5,6-triol-ergosta-7,22-diene (5), and one pair of inseparable C-24 epimers of (3β,5α,6β,22E)-3,5,6-triol-stigmasta-7,22-diene (6/7), were isolated from the marine sponge Hippospongia lachne de Laubenfels. The structures of isolated compounds were extensively elucidated based on HRESIMS and NMR data. Compounds 2 - 5 showed cytotoxicity against PC9 cells with IC50 values ranging from 34.1 ± 0.9 to 38.9 ± 1.0 µM and compound 4 displayed cytotoxicity against MCF-7 cells with IC50 value of 39.0 ± 0.4 µM.
Collapse
Affiliation(s)
- Ya-Fang Ding
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li-Yun Liu
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Tang
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dong-Xue Fan
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, China
| | - Yuan-Yuan Ji
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Hou-Wen Lin
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Wang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Li-Li Hong
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
5
|
Hou SY, Yan BC, Sun HD, Puno PT. Recent advances in the application of [2 + 2] cycloaddition in the chemical synthesis of cyclobutane-containing natural products. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:37. [PMID: 38861197 PMCID: PMC11166626 DOI: 10.1007/s13659-024-00457-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/24/2024] [Indexed: 06/12/2024]
Abstract
Cyclobutanes are distributed widely in a large class of natural products featuring diverse pharmaceutical activities and intricate structural frameworks. The [2 + 2] cycloaddition is unequivocally the primary and most commonly used method for synthesizing cyclobutanes. In this review, we have summarized the application of the [2 + 2] cycloaddition with different reaction mechanisms in the chemical synthesis of selected cyclobutane-containing natural products over the past decade.
Collapse
Affiliation(s)
- Song-Yu Hou
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China
| | - Bing-Chao Yan
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China
| | - Han-Dong Sun
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China
| | - Pema-Tenzin Puno
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China.
| |
Collapse
|
6
|
Guo R, Brown MK. Lewis Acid-Promoted [2 + 2] Cycloadditions of Allenes and Ketenes: Versatile Methods for Natural Product Synthesis. Acc Chem Res 2023; 56:2253-2264. [PMID: 37540783 PMCID: PMC11041672 DOI: 10.1021/acs.accounts.3c00334] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
ConspectusCycloaddition reactions are an effective method to quickly build molecular complexity. As predicted by the Woodward-Hoffmann rules, concerted cycloadditions with alkenes allow for the constructions of all possible stereoisomers of product by use of either the Z or E geometry. While this feature of cycloadditions is widely used in, for example, [4 + 2] cycloadditions, translation to [2 + 2] cycloadditions is challenging because of the often stepwise and therefore stereoconvergent nature of these processes. Over the past decade, our lab has explored Lewis acid-promoted [2 + 2] cycloadditions of electron-deficient allenes or ketenes with alkenes. The concerted, asynchronous cycloadditions allow for the synthesis of various cyclobutanes with control of stereochemistry.Our lab developed the first examples of Lewis acid-promoted ketene-alkene [2 + 2] cycloadditions. Compared with traditional thermal conditions, Lewis acid-promoted conditions have several advantages, such as increased reactivity, increased yield, improved diastereoselectivity, and, for certain cases, inverse diastereoselectivity. Detailed mechanistic studies revealed that the diastereoselectivity was controlled by the size of the substituent and the barrier of a deconjugation event. However, these reactions required the use of stoichiometric amounts of EtAlCl2 because of the product inhibition, which led us to investigate catalytic enantioselective [2 + 2] cycloadditions of allenoates with alkenes. Through the use of chiral oxazaborolidines, a broad range of cyclobutanes can be prepared with the control of enantioselectivity. Mechanistic experiments, including 2D-labled alkenes and Hammett analysis, illuminate likely transition state models for the cycloadditions. Additional studies led to the development of Lewis acid-catalyzed intramolecular stereoselective [2 + 2] cycloadditions of chiral allenic ketones/esters with alkenes.The methods we developed have been instrumental in the synthesis of several families of natural products. Specifically, one key lactone motif in (±)-gracilioether F was constructed by a ketene-alkene [2 + 2] cycloaddition and subsequent regioselective Baeyer-Villiger oxidation sequence. Enantioselective allenoate-alkene [2 + 2] cycloadditions allowed for the synthesis of (-)-hebelophyllene E. Another attempt of applying this method in the synthesis of (+)-[5]-ladderanoic acid failed to deliver the desired cyclobutane because of an unexpected rearrangement. The key cyclobutane was later assembled by a stepwise carboboration/Zweifel olefination process. Finally, the stereoselective [2 + 2] cycloadditions of allenic ketones and alkenes was applied in the syntheses of (-)-[3]-ladderanol, (+)-hippolide J, and (-)-cajanusine.
Collapse
Affiliation(s)
- Renyu Guo
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave, Bloomington, Indiana 47405, United States
| | - M Kevin Brown
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave, Bloomington, Indiana 47405, United States
| |
Collapse
|
7
|
Yang P, Jia Q, Song S, Huang X. [2 + 2]-Cycloaddition-derived cyclobutane natural products: structural diversity, sources, bioactivities, and biomimetic syntheses. Nat Prod Rep 2023. [DOI: 10.1039/d2np00034b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review summarizes the structural diversity, bioactivities, and biomimetic synthesis of [2 + 2]-type cyclobutane natural products, along with discussion of their biosynthesis, stereochemical analysis, racemic occurrence, and biomimetic synthesis.
Collapse
Affiliation(s)
- Peiyuan Yang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Qi Jia
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Shaojiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xiaoxiao Huang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| |
Collapse
|
8
|
Hong LL, Ding YF, Zhang W, Lin HW. Chemical and biological diversity of new natural products from marine sponges: a review (2009-2018). MARINE LIFE SCIENCE & TECHNOLOGY 2022; 4:356-372. [PMID: 37073163 PMCID: PMC10077299 DOI: 10.1007/s42995-022-00132-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 05/02/2022] [Indexed: 05/03/2023]
Abstract
Marine sponges are productive sources of bioactive secondary metabolites with over 200 new compounds isolated each year, contributing 23% of approved marine drugs so far. This review describes statistical research, structural diversity, and pharmacological activity of sponge derived new natural products from 2009 to 2018. Approximately 2762 new metabolites have been reported from 180 genera of sponges this decade, of which the main structural types are alkaloids and terpenoids, accounting for 50% of the total. More than half of new molecules showed biological activities including cytotoxic, antibacterial, antifungal, antiviral, anti-inflammatory, antioxidant, enzyme inhibition, and antimalarial activities. As summarized in this review, macrolides and peptides had higher proportions of new bioactive compounds in new compounds than other chemical classes. Every chemical class displayed cytotoxicity as the dominant activity. Alkaloids were the major contributors to antibacterial, antifungal, and antioxidant activities while steroids were primarily responsible for pest resistance activity. Alkaloids, terpenoids, and steroids displayed the most diverse biological activities. The statistic research of new compounds by published year, chemical class, sponge taxonomy, and biological activity are presented. Structural novelty and significant bioactivities of some representative compounds are highlighted. Marine sponges are rich sources of novel bioactive compounds and serve as animal hosts for microorganisms, highlighting the undisputed potential of sponges in the marine drugs research and development. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-022-00132-3.
Collapse
Affiliation(s)
- Li-Li Hong
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Ya-Fang Ding
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316000 China
| | - Wei Zhang
- Centre for Marine Bioproducts Development, Flinders University, Adelaide, SA 5042 Australia
| | - Hou-Wen Lin
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| |
Collapse
|
9
|
Liu M, Zhang X, Li G. Structural and Biological Insights into the Hot‐spot Marine Natural Products Reported from 2012 to 2021. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mingyu Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy Ocean University of China Qingdao 266003 China
- State Key Laboratory of Microbial Technology Shandong University Qingdao 266237 China
| | - Xingwang Zhang
- State Key Laboratory of Microbial Technology Shandong University Qingdao 266237 China
| | - Guoqiang Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy Ocean University of China Qingdao 266003 China
- Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology Qingdao 266235 China
| |
Collapse
|
10
|
Yu JH, Yu ZP, Capon RJ, Zhang H. Natural Enantiomers: Occurrence, Biogenesis and Biological Properties. Molecules 2022; 27:1279. [PMID: 35209066 PMCID: PMC8880303 DOI: 10.3390/molecules27041279] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 02/01/2023] Open
Abstract
The knowledge that natural products (NPs) are potent and selective modulators of important biomacromolecules (e.g., DNA and proteins) has inspired some of the world's most successful pharmaceuticals and agrochemicals. Notwithstanding these successes and despite a growing number of reports on naturally occurring pairs of enantiomers, this area of NP science still remains largely unexplored, consistent with the adage "If you don't seek, you don't find". Statistically, a rapidly growing number of enantiomeric NPs have been reported in the last several years. The current review provides a comprehensive overview of recent records on natural enantiomers, with the aim of advancing awareness and providing a better understanding of the chemical diversity and biogenetic context, as well as the biological properties and therapeutic (drug discovery) potential, of enantiomeric NPs.
Collapse
Affiliation(s)
- Jin-Hai Yu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; (J.-H.Y.); (Z.-P.Y.)
| | - Zhi-Pu Yu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; (J.-H.Y.); (Z.-P.Y.)
| | - Robert J. Capon
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Hua Zhang
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| |
Collapse
|
11
|
Hong LL, Wang J, Liu LY, Sun F, Sun JB, Miao XX, Liu HY, Zhan KX, Jiao WH, Lin HW. Hippobutenolides A and B, two new long-chain fatty acid esters from the marine sponge Hippospongia lachne. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Rosic NN. Recent advances in the discovery of novel marine natural products and mycosporine-like amino acid UV-absorbing compounds. Appl Microbiol Biotechnol 2021; 105:7053-7067. [PMID: 34480237 PMCID: PMC8416575 DOI: 10.1007/s00253-021-11467-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 11/27/2022]
Abstract
Abstract Bioactive compounds from marine environments represent a rich source of bioproducts for potential use in medicine and biotechnology. To discover and identify novel marine natural products (MNPs), evaluating diverse biological activities is critical. Increased sensitivity and specificity of omics technologies, especially next-generation high-throughput sequencing combined with liquid chromatography-mass spectrometry and nuclear magnetic resonance, are speeding up the discovery of novel bioactive compounds. Mycosporine-like amino acids (MAAs) isolated from many marine microorganisms are among highly promising MNPs characterized by ultraviolet radiation (UV) absorbing capacities and are recognized as a potential source of ecologically friendly sunscreens. MAAs absorb damaging UV radiation with maximum absorption in the range of 310–360 nm, including both UVA and UVB ranges. MAAs are also characterized by other biological activities such as anti-oxidant, anti-cancer, and anti-inflammatory activities. The application of modern omics approaches promoted some recent developments in our understanding of MAAs’ functional significance and diversity. This review will summarize the various modern tools that could be applied during the identification and characterization of MNPs, including MAAs, to further their innovative applications. Key points • New omics technologies are speeding up the discovery of novel bio-products • The vast diversity of bioactive capacities of marine natural products described • Marine microorganisms as a source of environmentally friendly sunscreens
Collapse
Affiliation(s)
- Nedeljka N Rosic
- Faculty of Health, Southern Cross University, Southern Cross Drive, Gold Coast, QLD, 4225, Australia. .,Marine Ecology Research Centre, Southern Cross University, Military Rd, East Lismore, Lismore, NSW, 2480, Australia.
| |
Collapse
|
13
|
Luo X, Wang Q, Tang X, Xu J, Wang M, Li P, Li G. Cytotoxic Manoalide-Type Sesterterpenes from the Sponge Luffariella variabilis Collected in the South China Sea. JOURNAL OF NATURAL PRODUCTS 2021; 84:61-70. [PMID: 33371684 DOI: 10.1021/acs.jnatprod.0c01026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Thirteen new linear terpenes, including 11 rare acyclic manoalide derivatives (1-11), one polyprenylphenol derivative (12), and one polyprenylbenzaldehyde derivative (13), together with three known compounds (14-16) were isolated from the sponge Luffariella variabilis collected in the South China Sea. The planar structures were resolved by NMR and MS analyses, while the absolute configurations were fully elucidated by NOESY experiments, combined with experimental and calculated ECD spectra, acetal formation, empirical rules of 1H and 13C NMR shifts, DP4+ probability analyses, and Mosher's method. Compounds 1-7, 10, and 13 demonstrated cytotoxic activities against several human cancer cell lines with IC50 values ranging from 2 to 10 μM.
Collapse
Affiliation(s)
- Xiangchao Luo
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
- Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology, Qingdao 266235, People's Republic of China
| | - Qi Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
- Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology, Qingdao 266235, People's Republic of China
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao 266021, People's Republic of China
| | - Xuli Tang
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, People's Republic of China
| | - Jixiang Xu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
- Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology, Qingdao 266235, People's Republic of China
| | - Mengxue Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
- Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology, Qingdao 266235, People's Republic of China
| | - Pinglin Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
- Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology, Qingdao 266235, People's Republic of China
| | - Guoqiang Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
- Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology, Qingdao 266235, People's Republic of China
| |
Collapse
|
14
|
Mayer AMS, Guerrero AJ, Rodríguez AD, Taglialatela-Scafati O, Nakamura F, Fusetani N. Marine Pharmacology in 2016-2017: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis and Antiviral Activities; Affecting the Immune and Nervous Systems, and Other Miscellaneous Mechanisms of Action. Mar Drugs 2021; 19:49. [PMID: 33494402 PMCID: PMC7910995 DOI: 10.3390/md19020049] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
The review of the 2016-2017 marine pharmacology literature was prepared in a manner similar as the 10 prior reviews of this series. Preclinical marine pharmacology research during 2016-2017 assessed 313 marine compounds with novel pharmacology reported by a growing number of investigators from 54 countries. The peer-reviewed literature reported antibacterial, antifungal, antiprotozoal, antituberculosis, and antiviral activities for 123 marine natural products, 111 marine compounds with antidiabetic and anti-inflammatory activities as well as affecting the immune and nervous system, while in contrast 79 marine compounds displayed miscellaneous mechanisms of action which upon further investigation may contribute to several pharmacological classes. Therefore, in 2016-2017, the preclinical marine natural product pharmacology pipeline generated both novel pharmacology as well as potentially new lead compounds for the growing clinical marine pharmaceutical pipeline, and thus sustained with its contributions the global research for novel and effective therapeutic strategies for multiple disease categories.
Collapse
Affiliation(s)
- Alejandro M. S. Mayer
- Department of Pharmacology, College of Graduate Studies, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA;
| | - Aimee J. Guerrero
- Department of Pharmacology, College of Graduate Studies, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA;
| | - Abimael D. Rodríguez
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce de León Avenue, San Juan, PR 00926, USA;
| | | | - Fumiaki Nakamura
- Department of Chemistry and Biochemistry, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan;
| | | |
Collapse
|
15
|
Li K, Gustafson KR. Sesterterpenoids: chemistry, biology, and biosynthesis. Nat Prod Rep 2020; 38:1251-1281. [PMID: 33350420 DOI: 10.1039/d0np00070a] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Covering: July 2012 to December 2019Over the last seven years, expanding research efforts focused on sesterterpenoids has led to the isolation, identification, and characterization of numerous structurally novel and biologically active sesterterpenoids. These newly reported sesterterpenoids provide diverse structures that often incorporate unprecedented ring systems and new carbon skeletons, as well as unusual functional group arrays. Biological activities of potential biomedical importance including suppression of cancer cell growth, inhibition of enzymatic activity, and modulation of receptor signaling, as well as ecologically important functions such as antimicrobial effects and deterrence of herbivorous insects have been associated with a variety of sesterterpenoids. There has also been a rapid growth in our knowledge of the genomics, enzymology, and specific pathways associated with sesterterpene biosynthesis. This has opened up new opportunities for future sesterterpene discovery and diversification through the expression of new cryptic metabolites and the engineered manipulation of associated biosynthetic machinery and processes. In this paper we reviewed 498 new sesterterpenoids, including their structures, source organisms, country of origin, relevant bioactivities, and biosynthesis.
Collapse
Affiliation(s)
- Keke Li
- College of Life Science, Dalian Minzu University, Dalian 116600, China.
| | | |
Collapse
|
16
|
Guo R, Beattie SR, Krysan DJ, Brown MK. Enantioselective Synthesis of (+)-Hippolide J and Reevaluation of Antifungal Activity. Org Lett 2020; 22:7743-7746. [PMID: 32969231 DOI: 10.1021/acs.orglett.0c02979] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A synthesis of the reported antifungal agent (+)-hippolide J is presented. The rapid assembly of the natural product was enabled through implementation of an enantioselective isomerization/[2 + 2]-cycloaddition sequence. Due to the simplicity of the route, >100 mg of the natural product were prepared in a single pass. Anitfungal assays of hippolide J, however, confirmed that it showed no activity against several fungal strains, contrary to the isolation report.
Collapse
Affiliation(s)
- Renyu Guo
- Indiana University, Department of Chemistry, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Sarah R Beattie
- University of Iowa, Carver College of Medicine, Departments of Pediatrics and Microbiology/Immunology, 200 South Grand Avenue, Iowa City, Iowa 52242, United States
| | - Damian J Krysan
- University of Iowa, Carver College of Medicine, Departments of Pediatrics and Microbiology/Immunology, 200 South Grand Avenue, Iowa City, Iowa 52242, United States
| | - M Kevin Brown
- Indiana University, Department of Chemistry, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
17
|
Abdelaleem ER, Samy MN, Desoukey SY, Liu M, Quinn RJ, Abdelmohsen UR. Marine natural products from sponges (Porifera) of the order Dictyoceratida (2013 to 2019); a promising source for drug discovery. RSC Adv 2020; 10:34959-34976. [PMID: 35514397 PMCID: PMC9056847 DOI: 10.1039/d0ra04408c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 09/11/2020] [Indexed: 11/21/2022] Open
Abstract
Marine organisms have been considered an interesting target for the discovery of different classes of secondary natural products with wide-ranging biological activities. Sponges which belong to the order Dictyoceratida are distinctly classified into 5 families: Dysideidae, Irciniidae, Spongiidae, Thorectidae, and Verticilliitidae. In this review, compounds isolated from Dictyoceratida sponges were discussed with their biological potential within the period 2013 to December 2019. Moreover, analysis of the physicochemical properties of these marine natural products was investigated and the results showed that 78% of the compounds have oral bioavailability potential. This review highlights sponges of the order Dictyoceratida as exciting source for discovery of new drug leads. Marine organisms have been considered an interesting target for the discovery of different classes of secondary natural products with wide-ranging biological activities.![]()
Collapse
Affiliation(s)
| | - Mamdouh Nabil Samy
- Department of Pharmacognosy
- Faculty of Pharmacy
- Minia University
- 61519 Minia
- Egypt
| | | | - Miaomiao Liu
- Griffith Institute for Drug Discovery
- Griffith University Brisbane
- 4111 Australia
| | - Ronald J. Quinn
- Griffith Institute for Drug Discovery
- Griffith University Brisbane
- 4111 Australia
| | | |
Collapse
|
18
|
Aldholmi M, Marchand P, Ourliac-Garnier I, Le Pape P, Ganesan A. A Decade of Antifungal Leads from Natural Products: 2010-2019. Pharmaceuticals (Basel) 2019; 12:ph12040182. [PMID: 31842280 PMCID: PMC6958371 DOI: 10.3390/ph12040182] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/21/2022] Open
Abstract
In this review, we discuss novel natural products discovered within the last decade that are reported to have antifungal activity against pathogenic species. Nearly a hundred natural products were identified that originate from bacteria, algae, fungi, sponges, and plants. Fungi were the most prolific source of antifungal compounds discovered during the period of review. The structural diversity of these antifungal leads encompasses all the major classes of natural products including polyketides, shikimate metabolites, terpenoids, alkaloids, and peptides.
Collapse
Affiliation(s)
- Mohammed Aldholmi
- Department of Natural Products and Alternative Medicine, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Pascal Marchand
- Université de Nantes, Cibles et Médicaments des Infections et du Cancer, IICiMed, EA 1155, F-44000 Nantes, France; (P.M.); (I.O.-G.); (P.L.P.)
| | - Isabelle Ourliac-Garnier
- Université de Nantes, Cibles et Médicaments des Infections et du Cancer, IICiMed, EA 1155, F-44000 Nantes, France; (P.M.); (I.O.-G.); (P.L.P.)
| | - Patrice Le Pape
- Université de Nantes, Cibles et Médicaments des Infections et du Cancer, IICiMed, EA 1155, F-44000 Nantes, France; (P.M.); (I.O.-G.); (P.L.P.)
| | - A. Ganesan
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
- Correspondence:
| |
Collapse
|
19
|
Li YL, Gao Y, Liu CY, Sun CJ, Zhao ZT, Lou HX. Asperunguisins A-F, Cytotoxic Asperane Sesterterpenoids from the Endolichenic Fungus Aspergillus unguis. JOURNAL OF NATURAL PRODUCTS 2019; 82:1527-1534. [PMID: 31117521 DOI: 10.1021/acs.jnatprod.8b01066] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Six new asperane-type sesterterpenoids, asperunguisins A-F (1-6), were isolated from the endolichenic fungus Aspergillus unguis, together with a known analogue, aspergilloxide (7); these are rare asperane-type sesterterpenoids, characterized by a unique hydroxylated 7/6/6/5 tetracyclic system. The structures of asperunguisins A-F (1-6) were elucidated on the basis of spectroscopic methods (NMR and HRESIMS), X-ray single-crystal diffraction analysis, ECD calculations, and biogenetic considerations. Asperunguisin C (3) showed cytotoxicity against the human cancer cell line A549 with an IC50 value of 6.2 μM. Further investigation revealed that the observed cell death was a result of G0/G1 cell cycle arrest via DNA damage followed by cellular apoptosis.
Collapse
Affiliation(s)
- Yue-Lan Li
- Department of Natural Products Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences , Shandong University , Jinan 250012 , People's Republic of China
| | - Yun Gao
- Department of Natural Products Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences , Shandong University , Jinan 250012 , People's Republic of China
| | - Chun-Yu Liu
- Department of Natural Products Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences , Shandong University , Jinan 250012 , People's Republic of China
| | - Chun-Jing Sun
- Department of Natural Products Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences , Shandong University , Jinan 250012 , People's Republic of China
| | - Zun-Tian Zhao
- College of Life Sciences , Shandong Normal University , Jinan 250014 , People's Republic of China
| | - Hong-Xiang Lou
- Department of Natural Products Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences , Shandong University , Jinan 250012 , People's Republic of China
| |
Collapse
|
20
|
Abstract
Covering: January to December 2017This review covers the literature published in 2017 for marine natural products (MNPs), with 740 citations (723 for the period January to December 2017) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1490 in 477 papers for 2017), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. Geographic distributions of MNPs at a phylogenetic level are reported.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. and Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
21
|
Zhang X, Li PL, Qin GF, Li S, de Voogd NJ, Tang XL, Li GQ. Isolation and Absolute Configurations of Diversiform C 17, C 21 and C 25 Terpenoids from the Marine Sponge Cacospongia sp. Mar Drugs 2018; 17:md17010014. [PMID: 30597876 PMCID: PMC6356455 DOI: 10.3390/md17010014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/20/2018] [Accepted: 12/20/2018] [Indexed: 11/16/2022] Open
Abstract
Chemical investigation of MeOH extract of a South China Sea sponge Cacospongia sp. yielded 15 terpenoids belonging to three different skeleton-types, including the unusual C17γ-lactone norditerpenoids (1–3), the rare C21 pyridine meroterpenoid (7), and the notable C25 manoalide-type sesterterpenoids (4–6, 8–10). Compounds 1–5 were initially obtained as enantiomers, and were further separated to be optically pure compounds (1a, 1b, 2a, 2b, 3a-r, 3b-r, 4a, 4b, 5a and 5b) by chiral HPLC, with a LiAlH4 reduction aid for 3. Compounds 3a/3b (a pair of inseparable enantiomers), 4a, 5a, 6, and 7 were identified as new compounds, while 1a/1b and 2a/2b were obtained from a natural source and were determined for their absolute configurations for the first time. This is also the first time to encounter enantiomers of the well-known manoalide-type sesterterpenoids from nature. The structures with absolute configurations of the new compounds were unambiguously determined by comprehensive methods including HR-ESI-MS and NMR data analysis, optical rotation comparison, experimental and calculated electronic circular dichroism (ECD), and Mo2(OAc)4 induced circular dichroism (ICD) methods. The cytotoxicity of the isolates against selected human tumor cell lines was evaluated, however, the tested compounds showed no activity against selected cell lines.
Collapse
Affiliation(s)
- Xingwang Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Shandong Provincial Key Laboratory of Synthetic Biology, CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.
| | - Ping-Lin Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology, Qingdao 266235, China.
| | - Guo-Fei Qin
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology, Qingdao 266235, China.
| | - Shengying Li
- Shandong Provincial Key Laboratory of Synthetic Biology, CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Nicole J de Voogd
- National Museum of Natural History, 2300 RA Leiden, The Netherlands.
| | - Xu-Li Tang
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| | - Guo-Qiang Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology, Qingdao 266235, China.
| |
Collapse
|
22
|
YANG GX, MA GL, LI H, HUANG T, XIONG J, HU JF. Advanced natural products chemistry research in China between 2015 and 2017. Chin J Nat Med 2018; 16:881-906. [DOI: 10.1016/s1875-5364(18)30131-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Indexed: 10/27/2022]
|
23
|
Cytotoxic Sesterterpenes from Thai Marine Sponge Hyrtios erectus. Mar Drugs 2018; 16:md16120474. [PMID: 30487463 PMCID: PMC6316393 DOI: 10.3390/md16120474] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/23/2018] [Accepted: 11/24/2018] [Indexed: 11/16/2022] Open
Abstract
Four sesterterpenes, erectusolides B, C, D, and seco-manoalide-25-methyl ether, two 2-furanone derivatives, erectusfuranones A and B, together with thirteen known sesterterpenes, (6Z)-neomanoalide-24-acetate, two diastereomers of 24-O-methylmanoalide, luffariolide B, manoalide, (6E)- and (6Z)-neomanoalide, seco-manoalide, scalarafuran, 12-acetylscalarolide, 12-epi-O-deacetyl-19-deoxyscalarin, 12-epi-scalarin, and 12-O-deacetyl-12-epi-scalarin, three indole alkaloids, 5-hydroxy-1H-indole-3-carbaldehyde, hyrtiosine A, and variabine B, and one norterpene, cavernosine were isolated from the marine sponge Hyrtios erectus. Their structures were determined by means of spectroscopic methods and the absolute configurations of the asymmetric centers were determined using the modified Mosher's method. The cytotoxic activities for the isolated compounds have been reported.
Collapse
|
24
|
Abstract
A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as caesalpinflavin A from Caesalpinia enneaphylla.
Collapse
|