1
|
Wang G, Moriyama N, Tottori S, Nishizawa M. Recent advances in iontophoresis-assisted microneedle devices for transdermal biosensing and drug delivery. Mater Today Bio 2025; 31:101504. [PMID: 39906204 PMCID: PMC11791360 DOI: 10.1016/j.mtbio.2025.101504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/05/2025] [Accepted: 01/18/2025] [Indexed: 02/06/2025] Open
Abstract
Integrating advanced manufacturing techniques and nanotechnology with cutting-edge materials has driven significant progress in global healthcare. Microneedles, recognized for their minimally invasive approach to transdermal sensing and drug delivery, achieve enhanced functionality when combined with iontophoresis. Iontophoresis-assisted microneedles have emerged as an innovative solution, enabling real-time biosensing and precise drug delivery within closed-loop systems. These integrated platforms represent a major advancement in personalized medicine, allowing dynamic therapeutic adjustments based on continuous feedback. This review highlights the latest developments in iontophoresis-assisted microneedles for transdermal biosensing, drug delivery, and closed-loop applications. It delves into the mechanisms of iontophoresis, assesses its advantages and limitations, and explores future directions for these transformative technologies.
Collapse
Affiliation(s)
- Gaobo Wang
- Department of Biomedical Engineering, School of Medical Engineering, Xinxiang Medical University, Xinxiang, 453003, China
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-1 Aramaki Aoba, Aoba-ku, Sendai, 980-8579, Japan
| | - Natsuho Moriyama
- Department of Biomedical Engineering, Graduate School of Biomedical Engineering, Tohoku University, 6-6-4 Aramaki Aoba, Aoba-ku, Sendai, 980-8579, Japan
| | - Soichiro Tottori
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-1 Aramaki Aoba, Aoba-ku, Sendai, 980-8579, Japan
| | - Matsuhiko Nishizawa
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-1 Aramaki Aoba, Aoba-ku, Sendai, 980-8579, Japan
- Department of Biomedical Engineering, Graduate School of Biomedical Engineering, Tohoku University, 6-6-4 Aramaki Aoba, Aoba-ku, Sendai, 980-8579, Japan
| |
Collapse
|
2
|
Xu J, Huang Y, Zhao Z, Wang D, Yang C, Zhang K. Recent Progress and Opportunities of Wearable Non-Invasive Epidermal Sensors for Skin Disease Diagnosis. Adv Healthc Mater 2025; 14:e2402891. [PMID: 39578343 DOI: 10.1002/adhm.202402891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/19/2024] [Indexed: 11/24/2024]
Abstract
With deteriorating environment and increased stress in modern life, skin diseases have become the fourth leading cause of nonfatal and chronic diseases. An early diagnosis might improve the chances of a successful treatment. Wearable epidermal sensors have been emerged as new non-invasive tools for clinical practice and research in dermatology, which can act as a complement to the otherwise mostly visual and tactile judgments. This review discusses the recent progress and opportunities of wearable epidermal sensors for skin disease diagnosis. The configuration, material choice, and fundamental platforms of wearable epidermal sensors are first summarized. Then, their emerging application in monitoring skin diseases is demonstrated by detecting skin hardness, skin hydration, and biomakers. With the advances highlighted here and the ongoing research efforts, the continuous breakthrough in wearable epidermal sensors and their attractive application in skin disease management is foreseeable in the future.
Collapse
Affiliation(s)
- Jin Xu
- Department of Dermatology, Air Force Medical Center, PLA, Beijing, 100142, P. R. China
| | - Ye Huang
- Department of Dermatology, Air Force Medical Center, PLA, Beijing, 100142, P. R. China
| | - Zhihui Zhao
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Duojia Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, P. R. China
| | - Chao Yang
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Kewei Zhang
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| |
Collapse
|
3
|
Zhang X, Wang Y, He X, Yang Y, Chen X, Li J. Advances in microneedle technology for biomedical detection. Biomater Sci 2024; 12:5134-5149. [PMID: 39225488 DOI: 10.1039/d4bm00794h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Microneedles have recently emerged as a groundbreaking technology in the field of biomedical detection. Notable for their small size and ability to penetrate the superficial layers of the skin, microneedles provide an innovative platform for localized and real-time detection. This review explores the integration of various detection methods with microneedle technology, focusing particularly on its applications in biomedical contexts. First, the common detection methods, such as colorimetric, electrochemical, spectrometric, and fluorescence methods, combined with microneedle technology, are summarized. Then we showcase exemplary uses of microneedle technology in biomedical detection, including the monitoring of blood glucose levels, evaluating infection statuses in skin wounds, facilitating point-of-care testing, and identifying biomarkers in the interstitial fluid of the skin. Microneedle-based detection, with its painless, minimally invasive, and biocompatible approach, holds significant promise for enhancing biological assays. Finally, the review concludes by assessing the future potential and challenges of microneedle detection technology, underscoring its transformative capacity to advance personalized medicine and revolutionize healthcare practices.
Collapse
Affiliation(s)
- Xinmei Zhang
- College of Medicine, Southwest Jiaotong University, Chengdu 610003, China.
| | - Yuemin Wang
- College of Medicine, Southwest Jiaotong University, Chengdu 610003, China.
| | - Xinyu He
- College of Medicine, Southwest Jiaotong University, Chengdu 610003, China.
| | - Yan Yang
- The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Xingyu Chen
- College of Medicine, Southwest Jiaotong University, Chengdu 610003, China.
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
4
|
Wang Z, Xiao M, Li Z, Wang X, Li F, Yang H, Chen Y, Zhu Z. Microneedle Patches-Integrated Transdermal Bioelectronics for Minimally Invasive Disease Theranostics. Adv Healthc Mater 2024; 13:e2303921. [PMID: 38341619 DOI: 10.1002/adhm.202303921] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Wearable epidermal electronics with non- or minimally-invasive characteristics can collect, transduce, communicate, and interact with accessible physicochemical health indicators on the skin. However, due to the stratum corneum layer, rich information about body health is buried under the skin stratum corneum layer, for example, in the skin interstitial fluid. Microneedle patches are typically designed with arrays of special microsized needles of length within 1000 µm. Such characteristics potentially enable the access and sample of biomolecules under the skin or give therapeutical treatment painlessly and transdermally. Integrating microneedle patches with various electronics allows highly efficient transdermal bioelectronics, showing their great promise for biomedical and healthcare applications. This comprehensive review summarizes and highlights the recent progress on integrated transdermal bioelectronics based on microneedle patches. The design criteria and state-of-the-art fabrication techniques for such devices are initially discussed. Next, devices with different functions, including but not limited to health monitoring, drug delivery, and therapeutical treatment, are highlighted in detail. Finally, key issues associated with current technologies and future opportunities are elaborated to sort out the state of recent research, point out potential bottlenecks, and provide future research directions.
Collapse
Affiliation(s)
- Zifeng Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Min Xiao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Zhanhong Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Xinghao Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Fangjie Li
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Huayuan Yang
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Zhigang Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
- Health Industry Innovation Center, Xin-Huangpu Joint Innovation Institute of Chinese Medicine, 81 Xiangxue Middle Avenue, Huangpu District, Guangzhou, Guangdong Province, 510799, China
| |
Collapse
|
5
|
Srikrishnarka P, Haapasalo J, Hinestroza JP, Sun Z, Nonappa. Wearable Sensors for Physiological Condition and Activity Monitoring. SMALL SCIENCE 2024; 4:2300358. [PMID: 40212111 PMCID: PMC11935081 DOI: 10.1002/smsc.202300358] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/10/2024] [Indexed: 04/13/2025] Open
Abstract
Rapid technological advancements have transformed the healthcare sector from traditional diagnosis and treatment to personalized health management. Biofluids such as teardrops, sweat, interstitial fluids, and exhaled breath condensate offer a rich source of metabolites that can be linked to the physiological status of an individual. More importantly, these biofluids contain biomarkers similar to those in the blood. Therefore, developing sensors for the noninvasive determination of biofluid-based metabolites can overcome traditionally invasive and laborious blood-test-based diagnostics. In this context, wearable devices offer real-time and continuous physiological conditions and activity monitoring. The first-generation wearables included wristwatches capable of tracking heart rate variations, breathing rate, body temperature, stress responses, and sleeping patterns. However, wearable sensors that can accurately measure the metabolites are needed to achieve real-time analysis of biomarkers. In this review, recent progresses in wearable sensors utilized to monitor metabolites in teardrops, breath condensate, sweat, and interstitial fluids are thoroughly analyzed. More importantly, how metabolites can be selectively detected, quantified, and monitored in real-time is discussed. Furthermore, the review includes a discussion on the utility of, multifunctional sensors that combine metabolite sensing, human activity monitoring, and on-demand drug delivery system for theranostic applications.
Collapse
Affiliation(s)
| | - Joonas Haapasalo
- Department of NeurosurgeryTampere University Hospital and Tampere UniversityKuntokatu 233520TampereFinland
| | - Juan P. Hinestroza
- Department of Fiber Science and Apparel DesignCornell UniversityIthacaNY14853USA
| | - Zhipei Sun
- Department of Electronics and NanoengineeringAalto UniversityP.O. Box 13500FI‐00076AaltoFinland
- QTF Center of ExcellenceDepartment of Applied PhysicsAalto University00076AaltoFinland
| | - Nonappa
- Faculty of Engineering and Natural SciencesKorkeakoulunkatu 6FI‐33720TampereFinland
| |
Collapse
|
6
|
Jin M, Shi P, Sun Z, Zhao N, Shi M, Wu M, Ye C, Lin CT, Fu L. Advancements in Polymer-Assisted Layer-by-Layer Fabrication of Wearable Sensors for Health Monitoring. SENSORS (BASEL, SWITZERLAND) 2024; 24:2903. [PMID: 38733009 PMCID: PMC11086243 DOI: 10.3390/s24092903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
Recent advancements in polymer-assisted layer-by-layer (LbL) fabrication have revolutionized the development of wearable sensors for health monitoring. LbL self-assembly has emerged as a powerful and versatile technique for creating conformal, flexible, and multi-functional films on various substrates, making it particularly suitable for fabricating wearable sensors. The incorporation of polymers, both natural and synthetic, has played a crucial role in enhancing the performance, stability, and biocompatibility of these sensors. This review provides a comprehensive overview of the principles of LbL self-assembly, the role of polymers in sensor fabrication, and the various types of LbL-fabricated wearable sensors for physical, chemical, and biological sensing. The applications of these sensors in continuous health monitoring, disease diagnosis, and management are discussed in detail, highlighting their potential to revolutionize personalized healthcare. Despite significant progress, challenges related to long-term stability, biocompatibility, data acquisition, and large-scale manufacturing are still to be addressed, providing insights into future research directions. With continued advancements in polymer-assisted LbL fabrication and related fields, wearable sensors are poised to improve the quality of life for individuals worldwide.
Collapse
Grants
- (52272053, 52075527, 52102055) the National Natural Science Foundation of China
- (2022YFA1203100, 2022YFB3706602, 2021YFB3701801) the National Key R&D Program of China
- (2021Z120, 2021Z115, 2022Z084, 2022Z191) Ningbo Key Scientific and Technological Project
- (2021A-037-C, 2021A-108-G) the Yongjiang Talent Introduction Programme of Ningbo
- JCPYJ-22030 the Youth Fund of Chinese Academy of Sciences
- (2020M681965, 2022M713243) China Postdoctoral Science Foundation
- 2020301 CAS Youth Innovation Promotion Association
- (2021ZDYF020196, 2021ZDYF020198) Science and Technology Major Project of Ningbo
- XDA22020602, ZDKYYQ2020001) the Project of Chinese Academy of Science
- 2019A-18-C Ningbo 3315 Innovation Team
Collapse
Affiliation(s)
- Meiqing Jin
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China;
| | - Peizheng Shi
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China; (P.S.); (Z.S.); (N.Z.); (M.S.); (M.W.)
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd., Shijingshan District, Beijing 100049, China
| | - Zhuang Sun
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China; (P.S.); (Z.S.); (N.Z.); (M.S.); (M.W.)
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd., Shijingshan District, Beijing 100049, China
| | - Ningbin Zhao
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China; (P.S.); (Z.S.); (N.Z.); (M.S.); (M.W.)
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd., Shijingshan District, Beijing 100049, China
| | - Mingjiao Shi
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China; (P.S.); (Z.S.); (N.Z.); (M.S.); (M.W.)
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd., Shijingshan District, Beijing 100049, China
| | - Mengfan Wu
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China; (P.S.); (Z.S.); (N.Z.); (M.S.); (M.W.)
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd., Shijingshan District, Beijing 100049, China
| | - Chen Ye
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China; (P.S.); (Z.S.); (N.Z.); (M.S.); (M.W.)
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd., Shijingshan District, Beijing 100049, China
| | - Cheng-Te Lin
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China; (P.S.); (Z.S.); (N.Z.); (M.S.); (M.W.)
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd., Shijingshan District, Beijing 100049, China
| | - Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China;
| |
Collapse
|
7
|
Vignesh V, Castro-Dominguez B, James TD, Gamble-Turner JM, Lightman S, Reis NM. Advancements in Cortisol Detection: From Conventional Methods to Next-Generation Technologies for Enhanced Hormone Monitoring. ACS Sens 2024; 9:1666-1681. [PMID: 38551608 PMCID: PMC11059103 DOI: 10.1021/acssensors.3c01912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/22/2024] [Accepted: 03/08/2024] [Indexed: 05/02/2024]
Abstract
The hormone cortisol, released as the end-product of the hypothalamic-pituitary-adrenal (HPA) axis, has a well-characterized circadian rhythm that enables an allostatic response to external stressors. When the pattern of secretion is disrupted, cortisol levels are chronically elevated, contributing to diseases such as heart attacks, strokes, mental health disorders, and diabetes. The diagnosis of chronic stress and stress related disorders depends upon accurate measurement of cortisol levels; currently, it is quantified using mass spectroscopy or immunoassay, in specialized laboratories with trained personnel. However, these methods are time-consuming, expensive and are unable to capture the dynamic biorhythm of the hormone. This critical review traces the path of cortisol detection from traditional laboratory-based methods to decentralised cortisol monitoring biosensors. A complete picture of cortisol biology and pathophysiology is provided, and the importance of precision medicine style monitoring of cortisol is highlighted. Antibody-based immunoassays still dominate the pipeline of development of point-of-care biosensors; new capture molecules such as aptamers and molecularly imprinted polymers (MIPs) combined with technologies such as microfluidics, wearable electronics, and quantum dots offer improvements to limit of detection (LoD), specificity, and a shift toward rapid or continuous measurements. While a variety of different sensors and devices have been proposed, there still exists a need to produce quantitative tests for cortisol ─ using either rapid or continuous monitoring devices that can enable a personalized medicine approach to stress management. This can be addressed by synergistic combinations of technologies that can leverage low sample volumes, relevant limit of detection and rapid testing time, to better account for cortisol's shifting biorhythm. Trends in cortisol diagnostics toward rapid and continuous monitoring of hormones are highlighted, along with insights into choice of sample matrix.
Collapse
Affiliation(s)
- Visesh Vignesh
- Department
of Chemical Engineering and Centre for Bioengineering and Biomedical
Technologies (CBio) University of Bath, BA2 7AY Bath, U.K.
| | - Bernardo Castro-Dominguez
- Department
of Chemical and Engineering and Digital Manufacturing and Design University
of Bath, BA2 7AY Bath, U.K.
| | - Tony D. James
- Department
of Chemistry, University of Bath, BA2 7AY Bath, U.K.
| | | | - Stafford Lightman
- Translational
Health Sciences, Bristol Medical School, University of Bristol, BS1 3NY Bristol, U.K.
| | - Nuno M. Reis
- Department
of Chemical Engineering and Centre for Bioengineering and Biomedical
Technologies (CBio) University of Bath, BA2 7AY Bath, U.K.
| |
Collapse
|
8
|
Garg M, Parihar A, Rahman MS. Advanced and personalized healthcare through integrated wearable sensors (versatile). MATERIALS ADVANCES 2024; 5:432-452. [DOI: 10.1039/d3ma00657c] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Applications of integrated wearable sensors for the monitoring of human vital signs and clinically relevant biomarkers.
Collapse
Affiliation(s)
- Mayank Garg
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Arpana Parihar
- Industrial Waste Utilization, Nano and Biomaterials, CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, Madhya Pradesh, India
| | - Md. Saifur Rahman
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
9
|
Ok J, Park S, Jung YH, Kim TI. Wearable and Implantable Cortisol-Sensing Electronics for Stress Monitoring. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2211595. [PMID: 36917076 DOI: 10.1002/adma.202211595] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Cortisol is a steroid hormone that is released from the body in response to stress. Although a moderate level of cortisol secretion can help the body maintain homeostasis, excessive secretion can cause various diseases, such as depression and anxiety. Conventional methods for cortisol measurement undergo procedures that limit continuous monitoring, typically collecting samples of bodily fluids, followed by separate analysis in a laboratory setting that takes several hours. Thus, recent studies demonstrate wearable, miniaturized sensors integrated with electronic modules that enable wireless real-time analysis. Here, the primary focus is on wearable and implantable electronic devices that continuously measure cortisol concentration. Diverse types of cortisol-sensing techniques, such as antibody-, DNA-aptamer-, and molecularly imprinted polymer-based sensors, as well as wearable and implantable devices that aim to continuously monitor cortisol in a minimally invasive fashion are discussed. In addition to the cortisol monitors that directly measure stress levels, other schemes that indirectly measure stress, such as electrophysiological signals and sweat are also summarized. Finally, the challenges and future directions in stress monitoring and management electronics are reviewed.
Collapse
Affiliation(s)
- Jehyung Ok
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Sumin Park
- Department of Electronic Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Yei Hwan Jung
- Department of Electronic Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Tae-Il Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| |
Collapse
|
10
|
Yang M, Sun N, Lai X, Zhao X, Zhou W. Advances in Non-Electrochemical Sensing of Human Sweat Biomarkers: From Sweat Sampling to Signal Reading. BIOSENSORS 2023; 14:17. [PMID: 38248394 PMCID: PMC10813192 DOI: 10.3390/bios14010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/19/2023] [Accepted: 12/25/2023] [Indexed: 01/23/2024]
Abstract
Sweat, commonly referred to as the ultrafiltrate of blood plasma, is an essential physiological fluid in the human body. It contains a wide range of metabolites, electrolytes, and other biologically significant markers that are closely linked to human health. Compared to other bodily fluids, such as blood, sweat offers distinct advantages in terms of ease of collection and non-invasive detection. In recent years, considerable attention has been focused on wearable sweat sensors due to their potential for continuous monitoring of biomarkers. Electrochemical methods have been extensively used for in situ sweat biomarker analysis, as thoroughly reviewed by various researchers. This comprehensive review aims to provide an overview of recent advances in non-electrochemical methods for analyzing sweat, including colorimetric methods, fluorescence techniques, surface-enhanced Raman spectroscopy, and more. The review covers multiple aspects of non-electrochemical sweat analysis, encompassing sweat sampling methodologies, detection techniques, signal processing, and diverse applications. Furthermore, it highlights the current bottlenecks and challenges faced by non-electrochemical sensors, such as limitations and interference issues. Finally, the review concludes by offering insights into the prospects for non-electrochemical sensing technologies. By providing a valuable reference and inspiring researchers engaged in the field of sweat sensor development, this paper aspires to foster the creation of innovative and practical advancements in this domain.
Collapse
Affiliation(s)
- Mingpeng Yang
- School of Automation, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China (X.Z.)
- Jiangsu Collaborative Innovation Centre on Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Nan Sun
- School of Automation, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China (X.Z.)
| | - Xiaochen Lai
- School of Automation, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China (X.Z.)
- Jiangsu Collaborative Innovation Centre on Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Xingqiang Zhao
- School of Automation, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China (X.Z.)
- Jiangsu Collaborative Innovation Centre on Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Wangping Zhou
- School of Automation, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China (X.Z.)
- Jiangsu Collaborative Innovation Centre on Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China
| |
Collapse
|
11
|
Kim H, Song J, Kim S, Lee S, Park Y, Lee S, Lee S, Kim J. Recent Advances in Multiplexed Wearable Sensor Platforms for Real-Time Monitoring Lifetime Stress: A Review. BIOSENSORS 2023; 13:bios13040470. [PMID: 37185545 PMCID: PMC10136450 DOI: 10.3390/bios13040470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 05/17/2023]
Abstract
Researchers are interested in measuring mental stress because it is linked to a variety of diseases. Real-time stress monitoring via wearable sensor systems can aid in the prevention of stress-related diseases by allowing stressors to be controlled immediately. Physical tests, such as heart rate or skin conductance, have recently been used to assess stress; however, these methods are easily influenced by daily life activities. As a result, for more accurate stress monitoring, validations requiring two or more stress-related biomarkers are demanded. In this review, the combinations of various types of sensors (hereafter referred to as multiplexed sensor systems) that can be applied to monitor stress are discussed, referring to physical and chemical biomarkers. Multiplexed sensor systems are classified as multiplexed physical sensors, multiplexed physical-chemical sensors, and multiplexed chemical sensors, with the effect of measuring multiple biomarkers and the ability to measure stress being the most important. The working principles of multiplexed sensor systems are subdivided, with advantages in measuring multiple biomarkers. Furthermore, stress-related chemical biomarkers are still limited to cortisol; however, we believe that by developing multiplexed sensor systems, it will be possible to explore new stress-related chemical biomarkers by confirming their correlations to cortisol. As a result, the potential for further development of multiplexed sensor systems, such as the development of wearable electronics for mental health management, is highlighted in this review.
Collapse
Affiliation(s)
- Heena Kim
- Department of Biomedical Engineering, College of Life Science and Biotechnology, Dongguk University, Seoul 04620, Republic of Korea
| | - Jaeyoon Song
- Department of Biomedical Engineering, College of Life Science and Biotechnology, Dongguk University, Seoul 04620, Republic of Korea
| | - Sehyeon Kim
- Department of Biomedical Engineering, College of Life Science and Biotechnology, Dongguk University, Seoul 04620, Republic of Korea
| | - Suyoung Lee
- Department of Biomedical Engineering, College of Life Science and Biotechnology, Dongguk University, Seoul 04620, Republic of Korea
| | - Yejin Park
- Department of Biomedical Engineering, College of Life Science and Biotechnology, Dongguk University, Seoul 04620, Republic of Korea
| | - Seungjun Lee
- Department of Biomedical Engineering, College of Life Science and Biotechnology, Dongguk University, Seoul 04620, Republic of Korea
| | - Seunghee Lee
- Department of Biomedical Engineering, College of Life Science and Biotechnology, Dongguk University, Seoul 04620, Republic of Korea
| | - Jinsik Kim
- Department of Biomedical Engineering, College of Life Science and Biotechnology, Dongguk University, Seoul 04620, Republic of Korea
| |
Collapse
|
12
|
Mugo SM, Robertson SV, Wood M. A Hybrid Stainless-Steel SPME Microneedle Electrode Sensor for Dual Electrochemical and GC-MS Analysis. SENSORS (BASEL, SWITZERLAND) 2023; 23:2317. [PMID: 36850915 PMCID: PMC9963686 DOI: 10.3390/s23042317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
A mechanically robust in-tube stainless steel microneedle solid phase microextraction (SPME) platform for dual electrochemical and chromatographic detection has been demonstrated. The SPME microneedle was fabricated by layer-by-layer (LbL) in-tube coating, consisting of carbon nanotube (CNT)/cellulose nanocrystal (CNC) film layered with an electrically conductive polyaniline (PANI) hydrogel layer (PANI@CNT/CNC SPME microneedle (MN)). The PANI@CNT/CNC SPME MN showed effective analysis of caffeine by GC-MS with an LOD of 26 mg/L and excellent precision across the dynamic range. Additionally, the PANI@CNT/CNC SPME MN demonstrated a 67% increase in sensitivity compared to a commercial SPME fiber, while being highly robust for repeated use without loss in performance. For electrochemical detection, the PANI@CNT/CNC SPME MN showed excellent performance for the detection of 3-caffeoylquinic acid (3-CQA). The dynamic range and limits of detection (LOD) for 3-CQA analysis were 75-448 mg/L and 11 mg/L, respectively. The PANI@CNT/CNC SPME MN was demonstrated to accurately determine the caffeine content and 3-CQA in tea samples and dark roast coffee, respectively. The PANI@CNT/CNC SPME MN was used for semiquantitative antioxidant determination and composition analysis in kiwi fruit using electrochemistry and SPME-coupled GC-MS, respectively.
Collapse
|
13
|
Dervisevic M, Dervisevic E, Esser L, Easton CD, Cadarso VJ, Voelcker NH. Wearable microneedle array-based sensor for transdermal monitoring of pH levels in interstitial fluid. Biosens Bioelectron 2023; 222:114955. [PMID: 36462430 DOI: 10.1016/j.bios.2022.114955] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/19/2022] [Accepted: 11/24/2022] [Indexed: 11/27/2022]
Abstract
Microneedle-based wearable sensors offer an alternative approach to traditional invasive blood-based health monitoring and disease diagnostics techniques. Instead of blood, microneedle-based sensors target the skin interstitial fluid (ISF), in which the biomarker type and concentration profile resemble the one found in the blood. However, unlike blood, interstitial fluid does not have the same pH-buffering capacity causing deviation of pH levels from the physiological range. Information about the skin ISF pH levels can be used as a biomarker for a wide range of pathophysiological conditions and as a marker for the calibration of a wearable sensor. The ISF pH can significantly affect the detection accuracy of other biomarkers as it influences enzyme activity, aptamer affinity, and antibody-antigen interaction. Herein, we report the fabrication of a high-density polymeric microneedle array-based (PMNA) sensing patch and its optimization for the potentiometric transdermal monitoring of pH levels in ISF. The wearable sensor utilizes a polyaniline-coated PMNA having a density of ∼10,000 microneedles per cm2, containing individual microneedles with a height of ∼250 μm, and a tip diameter of ∼2 μm. To prevent interference from other body fluids like sweat, an insulating layer is deposited at the base of the PMNA. The wearable pH sensor operates from pH 4.0 to 8.6 with a sensitivity of 62.9 mV per pH unit and an accuracy of ±0.036 pH units. Furthermore, testing on a mouse demonstrates the ability of the PMNA to provide a real-time reading of the transdermal pH values. This microneedle-based system will significantly contribute to advancing transdermal wearable sensors technology, simplifying the fabrication process, and improving the cost-effectiveness of such devices.
Collapse
Affiliation(s)
- Muamer Dervisevic
- Drug Delivery, Disposition, and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Esma Dervisevic
- Department of Mechanical and Aerospace Engineering, Monash University, Room 227, New Horizons Building, 20 Research Way, Clayton, Victoria, 3800, Australia
| | - Lars Esser
- Drug Delivery, Disposition, and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia; Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria, 3168, Australia
| | - Christopher D Easton
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria, 3168, Australia
| | - Victor J Cadarso
- Department of Mechanical and Aerospace Engineering, Monash University, Room 227, New Horizons Building, 20 Research Way, Clayton, Victoria, 3800, Australia; Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria, 3168, Australia
| | - Nicolas H Voelcker
- Drug Delivery, Disposition, and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia; Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria, 3168, Australia; Materials Science and Engineering, Monash University, Clayton, Victoria, 3168, Australia.
| |
Collapse
|
14
|
Mugo SM, Lu W, Robertson S. A Multipurpose and Multilayered Microneedle Sensor for Redox Potential Monitoring in Diverse Food Analysis. BIOSENSORS 2022; 12:1001. [PMID: 36354510 PMCID: PMC9688395 DOI: 10.3390/bios12111001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/30/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
This work presents a multipurpose and multilayered stainless steel microneedle sensor for the in situ redox potential monitoring in food and drink samples, termed MN redox sensor. The MN redox sensor was fabricated by layer-by-layer (LbL) approach. The in-tube multilayer coating comprised carbon nanotubes (CNTs)/cellulose nanocrystals (CNCs) as the first layer, polyaniline (PANI) as the second layer, and the ferrocyanide redox couple as the third layer. Using cyclic voltammetry (CV) as a transduction method, the MN redox sensor showed facile electron transfer for probing both electrical capacitance and redox potential, useful for both analyte specific and bulk quantification of redox species in various food and drink samples. The bulk redox species were quantified based on the anodic/cathodic redox peak shifts (Ea/Ec) on the voltammograms resulting from the presence of redox-active species. The MN redox sensor was applied to detect selected redox species including ascorbic acid, H2O2, and putrescine, with capacitive limits of detection (LOD) of 49.9, 17.8, and 263 ng/mL for each species, respectively. For the bulk determination of redox species, the MN redox sensor displayed LOD of 5.27 × 103, 55.4, and 25.8 ng/mL in ascorbic acid, H2O2, and putrescine equivalents, respectively. The sensor exhibited reproducibility of ~ 1.8% relative standard deviation (%RSD). The MN redox sensor was successfully employed for the detection of fish spoilage and antioxidant quantification in king mushroom and brewed coffee samples, thereby justifying its potential for food quality and food safety applications. Lastly, the portability, reusability, rapid sampling time, and capability of in situ analysis of food and drink samples makes it amenable for real-time sensing applications.
Collapse
Affiliation(s)
- Samuel M. Mugo
- Department of Physical Sciences, MacEwan University, Edmonton, AB T5J 4S2, Canada
| | - Weihao Lu
- Department of Physical Sciences, MacEwan University, Edmonton, AB T5J 4S2, Canada
| | - Scott Robertson
- Department of Physical Sciences, MacEwan University, Edmonton, AB T5J 4S2, Canada
| |
Collapse
|
15
|
Mugo SM, Lu W, Robertson S. A Wearable, Textile-Based Polyacrylate Imprinted Electrochemical Sensor for Cortisol Detection in Sweat. BIOSENSORS 2022; 12:bios12100854. [PMID: 36290991 PMCID: PMC9599184 DOI: 10.3390/bios12100854] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/01/2022] [Accepted: 10/05/2022] [Indexed: 06/12/2023]
Abstract
A wearable, textile-based molecularly imprinted polymer (MIP) electrochemical sensor for cortisol detection in human sweat has been demonstrated. The wearable cortisol sensor was fabricated via layer-by-layer assembly (LbL) on a flexible cotton textile substrate coated with a conductive nanoporous carbon nanotube/cellulose nanocrystal (CNT/CNC) composite suspension, conductive polyaniline (PANI), and a selective cortisol-imprinted poly(glycidylmethacrylate-co-ethylene glycol dimethacrylate) (poly(GMA-co-EGDMA)) decorated with gold nanoparticles (AuNPs), or plated with gold. The cortisol sensor rapidly (<2 min) responded to 9.8−49.5 ng/mL of cortisol, with an average relative standard deviation (%RSD) of 6.4% across the dynamic range, indicating excellent precision. The cortisol sensor yielded an excellent limit of detection (LOD) of 8.00 ng/mL, which is within the typical physiological levels in human sweat. A single cortisol sensor patch could be reused 15 times over a 30-day period with no loss in performance, attesting to excellent reusability. The cortisol sensor patch was successfully verified for use in quantification of cortisol levels in human sweat.
Collapse
|
16
|
Wood M, Mugo SM. A MIP-enabled stainless-steel hypodermic needle sensor for electrochemical detection of aflatoxin B1. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2063-2071. [PMID: 35543096 DOI: 10.1039/d1ay02084f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Aflatoxin B1 (AFB1) has been identified as one of the most potent naturally occurring carcinogens with high toxicity. The maximum permissible levels of total aflatoxin contamination in food products are limited to 10-15 μg kg-1, as established by the Codex Alimentarius Commission. The widespread occurrence of AFB1 in the food chain identifies them as significant agricultural contaminants of global concern. We herewith demonstrate a molecularly imprinted polymer (MIP)-enabled stainless steel hypodermic needle sensor for sensitive electrochemical detection of AFB1. The stainless-steel hypodermic needle sensor was fabricated using a layer by layer (LbL) film coating comprising multiwalled carbon nanotubes (MWCNTs), cellulose nanocrystals (CNC), and an AFB1 imprinted polyaniline (PANI) biomimetic receptor film. The PANI@MIP/CNC-CNT hypodermic needlesensor showed excellent electrochemical capacitance response (∼10 min) to AFB1 with a linear range of 0-25 nM and a limit of detection (LOD) of 3 nM. Demonstrating good reusability, a single PANI@MIP/CNC-CNT hypodermic needle AFB1 sensor could be reused up to 7 times with a 2.8% relative standard deviation (% RSD) in the sensor's capacitive response. The PANI@MIP/CNC-CNT hypodermic needle sensor was effective in the detection of AFB1 spiked in milk.
Collapse
Affiliation(s)
- Marika Wood
- Physical Sciences Department, MacEwan University, 10700-104 Avenue, Edmonton, AB, T5J 4S2, Canada.
| | - Samuel M Mugo
- Physical Sciences Department, MacEwan University, 10700-104 Avenue, Edmonton, AB, T5J 4S2, Canada.
| |
Collapse
|
17
|
Stainless steel electrochemical capacitive microneedle sensors for multiplexed simultaneous measurement of pH, nitrates, and phosphates. Mikrochim Acta 2022; 189:206. [PMID: 35501613 DOI: 10.1007/s00604-022-05307-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/07/2022] [Indexed: 10/18/2022]
Abstract
Concerns for agri-food safety and environmental management require development of simple to use and cost- and time-effective multiplex sensors for point-of-need (PON) chemical analytics by public end-user. Simultaneous detection of nitrates, phosphates, and pH is of importance in soil and water analysis, agriculture, and food quality assessment. This article demonstrates a suite of stainless steel microneedle electrochemical sensors for multiplexed measurement of pH, nitrate, and phosphate using faradaic capacitance derived from cyclic voltammetry as the mode of detection. The multi-target microneedle sensors were fabricated by layer-by-layer (LbL) assembly in a stainless steel hypodermic microneedle substrate. For nitrate sensing, the stainless steel was coated with carbon nanotube/cellulose nanocrystal (CNT)/CNC) decorated with silver nanoparticles (Ag). For pH measurement, the polyaniline (pANI) was coated onto the CNT/CNC@Ag film, while for phosphate detection, the CNT/CNC/Ag @pANI microneedle was further decorated with ammonium molybdenum tetrahydrate (AMT). The microelectrode platforms were characterized by FTIR, Raman, and microscopic techniques. The nitrate- and phosphate-based microneedle electrochemical sensors had excellent selectivity and sensitivity, with a determined limit of detection (LOD) of 0.008 mM and 0.007 mM, respectively. The pH microneedle sensor was responsive to pH in the linear range of 3-10. The three microneedle sensors yielded repeatable results, with a precision ranging from 4.0 to 7.5% RSD over the concentration ranges tested. The inexpensive (~ 1 $ CAD) microneedle sensors were successfully verified for use in quantification of nitrate, pH, and phosphate in brewed black coffee as a real sample. As such, the microneedle sensors are economical devices and show great promise as robust platforms for PON precision chemical analytics.
Collapse
|