1
|
Zafar A, Takeda C, Manzoor A, Tanaka D, Kobayashi M, Wadayama Y, Nakane D, Majeed A, Iqbal MA, Akitsu T. Towards Industrially Important Applications of Enhanced Organic Reactions by Microfluidic Systems. Molecules 2024; 29:398. [PMID: 38257311 PMCID: PMC10820862 DOI: 10.3390/molecules29020398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/01/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
This review presents a comprehensive evaluation for the manufacture of organic molecules via efficient microfluidic synthesis. Microfluidic systems provide considerably higher control over the growth, nucleation, and reaction conditions compared with traditional large-scale synthetic methods. Microfluidic synthesis has become a crucial technique for the quick, affordable, and efficient manufacture of organic and organometallic compounds with complicated characteristics and functions. Therefore, a unique, straightforward flow synthetic methodology can be developed to conduct organic syntheses and improve their efficiency.
Collapse
Affiliation(s)
- Ayesha Zafar
- Department of Chemistry, Faculty of Science, University of Agriculture, Faisalabad 38040, Pakistan
| | - China Takeda
- Department of Chemistry, Faculty of Science, Tokyo University of Science, Tokyo 162-8601, Japan
| | - Asif Manzoor
- Department of Chemistry, Faculty of Science, University of Agriculture, Faisalabad 38040, Pakistan
| | - Daiki Tanaka
- Research Organization for Nano & Life Innovation, Waseda University, Tokyo 169-8050, Japan
| | - Masashi Kobayashi
- Research Organization for Nano & Life Innovation, Waseda University, Tokyo 169-8050, Japan
| | - Yoshitora Wadayama
- Department of Chemistry, Faculty of Science, Tokyo University of Science, Tokyo 162-8601, Japan
| | - Daisuke Nakane
- Department of Chemistry, Faculty of Science, Tokyo University of Science, Tokyo 162-8601, Japan
| | - Adnan Majeed
- Department of Chemistry, Faculty of Science, University of Agriculture, Faisalabad 38040, Pakistan
| | - Muhammad Adnan Iqbal
- Department of Chemistry, Faculty of Science, University of Agriculture, Faisalabad 38040, Pakistan
| | - Takashiro Akitsu
- Department of Chemistry, Faculty of Science, Tokyo University of Science, Tokyo 162-8601, Japan
| |
Collapse
|
2
|
Kašička V. Recent developments in capillary and microchip electroseparations of peptides (2021-mid-2023). Electrophoresis 2024; 45:165-198. [PMID: 37670208 DOI: 10.1002/elps.202300152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/07/2023]
Abstract
This review article brings a comprehensive survey of developments and applications of high-performance capillary and microchip electromigration methods (zone electrophoresis in a free solution or in sieving media, isotachophoresis, isoelectric focusing, affinity electrophoresis, electrokinetic chromatography, and electrochromatography) for analysis, micropreparation, and physicochemical characterization of peptides in the period from 2021 up to ca. the middle of 2023. Progress in the study of electromigration properties of peptides and various aspects of their analysis, such as sample preparation, adsorption suppression, electroosmotic flow regulation, and detection, are presented. New developments in the particular capillary electromigration methods are demonstrated, and several types of their applications are reported. They cover qualitative and quantitative analysis of synthetic or isolated peptides and determination of peptides in complex biomatrices, peptide profiling of biofluids and tissues, and monitoring of chemical and enzymatic reactions and physicochemical changes of peptides. They include also amino acid and sequence analysis of peptides, peptide mapping of proteins, separation of stereoisomers of peptides, and their chiral analyses. In addition, micropreparative separations and physicochemical characterization of peptides and their interactions with other (bio)molecules by the above CE methods are described.
Collapse
Affiliation(s)
- Václav Kašička
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
3
|
Zhang J, Yuan S, Beng S, Luo W, Wang X, Wang L, Peng C. Recent Advances in Molecular Imprinting for Proteins on Magnetic Microspheres. Curr Protein Pept Sci 2024; 25:286-306. [PMID: 38178676 DOI: 10.2174/0113892037277894231208065403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 01/06/2024]
Abstract
The separation of proteins in biological samples plays an essential role in the development of disease detection, drug discovery, and biological analysis. Protein imprinted polymers (PIPs) serve as a tool to capture target proteins specifically and selectively from complex media for separation purposes. Whereas conventional molecularly imprinted polymer is time-consuming in terms of incubation studies and solvent removal, magnetic particles are introduced using their magnetic properties for sedimentation and separation, resulting in saving extraction and centrifugation steps. Magnetic protein imprinted polymers (MPIPs), which combine molecularly imprinting materials with magnetic properties, have emerged as a new area of research hotspot. This review provides an overview of MPIPs for proteins, including synthesis, preparation strategies, and applications. Moreover, it also looks forward to the future directions for research in this emerging field.
Collapse
Affiliation(s)
- Jing Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Shujie Yuan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Shujuan Beng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Wenhui Luo
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Xiaoqun Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Lei Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Can Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui, 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230012, China
- Institute of TCM Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, 230012, China
| |
Collapse
|
4
|
Mahani MA, Karimvand AN, Naserifar N. Optimized hybrid dielectrophoretic microchip for separation of bioparticles. J Sep Sci 2023; 46:e2300257. [PMID: 37480169 DOI: 10.1002/jssc.202300257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/23/2023]
Abstract
Point-of-care diagnostics requires a smart separation of particles and/or cells. In this work, the multiorifice fluid fractionation as a passive method and dielectrophoresis-based actuator as an active tool are combined to offer a new device for size-based particle separation. The main objective of the combination of these two well-established techniques is to improve the performance of the multiorifice fluid fractionation by taking advantage of dielectrophoresis-based actuator for separating particles. Initially, by using numerical simulations, the effect of using dielectrophoresis-based actuator in multiorifice fluid fractionation on the separation of particles was investigated, and the size of the device was optimized by 25% compared to a device without dielectrophoresis-based actuator. Also, adding dielectrophoresis-based actuator to multiorifice fluid fractionation can extend the range of flow rates needed for separation. In the absence of dielectrophoresis-based actuator, the separation took place only when the flow rate is 100 μL/min, in the presence of dielectrophoresis-based actuator (20 Vp-p), the separation happened in flow rates ranging from 70 to 120 μL/min.
Collapse
Affiliation(s)
- Moheb Amir Mahani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | | | - Naser Naserifar
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| |
Collapse
|
5
|
Stastna M, Šlais K. Preparative separation of immunoglobulins from bovine colostrum by continuous divergent-flow electrophoresis. J Sep Sci 2023; 46:e2200679. [PMID: 36271766 DOI: 10.1002/jssc.202200679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 01/11/2023]
Abstract
Immunoglobulins in bovine colostrum were separated and fractionated from other proteins using the method and instrumentation developed in our laboratory. The proposed separation was based on bidirectional isotachophoresis/moving boundary electrophoresis with electrofocusing of the analytes in a pH gradient from 3.9 to 10.1. The preparative instrumentation included the trapezoidal non-woven fabric that served as separation space with divergent continuous flow. The defatted and casein precipitate-free colostrum supernatant was loaded directly into the instrument without any additional colostrum pre-preparation. Immunoglobulin G was fractionated from other immune proteins such as bovine serum albumin, β-lactoglobulin, and α-lactalbumin, and was continuously collected in separated fractions over 3 h. The fractions were further processed, and isolated immunoglobulin G in the liquid fractions was confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and by re-focusing in gel isoelectric focusing. Separated immunoglobulin G was detected in seven fractions by sodium dodecyl sulfate-polyacrylamide gel electrophoresis with a gradually decreased concentration in the fractions. Re-focusing of the proteins in the fractions by gel isoelectric focusing revealed multiple separated zones of immunoglobulin G with the isoelectric point values covering the range from 5.4 to 7.2. Each fraction contained distinct zones with gradually increased isoelectric point values and decreased concentrations from fraction to fraction.
Collapse
Affiliation(s)
- Miroslava Stastna
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic
| | - Karel Šlais
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
6
|
Malá Z, Gebauer P. Analytical isotachophoresis 1967–2022: From standard analytical technique to universal on-line concentration tool. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Špaček J, Benner SA. Agnostic Life Finder (ALF) for Large-Scale Screening of Martian Life During In Situ Refueling. ASTROBIOLOGY 2022; 22:1255-1263. [PMID: 35796703 DOI: 10.1089/ast.2021.0070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Before the first humans depart for Mars in the next decade, hundreds of tons of martian water-ice must be harvested to produce propellant for the return vehicle, a process known as in situ resource utilization (ISRU). We describe here an instrument, the Agnostic Life Finder (ALF), that is an inexpensive life-detection add-on to ISRU. ALF exploits a well-supported view that informational genetic biopolymers in life in water must have two structural features: (1) Informational biopolymers must carry a repeating charge; they must be polyelectrolytes. (2) Their building blocks must fit into an aperiodic crystal structure; the building blocks must be size-shape regular. ALF exploits the first structural feature to extract polyelectrolytes from ∼10 cubic meters of mined martian water by applying a voltage gradient perpendicularly to the water's flow. This gradient diverts polyelectrolytes from the flow toward their respective electrodes (polyanions to the anode, polycations to the cathode), where they are captured in cartridges before they encounter the electrodes. There, they can later be released to analyze their building blocks, for example, by mass spectrometry or nanopore. Upstream, martian cells holding martian informational polyelectrolytes are disrupted by ultrasound. To manage the (unknown) conductivity of the water due to the presence of salts, the mined water is preconditioned by electrodialysis using porous membranes. ALF uses only resources and technology that must already be available for ISRU. Thus, life detection is easily and inexpensively integrated into SpaceX or NASA ISRU missions.
Collapse
Affiliation(s)
- Jan Špaček
- Firebird Biomolecular Sciences, LLC, Alachua, Florida, USA
| | | |
Collapse
|
8
|
Sohail A, Jiang X, Wahid A, Wang H, Cao C, Xiao H. Free-flow zone electrophoresis facilitated proteomics analysis of heterogeneous subpopulations in H1299 lung cancer cells. Anal Chim Acta 2022; 1227:340306. [DOI: 10.1016/j.aca.2022.340306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/30/2022] [Accepted: 08/21/2022] [Indexed: 11/01/2022]
|
9
|
Liu Y, Huang Y, Wu M, Kong S, Cao W, Li S, Yan G, Liu B, Yang P, Zhang Q, Qiao L, Shen H. Microfluidic free‐flow paper electrochromatography for continuous separation of glycans. ChemElectroChem 2022. [DOI: 10.1002/celc.202200106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yingchao Liu
- Fudan University Institutes of Biomedical Sciences CHINA
| | - Yuanyu Huang
- Fudan University Institutes of Biomedical Sciences CHINA
| | - Mengxi Wu
- Fudan University Institutes of Biomedical Sciences CHINA
| | - Siyuan Kong
- Fudan University Institutes of Biomedical Sciences CHINA
| | - Weiqian Cao
- Fudan University Institutes of Biomedical Sciences CHINA
| | - Shunxiang Li
- Fudan University Institutes of Biomedical Sciences CHINA
| | - Guoqun Yan
- Fudan University Institutes of Biomedical Sciences CHINA
| | | | - Pengyuan Yang
- Fudan University Institutes of Biomedical Sciences CHINA
| | - Quanqing Zhang
- University of California Riverside Chemistry UNITED STATES
| | - Liang Qiao
- Fudan University Chemistry Songhu Road 2005 200438 Shanghai CHINA
| | - Huali Shen
- Fudan University Institutes of Biomedical Sciences CHINA
| |
Collapse
|
10
|
Ramos Y, Almeida A, Carpio J, Rodríguez‐Ulloa A, Perera Y, González LJ, Wiśniewski JR, Besada V. Gel electrophoresis/electroelution sorting fractionator combined with filter aided sample preparation for deep proteomic analysis. J Sep Sci 2022; 45:1784-1796. [DOI: 10.1002/jssc.202100992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Yassel Ramos
- Proteomics Group System Biology Department Center for Genetic Engineering and Biotechnology Havana Cuba
| | - Alexis Almeida
- Proteomics Group System Biology Department Center for Genetic Engineering and Biotechnology Havana Cuba
| | - Jenis Carpio
- Proteomics Group System Biology Department Center for Genetic Engineering and Biotechnology Havana Cuba
| | - Arielis Rodríguez‐Ulloa
- Proteomics Group System Biology Department Center for Genetic Engineering and Biotechnology Havana Cuba
| | - Yasser Perera
- China‐Cuba Biotechnology Joint Innovation Center (CCBJIC) Yongzhou Zhong Gu Biotechnology Co., Ltd Hunan Province China
- Molecular Oncology Group Pharmacology Department, Center for Genetic Engineering and Biotechnology Havana Cuba
| | - Luis J. González
- Proteomics Group System Biology Department Center for Genetic Engineering and Biotechnology Havana Cuba
| | - Jacek R. Wiśniewski
- Biochemical Proteomics Group Department of Proteomics and Signal Transduction Max‐Planck‐Institute of Biochemistry Martinsried Germany
| | - Vladimir Besada
- Proteomics Group System Biology Department Center for Genetic Engineering and Biotechnology Havana Cuba
| |
Collapse
|
11
|
Zhang A, Xu J, Li X, Lin Z, Song Y, Li X, Wang Z, Cheng Y. High-Throughput Continuous-Flow Separation in a Micro Free-Flow Electrophoresis Glass Chip Based on Laser Microfabrication. SENSORS (BASEL, SWITZERLAND) 2022; 22:1124. [PMID: 35161869 PMCID: PMC8838507 DOI: 10.3390/s22031124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/20/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Micro free-flow electrophoresis (μFFE) provides a rapid and straightforward route for the high-performance online separation and purification of targeted liquid samples in a mild manner. However, the facile fabrication of a μFFE device with high throughput and high stability remains a challenge due to the technical barriers of electrode integration and structural design for the removal of bubbles for conventional methods. To address this, the design and fabrication of a high-throughput μFFE chip are proposed using laser-assisted chemical etching of glass followed by electrode integration and subsequent low-temperature bonding. The careful design of the height ratio of the separation chamber and electrode channels combined with a high flow rate of buffer solution allows the efficient removal of electrolysis-generated bubbles along the deep electrode channels during continuous-flow separation. The introduction of microchannel arrays further enhances the stability of on-chip high-throughput separation. As a proof-of-concept, high-performance purification of fluorescein sodium solution with a separation purity of ~97.9% at a voltage of 250 V from the mixture sample solution of fluorescein sodium and rhodamine 6G solution is demonstrated.
Collapse
Affiliation(s)
- Aodong Zhang
- Engineering Research Center for Nanophotonics and Advanced Instrument, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China; (A.Z.); (Z.W.); (Y.C.)
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China; (X.L.); (Z.L.); (Y.S.)
- XXL—The Extreme Optoelectromechanics Laboratory, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Jian Xu
- Engineering Research Center for Nanophotonics and Advanced Instrument, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China; (A.Z.); (Z.W.); (Y.C.)
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China; (X.L.); (Z.L.); (Y.S.)
- XXL—The Extreme Optoelectromechanics Laboratory, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Xiaolong Li
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China; (X.L.); (Z.L.); (Y.S.)
- XXL—The Extreme Optoelectromechanics Laboratory, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Zijie Lin
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China; (X.L.); (Z.L.); (Y.S.)
- XXL—The Extreme Optoelectromechanics Laboratory, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Yunpeng Song
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China; (X.L.); (Z.L.); (Y.S.)
- XXL—The Extreme Optoelectromechanics Laboratory, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Xin Li
- Engineering Research Center for Nanophotonics and Advanced Instrument, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China; (A.Z.); (Z.W.); (Y.C.)
| | - Zhenhua Wang
- Engineering Research Center for Nanophotonics and Advanced Instrument, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China; (A.Z.); (Z.W.); (Y.C.)
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China; (X.L.); (Z.L.); (Y.S.)
- XXL—The Extreme Optoelectromechanics Laboratory, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Ya Cheng
- Engineering Research Center for Nanophotonics and Advanced Instrument, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China; (A.Z.); (Z.W.); (Y.C.)
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China; (X.L.); (Z.L.); (Y.S.)
- XXL—The Extreme Optoelectromechanics Laboratory, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
- State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
| |
Collapse
|
12
|
Kašička V. Recent developments in capillary and microchip electroseparations of peptides (2019-mid 2021). Electrophoresis 2021; 43:82-108. [PMID: 34632606 DOI: 10.1002/elps.202100243] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 12/19/2022]
Abstract
The review provides a comprehensive overview of developments and applications of high performance capillary and microchip electroseparation methods (zone electrophoresis, isotachophoresis, isoelectric focusing, affinity electrophoresis, electrokinetic chromatography, and electrochromatography) for analysis, microscale isolation, and physicochemical characterization of peptides from 2019 up to approximately the middle of 2021. Advances in the investigation of electromigration properties of peptides and in the methodology of their analysis, such as sample preparation, sorption suppression, EOF control, and detection, are presented. New developments in the individual CE and CEC methods are demonstrated and several types of their applications are shown. They include qualitative and quantitative analysis, determination in complex biomatrices, monitoring of chemical and enzymatic reactions and physicochemical changes, amino acid, sequence, and chiral analyses, and peptide mapping of proteins. In addition, micropreparative separations and determination of significant physicochemical parameters of peptides by CE and CEC methods are described.
Collapse
Affiliation(s)
- Václav Kašička
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Prague 6, Czechia
| |
Collapse
|
13
|
Šolínová V, Sázelová P, Mášová A, Jiráček J, Kašička V. Application of Capillary and Free-Flow Zone Electrophoresis for Analysis and Purification of Antimicrobial β-Alanyl-Tyrosine from Hemolymph of Fleshfly Neobellieria bullata. Molecules 2021; 26:molecules26185636. [PMID: 34577107 PMCID: PMC8469924 DOI: 10.3390/molecules26185636] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 11/21/2022] Open
Abstract
The problem of a growing resistance of bacteria and other microorganisms to conventional antibiotics gave rise to a search for new potent antimicrobial agents. Insect antimicrobial peptides (AMPs) seem to be promising novel potential anti-infective therapeutics. The dipeptide β-alanyl-tyrosine (β-Ala-Tyr) is one of the endogenous insect toxins exhibiting antibacterial activity against both Gram-negative and Gram-positive bacteria. Prior to testing its other antimicrobial activities, it has to be prepared in a pure form. In this study, we have developed a capillary zone electrophoresis (CZE) method for analysis of β-Ala-Tyr isolated from the extract of the hemolymph of larvae of the fleshfly Neobellieria bullata by reversed-phase high-performance liquid chromatography (RP-HPLC). Based on our previously described correlation between CZE and free-flow zone electrophoresis (FFZE), analytical CZE separation of β-Ala-Tyr and its admixtures have been converted into preparative purification of β-Ala-Tyr by FFZE with preparative capacity of 45.5 mg per hour. The high purity degree of the β-Ala-Tyr obtained by FFZE fractionation was confirmed by its subsequent CZE analysis.
Collapse
|