1
|
Chiang CC, Li JS, Wan HH, Ren F, Esquivel-Upshaw JF. Fabrication of TiO 2 Nanotube Arrays by Progressive Anodization of Ti Thin Film on Insulated Substrates. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1219. [PMID: 40141501 PMCID: PMC11943509 DOI: 10.3390/ma18061219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/02/2025] [Accepted: 03/03/2025] [Indexed: 03/28/2025]
Abstract
Titanium (Ti) thin films deposited on insulated substrates were progressively anodized and formed titanium dioxide (TiO2) nanotube arrays on the surface through a customized anodization tool designed to improve the uniformity and diameters of the nanotubes. With a motorized vertical moving arm attached to the anode, the sample was gradually submerged into the electrolyte at a controlled speed alongside the continuous anodization from the edge to the center to prevent the discontinuation of the conductive Ti layer and its nanotube surface. The effects of Ti deposition rate, anodization voltage, NH4F concentration, and post-etching conditions on nanotube morphology were also explored. Scanning electron microscopy (SEM) analysis revealed that smaller Ti grain sizes, higher anodization voltages, higher electrolyte concentrations, and optimized post-etching times produce uniform, mature nanotubes with larger diameters, which are crucial for practical applications. This work enhances the applicability of nanotube surfaces with non-conductive substrates, such as Zirconia dental implants, and establishes a foundation for future process optimizations.
Collapse
Affiliation(s)
- Chao-Ching Chiang
- Department of Chemical Engineering, College of Engineering, University of Florida, Gainesville, FL 32611, USA; (C.-C.C.); (J.-S.L.); (H.-H.W.); (F.R.)
| | - Jian-Sian Li
- Department of Chemical Engineering, College of Engineering, University of Florida, Gainesville, FL 32611, USA; (C.-C.C.); (J.-S.L.); (H.-H.W.); (F.R.)
| | - Hsiao-Hsuan Wan
- Department of Chemical Engineering, College of Engineering, University of Florida, Gainesville, FL 32611, USA; (C.-C.C.); (J.-S.L.); (H.-H.W.); (F.R.)
| | - Fan Ren
- Department of Chemical Engineering, College of Engineering, University of Florida, Gainesville, FL 32611, USA; (C.-C.C.); (J.-S.L.); (H.-H.W.); (F.R.)
| | - Josephine F. Esquivel-Upshaw
- Department of Restorative Dental Sciences, Division of Prosthodontics, College of Dentistry, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
2
|
Atz-Dick T, Valente RDC, Machado TV, Horn F, Dick LFP. Solid-State Precipitation of Silver Nanoparticles Nucleated during Al Anodizing: Mechanism and Antibacterial Properties. ACS APPLIED BIO MATERIALS 2025; 8:1466-1474. [PMID: 39873214 PMCID: PMC11836923 DOI: 10.1021/acsabm.4c01694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/09/2025] [Accepted: 01/17/2025] [Indexed: 01/30/2025]
Abstract
This study presents an innovative approach to creating antibacterial aluminum surfaces by combining the antibacterial properties of silver nanoparticles (Ag NPs) with the nanoarchitecture of anodized aluminum oxide in one step. An Al-Ag alloy containing 10 wt % Ag was synthesized and anodized in 0.3 M oxalic acid. Ag NPs precipitated in the solid state during anodization, resulting in a porous nanocomposite structure. Comprehensive characterization using SEM, TEM, and EDS revealed a 43 μm thick oxide layer with uniformly distributed nanopores of approximately 100 nm in diameter. Ag NPs with diameters ranging from 2 to 14 nm precipitated dispersed on the surface, inside pores, and within the Al2O3 matrix. Antibacterial properties were evaluated against Escherichia coli. The anodized Al-Ag surface demonstrated robust antibacterial activity after short incubation times (up to 1 × 108 CFU/ml after 3 h). The enhanced antibacterial properties are attributed to the optimal size and distribution of Ag NPs and the potential physical bactericidal effect of the nanoporous structure. This strategy for the precipitation of Ag NPs in the solid state could be used to fabricate high-touch surfaces in hospitals.
Collapse
Affiliation(s)
- Teo Atz-Dick
- Laboratório
de Processos Eletroquímicos e Corrosão-ELETROCORR, Departamento
de Metalurgia, Universidade Federal do Rio
Grande do Sul, Avenida Bento Gonçalves 9500, 91501-970 Porto Alegre, Brazil
| | - Renato de Castro Valente
- Laboratório
de Processos Eletroquímicos e Corrosão-ELETROCORR, Departamento
de Metalurgia, Universidade Federal do Rio
Grande do Sul, Avenida Bento Gonçalves 9500, 91501-970 Porto Alegre, Brazil
| | - Thiago Vignoli Machado
- Laboratório
de Processos Eletroquímicos e Corrosão-ELETROCORR, Departamento
de Metalurgia, Universidade Federal do Rio
Grande do Sul, Avenida Bento Gonçalves 9500, 91501-970 Porto Alegre, Brazil
| | - Fabiana Horn
- Departamento
de Biofísica, Universidade Federal
do Rio Grande do Sul, Avenida Bento Gonçalves 9500, 91501-970 Porto Alegre, Brazil
| | - Luís F. P. Dick
- Laboratório
de Processos Eletroquímicos e Corrosão-ELETROCORR, Departamento
de Metalurgia, Universidade Federal do Rio
Grande do Sul, Avenida Bento Gonçalves 9500, 91501-970 Porto Alegre, Brazil
| |
Collapse
|
3
|
Li W, Zhang S, Li F. Effect of Chemical Polishing on the Formation of TiO 2 Nanotube Arrays Using Ti Mesh as a Raw Material. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1893. [PMID: 39683283 DOI: 10.3390/nano14231893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/23/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024]
Abstract
As a unique form of TiO2, TiO2 nanotube arrays (TiO2NTAs) have been widely used. TiO2NTAs are usually prepared by Ti foil, with little research reporting its preparation by Ti mesh. In this paper, TiO2NTAs are prepared on a Ti mesh surface via an anodic oxidation method in the F-containing electrolyte. The optimal parameters for the synthesis of TiO2NTAs are as follows: the solvent is ethylene glycol and water; the electrolyte is NH4F (0.175 mol/L); the voltage is 20 V; and the anodic oxidation time is 40 min without chemical polishing. However, there is a strange phenomenon where the nanotube arrays grow only at the intersection of Ti wires, which may be caused by chemical polishing, and the other areas, where TiO2NTAs cannot be observed on the surface of Ti mesh, are covered by a dense TiO2 film. New impurities (the hydrate of TiO2 or other products) introduced by chemical polishing and attaching to the surface of the Ti mesh reduce the current of anodic oxidation and further inhibit the growth of TiO2 nanotubes. Hence, under laboratory conditions, for commercially well-preserved Ti mesh, there is no necessity for chemical polishing. The formation of TiO2NTAs includes growth and crystallization processes. For the growth process, F- ions corrode the dense TiO2 film on the surface of Ti mesh to form soluble complexes ([TiF6]2-), and the tiny pores remain on the surface of Ti mesh. Given the basic photoelectrochemical measurements, TiO2NTAs without chemical polishing have better properties.
Collapse
Affiliation(s)
- Wanshun Li
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Shiqiu Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang 621010, China
| | - Fei Li
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
4
|
Jędrzejewska A, Arkusz K. Mechanism and growth kinetics of hexagonal TiO 2 nanotubes with an influence of anodizing parameters on morphology and physical properties. Sci Rep 2024; 14:24721. [PMID: 39433811 PMCID: PMC11494093 DOI: 10.1038/s41598-024-76336-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/14/2024] [Indexed: 10/23/2024] Open
Abstract
Hexagonal TiO2 nanotubes (hTNTs) mimic a honeycomb structure, indicating their high potential as implantable materials due to their superior mechanical, chemical, and biological properties. However, the fabrication of hTNTs with a hexagonal base and six rectangular sides poses significant challenges, underscoring the importance of this research. This study developed a novel sonoelectrochemical method for synthesizing uniform hTNTs and evaluated the influence of anodizing parameters on their morphology. The effects of electrolyte concentration (ethylene glycol 90-97.5% and ammonium fluoride 0.1-0.5 wt%) and anodizing parameters (time 5-90 min, potential 10-80 V) on the morphology (diameter and length) and physical properties (porosity, specific surface area, growth factor) of hTNTs were investigated using scanning electron microscopy and anodization analysis. The methodology enabled the synthesis of hTNTs with diameters ranging from 33 ± 3 nm to 203 ± 33 nm and lengths from 1.16 ± 0.04 μm to 20.93 ± 2.37 μm. The study demonstrated that the concentrations of ethylene glycol and ammonium fluoride influenced the diameter and length of hTNTs depending on the anodizing potential. Moreover, the anodizing potential significantly affected the diameter, while both potential and time impacted the length of hTNTs. The proposed method can modify material surfaces for diverse applications.
Collapse
Affiliation(s)
- Aleksandra Jędrzejewska
- Department of Biomedical Engineering, Faculty of Mechanical Engineering, University of Zielona Gora, 9 Licealna Street, Zielona Gora, 65-417, Poland
- The Doctoral School of Exact and Technical Sciences, University of Zielona Gora, Zielona Gora, 65-417, Poland
| | - Katarzyna Arkusz
- Department of Biomedical Engineering, Faculty of Mechanical Engineering, University of Zielona Gora, 9 Licealna Street, Zielona Gora, 65-417, Poland.
| |
Collapse
|
5
|
Mohapatra B, Sulka GD. Review of Anodic Tantalum Oxide Nanostructures: From Morphological Design to Emerging Applications. ACS APPLIED NANO MATERIALS 2024; 7:13865-13892. [PMID: 38962507 PMCID: PMC11220736 DOI: 10.1021/acsanm.4c02000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 07/05/2024]
Abstract
Anodization of transition metals, particularly the valve metals (V, W, Ti, Ta, Hf, Nb, and Zr) and their alloys, has emerged as a powerful tool for controlling the morphology, purity, and thickness of oxide nanostructures. The present review is focused on the advances in the synthesis of micro/nanostructures of anodic tantalum oxides (ATO) in inorganic, organic, and mixed inorganic-organic type electrolytes with critically highlighting anodization parameters, such as applied voltage, current, time, and electrolyte temperature. Particularly, the growth of ATO nanostructures in fluoride containing electrolytes and their applications are briefly covered. The details of the current- or voltage-time transient and its relation to the growth of the anodic oxide films are presented systematically. The main discussion revolves around the incorporation of various electrolyte species into the surface of ATO structures and its effects on their physicochemical properties. The latest progress in understanding the growth mechanism of nanoporous/nanotubular ATO structures is outlined. Additionally, the impact of annealing temperature (ranging from 400-1000 °C) and atmosphere on the crystalline structure, morphology, impurity content, and physical properties of the ATOs is briefly described. The common modification methods, such as decorating with other transition metal/metal oxide, heteroatom doping, or generating defects in the ATO structures, are discussed. Besides, the review also covers the most promising applications of these materials in the fields of capacitors, supercapacitors, memristive devices, corrosion protection, photocatalysis, photoelectrochemical (PEC) water splitting, and biomaterials. Finally, future research directions for designing ATO-based nanomaterials and their utilities are indicated.
Collapse
Affiliation(s)
- Biswaranjan
D. Mohapatra
- Department of Physical Chemistry
& Electrochemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Grzegorz Dariusz Sulka
- Department of Physical Chemistry
& Electrochemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| |
Collapse
|
6
|
Arkusz K, Jędrzejewska A, Siwak P, Jurczyk M. Electrochemical and Mechanical Properties of Hexagonal Titanium Dioxide Nanotubes Formed by Sonoelectrochemical Anodization. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2138. [PMID: 38730944 PMCID: PMC11084480 DOI: 10.3390/ma17092138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/24/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024]
Abstract
This study aimed to investigate the fabrication and characterization of hexagonal titanium dioxide nanotubes (hTNTs) compared to compact TiO2 layers, focusing on their structural, electrochemical, corrosion, and mechanical properties. The fabrication process involved the sonoelectrochemical anodization of titanium foil in various electrolytes to obtain titanium oxide layers with different morphologies. Scanning electron microscopy revealed the formation of well-ordered hexagonal TNTs with diagonals in the range of 30-95 nm and heights in the range of 3500-4000 nm (35,000-40,000 Å). The electrochemical measurements performed in 3.5% NaCl and Ringer's solution confirmed a more positive open-circuit potential, a lower impedance, a higher electrical conductivity, and a higher corrosion rate of hTNTs compared to the compact TiO2. The data revealed a major drop in the impedance modulus of hTNTs, with a diagonal of 46 ± 8 nm by 97% in 3.5% NaCl and 96% in Ringer's solution compared to the compact TiO2. Nanoindentation tests revealed that the mechanical properties of the hTNTs were influenced by their diagonal size, with decreasing hardness and Young's modulus observed with an increasing diagonal size of the hTNTs, accompanied by increased plastic deformation. Overall, these findings suggest that hTNTs exhibit promising structural and electrochemical properties, making them potential candidates for various applications, including biosensor platforms.
Collapse
Affiliation(s)
- Katarzyna Arkusz
- Department of Biomedical Engineering, Faculty of Mechanical Engineering, University of Zielona Gora, 9 Licealna Street, 65-417 Zielona Gora, Poland; (K.A.); (A.J.)
| | - Aleksandra Jędrzejewska
- Department of Biomedical Engineering, Faculty of Mechanical Engineering, University of Zielona Gora, 9 Licealna Street, 65-417 Zielona Gora, Poland; (K.A.); (A.J.)
| | - Piotr Siwak
- Institute of Mechanical Technology, Faculty of Mechanical Engineering, Poznan University of Technology, 3 Piotrowo Street, 60-965 Poznan, Poland;
| | - Mieczysław Jurczyk
- Department of Biomedical Engineering, Faculty of Mechanical Engineering, University of Zielona Gora, 9 Licealna Street, 65-417 Zielona Gora, Poland; (K.A.); (A.J.)
| |
Collapse
|
7
|
Wang Z, Chen K, Xue D. Crystallization of amorphous anodized TiO 2 nanotube arrays. RSC Adv 2024; 14:8195-8203. [PMID: 38469199 PMCID: PMC10925910 DOI: 10.1039/d4ra00852a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 02/29/2024] [Indexed: 03/13/2024] Open
Abstract
Anodized TiO2 nanotube arrays (TNTAs) prepared by anodization have garnered widespread attention due to their unique structure and properties. In this study, we prepared TNTAs of varying lengths by controlling the anodization time. Among them, the nanotubes anodized for 2 h have an inner diameter of approximately 92 nm and a wall thickness of approximately 12 nm. Then we subjected amorphous TNTAs prepared by the anodization method to annealing treatments, systematically analyzing the evolution of morphology and structure with varying annealing temperatures. As the annealing temperature increases, the amorphous successively undergoes transitions to the anatase phase and then to the rutile phase. During the transition to the anatase phase, the structure of the nanotube array remains intact, with the complete preservation of the tubular array structure. However, during the transition to the rutile phase, the tubular array structure is destroyed. To address why the tubular array remains undamaged during the amorphous-to-anatase transition, we subjected amorphous TNTAs to annealing at 300 °C for different durations. Raman spectroscopy was employed for fit analysis, providing insights into the evolution of the molecular structure during the anatase phase transition. Finally, TNTAs annealed at different temperatures were incorporated into lithium-ion batteries. By combining XRD for semi-quantitative phase content and anatase particle size calculations, we established a correlation between structure and electrochemical performance. The results indicate a significant improvement in electrochemical performance for an amorphous-anatase structure obtained through annealing at 300 °C, providing insights for the design of high-performance energy storage materials.
Collapse
Affiliation(s)
- Zhiqiang Wang
- Institute of Novel Semiconductors, State Key Laboratory of Crystal Materials, Shandong University Jinan 250100 China
| | - Kunfeng Chen
- Institute of Novel Semiconductors, State Key Laboratory of Crystal Materials, Shandong University Jinan 250100 China
| | - Dongfeng Xue
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China Shenzhen 518110 China
| |
Collapse
|
8
|
Porous vs. Nanotubular Anodic TiO2: Does the Morphology Really Matters for the Photodegradation of Caffeine? COATINGS 2022. [DOI: 10.3390/coatings12071002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Herein, the preparation of nanotubular and porous TiO2 structures (TNS) is presented for photocatalytic applications. Different TNS were prepared in three different types of glycerol- and ethylene glycol-based electrolytes on a large area (approx. 20 cm2) via anodization using different conditions (applied potential, fluoride concentration). Morphology, structure, and optical properties of TNS were characterized by Scanning Electron Microscopy (SEM), X-ray Diffractometry (XRD), and Diffuse Reflectance Spectroscopy (DRS), respectively. All TNS possess optical band-gap energy (EBG) in the range from 3.1 eV to 3.2 eV. Photocatalytic degradation of caffeine was conducted to evaluate the efficiency of TNS. Overall, nanotubular TiO2 possessed enhanced degradation efficiencies (up to 50% degradation) compared to those of porous TiO2 (up to 30% degradation). This is due to the unique properties of nanotubular TiO2, e.g., improved incident light utilization. As the anodization of large areas is, nowadays, becoming a trend, we show that both nanotubular and porous TiO2 are promising for their use in photocatalysis and could be potentially applicable in photoreactors for wastewater treatment. We believe this present work can be the foundation for future development of efficient TiO2 nanostructures for industrial applications.
Collapse
|
9
|
Kouao DS, Grochowska K, Siuzdak K. The Anodization of Thin Titania Layers as a Facile Process towards Semitransparent and Ordered Electrode Material. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1131. [PMID: 35407248 PMCID: PMC9000737 DOI: 10.3390/nano12071131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/18/2022] [Accepted: 03/25/2022] [Indexed: 01/02/2023]
Abstract
Photoanodes consisting of titania nanotubes (TNTs) grown on transparent conductive oxides (TCO) by anodic oxidation are being widely investigated as a low-cost alternative to silicon-based materials, e.g., in solar light-harvesting applications. Intending to enhance the optical properties of those photoanodes, the modification of the surface chemistry or control of the geometrical characteristics of developed TNTs has been explored. In this review, the recent advancement in light-harvesting properties of transparent anodic TNTs formed onto TCO is summarized. The physical deposition methods such as magnetron sputtering, pulsed laser deposition and electron beam evaporation are the most reported for the deposition of Ti film onto TCO, which are subsequently anodized. A concise description of methods utilized to improve the adhesion of the deposited film and achieve TNT layers without cracks and delamination after the anodization is outlined. Then, the different models describing the formation mechanism of anodic TNTs are discussed with particular focus on the impact of the deposited Ti film thickness on the adhesion of TNTs. Finally, the effects of the modifications of both the surface chemistry and morphological features of materials on their photocatalyst and photovoltaic performances are discussed. For each section, experimental results obtained by different research groups are evoked.
Collapse
Affiliation(s)
- Dujearic-Stephane Kouao
- Centre for Plasma and Laser Engineering, The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Science, Fiszera 14 St., 80-231 Gdańsk, Poland; (K.G.); (K.S.)
| | | | | |
Collapse
|