1
|
Prakobdi C, Dhellemmes L, Leclercq L, Rydzek G, Cottet H. Surfactant-based coatings for protein separation by capillary electrophoresis - A review. Anal Chim Acta 2025; 1356:343945. [PMID: 40288884 DOI: 10.1016/j.aca.2025.343945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/14/2025] [Accepted: 03/14/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND Capillary electrophoresis (CE) is a highly efficient and versatile analytical method for the separation of biomacromolecules such as proteins and peptides. One major concern to reach high separation efficiency is the adsorption of analytes on the capillary wall and the heterogeneity of the capillary surface charge which generates hydrodynamic dispersion due to local electroosmotic (EOF) fluctuations. RESULTS Double chain surfactants have been described as potential interesting candidates for capillary coatings in CE. They are notably offering a very homogenous surface charge leading to very high separation efficiency with reported values up to 1 million plates per meter. SIGNIFICANCE This review provides an overview of double chain surfactant coatings used in CE with an emphasis on the coating protocol, the nature of the surfactant, the preparation of the coating solution (concentration, temperature, sonication or extrusion), the physicochemical parameters affecting their properties (pH, ionic strength, nature of the anion in the coating solution, coating additives, capillary internal diameter), and the coating stability/durability.
Collapse
Affiliation(s)
| | - Laura Dhellemmes
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Laurent Leclercq
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France.
| | - Gaulthier Rydzek
- ICGM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Hervé Cottet
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France.
| |
Collapse
|
2
|
Lodeiro C, Capelo-Martínez JL, Santos HM, Oliveira E. PRR (preventing, removing, and recycling): pollutant toxic ions and molecules. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-35754-w. [PMID: 39681783 DOI: 10.1007/s11356-024-35754-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Affiliation(s)
- Carlos Lodeiro
- BIOSCOPE Group, LAQV@REQUIMTE, Chemistry Department, Faculty of Science and Technology, NOVA-FCT, University NOVA of Lisbon, 2829-516, Caparica, Portugal.
- PROTEOMASS Scientific Society, Costa de Caparica, 2825-466, Caparica, Portugal.
| | - José Luis Capelo-Martínez
- BIOSCOPE Group, LAQV@REQUIMTE, Chemistry Department, Faculty of Science and Technology, NOVA-FCT, University NOVA of Lisbon, 2829-516, Caparica, Portugal
- PROTEOMASS Scientific Society, Costa de Caparica, 2825-466, Caparica, Portugal
| | - Hugo M Santos
- BIOSCOPE Group, LAQV@REQUIMTE, Chemistry Department, Faculty of Science and Technology, NOVA-FCT, University NOVA of Lisbon, 2829-516, Caparica, Portugal
- PROTEOMASS Scientific Society, Costa de Caparica, 2825-466, Caparica, Portugal
| | - Elisabete Oliveira
- BIOSCOPE Group, LAQV@REQUIMTE, Chemistry Department, Faculty of Science and Technology, NOVA-FCT, University NOVA of Lisbon, 2829-516, Caparica, Portugal
- PROTEOMASS Scientific Society, Costa de Caparica, 2825-466, Caparica, Portugal
| |
Collapse
|
3
|
Kim G, Seo M, Xu J, Park J, Gim S, Chun H. Large-Area Silicon Nitride Nanosieve for Enhanced Diffusion-Based Exosome Isolation. SMALL METHODS 2024; 8:e2301624. [PMID: 38801014 DOI: 10.1002/smtd.202301624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/10/2024] [Indexed: 05/29/2024]
Abstract
Nanoporous membranes have a variety of applications, one of which is the size-selective separation of nanoparticles. In drug delivery, nanoporous membranes are becoming increasingly important for the isolation of exosomes, which are bio-nanoparticles. However, the low pore density and thickness of commercial membranes limit their efficiency. There have been many attempts to fabricate sub-micrometer thin membranes, but the limited surface area has restricted their practicality. In this study, large-area silicon nitride nanosieves for enhanced diffusion-based isolation of exosomes are presented. Notably, these nanosieves are scaled to sizes of up to 4-inch-wafers, a significant achievement in overcoming the fabrication challenges associated with such expansive areas. The method employs a 200 nm porous sieve (38.2% porosity) for exosome separation and a 50 nm sieve (10.7% porosity) for soluble protein removal. These 300 nm thick nanosieves outperform conventional polycarbonate membranes by being 50 times thinner, thereby increasing nanoparticle permeability. The method enables a 90% recovery rate of intact exosomes from human serum and a purity ratio of 3 × 107 particles/µg protein, 4.6 times higher than ultracentrifugation methods. The throughput of the method is up to 15 mL by increasing the size of the nanosieve, making it an ideal solution for large-scale exosome production for therapeutic purposes.
Collapse
Affiliation(s)
- Gijung Kim
- Department of Biomedical Engineering, Korea University, 466 Hana Science Hall, Seoul, 02841, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, 466 Hana Science Hall, Seoul, 02841, Republic of Korea
| | - Mingyu Seo
- Department of Biomedical Engineering, Korea University, 466 Hana Science Hall, Seoul, 02841, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, 466 Hana Science Hall, Seoul, 02841, Republic of Korea
| | - Jiaxin Xu
- Department of Biomedical Engineering, Korea University, 466 Hana Science Hall, Seoul, 02841, Republic of Korea
| | - Jinhyeok Park
- Department of Biomedical Engineering, Korea University, 466 Hana Science Hall, Seoul, 02841, Republic of Korea
| | - Sangjun Gim
- Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Honggu Chun
- Department of Biomedical Engineering, Korea University, 466 Hana Science Hall, Seoul, 02841, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, 466 Hana Science Hall, Seoul, 02841, Republic of Korea
| |
Collapse
|
4
|
Atia MA, Kalsoom U, Ollerton S, Haddad PR, Breadmore MC. Methamphetamine detection using portable capillary electrophoresis coupled with a swab-based extraction device. Talanta 2024; 278:126357. [PMID: 38959669 DOI: 10.1016/j.talanta.2024.126357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 05/16/2024] [Accepted: 06/03/2024] [Indexed: 07/05/2024]
Abstract
Methamphetamine (MA) is one of the most virulent illicit drugs that can be synthesized from household materials leading to its prevalent trafficking and local manufacturing in clandestine drug laboratories (clan labs). The significant problems of tracing MA in clan labs and monitoring drug abusers lie in the lag time between sample collection and analysis and the number of tests done. Capillary electrophoresis (CE) is a rapid separation technique amenable to miniaturization and field testing. Herein, we developed a simple transient isotachophoretic (tITP)-CE method to detect MA and its precursor pseudoephedrine (PSE) in clan labs and non-invasive biological fluids. The method was implemented on the ETD-100, a commercial fully automated portable CE instrument with an integrated swab-based extraction system. Within 2 min of insertion of the swab, MA and PSE were automatically extracted with a leading electrolyte (LE) and then separated on covalently modified capillaries. The ETD-100 showed a limit of detection (LOD) and quantification (LOQ) of MA 0.02 and 0.05 μg/swab and 0.02 and 0.06 μg/swab of PSE, with an enhancement factor of 118 and 328, respectively, when compared to a normal non-tITP injection. The intra and inter-day relative standard deviation in terms of migration time were in the range of 0.75-1.93 % for both MA and PSE and were 2.0-2.4 % for both MA and PSE peak height. The method was demonstrated with the detection of spiked MA and PSE on different household materials as well as in non-invasive biological fluids with a recovery above 60 %.
Collapse
Affiliation(s)
- Mostafa A Atia
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Science, University of Tasmania, Private Bag 75, Hobart, Tasmania, 7001, Australia; Department of Analytical Chemistry, Faculty of Pharmacy Helwan University, 11795, Cairo, Egypt
| | - Umme Kalsoom
- GreyScan, 9/435 Williamstown Rd, Port Melbourne, Victoria, 3207, Australia
| | - Samantha Ollerton
- GreyScan, 9/435 Williamstown Rd, Port Melbourne, Victoria, 3207, Australia; Precision Plus Consulting Ltd., 71-75 Shelton Street, Covent Garden, London, WC2H 9HJ, United Kingdom
| | - Paul R Haddad
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Science, University of Tasmania, Private Bag 75, Hobart, Tasmania, 7001, Australia
| | - Michael C Breadmore
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Science, University of Tasmania, Private Bag 75, Hobart, Tasmania, 7001, Australia.
| |
Collapse
|
5
|
Berg AB, Ferreira Santos MS, Bautista A, Mora MF, Pauken MT, Noell AC. Development of a capillary temperature control system for capillary electrophoresis instruments designed for spaceflight applications. Electrophoresis 2024; 45:1495-1504. [PMID: 38687164 DOI: 10.1002/elps.202300254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 05/02/2024]
Abstract
Capillary temperature control during capillary electrophoresis (CE) separations is key for achieving accurate and reproducible results with a broad array of potential methods. However, the difficulty of enabling typical fluid temperature control loops on portable instruments has meant that active capillary temperature control of in situ CE systems has frequently been overlooked. This work describes construction and test of a solid-state device for capillary temperature control that is suitable for inclusion with in situ instruments, including those designed for space missions. Two test articles were built, a thermal mass model (TMM) and a functional model (FM). The TMM demonstrated that temperature gradients could be limited using the proposed control scheme, and that our thermal modeling of the system can be relied on for future adaptations of physical geometries of the system. The FM demonstrated CE analytical performance while under active temperature control and that the device was compatible with the harsh thermal-vacuum environments that might be encountered during space flight.
Collapse
Affiliation(s)
- Andrew B Berg
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Mauro S Ferreira Santos
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Anthony Bautista
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Maria F Mora
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Michael T Pauken
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Aaron C Noell
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
6
|
Obma A, Bumrungpuech R, Hemwech P, Detsangiamsak S, Wirasate S, Hauser PC, Chantiwas R. Efficient separation of organic anions in beverages using aminosilane-functionalized capillary electrophoresis with contactless conductivity detection. Anal Chim Acta 2024; 1316:342815. [PMID: 38969420 DOI: 10.1016/j.aca.2024.342815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/04/2024] [Accepted: 06/01/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND Capillary electrophoresis (CE) has the advantage of rapid anion analysis, when employing a reverse electroosmotic flow (EOF). The conventional CE method utilizes dynamic coatings with surfactants like cetyltrimethylammonium bromide (CTAB) in the run buffer to reverse the EOF. However, this method suffers from very slow equilibration leading to drifting effective migration times of the analyte anions, which adversely affects the identification and quantification of peaks. Permanent coating of the capillary surface may obviate this problem but has been relatively little explored. Thus, permanent capillary surface modification by the covalent binding of 3-aminopropyltriethoxysilane (APTES) was studied as an alternative. RESULTS This study investigates the effect of APTES concentration for surface functionalization on EOF mobility, separation efficiency, and reproducibility of anion separation. The performance data was complemented by X-ray photoelectron spectroscopy (XPS) and contact angle (CA) measurements. The XPS measurements showed that the coverage with APTES was dependent on its concentration in the coating solution. The XPS measurements correlated well with the EOF values determined for the capillaries tested. A standard mixture of 21 anions could be baseline separated within 10 min in the capillaries with lower EOF, but not in the capillary with the highest EOF as the residence time of the analytes was too short in this case. Compared to conventional dynamic coating with CTAB, APTES-functionalized capillaries provide faster equilibration and long-term EOF stability. The application of APTES-functionalized capillaries in analyzing different beverages demonstrates the precision, reliability, and specificity in determining organic anions, providing valuable insights of their compositions. SIGNIFICANCE APTES coating on capillaries provides a facile approach to achieve a permanent reversal of the stable EOF to determine anions. The control of the coverage via the concentration of the reagent solution allows the tailoring of the EOF to different needs, a faster EOF for less complex samples where resolution is not challenging, while a lower EOF for higher complex samples where the focus is on separation efficiency. This enhancement in efficiency and sensitivity has been applied to analyzing organic acids in several beverages.
Collapse
Affiliation(s)
- Apinya Obma
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Rama VI Rd., Bangkok, 10400, Thailand
| | - Rawiwan Bumrungpuech
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Rama VI Rd., Bangkok, 10400, Thailand
| | - Pattamaporn Hemwech
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Rama VI Rd., Bangkok, 10400, Thailand
| | - Sasinun Detsangiamsak
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Rama VI Rd., Bangkok, 10400, Thailand
| | - Supa Wirasate
- Rubber Technology Research Centre, 999 Science Building 3, Phuttamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Peter C Hauser
- The University of Basel, Department of Chemistry, Klingelbergstrasse 80, CH-4056, Basel, Switzerland
| | - Rattikan Chantiwas
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Rama VI Rd., Bangkok, 10400, Thailand.
| |
Collapse
|
7
|
Oushyani Roudsari Z, Esmaeili Z, Nasirzadeh N, Heidari Keshel S, Sefat F, Bakhtyari H, Nadri S. Microfluidics as a promising technology for personalized medicine. BIOIMPACTS : BI 2024; 15:29944. [PMID: 39963565 PMCID: PMC11830131 DOI: 10.34172/bi.29944] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 02/10/2024] [Accepted: 02/20/2024] [Indexed: 02/20/2025]
Abstract
Introduction Due to the recent advances in biomedicine and the increasing understanding of the molecular mechanism of diseases, healthcare approaches have tended towards preventive and personalized medicine. Consequently, in recent decades, the utilization of interdisciplinary technologies such as microfluidic systems had a significant increase to provide more accurate high throughput diagnostic/therapeutic methods. Methods In this article, we will review a summary of innovations in microfluidic technologies toward improving personalized biomolecular diagnostics, drug screening, and therapeutic strategies. Results Microfluidic systems by providing a controllable space for fluid flow, three-dimensional growth of cells, and miniaturization of molecular experiments are useful tools in the field of personalization of health and treatment. These conditions have enabled the potential to carry out studies like; disease modeling, drug screening, and improving the accuracy of diagnostic methods. Conclusion Microfluidic devices have become promising point-of-care (POC) and personalized medicine instruments due to their ability to perform diagnostic tests with small sample volumes, cost reduction, high resolution, and automation.
Collapse
Affiliation(s)
- Zahra Oushyani Roudsari
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Zahra Esmaeili
- Department of Medical Nanotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Nafiseh Nasirzadeh
- Department of Medical Nanotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Saeed Heidari Keshel
- Medical Nanotechnology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farshid Sefat
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford, UK
- Research Centre in Polymer Science & Technology (Polymer IRC), University of Bradford, Bradford, UK
| | - Hassan Bakhtyari
- Department of Pediatrics, School of Medicine, Ayatollah Mousavi Hospital, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Samad Nadri
- Department of Medical Nanotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
- Zanjan Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Zanjan Metabolic Diseases Research Center, Health and Metabolic Diseases Research Institute, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
8
|
Warren CG, Dasgupta PK. Liquid phase detection in the miniature scale. Microfluidic and capillary scale measurement and separation systems. A tutorial review. Anal Chim Acta 2024; 1305:342507. [PMID: 38677834 DOI: 10.1016/j.aca.2024.342507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/29/2024]
Abstract
Microfluidic and capillary devices are increasingly being used in analytical applications while their overall size keeps decreasing. Detection sensitivity for these microdevices gains more importance as device sizes and consequently, sample volumes, decrease. This paper reviews optical, electrochemical, electrical, and mass spectrometric detection methods that are applicable to capillary scale and microfluidic devices, with brief introduction to the principles in each case. Much of this is considered in the context of separations. We do consider theoretical aspects of separations by open tubular liquid chromatography, arguably the most potentially fertile area of separations that has been left fallow largely because of lack of scale-appropriate detection methods. We also examine the theoretical basis of zone electrophoretic separations. Optical detection methods discussed include UV/Vis absorbance, fluorescence, chemiluminescence and refractometry. Amperometry is essentially the only electrochemical detection method used in microsystems. Suppressed conductance and especially contactless conductivity (admittance) detection are in wide use for the detection of ionic analytes. Microfluidic devices, integrated to various mass spectrometers, including ESI-MS, APCI-MS, and MALDI-MS are discussed. We consider the advantages and disadvantages of each detection method and compare the best reported limits of detection in as uniform a format as the available information allows. While this review pays more attention to recent developments, our primary focus has been on the novelty and ingenuity of the approach, regardless of when it was first proposed, as long as it can be potentially relevant to miniature platforms.
Collapse
Affiliation(s)
- Cable G Warren
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX, 76019-0065, United States
| | - Purnendu K Dasgupta
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX, 76019-0065, United States.
| |
Collapse
|
9
|
Yoo M, Lee HJ, Lee KW, Seo D. Analysis of Vaccenic and Elaidic acid in foods using a silver ion cartridge applied to GC × GC-TOFMS. Front Nutr 2024; 10:1320550. [PMID: 38260061 PMCID: PMC10800423 DOI: 10.3389/fnut.2023.1320550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024] Open
Abstract
Background Trans fatty acids (TFAs) are unsaturated fatty acids, with vaccenic acid (VA) and elaidic acid (EA) being the major constituents. While VA has been associated with beneficial effects on health and anti-cancer properties, EA is found in hardened vegetable oils and is linked to an increased risk of cardiovascular diseases. Therefore, this study aimed to develop a novel method for the quantitative measurement of VA and EA, aiming to accurately analyze individual TFA and apply it for the assessment of products containing TFAs. Methods The ratio of VA to EA (V/E ratio) was evaluated using a silver ion cartridge (SIC) solid phase extraction method removing cis-fatty acids (cis-FAs). Additionally, comparative analysis of the V/E ratio was conducted by the two methods (SIC treatment and untreated) using comprehensive two-dimensional gas chromatography combined with time-of-flight mass spectrometry (GC × GC-TOFMS). Results The removal efficiency of cis-FAs was greater than 97.8%. However, the total TFA contents were not so different from SIC treatment. Moreover, this approach not only allowed for a more precise determination of the V/E ratio but also revealed a significant distinction between natural trans fatty acids (N-TFAs) and hydrogenated trans fatty acids (H-TFAs). Conclusion Therefore, the SIC coupled to the GC × GC-TOFMS presented in this study could be applied to discriminate N-TFA and H-TFA contents in dairy and fatty foods.
Collapse
Affiliation(s)
- Miyoung Yoo
- Food Standard Research Center, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Hyun Jeong Lee
- Food Standard Research Center, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Kwang-Won Lee
- Department of Biotechnology, Korea University, Seongbuk-gu, Seoul, Republic of Korea
| | - Dongwon Seo
- Food Analysis Research Center, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
| |
Collapse
|
10
|
Wang K, Yang X, Zhang S, Zhang P, Huang S. Nanopore Discrimination of Nucleotide Sugars. NANO LETTERS 2023; 23:8620-8627. [PMID: 37690030 DOI: 10.1021/acs.nanolett.3c02455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Nucleotide sugars, the glycosyl donors in the biosynthesis of carbohydrates, are critical ingredients in the growth and development of all living organisms. A variety of nucleotide sugars simultaneously exist in biological samples. They, however, have only minor structural differences, which make them extremely difficult to discriminate. In this work, a phenylboronic acid (PBA)-modified Mycobacterium smegmatis porin A (MspA) hetero-octamer was applied to sense nucleotide sugars. Five representative nucleotide sugars, including guanosine diphosphate mannose (GDP-Man), adenosine diphosphate glucose (ADP-Glc), uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), uridine diphosphate glucose (UDP-Glc), and uridine diphosphate glucoronic acid (UDP-GlcA), were successfully distinguished. A custom machine learning algorithm was also employed to automatically identify events, reporting a general accuracy of 99.4%. This sensing strategy provides a rapid, direct, and accurate method for identifying different nucleotide sugars. However, single-molecule identification of nucleotide sugars has never been previously reported, to the best of our knowledge.
Collapse
Affiliation(s)
- Kefan Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023 Nanjing, China
| | - Xian Yang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023 Nanjing, China
| | - Shanyu Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023 Nanjing, China
| | - Panke Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
| | - Shuo Huang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023 Nanjing, China
| |
Collapse
|
11
|
Böhm D, Koall M, Matysik FM. Combining amperometry and mass spectrometry as a dual detection approach for capillary electrophoresis. Electrophoresis 2023; 44:492-500. [PMID: 36413610 DOI: 10.1002/elps.202200228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/30/2022] [Accepted: 11/11/2022] [Indexed: 11/23/2022]
Abstract
Dual detection concepts (DDCs) are becoming more and more popular in analytical chemistry. In this work, we describe a novel DDC for capillary electrophoresis (CE) consisting of an amperometric detector (AD) and a mass spectrometer (MS). This detector combination has a good complementarity as the AD exhibits high sensitivity, whereas the MS provides excellent selectivity. Both detectors are based on a destructive detection principle, making a serial detector arrangement impossible. Thus, for the realization of the DDC, the CE flow was divided into two parts with a flow splitter. The DDC was characterized in a proof-of-concept study with ferrocene derivates and a nonaqueous background electrolyte. We could show that splitting the CE flow was a suitable method for the instrumental realization of the DDC consisting of two destructive detectors. By lowering the height of the AD compared to the MS, it was possible to synchronize the detector responses. Additionally, for the chosen model system, we confirmed that the AD was much more reproducible and had lower limits of detection (LODs) than the MS. The LODs were identical for the DDC and the single-detection arrangements, indicating no sensitivity decrease due to the CE flow splitting. The DDC was successfully applied to determine the drug and doping agent trimetazidine.
Collapse
Affiliation(s)
- Daniel Böhm
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitätsstraße 31, Regensburg, Germany
| | - Martin Koall
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitätsstraße 31, Regensburg, Germany
| | - Frank-Michael Matysik
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitätsstraße 31, Regensburg, Germany
| |
Collapse
|
12
|
Böhm D, Koall M, Matysik F. Dead volume–free flow splitting in capillary electrophoresis. Electrophoresis 2022; 43:1438-1445. [DOI: 10.1002/elps.202200025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Daniel Böhm
- Institute of Analytical Chemistry, Chemo‐ and Biosensors University of Regensburg Regensburg Germany
| | - Martin Koall
- Institute of Analytical Chemistry, Chemo‐ and Biosensors University of Regensburg Regensburg Germany
| | - Frank‐Michael Matysik
- Institute of Analytical Chemistry, Chemo‐ and Biosensors University of Regensburg Regensburg Germany
| |
Collapse
|
13
|
Mukunda DC, Rodrigues J, Joshi VK, Raghushaker CR, Mahato KK. A comprehensive review on LED-induced fluorescence in diagnostic pathology. Biosens Bioelectron 2022; 209:114230. [PMID: 35421670 DOI: 10.1016/j.bios.2022.114230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/19/2022] [Accepted: 03/25/2022] [Indexed: 11/02/2022]
Abstract
Sensitivity, specificity, mobility, and affordability are important criteria to consider for developing diagnostic instruments in common use. Fluorescence spectroscopy has been demonstrating substantial potential in the clinical diagnosis of diseases and evaluating the underlying causes of pathogenesis. A higher degree of device integration with appropriate sensitivity and reasonable cost would further boost the value of the fluorescence techniques in clinical diagnosis and aid in the reduction of healthcare expenses, which is a key economic concern in emerging markets. Light-emitting diodes (LEDs), which are inexpensive and smaller are attractive alternatives to conventional excitation sources in fluorescence spectroscopy, are gaining a lot of momentum in the development of affordable, compact analytical instruments of clinical relevance. The commercial availability of a broad range of LED wavelengths (255-4600 nm) has opened up new avenues for targeting a wide range of clinically significant molecules (both endogenous and exogenous), thereby diagnosing a range of clinical illnesses. As a result, we have specifically examined the uses of LED-induced fluorescence (LED-IF) in preclinical and clinical evaluations of pathological conditions, considering the present advancements in the field.
Collapse
Affiliation(s)
| | - Jackson Rodrigues
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Vijay Kumar Joshi
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Chandavalli Ramappa Raghushaker
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Krishna Kishore Mahato
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India.
| |
Collapse
|
14
|
Jiang H, Yin SJ, Wang X, Lu M, Zhang H, Yang FQ. Preparation of covalently bonded liposome capillary column and its application in evaluation of drug membrane permeability. J Pharm Biomed Anal 2022; 209:114513. [PMID: 34883420 DOI: 10.1016/j.jpba.2021.114513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/31/2021] [Accepted: 11/29/2021] [Indexed: 11/29/2022]
Abstract
Two liposomes, including 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) + 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine (PE) + cholesterol (Chol) (DSPC/PE/Chol liposomes) and soybean lecithin (SPC) + PE + Chol (SPC/PE/Chol liposomes), were prepared and fixed on the inner wall of capillary column by using the adhesion of polydopamine (PDA) membrane and the cross-linking property of glutaraldehyde (GA). The immobilized liposome capillary column (ILCC) has good repeatability and stability based on the electrophoretic mobility of analyte. A CE method based on the immobilized liposome capillary column chromatography (ILCCC) was successfully developed to study the retention behavior of drugs on ILCC, and the logarithm of retention factor (log k) of neutral and ionic drugs were determined. The results show that the log k measured by the ILCCC based on two liposomes have a good linear fitting (R2 = 0.86). Moreover, the linear relationship between ILCCC system and other related research systems (octanol-water system and immobilized artificial membrane (IAM)) was analyzed, and the results indicate that SPC/PE/Chol ILCCC, DSPC/PE/Chol ILCCC and IAM systems have good fitting results, R2 values are 0.86 and 0.78, respectively. In addition, the normalization coefficients of ILCCC and IAM systems obtained by the linear free energy relationship (LFER) analysis are close and the d value is small. In short, the ILCCC is a simple and feasible method for studying drug membrane permeability.
Collapse
Affiliation(s)
- Hui Jiang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Shi-Jun Yin
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Xu Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Min Lu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Hao Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
15
|
Gao Z, Zhong W. Recent (2018-2020) development in capillary electrophoresis. Anal Bioanal Chem 2022; 414:115-130. [PMID: 33754195 PMCID: PMC7984737 DOI: 10.1007/s00216-021-03290-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 12/14/2022]
Abstract
Development of new capillary electrophoresis (CE) methodology and instrumentation, as well as application of CE to solve new problems, remains an active research area because of the attractive features of CE compared to other separation techniques. In this review, we focus on the representative works about sample preconcentration, separation media or capillary coating development, detector construction, and multidimensional separation in CE, which are judiciously selected from the papers published in 2018-2020.
Collapse
Affiliation(s)
- Ziting Gao
- Department of Chemistry, University of California-Riverside, 900 University Ave., Riverside, CA, 92521, USA
| | - Wenwan Zhong
- Department of Chemistry, University of California-Riverside, 900 University Ave., Riverside, CA, 92521, USA.
| |
Collapse
|
16
|
Vaghef-Koodehi A, Lapizco-Encinas BH. Microscale electrokinetic-based analysis of intact cells and viruses. Electrophoresis 2021; 43:263-287. [PMID: 34796523 DOI: 10.1002/elps.202100254] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 12/11/2022]
Abstract
Miniaturized electrokinetic methods have proven to be robust platforms for the analysis and assessment of intact microorganisms, offering short response times and higher integration than their bench-scale counterparts. The present review article discusses three types of electrokinetic-based methodologies: electromigration or motion-based techniques, electrode-based electrokinetics, and insulator-based electrokinetics. The fundamentals of each type of methodology are discussed and relevant examples from recent reports are examined, to provide the reader with an overview of the state-of-the-art on the latest advancements on the analysis of intact cells and viruses with microscale electrokinetic techniques. The concluding remarks discuss the potential applications and future directions.
Collapse
Affiliation(s)
- Alaleh Vaghef-Koodehi
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, Rochester, NY, USA
| | - Blanca H Lapizco-Encinas
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, Rochester, NY, USA
| |
Collapse
|
17
|
Evaluation of a composite nanomaterial consist of gold nanoparticles and graphene-carbon nitride as capillary electrochromatography stationary phase for enantioseparation. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106613] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Masci M, Zoani C, Nevigato T, Turrini A, Jasionowska R, Caproni R, Ratini P. Authenticity assessment of dairy products by capillary electrophoresis. Electrophoresis 2021; 43:340-354. [PMID: 34407231 DOI: 10.1002/elps.202100154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/13/2022]
Abstract
Milk and derivatives are a very important part in the diet of the world population. Products from goat, buffalo, and sheep species have a greater economic value than the cow ones, therefore, authenticity frauds by improperly adding cow's milk occur frequently: dairy products are among the seven more attractive foods for adulteration. Milk from each of the above-cited animal species has its own definite profile of whey proteins (variants of α-lactalbumin and β-lactoglobulin) and its definite profile of caseins (variants of αS1 -, αS2 -, β-, and κ-casein). Such proteins can be usefully exploited as markers of authenticity by using capillary electrophoresis which is the technique of choice for the analysis of proteins. Due to the multiple adjustable parameters that are unknown to other analytical techniques, capillary electrophoresis is able to detect frauds in milk mixtures and cheese with little use of solvents, fast analysis time, and ease of operation. This makes it attractive and competitive for routine checks that are very important to fight the adulteration market. Advantages and limitations are discussed.
Collapse
Affiliation(s)
- Maurizio Masci
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA), Rome, Italy
| | - Claudia Zoani
- Department for Sustainability-Biotechnology and Agroindustry Division (ENEA-SSPT-BIOAG), Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Teresina Nevigato
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA), Rome, Italy
| | - Aida Turrini
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA), Rome, Italy
| | | | - Roberto Caproni
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA), Rome, Italy
| | - Patrizia Ratini
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
19
|
A Tapered Capillary-Based Contactless Atmospheric Pressure Ionization Mass Spectrometry for On-Line Preconcentration and Separation of Small Organics. SEPARATIONS 2021. [DOI: 10.3390/separations8080111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Capillary electrophoresis (CE) is an effective technique for the separation of different analytes. Moreover, online preconcentration of trace analytes in the capillary for CE analysis has been demonstrated. CE and capillary electrochromatography (CEC) are suitable for the separation of analytes with similar polarities. Given that CE and CEC are only used to separate small-volume samples, sensitive mass spectrometry (MS) is a suitable detection tool for CE and CEC. Contactless atmospheric pressure ionization (C-API) is a continuous flow ion source that only uses a short capillary as the ionization emitter operated at atmospheric pressure for MS analysis. In this study, we demonstrated the feasibility of hyphenating CE/CEC with C-API-MS by using a short and tapered capillary as the interface. The short capillary (a few centimeters) can function as the separation/preconcentration tube and the ionization emitter. This hyphenated technique can be used to analyze small organics within a few minutes. The suitability of using the hyphenated technique for online preconcentration, separation, and quantitative analysis for small organics is demonstrated in this study.
Collapse
|
20
|
Characterization of linearly coupled capillaries with various inner diameters in the context of capillary electrophoresis. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-021-02783-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractAs a result of continuous instrumental progress, capillary electrophoresis has become an established separation technique. However, the choice of the suitable capillary inner diameter is sometimes difficult due to different instrumental requirements concerning injection, separation, or detection. To overcome this problem, we assembled two capillaries with different inner diameters, meaning that the inner diameter of the capillary at the injection side was different from that at the detection side. Since this was a rather uncommon approach, we focused on the associated effects in this proof-of-concept study. For the experiments, a non-aqueous model system was used, consisting of an acetonitrile-based background electrolyte and the two ferrocene derivates, ferrocenemethanol and decamethylferrocene. Using capillary flow injection analysis hyphenated to capacitively coupled contactless conductivity detection, it could be shown that fragmented capillaries of the same inner diameter had slightly lower volume flow rates than non-fragmented capillaries. With non-aqueous capillary electrophoresis hyphenated to UV detection, it was found that the coupling of capillaries with different inner diameter had a much stronger effect on the capillary electrophoresis flow than combinations with the same inner diameter. Additionally, if the inner diameter of the second capillary was larger than the inner diameter of the first capillary, a higher theoretical plate number and an increased sensitivity were found. Furthermore, it was found that there was no significant peak tailing introduced by the coupling.
Graphic abstract
Collapse
|
21
|
Marcondes MM, Della Betta F, Seraglio SKT, Schulz M, Nehring P, Gonzaga LV, Fett R, Costa ACO. Determination of 5-hydroxymethylfurfural in tomato-based products by MEKC method. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103927] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
22
|
Evaluation of Poly(glycidyl methacrylate)-Coated Column for Enantioseparation with Azithromycin Lactobionate and Clindamycin Phosphate as Chiral Selectors in Capillary Electrophoresis. Chromatographia 2021. [DOI: 10.1007/s10337-021-04029-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Xiao J, Lu Q, Cong H, Shen Y, Yu B. Microporous poly(glycidyl methacrylate- co-ethylene glycol dimethyl acrylate) microspheres: synthesis, functionalization and applications. Polym Chem 2021. [DOI: 10.1039/d1py00834j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
As a new kind of functional material, micron-sized porous polymer microspheres are a hot research topic in the field of polymer materials.
Collapse
Affiliation(s)
- Jingyuan Xiao
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Qingbiao Lu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| |
Collapse
|
24
|
Xu X. Capillary Electrophoresis-Mass Spectrometry for Cancer Metabolomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1280:189-200. [PMID: 33791983 DOI: 10.1007/978-3-030-51652-9_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
This chapter presents the fundamentals, instrumentation, methodology, and applications of capillary electrophoresis-mass spectrometry (CE-MS) for cancer metabolomics. CE offers fast and high-resolution separation of charged analytes from a very small amount of sample. When coupled to MS, it represents a powerful analytical technique enabling identification and quantification of metabolites in biological samples. Several issues need to be addressed when combining CE with MS, especially the interface between CE and MS and the selection of a proper separation methodology, sample pretreatment, and capillary coatings. We will discuss these aspects of CE-MS and detail representative applications for cancer metabolomic analysis.
Collapse
Affiliation(s)
- Xiangdong Xu
- School of Public Health and Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
25
|
Liu S, Li Z, Yu B, Wang S, Shen Y, Cong H. Recent advances on protein separation and purification methods. Adv Colloid Interface Sci 2020; 284:102254. [PMID: 32942182 DOI: 10.1016/j.cis.2020.102254] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/01/2020] [Accepted: 09/01/2020] [Indexed: 12/21/2022]
Abstract
Protein, as the material basis of vita, is the crucial undertaker of life activities, which constitutes the framework and main substance of human tissues and organs, and takes part in various forms of life activities in organisms. Separating proteins from biomaterials and studying their structures and functions are of great significance for understanding the law of life activities and clarifying the essence of life phenomena. Therefore, scientists have proposed the new concept of proteomics, in which protein separation technology plays a momentous role. It has been diffusely used in the food industry, agricultural biological research, drug development, disease mechanism, plant stress mechanism, and marine environment research. In this paper, combined with the recent research situation, the progress of protein separation technology was reviewed from the aspects of extraction, precipitation, membrane separation, chromatography, electrophoresis, molecular imprinting, microfluidic chip and so on.
Collapse
|
26
|
Advantages and Pitfalls of Capillary Electrophoresis of Pharmaceutical Compounds and Their Enantiomers in Complex Samples: Comparison of Hydrodynamically Opened and Closed Systems. Int J Mol Sci 2020; 21:ijms21186852. [PMID: 32961980 PMCID: PMC7555747 DOI: 10.3390/ijms21186852] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 12/17/2022] Open
Abstract
Several research disciplines require fast, reliable and highly automated determination of pharmaceutically active compounds and their enantiomers in complex biological matrices. To address some of the challenges of Capillary Electrophoresis (CE), such as low concentration sensitivity and performance degradation linked to the adsorption and interference of matrix components, CE in a hydrodynamically closed system was evaluated using the model compounds Pindolol and Propranolol. Some established validation parameters such as repeatability of injection efficiency, resolution and sensitivity were used to assess its performance, and it was found to be broadly identical to that of hydrodynamically opened systems. While some reduction in separation efficiency was observed, this was mainly due to dispersion caused by injection and it had no impact on the ability to resolve enantiomers of model compounds even when spiked into complex biological matrix such as blood serum. An approximately 18- to 23-fold increase in concentration sensitivity due to the employment of wide bore capillaries was observed. This brings the sensitivity of CE to a level similar to that of liquid chromatography techniques. In addition to this benefit and unlike in hydrodynamically opened systems, suppression of electroosmotic flow, which is essential for hydrodynamically closed systems practically eliminates the matrix effects that are linked to protein adsorption.
Collapse
|
27
|
Ragab MAA, El-Kimary EI. Recent Advances and Applications of Microfluidic Capillary Electrophoresis: A Comprehensive Review (2017-Mid 2019). Crit Rev Anal Chem 2020; 51:709-741. [PMID: 32447968 DOI: 10.1080/10408347.2020.1765729] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Microfluidic capillary electrophoresis (MCE) is the novel technique resulted from the CE mininaturization as planar separation and analysis device. This review presents and discusses various application fields of this advanced technology published in the period 2017 till mid-2019 in eight different sections including clinical, biological, single cell analysis, environmental, pharmaceuticals, food analysis, forensic and ion analysis. The need for miniaturization of CE and the consequence advantages achieved are also discussed including high-throughput, miniaturized detection, effective separation, portability and the need for micro- or even nano-volume of samples. Comprehensive tables for the MCE applications in the different studied fields are provided. Also, figure comparing the number of the published papers applying MCE in the eight discussed fields within the studied period is included. The future investigation should put into consideration the possibility of replacing conventional CE with the MCE after proper validation. Suitable validation parameters with their suitable accepted ranges should be tailored for analysis methods utilizing such unique technique (MCE).
Collapse
Affiliation(s)
- Marwa A A Ragab
- Faculty of Pharmacy, Department of Pharmaceutical Analytical Chemistry, Alexandria University, El-Messalah, Alexandria, Egypt
| | - Eman I El-Kimary
- Faculty of Pharmacy, Department of Pharmaceutical Analytical Chemistry, Alexandria University, El-Messalah, Alexandria, Egypt
| |
Collapse
|
28
|
Liu T, Wang S, Ma H, Jin H, Li J, Yang X, Gao X, Chang Y. Microwave-Assisted Extraction Combined with In-Capillary [Fe(ferrozine) 3] 2+-CE-DAD to Screen Active Components with the Ability to Chelate Ferrous Ions from Flos Sophorae Immaturus (Flos Sophorae). Molecules 2019; 24:molecules24173052. [PMID: 31443451 PMCID: PMC6749251 DOI: 10.3390/molecules24173052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 11/16/2022] Open
Abstract
An efficient microwave-assisted extraction (MAE) combined with in-capillary [Fe(ferrozine)3]2+-capillary electrophoresis-Diode Array Detector (in-capillary [Fe(ferrozine)3]2+-CE-DAD) was developed to screen active components with the ability to chelate ferrous ions and determine the total antioxidant activity. The MAE conditions, including methanol concentration, extraction power, extraction time, and the ratio of material to liquid, were optimized by an L9(34) orthogonal experiment. Background buffer, voltage, and cartridge temperature that affect the separation of six compounds were optimized. It was found that rutin and quercetin were the main components chelating ferrous ions in Flos Sophorae Immaturus (Flos Sophorae) by the in-capillary [Fe(ferrozine)3]2+-CE-DAD. The recoveries were ranged from 95.2% to 104%. It was concluded that the MAE combined with in-capillary [Fe(ferrozine)3]2+-CE-DAD method was a simple, reliable, and efficient tool for screening active components from the complex traditional Chinese medicine samples and evaluating their ability to chelate ferrous ions.
Collapse
Affiliation(s)
- Tao Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Shanshan Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Huifen Ma
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Hua Jin
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- Chinese Medical College, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Jin Li
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Xuejing Yang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- School of Pharmacy, Harbin University of Commerce, Harbin 150076, China
| | - Xiumei Gao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Yanxu Chang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| |
Collapse
|
29
|
Simultaneous detection of Tripterygium wilfordii sesquiterpene alkaloids by microemulsion electrokinetic chromatography coupled with large volume sample stacking. Microchem J 2019. [DOI: 10.1016/j.microc.2019.04.073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
30
|
Kubáň P, Dvořák M, Kubáň P. Capillary electrophoresis of small ions and molecules in less conventional human body fluid samples: A review. Anal Chim Acta 2019; 1075:1-26. [PMID: 31196414 DOI: 10.1016/j.aca.2019.05.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 01/05/2023]
Abstract
In recent years, advances in sensitive analytical techniques have encouraged the analysis of various compounds in biological fluids. While blood serum, blood plasma and urine still remain the golden standards in clinical, toxicological and forensic science, analyses of other body fluids, such as breast milk, exhaled breath condensate, sweat, saliva, amniotic fluid, cerebrospinal fluid, or capillary blood in form of dried blood spots are becoming more popular. This review article focuses on capillary electrophoresis and microchip electrophoresis of small ions and molecules (e.g. inorganic cations/anions, basic/acidic drugs, small acids/bases, amino acids, peptides and other low molecular weight analytes) in various less conventional human body fluids and hopes to stimulate further interest in the field.
Collapse
Affiliation(s)
- Petr Kubáň
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveří 97, CZ-60200, Brno, Czech Republic
| | - Miloš Dvořák
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveří 97, CZ-60200, Brno, Czech Republic
| | - Pavel Kubáň
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveří 97, CZ-60200, Brno, Czech Republic.
| |
Collapse
|
31
|
Open-tubular capillary electrochromatography with β-cyclodextrin-functionalized magnetic nanoparticles as stationary phase for enantioseparation of dansylated amino acids. Mikrochim Acta 2019; 186:244. [PMID: 30877441 DOI: 10.1007/s00604-019-3318-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 02/13/2019] [Indexed: 12/11/2022]
Abstract
Magnetic nanoparticles (MNPs) modified with β-cyclodextrin and mono-6-deoxy-6-(1-methylimidazolium)-β-cyclodextrin tosylate (an ionic liquid), which called MNP-β-CD and MNP-β-CD-IL, were coated into the capillary inner wall. Compared to an uncoated capillary, the new systems show good reproducibility and durability. The systems based on the use of MNP-β-CD or MNP-β-CD-IL as stationary phases were established for enantioseparation of Dns-modified amino acids. Improved resolutions were obtained for both CEC systems. Primary parameters such as running buffer pH value and applied voltage were systematically optimized in order to obtain optimal enantioseparations. Under the optimized conditions, the capillaries exhibited excellent chiral recognition ability for six Dns-amino acids (the DL-forms of alanine, leucine, lsoleucine, valine, methionine, glutamic acid) and provided a promising way for the preparation of chiral column. Graphical Abstract Schematic presentation of the open-tubular capillary electrochromatography systems with MNP-β-CD and MNP-β-CD-IL as stationary phases for enantioseparation of dansylated amino acids.
Collapse
|
32
|
Sun X, Du Y, Zhao S, Huang Z, Feng Z. Enantioseparation of propranolol, amlodipine and metoprolol by electrochromatography using an open tubular capillary modified with β-cyclodextrin and poly(glycidyl methacrylate) nanoparticles. Mikrochim Acta 2019; 186:128. [PMID: 30694392 DOI: 10.1007/s00604-018-3163-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/09/2018] [Indexed: 12/14/2022]
Abstract
The inner wall of a capillary was coated with glycidyl methacrylate (GMA) to form tentacle-type coating, and poly(glycidyl methacrylate) nanoparticles (PGMA NPs) were then immobilized on the film. Ethanediamine-β-cyclodextrin as chiral selector was covalently bonded into the PGMA NPs through the ring-open reaction. The materials were characterized by SEM, TEM and FT-IR. The modified column was applied to the enantioseparation of the racemates of propranolol, amlodipine and metoprolol. Compared to a capillary with a single layer of CD-PGMA (without GMA coating) and to a CD-GMA system (without PGMA nanoparticles), the performance of the capillary is strongly improved. The effects of buffer pH value and applied voltage were optimized. Best resolutions (propranolol: 1.27, metoprolol: 1.01 and amlodipine: 2.93) were obtained when using the PGMA-coated capillary system. The run-to-run, day-to-day and column-to-column reproducibility were tested and found to be highly attractive. The new stationary phase is likely to have a large potential and scope in that it may also be applied to chiral separations of other enantiomers, such as amino acids and biogenic amines. Graphical abstract Schematic presentation of the preparation of a capillary column with glycidyl methacrylate (GMA) coating which was then immobilized with poly(glycidyl methacrylate) nanoparticles and ethanediamine-β-cyclodextrin. This novel open tubular column was applied to construct capillary electrochromatography system for separation of basic racemic drugs.
Collapse
Affiliation(s)
- Xiaodong Sun
- Department of Analytical Chemistry, China Pharmaceutical University, No.24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Yingxiang Du
- Department of Analytical Chemistry, China Pharmaceutical University, No.24 Tongjiaxiang, Nanjing, 210009, People's Republic of China. .,Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing, 210009, People's Republic of China. .,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| | - Shiyuan Zhao
- Department of Analytical Chemistry, China Pharmaceutical University, No.24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Zhifeng Huang
- Department of Analytical Chemistry, China Pharmaceutical University, No.24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Zijie Feng
- Department of Analytical Chemistry, China Pharmaceutical University, No.24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| |
Collapse
|
33
|
Zhang H, Yang FQ. Applications of polydopamine modifications in capillary electrophoretic analysis. J Sep Sci 2019; 42:342-359. [PMID: 30133166 DOI: 10.1002/jssc.201800755] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/07/2018] [Accepted: 08/08/2018] [Indexed: 12/26/2022]
Abstract
Mussel-inspired polydopamine has been widely used in capillary electrophoresis as a facile and universal tool for the surface modification of capillary, mainly due to its versatility, stability, strong adhesiveness, and biocompatibility properties. In this review, the recent development of mussel-inspired surface chemistry with rapid deposition of polydopamine was introduced, and the recent applications of polydopamine in capillary electrophoresis (2011-July 2018) were summarized into four main aspects, namely, sample pretreatments, functional coatings, codeposition coatings, and intermediate coatings. Further study may be focused on clarifying the mechanisms of polydopamine formation and polydopamine-assisted codeposition, and expanding coatings methods to plant polyphenols.
Collapse
Affiliation(s)
- Hao Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, P. R. China
| | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, P. R. China
| |
Collapse
|
34
|
Klein-Júnior LC, Mangelings D, Vander Heyden Y. Experimental Design Methodologies for the Optimization of Chiral Separations: An Overview. Methods Mol Biol 2019; 1985:453-478. [PMID: 31069752 DOI: 10.1007/978-1-4939-9438-0_27] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this chapter, the application of design of experiments (DoE) for chiral separation optimization using supercritical fluid chromatography (SFC), liquid chromatography (LC), capillary electrophoresis (CE), and capillary electrochromatography (CEC) methods is reviewed. Both screening and optimization steps are covered, including a discussion of each aspect, such as factor-, level-, and response selection. Different designs are also presented, highlighting their applications.
Collapse
Affiliation(s)
- Luiz Carlos Klein-Júnior
- Pharmaceutical Chemistry Research Group, Universidade do Vale do Itajaí (UNIVALI), Itajaí, SC, Brazil
| | - Debby Mangelings
- Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Yvan Vander Heyden
- Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling, Vrije Universiteit Brussel (VUB), Brussels, Belgium.
| |
Collapse
|
35
|
Štěpánová S, Kašička V. Recent developments and applications of capillary and microchip electrophoresis in proteomics and peptidomics (2015-mid 2018). J Sep Sci 2018; 42:398-414. [DOI: 10.1002/jssc.201801090] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Sille Štěpánová
- Institute of Organic Chemistry and Biochemistry; The Czech Academy of Sciences; Prague 6 Czechia
| | - Václav Kašička
- Institute of Organic Chemistry and Biochemistry; The Czech Academy of Sciences; Prague 6 Czechia
| |
Collapse
|
36
|
Cui X, Xu S, Jin C, Ji Y. Recent advances in the preparation and application of mussel-inspired polydopamine-coated capillary tubes in microextraction and miniaturized chromatography systems. Anal Chim Acta 2018; 1033:35-48. [DOI: 10.1016/j.aca.2018.04.070] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 04/26/2018] [Accepted: 04/28/2018] [Indexed: 12/13/2022]
|
37
|
UCHIDA S, KITAGAWA S, IIGUNI Y, OHTANI H. Electrophoretic Behavior in Nonaqueous Capillary Zone Electrophoresis Using Tetrahydrofuran-Based Ternary Nonaqueous Solutions. CHROMATOGRAPHY 2018. [DOI: 10.15583/jpchrom.2018.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Soichiro UCHIDA
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology
| | - Shinya KITAGAWA
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology
| | - Yoshinori IIGUNI
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology
| | - Hajime OHTANI
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology
| |
Collapse
|
38
|
An JY, Azizov S, Kumar AP, Lee YI. Quantitative Analysis of Artificial Sweeteners by Capillary Electrophoresis with a Dual-Capillary Design of Molecularly Imprinted Solid-Phase Extractor. B KOREAN CHEM SOC 2018. [DOI: 10.1002/bkcs.11599] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ji-Yong An
- Department of Chemistry; Changwon National University; Changwon 641-773 Republic of Korea
| | - Shavkatjon Azizov
- Department of Chemistry; Changwon National University; Changwon 641-773 Republic of Korea
| | - Avvaru Praveen Kumar
- Department of Chemistry; Changwon National University; Changwon 641-773 Republic of Korea
| | - Yong-Ill Lee
- Department of Chemistry; Changwon National University; Changwon 641-773 Republic of Korea
| |
Collapse
|
39
|
Ferreira Santos MS, Cordeiro TG, Noell AC, Garcia CD, Mora MF. Analysis of inorganic cations and amino acids in high salinity samples by capillary electrophoresis and conductivity detection: Implications for in‐situ exploration of ocean worlds. Electrophoresis 2018; 39:2890-2897. [DOI: 10.1002/elps.201800266] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 12/12/2022]
Affiliation(s)
| | - Thiago Gomes Cordeiro
- Department of ChemistryClemson University Clemson SC USA
- Departamento de Química Fundamental, Instituto de QuímicaUniversidade de São Paulo Sao Paulo Brazil
| | - Aaron C. Noell
- Jet Propulsion LaboratoryCalifornia Institute of Technology Pasadena CA USA
| | | | - Maria F. Mora
- Jet Propulsion LaboratoryCalifornia Institute of Technology Pasadena CA USA
| |
Collapse
|
40
|
Fabrication of a Magnet-Assembled Alignment Device for the Amperometric Detection of Carbohydrates in Combination with CE. Chromatographia 2018. [DOI: 10.1007/s10337-018-3589-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
41
|
Kochmann S, Krylov SN. Quantitative Characterization of Molecular-Stream Separation. Anal Chem 2018; 90:9504-9509. [DOI: 10.1021/acs.analchem.8b02186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Sven Kochmann
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| | - Sergey N. Krylov
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
42
|
MacLennan MS, Peru KM, Swyngedouw C, Fleming I, Chen DDY, Headley JV. Characterization of Athabasca lean oil sands and mixed surficial materials: Comparison of capillary electrophoresis/low-resolution mass spectrometry and high-resolution mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2018; 32:695-702. [PMID: 29486520 DOI: 10.1002/rcm.8093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 02/15/2018] [Accepted: 02/17/2018] [Indexed: 06/08/2023]
Abstract
RATIONALE Oil sands mining in Alberta, Canada, requires removal and stockpiling of considerable volumes of near-surface overburden material. This overburden includes lean oil sands (LOS) which cannot be processed economically but contain sparingly soluble petroleum hydrocarbons and naphthenic acids, which can leach into environmental waters. In order to measure and track the leaching of dissolved constituents and distinguish industrially derived organics from naturally occurring organics in local waters, practical methods were developed for characterizing multiple sources of contaminated water leakage. METHODS Capillary electrophoresis/positive-ion electrospray ionization low-resolution time-of-flight mass spectrometry (CE/LRMS), high-resolution negative-ion electrospray ionization Orbitrap mass spectrometry (HRMS) and conventional gas chromatography/flame ionization detection (GC/FID) were used to characterize porewater samples collected from within Athabasca LOS and mixed surficial materials. GC/FID was used to measure total petroleum hydrocarbon and HRMS was used to measure total naphthenic acid fraction components (NAFCs). HRMS and CE/LRMS were used to characterize samples according to source. RESULTS The amounts of total petroleum hydrocarbon in each sample as measured by GC/FID ranged from 0.1 to 15.1 mg/L while the amounts of NAFCs as measured by HRMS ranged from 5.3 to 82.3 mg/L. Factors analysis (FA) on HRMS data visually demonstrated clustering according to sample source and was correlated to molecular formula. LRMS coupled to capillary electrophoresis separation (CE/LRMS) provides important information on NAFC isomers by adding analyte migration time data to m/z and peak intensity. CONCLUSIONS Differences in measured amounts of total petroleum hydrocarbons by GC/FID and NAFCs by HRMS indicate that the two methods provide complementary information about the nature of dissolved organic species in a soil or water leachate samples. NAFC molecule class Ox Sy is a possible tracer for LOS seepage. CE/LRMS provides complementary information and is a feasible and practical option for source evaluation of NAFCs in water.
Collapse
Affiliation(s)
- Matthew S MacLennan
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | - Kerry M Peru
- Water Science Technology Directorate, Environment and Climate Change Canada, 11 Innovation Boulevard, Saskatoon, SK, S7N 3H5, Canada
| | | | - Ian Fleming
- Department of Civil, Geological and Environmental Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, S7N 5A9, Canada
| | - David D Y Chen
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | - John V Headley
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
- Water Science Technology Directorate, Environment and Climate Change Canada, 11 Innovation Boulevard, Saskatoon, SK, S7N 3H5, Canada
- Department of Civil, Geological and Environmental Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, S7N 5A9, Canada
| |
Collapse
|
43
|
Polniak DV, Goodrich E, Hill N, Lapizco-Encinas BH. Separating large microscale particles by exploiting charge differences with dielectrophoresis. J Chromatogr A 2018; 1545:84-92. [DOI: 10.1016/j.chroma.2018.02.051] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 02/18/2018] [Accepted: 02/24/2018] [Indexed: 10/18/2022]
|
44
|
In-line coupling of supported liquid membrane extraction to capillary electrophoresis for simultaneous analysis of basic and acidic drugs in urine. J Chromatogr A 2017; 1519:137-144. [DOI: 10.1016/j.chroma.2017.08.084] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/28/2017] [Accepted: 08/31/2017] [Indexed: 12/11/2022]
|