1
|
Tadesse T, Dese D, Dabassa A, Bacha K. Diversity, Distribution, and Phenotypic Characterization of Cultivable Wild Yeasts Isolated from Natural Forest. F1000Res 2025; 14:105. [PMID: 40291468 PMCID: PMC12033980 DOI: 10.12688/f1000research.160250.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/24/2025] [Indexed: 04/30/2025] Open
Abstract
Background Yeasts are unicellular fungi that inhabit a variety of environments including plant surfaces, water, soil, and animal hosts. However, limited research has been conducted on soil and plant associated yeasts in Africa, with most studies originating from developed regions. Methods This study explored the diversity, distribution, and phenotypic characterization of cultivable wild yeast in samples from rhizosphere soil, leaves, litter, and tree bark collected from South West Ethiopia. Yeast isolates were characterized using morphological, physiological and biochemical methods, Stress-tolerant yeast species were identified using Matrix-Assisted Laser Desorption Ionization-Time of Flight (MALDI-TOF). Results Based on morphological, physiological, and biochemical analyses, a total of 15 yeast genera were identified from 23 plant species. Predominant yeast species included Candida spp., Saccharomyces spp., Meyerozyma spp., Pichia spp., Geotrichum spp., and Hanseniaspora spp. Plant species with the highest yeast diversity were Ficus vasta, Ficus exasperata, Ficus sycomorus, Cordia africana, and Ritchiea albersii. Bark samples yielded more yeast isolates than rhizosphere soil, litter, and leaves. Stress-tolerant species such as Saccharomyces cerevisiae, Candida pelliculosa, Meyerozyma guilliermondii, Pichia kluyveri, and Trichosporon asahii were identified using MALDI-TOF. Correlation analysis revealed no significant relationship between yeast populations in bark and leaf samples or between rhizosphere soil and leaves, though a weak positive correlation was found between rhizosphere soil and bark or litter. Seasonal analysis showed a strong positive correlation between yeast abundance in spring and summer, but no association between autumn and spring. Conclusion Ethiopian forests are home for various yeast species including the stress-tolerant wild yeasts. This study highlights the significant yeast diversity in Ethiopian forests, with potential applications in improving industrial fermentation processes that operate under stressful conditions.
Collapse
Affiliation(s)
| | - Degife Dese
- Biology, Jimma University College of Natural Sciences, Jimma, Oromia, 378, Ethiopia
| | - Anbessa Dabassa
- Biology, Jimma University College of Natural Sciences, Jimma, Oromia, 378, Ethiopia
| | - Ketema Bacha
- Biology, Jimma University College of Natural Sciences, Jimma, Oromia, 378, Ethiopia
| |
Collapse
|
2
|
Dorosti S, Shekaari H, Bagheri M, Ghaffari F, Mokhtarpour M. Unraveling the effect of choline-based choline based ionic liquids on the physicochemical properties and taste behavior of D( +)-glucose in aqueous solutions. BMC Chem 2025; 19:49. [PMID: 39987444 PMCID: PMC11847403 DOI: 10.1186/s13065-025-01407-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 02/04/2025] [Indexed: 02/24/2025] Open
Abstract
To elucidate the mechanism by which choline-based ionic liquids potentially can enhance the sugar conversion to bioethanol, this work was conducted to study the thermodynamic behavior of D( +)-glucose in aqueous solutions of choline-based ionic liquids, choline salicylate [Ch][Sal], choline formate [Ch][For], and choline acetate [Ch][Ace]. This study involved measuring density, speed of sound, viscosity, and electrical conductivity at various concentrations and temperatures. Analysis of the calculated parameters, including apparent molar volume, Vφ, apparent molar isentropic compressibility (κφ), viscosity B-coefficient, and molar conductivity (Λ) values provide deep insights into intermolecular interactions between the components of the solutions studied. The standard partial molar volume values ( V φ 0 ) of D( +)-glucose, show stronger interactions between D( +)-glucose and the [Ch][Sal]. The computed transfer volume values (Δ tr V φ 0 ), with the help of co-sphere overlap model confirm intensified hydrophilic-hydrophilic interactions in [Ch][Sal] [(1.99 to 2.08) cm3·mol-1] solutions. Hepler's constants suggest that D( +)-glucose acts as a structure-maker in the presence of choline-based ILs, especially in [Ch][Sal] solutions. Also, the DFT-COSMO calculations result in [Ch][Sal] the most favorable interactions among the other choline based ILs. Apparent specific volume (ASV), and apparent specific isentropic compressibility, (ASIC), values revealed that D( +)-glucose exhibits the taste behavior with [Ch][Sal]. The hydration number of D( +)-glucose diminishes as the temperature rises due to weakened hydrogen bonds between D( +)-glucose and water molecules. These findings suggest that [Ch][Sal] could be a promising candidate for accelerating sugar conversion to bioethanol.
Collapse
Affiliation(s)
- Sara Dorosti
- Department of Physical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Hemayat Shekaari
- Department of Physical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| | - Mohammad Bagheri
- Department of Physical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Fariba Ghaffari
- Department of Physical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Masumeh Mokhtarpour
- Department of Physical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| |
Collapse
|
3
|
Jamal QMS, Ahmad V. Bacterial metabolomics: current applications for human welfare and future aspects. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2025; 27:207-230. [PMID: 39078342 DOI: 10.1080/10286020.2024.2385365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024]
Abstract
An imbalanced microbiome is linked to several diseases, such as cancer, inflammatory bowel disease, obesity, and even neurological disorders. Bacteria and their by-products are used for various industrial and clinical purposes. The metabolites under discussion were chosen based on their biological impacts on host and gut microbiota interactions as established by metabolome research. The separation of bacterial metabolites by using statistics and machine learning analysis creates new opportunities for applications of bacteria and their metabolites in the environmental and medical sciences. Thus, the metabolite production strategies, methodologies, and importance of bacterial metabolites for human well-being are discussed in this review.
Collapse
Affiliation(s)
- Qazi Mohammad Sajid Jamal
- Department of Health Informatics, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Varish Ahmad
- Health Information Technology Department, The Applied College, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
4
|
García-Mogollón CA, Mendoza DF, Quintero-Díaz JC. Electrostatic ethanol fermentation: Experimental study and kinetic-based metabolic modeling. Heliyon 2024; 10:e36587. [PMID: 39281627 PMCID: PMC11401030 DOI: 10.1016/j.heliyon.2024.e36587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/18/2024] Open
Abstract
Due to the electrical nature of the cell, it is possible to modulate its behavior through the application of non-lethal external electric fields to improve fermentation processes. In this work, a microbial cell system with a chamber and two electrodes inside and connected to a voltage source was used. One of the electrodes was kept isolated to create an electric field without the flow of current. Cultures with two ethanol-producing microbial strains (Saccharomyces cerevisiae and Zymomonas mobilis) were conducted in this device. The application of voltages between 0 and 18 V was evaluated to determine the impact of the generated electric field on ethanol production. To analyze the possible effect of the field on the central carbon metabolism in each strain, biochemical-based kinetic models were formulated to describe the experimental fermentation kinetics obtained. It was found that low applied voltages did not have significant effects on growth rate in either strain, but all voltages evaluated increased substrate consumption and ethanol production rate in Z. mobilis, while only 18 V affected these rates in S. cerevisiae, indicating that Z. mobilis was the most sensitive to the electric field. At the end of the fermentation, significant increases in ethanol yields of 10.7% and 19.5% were detected for S. cerevisiae and Z. mobilis, respectively. The proposed mathematical models showed that substrate transport through the membrane catalyzed by the phosphotransferase system (PTS) for Z. mobilis and hexose transport proteins mechanism and hexokinase (HK) activity for S. cerevisiae and the transformation of pyruvate to ethanol, catalyzed by the decarboxylase (PDC) and alcohol dehydrogenase (ADH) enzymes, were the reactions most affected by the application of the external field.
Collapse
Affiliation(s)
| | - Diego F Mendoza
- Departamento de Ingeniería Química, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, 050010, Antioquia, Colombia
| | - Juan Carlos Quintero-Díaz
- Departamento de Ingeniería Química, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, 050010, Antioquia, Colombia
| |
Collapse
|
5
|
Koukoumaki DI, Papanikolaou S, Ioannou Z, Mourtzinos I, Sarris D. Single-Cell Protein and Ethanol Production of a Newly Isolated Kluyveromyces marxianus Strain through Cheese Whey Valorization. Foods 2024; 13:1892. [PMID: 38928833 PMCID: PMC11203209 DOI: 10.3390/foods13121892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/31/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
The present work examined the production of single-cell protein (SCP) by a newly isolated strain of Kluyveromyces marxianus EXF-5288 under increased lactose concentration of deproteinized cheese whey (DCW) and different temperatures (in °C: 20.0, 25.0, 30.0 and 35.0). To the best of the authors' knowledge, this is the first report examining the ability of Kluyveromyces marxianus species to produce SCP at T = 20.0 °C. Different culture temperatures led to significant differences in the strain's growth, while maximum biomass and SCP production (14.24 ± 0.70 and 6.14 ± 0.66 g/L, respectively) were observed in the cultivation of K. marxianus strain EXF-5288 in shake-flask cultures at T = 20.0 °C. Increased DCW lactose concentrations (35.0-100.0 g/L) led to increased ethanol production (Ethmax = 35.5 ± 0.2 g/L), suggesting that K. marxianus strain EXF-5288 is "Crabtree-positive". Batch-bioreactor trials shifted the strain's metabolism to alcoholic fermentation, favoring ethanol production. Surprisingly, K. marxianus strain EXF-5288 was able to catabolize the produced ethanol under limited carbon presence in the medium. The dominant amino acids in SCP were glutamate (15.5 mg/g), aspartic acid (12.0 mg/g) and valine (9.5 mg/g), representing a balanced nutritional profile.
Collapse
Affiliation(s)
- Danai Ioanna Koukoumaki
- Laboratory of Physico-Chemical and Biotechnological Valorization of Food By-Products, Department of Food Science & Nutrition, School of Environment, University of the Aegean, Leoforos Dimokratias 66, 81400 Myrina, Lemnos, Greece; (D.I.K.); (Z.I.)
| | - Seraphim Papanikolaou
- Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece;
| | - Zacharias Ioannou
- Laboratory of Physico-Chemical and Biotechnological Valorization of Food By-Products, Department of Food Science & Nutrition, School of Environment, University of the Aegean, Leoforos Dimokratias 66, 81400 Myrina, Lemnos, Greece; (D.I.K.); (Z.I.)
| | - Ioannis Mourtzinos
- Laboratory of Food Chemistry and Biochemistry, Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Dimitris Sarris
- Laboratory of Physico-Chemical and Biotechnological Valorization of Food By-Products, Department of Food Science & Nutrition, School of Environment, University of the Aegean, Leoforos Dimokratias 66, 81400 Myrina, Lemnos, Greece; (D.I.K.); (Z.I.)
| |
Collapse
|
6
|
Zhang Y, Jiang C, Li Y, Sun J, Chen Z, Zhang Q, Sun G. Screening, identification, and mechanism analysis of starch-degrading bacteria during curing process in tobacco leaf. Front Bioeng Biotechnol 2024; 12:1332113. [PMID: 38567082 PMCID: PMC10985783 DOI: 10.3389/fbioe.2024.1332113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/07/2024] [Indexed: 04/04/2024] Open
Abstract
Tobacco, a vital economic crop, had its quality post-curing significantly influenced by starch content. Nonetheless, the existing process parameters during curing were inadequate to satisfy the starch degradation requirements. Microorganisms exhibit inherent advantages in starch degradation, offering significant potential in the tobacco curing process. Our study concentrated on the microbial populations on the surface of tobacco leaves and in the rhizosphere soil. A strain capable of starch degradation, designated as BS3, was successfully isolated and identified as Bacillus subtilis by phylogenetic tree analysis based on 16SrDNA sequence. The application of BS3 on tobacco significantly enhanced enzyme activity and accelerated starch degradation during the curing process. Furthermore, analyses of the metagenome, transcriptome, and metabolome indicated that the BS3 strain facilitated starch degradation by regulating surface microbiota composition and affecting genes related to starch hydrolyzed protein and key metabolites in tobacco leaves. This study offered new strategies for efficiently improving the quality of tobacco leaves.
Collapse
Affiliation(s)
- Yan Zhang
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Chuandong Jiang
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Yangyang Li
- Hunan Tobacco Research Institute, Changsha, China
| | - Jingguo Sun
- Hubei Provincial Tobacco Research Institute, Wuhan, China
| | - Zhenguo Chen
- Hubei Provincial Tobacco Research Institute, Wuhan, China
| | - Qiang Zhang
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Guangwei Sun
- Hubei Provincial Tobacco Research Institute, Wuhan, China
| |
Collapse
|
7
|
Yang N, Guerin C, Kokanyan N, Perré P. Raman spectroscopy applied to online monitoring of a bioreactor: Tackling the limit of detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123343. [PMID: 37690399 DOI: 10.1016/j.saa.2023.123343] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/29/2023] [Accepted: 09/02/2023] [Indexed: 09/12/2023]
Abstract
An in-situ monitoring model of alcoholic fermentation based on Raman spectroscopy was developed in this study. The optimized acquisition parameters were an 80 s exposure time with three accumulations. Standard solutions were prepared and used to populate a learning database. Two groups of mixed solutions were prepared for a validation database to simulate fermentation at different conditions. First, all spectra of the standards were evaluated by principal component analysis (PCA) to identify the spectral features of the target substances and observe their distribution and outliers. Second, three multivariate calibration models for prediction were developed using the partial least squares (PLS) method, either on the whole learning database or subsets. The limit of detection (LOD) of each model was estimated by using the root mean square error of cross validation (RMSECV), and the prediction ability was further tested with both validation datasets. As a result, improved LODs were obtained: 0.42 and 1.55 g·L-1 for ethanol and glucose using a sub-learning dataset with a concentration range of 0.5 to 10 g·L-1. An interesting prediction result was obtained from a cross-mixed validation set, which had a root mean square error of prediction (RMSEP) for ethanol and glucose of only 3.21 and 1.69, even with large differences in mixture concentrations. This result not only indicates that a model based on standard solutions can predict the concentration of a mixed solution in a complex matrix but also offers good prospects for applying the model in real bioreactors.
Collapse
Affiliation(s)
- Ning Yang
- Université Paris-Saclay, CentraleSupélec, Laboratoire de Génie des Procédés et Matériaux, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), 3 rue des Rouges Terres 51110 Pomacle, France; CentraleSupélec, Chaire Photonique, Laboratoire Matériaux Optiques, Photonique et Systèmes (LMOPS), Metz F-57070, France; Université de Lorraine, Laboratoire Matériaux Optiques, Photonique et Systèmes (LMOPS), Metz F-57070, France.
| | - Cédric Guerin
- Université Paris-Saclay, CentraleSupélec, Laboratoire de Génie des Procédés et Matériaux, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), 3 rue des Rouges Terres 51110 Pomacle, France
| | - Ninel Kokanyan
- CentraleSupélec, Chaire Photonique, Laboratoire Matériaux Optiques, Photonique et Systèmes (LMOPS), Metz F-57070, France; Université de Lorraine, Laboratoire Matériaux Optiques, Photonique et Systèmes (LMOPS), Metz F-57070, France
| | - Patrick Perré
- Université Paris-Saclay, CentraleSupélec, Laboratoire de Génie des Procédés et Matériaux, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), 3 rue des Rouges Terres 51110 Pomacle, France; Université Paris-Saclay, CentraleSupélec, Laboratoire de Génie des Procédés et Matériaux (LGPM), Gif-sur-Yvette, France
| |
Collapse
|
8
|
Karayannis D, Vasilakis G, Charisteidis I, Litinas A, Manolopoulou E, Tsakalidou E, Papanikolaou S. Screening of New Industrially Important Bacterial Strains for 1,3-Propanediol, 2,3-Butanediol and Ethanol Production through Biodiesel-Derived Glycerol Fermentations. Microorganisms 2023; 11:1424. [PMID: 37374926 PMCID: PMC10301387 DOI: 10.3390/microorganisms11061424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/21/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
A study on the ability of new microbial strains to assimilate biodiesel-derived glycerol at low purity (75% w/w) and produce extra-cellular platform chemical compounds of major interest was carried out. After screening several bacterial strains under different fermentation conditions (e.g., pH, O2 availability, glycerol purity), three of the screened strains stood out for their high potential to produce valued-added products such as 2,3-butanediol (BDO), 1,3-propanediol (PDO) and ethanol (EtOH). The results indicate that under aerobic conditions, Klebsiella oxytoca ACA-DC 1581 produced BDO in high yield (YBDO/Gly = 0.46 g/g, corresponding to 94% of the maximum theoretical yield; Ymt) and titer, while under anaerobic conditions, Citrobacter freundii NRRL-B 2645 and Enterobacter ludwigii FMCC-204 produced PDO (YPDO/Gly = 0.56 g/g, 93% of Ymt) and EtOH (YEtOH/Gly = 0.44 g/g, 88% of Ymt), respectively. In the case of C. freundii, the regulation of pH proved to be mandatory, due to lactic acid production and a subsequent drop of pH that resulted in fermentation ceasing. In the fed-batch culture of K. oxytoca, the BDO maximum titer reached almost 70 g/L, the YBDO/Gly and the mean productivity value (PrBDO) were 0.47 g/g and 0.4 g/L/h, respectively, while no optimization was imposed. The final BDO production obtained by this wild strain (K. oxytoca) is among the highest in the international literature, although the bioprocess requires optimization in terms of productivity and total cost. In addition, for the first time in the literature, a strain from the species Hafnia alvei (viz., Hafnia alvei ACA-DC 1196) was reported as a potential BDO producer. The strains as well as the methodology proposed in this study can contribute to the development of a biorefinery that complements the manufacture of biofuels with high-value biobased chemicals.
Collapse
Affiliation(s)
- Dimitris Karayannis
- Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece; (D.K.); (G.V.); (E.M.); (E.T.)
| | - Gabriel Vasilakis
- Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece; (D.K.); (G.V.); (E.M.); (E.T.)
| | - Ioannis Charisteidis
- Verd S.A., 2nd Industrial Area of Volos, 37500 Velestino, Greece; (I.C.); (A.L.)
| | - Alexandros Litinas
- Verd S.A., 2nd Industrial Area of Volos, 37500 Velestino, Greece; (I.C.); (A.L.)
| | - Eugenia Manolopoulou
- Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece; (D.K.); (G.V.); (E.M.); (E.T.)
| | - Effie Tsakalidou
- Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece; (D.K.); (G.V.); (E.M.); (E.T.)
| | - Seraphim Papanikolaou
- Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece; (D.K.); (G.V.); (E.M.); (E.T.)
| |
Collapse
|
9
|
Cellulosic Fiber Waste Feedstock for Bioethanol Production via Bioreactor-Dependent Fermentation. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9020176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
The bioconversion of environmental wastes into energy is gaining much interest in most developing and developed countries. The current study is concerned with the proper exploitation of some industrial wastes. Cellulosic fiber waste was selected as a raw material for producing bioethanol as an alternative energy source. A combination of physical, chemical, and enzymatic hydrolysis treatments was applied to maximize the concentration of glucose that could be fermented with yeast into bioethanol. The results showed that the maximum production of 13.9 mg/mL of glucose was achieved when 5% cellulosic fiber waste was treated with 40% HCl, autoclaved, and followed with enzymatic hydrolysis. Using SEM and FTIR analysis, the instrumental characterization of the waste fiber treatment confirmed the effectiveness of the degradation by turning the long threads of the fibers into small pieces, in addition to the appearance of new functional groups and peak shifting. A potent yeast strain isolated from rotten grapes was identified as Starmerella bacillaris STDF-G4 (accession number OP872748), which was used to ferment the obtained glucose units into bioethanol under optimized conditions. The maximum production of 3.16 mg/mL of bioethanol was recorded when 7% of the yeast strain was anaerobically incubated at 30 °C in a broth culture with the pH adjusted to 5. The optimized conditions were scaled up from flasks to a fermentation bioreactor to maximize the bioethanol concentration. The obtained data showed the ability of the yeast strain to produce 4.13 mg/mL of bioethanol after the first 6 h of incubation and double the amount after 36 h of incubation to reach 8.6 mg/mL, indicating the efficiency of the bioreactor in reducing the time and significantly increasing the product.
Collapse
|
10
|
Essential Oil of Greek Citrus sinensis cv New Hall - Citrus aurantium Pericarp: Effect upon Cellular Lipid Composition and Growth of Saccharomyces cerevisiae and Antimicrobial Activity against Bacteria, Fungi, and Human Pathogenic Microorganisms. Processes (Basel) 2023. [DOI: 10.3390/pr11020394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In this study, the essential oil (EO) from the peel of the Greek citrus hybrid Citrus sinensis cv New Hall - Citrus aurantium was studied in terms of its antimicrobial properties as well as its effect on Saccharomyces cerevisiae. According to the analysis of the EO, 48 compounds are contained in it, with the main compounds being limonene, β-pinene, myrcene, α-pinene, valencene, and α-terpineol. As regards its antimicrobial properties, the EO was evaluated against nine human pathogenic microorganisms, six bacteria, and three fungi. Taking the results into account, it was apparent that Gram-negative bacteria were the most susceptible to the addition of the EO, followed by the Gram-positive bacteria, and finally the examined yeasts. The minimum inhibitory concentrations were found to be lower compared to other studies. Finally, the effect of the EO on the biochemical behavior of the yeast Saccharomyces cerevisiae LMBF Y-16 was investigated. As the concentration of the EO increased, the more the exponential phase of the microbial growth decreased; furthermore, the biomass yield on the glucose consumed significantly decreased with the addition of the oil on the medium. The addition of the EO in small concentrations (e.g., 0.3 mL/L) did not present a remarkable negative effect on both the final biomass concentration and maximum ethanol quantity produced. In contrast, utilization of the extract in higher concentrations (e.g., 1.2 mL/L) noticeably inhibited microbial growth as the highest biomass concentration achieved, maximum ethanol production, and yield of ethanol produced per glucose consumed drastically declined. Concerning the composition of cellular lipids, the addition of the EO induced an increment in the concentration of cellular palmitic, stearic, and linoleic acids, with a concomitant decrease in the cellular palmitoleic acid and oleic acids.
Collapse
|
11
|
Ni JB, Bi YX, Vidyarthi SK, Xiao HW, Han LD, Wang J, Fang XM. Non-thermal electrohydrodynamic (EHD) drying improved the volatile organic compounds of lotus bee pollen via HS-GC-IMS and HS-SPME-GC-MS. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
12
|
Mavrommati M, Papanikolaou S, Aggelis G. Improving ethanol tolerance of Saccharomyces cerevisiae through adaptive laboratory evolution using high ethanol concentrations as a selective pressure. Process Biochem 2023. [DOI: 10.1016/j.procbio.2022.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Growth Potential of Selected Yeast Strains Cultivated on Xylose-Based Media Mimicking Lignocellulosic Wastewater Streams: High Production of Microbial Lipids by Rhodosporidium toruloides. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8120713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The potential of Rhodosporidium toruloides, Candida oleophila, Metschnikowia pulcherima, and Cryptococcus curvatus species to produce single-cell-oil (SCO) and other valuable metabolites on low-cost media, based on commercial-type xylose, was investigated. Rhodosporidium strains were further evaluated in shake-flasks using different lignosulphonate (LS) concentrations, in media mimicking waste streams derived from the paper and pulp industry. Increasing the LS concentration up to 40 g/L resulted in enhanced dry cell weight (DCW) while SCO production increased up to ~5.0 g/L when R. toruloides NRRL Y-27012 and DSM 4444 were employed. The intra-cellular polysaccharide production ranged from 0.9 to 2.3 g/L in all fermentations. Subsequent fed-batch bioreactor experiments with R. toruloides NRRL Y-27012 using 20 g/L of LS and xylose, led to SCO production of 17.0 g/L with maximum lipids in DCW (YL/X) = 57.0% w/w. The fatty acid (FA) profile in cellular lipids showed that oleic (50.3–63.4% w/w) and palmitic acid (23.9–31.0%) were the major FAs. Only SCO from batch trials of R. toruloides strains contained α-linolenic acid. Media that was supplemented with various LS concentrations enhanced the unsaturation profile of SCO from R. toruloides NRRL Y-27012. SCO from R. toruloides strains could replace plant-based commodity oils in oleochemical-operations and/or it could be micro- and nano-encapsulated into novel food-based formulas offering healthier food-products.
Collapse
|
14
|
Diamantopoulou P, Papanikolaou S. Biotechnological production of sugar-alcohols: focus on Yarrowia lipolytica and edible/medicinal mushrooms. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Detection of Microbiota during the Fermentation Process of Wine in Relation to the Biogenic Amine Content. Foods 2022; 11:foods11193061. [PMID: 36230137 PMCID: PMC9564049 DOI: 10.3390/foods11193061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022] Open
Abstract
Viticulture is one of the traditional industries in Slovakia, where there are six wine-growing regions: Malokarpatska, Southern Slovakia, Central Slovakia, Nitra, Eastern Slovakia, and Tokaj. This study focuses on the detection of microbiota in soil samples, grape leaves and berries, and samples taken from fermenting must and young wine (the variety Tramín červený) in relation to the detected concentrations of biogenic amines during the fermentation process. In the examined samples, the number of yeasts and molds (from 3.8 to 6.8 log cfu/g or mL) and TVC (from 3.7 to 6.5 log cfu/g or mL) were determined via culture examination. At the same time, the number of LAB (from ˂3.0 to 4.4 log cfu/g or mL) was determined, which was the highest on day 4 of the must fermentation process and was related to the detected of the highest concentration of biogenic amines (histamine and tyramine) on day 6 in the investigated must samples using the UHPLC system. Mycobiota species were identified by MALDI-TOF MS, PCR, ITS-PCR-RFLP, and PCR sequencing of the amplified products. The study confirmed the presence of the yeasts Saccharomyces cerevisiae, Metschnikowia pulcherrima, Hanseniospora uvarum, Pichia kudriavzevii, Pichia kluyveri, Pichia fermentas, Torulaspora delbrueckii, and Candida tenuis. At the same time, the presence of molds (Cladosporium herbarum, Cladosporium cladosporioides, Penicillium granulatum, Penicillium mononematosum, Botritis cinerea, and Penicillium glabrum) was also confirmed in soil samples, leaves, grape berries, and fresh grape must. The study confirmed the reduction in the species diversity of the microbiota during the must fermentation process, which resulted in decreases in the concentrations of the monitored biogenic amines in the early stages of the must fermentation process and young wine of the variety Tramín červený.
Collapse
|
16
|
Tapia-Quirós P, Montenegro-Landívar MF, Vecino X, Alvarino T, Cortina JL, Saurina J, Granados M, Reig M. A green approach to phenolic compounds recovery from olive mill and winery wastes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155552. [PMID: 35489508 DOI: 10.1016/j.scitotenv.2022.155552] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/07/2022] [Accepted: 04/23/2022] [Indexed: 06/14/2023]
Abstract
The aim of this study was to evaluate the recovery of phenolic compounds from olive mill and winery wastes by conventional solid-liquid extraction (SLE) using water as the extraction solvent. The studied variables were extraction time (5-15 min), temperature (25-90 °C), solid-to-liquid ratio (1:10-1:100 (kg/L)), pH (3-10) and application of multiple extractions (1-3). The extraction efficiency was evaluated in terms of total phenolic content (TPC), determined by high performance liquid chromatography (HPLC-UV), but also from the recovery of some representative phenolic compounds. The optimized conditions were one extraction step, 10 min, 25 °C, 1:30 (kg/L), pH 5 for olive pomace, and one extraction step, 10 min, 70 °C, 1:100 (kg/L), pH 5 for winery residues. The extraction method is simple and suitable for scaling-up in industry, and the aqueous extracts are fully compatible with further purification schemes based on the use of membranes or resins. The optimized technique was applied to a set of different representative residues from olive mill and winery industries, to assess their suitability as sources for phenolic compounds recovery. The phenolic content in the extracts was evaluated by chromatographic analysis and by the Folin-Ciocalteu assay (FC). Furthermore, the antioxidant capacity was determined by 2,2-azinobis-3-etilbenzotiazolina-6-sulfonat (ABTS), 2,-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) assays. Because of their high contents in phenolic compounds and great antioxidant capacity, olive pomace and lees filters were identified as especially suited sources for phenolic compounds recovery.
Collapse
Affiliation(s)
- Paulina Tapia-Quirós
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/ Eduard Maristany 10-14, Campus Diagonal-Besòs, 08930 Barcelona, Spain; Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain.
| | - Maria Fernanda Montenegro-Landívar
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/ Eduard Maristany 10-14, Campus Diagonal-Besòs, 08930 Barcelona, Spain; Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain.
| | - Xanel Vecino
- CINTECX, University of Vigo, Chemical Engineering Department, 36310 Vigo, Spain.
| | - Teresa Alvarino
- Galician Water Research Center Foundation (Cetaqua Galicia), University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | - José Luis Cortina
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/ Eduard Maristany 10-14, Campus Diagonal-Besòs, 08930 Barcelona, Spain; Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain; CETAQUA, Carretera d'Esplugues, 75, 08940 Cornellà de Llobregat, Spain.
| | - Javier Saurina
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.
| | - Mercè Granados
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.
| | - Mònica Reig
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/ Eduard Maristany 10-14, Campus Diagonal-Besòs, 08930 Barcelona, Spain; Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain.
| |
Collapse
|
17
|
Yang P, Jiang S, Jiang S, Lu S, Zheng Z, Chen J, Wu W, Jiang S. CRISPR-Cas9 Approach Constructed Engineered Saccharomyces cerevisiae with the Deletion of GPD2, FPS1, and ADH2 to Enhance the Production of Ethanol. J Fungi (Basel) 2022; 8:jof8070703. [PMID: 35887459 PMCID: PMC9316504 DOI: 10.3390/jof8070703] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/21/2022] [Accepted: 06/29/2022] [Indexed: 02/05/2023] Open
Abstract
Bioethanol plays an important value in renewable liquid fuel. The excessive accumulation of glycerol and organic acids caused the decrease of ethanol content in the process of industrial ethanol production. In this study, the CRISPR-Cas9 approach was used to construct S. cerevisiae engineering strains by the deletion of GPD2, FPS1, and ADH2 for the improvement of ethanol production. RNA sequencing and transcriptome analysis were used to investigate the effect of gene deletion on gene expression. The results indicated that engineered S. cerevisiae SCGFA by the simultaneous deletion of GPD2, FPS1, and ADH2 produced 23.1 g/L ethanol, which increased by 0.18% in comparison with the wild-type strain with 50 g/L of glucose as substrate. SCGFA strain exhibited the ethanol conversion rate of 0.462 g per g of glucose. In addition, the contents of glycerol, lactic acid, acetic acid, and succinic acid in SCGFA decreased by 22.7, 12.7, 8.1, 19.9, and 20.7% compared with the wild-type strain, respectively. The up-regulated gene enrichment showed glycolysis, fatty acid, and carbon metabolism could affect the ethanol production of SCGFA according to the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Therefore, the engineering strain SCGFA had great potential in the production of bioethanol.
Collapse
Affiliation(s)
- Peizhou Yang
- Anhui Key Laboratory of Intensive Processing of Agricultural Products, College of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (S.J.); (S.L.); (Z.Z.); (J.C.); (W.W.); (S.J.)
- Correspondence: ; Tel.: +86-15155197790
| | - Shuying Jiang
- Anhui Key Laboratory of Intensive Processing of Agricultural Products, College of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (S.J.); (S.L.); (Z.Z.); (J.C.); (W.W.); (S.J.)
| | - Suwei Jiang
- Department of Biological, Food and Environment Engineering, Hefei University, Hefei 230601, China;
| | - Shuhua Lu
- Anhui Key Laboratory of Intensive Processing of Agricultural Products, College of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (S.J.); (S.L.); (Z.Z.); (J.C.); (W.W.); (S.J.)
| | - Zhi Zheng
- Anhui Key Laboratory of Intensive Processing of Agricultural Products, College of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (S.J.); (S.L.); (Z.Z.); (J.C.); (W.W.); (S.J.)
| | - Jianchao Chen
- Anhui Key Laboratory of Intensive Processing of Agricultural Products, College of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (S.J.); (S.L.); (Z.Z.); (J.C.); (W.W.); (S.J.)
| | - Wenjing Wu
- Anhui Key Laboratory of Intensive Processing of Agricultural Products, College of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (S.J.); (S.L.); (Z.Z.); (J.C.); (W.W.); (S.J.)
| | - Shaotong Jiang
- Anhui Key Laboratory of Intensive Processing of Agricultural Products, College of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (S.J.); (S.L.); (Z.Z.); (J.C.); (W.W.); (S.J.)
| |
Collapse
|
18
|
Trials of Commercial- and Wild-Type Saccharomyces cerevisiae Strains under Aerobic and Microaerophilic/Anaerobic Conditions: Ethanol Production and Must Fermentation from Grapes of Santorini (Greece) Native Varieties. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8060249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In modern wine-making technology, there is an increasing concern in relation to the preservation of the biodiversity, and the employment of “new”, “novel” and wild-type Saccharomyces cerevisiae strains as cell factories amenable for the production of wines that are not “homogenous”, expressing their terroir and presenting interesting and “local” sensory characteristics. Under this approach, in the current study, several wild-type Saccharomyces cerevisiae yeast strains (LMBF Y-10, Y-25, Y-35 and Y-54), priorly isolated from wine and grape origin, selected from the private culture collection of the Agricultural University of Athens, were tested regarding their biochemical behavior on glucose-based (initial concentrations ca 100 and 200 g/L) shake-flask experiments. The wild yeast strains were compared with commercial yeast strains (viz. Symphony, Cross X and Passion Fruit) in the same conditions. All selected strains rapidly assimilated glucose from the medium converting it into ethanol in good rates, despite the imposed aerobic conditions. Concerning the wild strains, the best results were achieved for the strain LMBF Y-54 in which maximum ethanol production (EtOHmax) up to 68 g/L, with simultaneous ethanol yield on sugar consumed = 0.38 g/g were recorded. Other wild strains tested (LMBF Y-10, Y-25 and Y-35) achieved lower ethanol production (up to ≈47 g/L). Regarding the commercial strains, the highest ethanol concentration was achieved by S. cerevisiae Passion Fruit (EtOHmax = 91.1 g/L, yield = 0.45 g/g). Subsequently, the “novel” strain that presented the best technological characteristics regards its sugar consumption and alcohol production properties (viz. LMBF Y-54) and the commercial strain that equally presented the best previously mentioned technological characteristics (viz. Passion Fruit) were further selected for the wine-making process. The selected must originated from red and white grapes (Assyrtiko and Mavrotragano, Santorini Island; Greece) and fermentation was performed under wine-making conditions showing high yields for both strains (EtOHmax = 98–106 g/L, ethanol yield = 0.47–0.50 g/g), demonstrating the production efficiency under microaerophilic/anaerobic conditions. Molecular identification by rep-PCR carried out throughout fermentations verified that each inoculated yeast was the one that dominated during the whole bioprocess. The aromatic compounds of the produced wines were qualitatively analyzed at the end of the processes. The results highlight the optimum technological characteristics of the selected “new” wild strain (S. cerevisiae LMBF Y-54), verifying its suitability for wine production while posing great potential for future industrial applications.
Collapse
|
19
|
Emerging Green Techniques for the Extraction of Antioxidants from Agri-Food By-Products as Promising Ingredients for the Food Industry. Antioxidants (Basel) 2021; 10:antiox10091417. [PMID: 34573049 PMCID: PMC8471374 DOI: 10.3390/antiox10091417] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 09/01/2021] [Indexed: 11/18/2022] Open
Abstract
Nowadays, the food industry is heavily involved in searching for green sources of valuable compounds, to be employed as potential food ingredients, to cater to the evolving consumers’ requirements for health-beneficial food ingredients. In this frame, agri-food by-products represent a low-cost source of natural bioactive compounds, including antioxidants. However, to effectively recover these intracellular compounds, it is necessary to reduce the mass transfer resistances represented by the cellular envelope, within which they are localized, to enhance their extractability. To this purpose, emerging extraction technologies, have been proposed, including Supercritical Fluid Extraction, Microwave-Assisted Extraction, Ultrasound-Assisted Extraction, High-Pressure Homogenization, Pulsed Electric Fields, High Voltage Electrical Discharges. These technologies demonstrated to be a sustainable alternative to conventional extraction, showing the potential to increase the extraction yield, decrease the extraction time and solvent consumption. Additionally, in green extraction processes, also the contribution of solvent selection, as well as environmental and economic aspects, represent a key factor. Therefore, this review focused on critically analyzing the main findings on the synergistic effect of low environmental impact technologies and green solvents towards the green extraction of antioxidants from food by-products, by discussing the main associated advantages and drawbacks, and the criteria of selection for process sustainability.
Collapse
|
20
|
Gottardi D, Siroli L, Vannini L, Patrignani F, Lanciotti R. Recovery and valorization of agri-food wastes and by-products using the non-conventional yeast Yarrowia lipolytica. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
21
|
Wu L, Wen Y, Chen W, Yan T, Tian X, Zhou S. Simultaneously deleting ADH2 and THI3 genes of Saccharomyces cerevisiae for reducing the yield of acetaldehyde and fusel alcohols. FEMS Microbiol Lett 2021; 368:6354780. [PMID: 34410369 DOI: 10.1093/femsle/fnab094] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/17/2021] [Indexed: 11/13/2022] Open
Abstract
The reduced yields of acetaldehyde and fusel alcohols through fermentation by Saccharomyces cerevisiae is of significance for the improvement of the flavor and health of alcoholic beverages. In this study, the ADH2 (encode alcohol dehydrogenase) and THI3 (encode decarboxylase) genes of the industrial diploid strain S. cerevisiae XF1 were deleted. Results showed that single-gene-deletion mutants by separate gene deletion of ADH2 or THI3 led to a reduced production of the acetaldehyde or fusel alcohols, respectively. In the meantime, the double-gene-deletion mutant S. cerevisiae XF1-AT was constructed by deleting the ADH2 and THI3 simultaneously. An equivalent level of the ethanol production by the S. cerevisiae XF1-AT could be achieved but with the yields of acetaldehyde, isoamyl alcohol and iso-butanol reduced by 42.09%, 15.65% and 20.16%, respectively. In addition, there was no interaction between the ADH2 deletion and THI3 deletion in reducing the production of acetaldehyde and fusel alcohols. The engineered S. cerevisiae XF1-AT provided a new strategy to alcoholic beverages brewing industry for reducing the production of acetaldehyde as well as the fusel alcohols.
Collapse
Affiliation(s)
- Liang Wu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Yongdi Wen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Wenying Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Tongshuai Yan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Xiaofei Tian
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China.,Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Shishui Zhou
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| |
Collapse
|
22
|
Mavrommati M, Daskalaki A, Papanikolaou S, Aggelis G. Adaptive laboratory evolution principles and applications in industrial biotechnology. Biotechnol Adv 2021; 54:107795. [PMID: 34246744 DOI: 10.1016/j.biotechadv.2021.107795] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/11/2021] [Accepted: 07/05/2021] [Indexed: 12/20/2022]
Abstract
Adaptive laboratory evolution (ALE) is an innovative approach for the generation of evolved microbial strains with desired characteristics, by implementing the rules of natural selection as presented in the Darwinian Theory, on the laboratory bench. New as it might be, it has already been used by several researchers for the amelioration of a variety of characteristics of widely used microorganisms in biotechnology. ALE is used as a tool for the deeper understanding of the genetic and/or metabolic pathways of evolution. Another important field targeted by ALE is the manufacturing of products of (high) added value, such as ethanol, butanol and lipids. In the current review, we discuss the basic principles and techniques of ALE, and then we focus on studies where it has been applied to bacteria, fungi and microalgae, aiming to improve their performance to biotechnological procedures and/or inspect the genetic background of evolution. We conclude that ALE is a promising and efficacious method that has already led to the acquisition of useful new microbiological strains in biotechnology and could possibly offer even more interesting results in the future.
Collapse
Affiliation(s)
- Maria Mavrommati
- Unit of Microbiology, Department of Biology, Division of Genetics, Cell Biology and Development, University of Patras, 26504 Patras, Greece; Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - Alexandra Daskalaki
- Unit of Microbiology, Department of Biology, Division of Genetics, Cell Biology and Development, University of Patras, 26504 Patras, Greece
| | - Seraphim Papanikolaou
- Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - George Aggelis
- Unit of Microbiology, Department of Biology, Division of Genetics, Cell Biology and Development, University of Patras, 26504 Patras, Greece.
| |
Collapse
|
23
|
Göncü B, Gülşen H, Hoşgün EZ. Bioethanol production from pistachio ( pistacia vera L.) shells applying ozone pretreatment and subsequent enzymatic hydrolysis. ENVIRONMENTAL TECHNOLOGY 2021; 42:2438-2446. [PMID: 33719935 DOI: 10.1080/09593330.2021.1903565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/06/2021] [Indexed: 06/12/2023]
Abstract
Pistachio (pistacia vera L.) is a lignocellulosic raw material. One of the most pistachio produced three countries in the World is Turkey and Şanlıurfa is the city that most pistachio production in Turkey. As a result of this production, a large amount of pistachio waste is generated. Therefore, this study was conducted considering the abundant pistachio waste and furthermore, the effects of ozone and combined (ozone and hot water) pretreatments for bioethanol production from pistachio shells were investigated. Initially, the ozone and combined pretreatments were applied to the pistachio shells. It has been observed that applying the combined pretreatment provides better lignin removal than only ozone pretreatment and on the other hand, the ozone pretreatment provides better lignin removal than the hot water pretreatment. Scanning electron microscopy (SEM) images of pretreated and untreated pistachio shells were compared. Enzyme activity was measured, and 30-60 FPU enzyme loading was applied in an enzymatic hydrolysis. The enzymatic hydrolysis was applied to obtain fermentable sugar from the pistachio shells after pretreatments. As a result of enzymatic hydrolysis, 2.34-8.24 g/L reducing sugar was obtained. On the other hand, 1.21-2.33 g/L ethanol concentration was obtained end of the fermentation process. Fermentation efficiency was calculated between 42% and 55%. As a result, this study showed that combined pretreatment was more effective than the single pretreatment in the ethanol production process.
Collapse
Affiliation(s)
- Betül Göncü
- Department of Environmental Engineering, Harran University, Şanlıurfa, Turkey
| | - Hakki Gülşen
- Department of Environmental Engineering, Harran University, Şanlıurfa, Turkey
| | - Emir Zafer Hoşgün
- Department of Chemical Engineering, Eskişehir Technical University, Eskişehir, Turkey
| |
Collapse
|
24
|
Al Daccache M, Salameh D, Chamy LEL, Koubaa M, Maroun RG, Vorobiev E, Louka N. Evaluation of the fermentative capacity of an indigenous Hanseniaspora sp. strain isolated from Lebanese apples for cider production. FEMS Microbiol Lett 2021; 367:5861937. [PMID: 32578846 DOI: 10.1093/femsle/fnaa093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 06/18/2020] [Indexed: 12/15/2022] Open
Abstract
The present work studied the fermentative potential and carbon metabolism of an indigenous yeast isolated from Lebanese apples for cider production. The indigenous yeast strain was isolated from a spontaneous fermented juice of the Lebanese apple variety 'Ace spur'. The sequencing of the Internal Transcribed Spacer (ITS) domain of rRNA identified the isolated yeast strain as a member of the Hanseniaspora genus. These results suggest an intragenomic ITS sequence heterogeneity in the isolated yeast strain specifically in its ITS1 domain. The different investigations on the yeast carbon metabolism revealed that the isolated yeast is 'Crabtree positive' and can produce and accumulate ethanol from the first hours of fermentation. Thus, our findings highlight the possibility of using the isolated indigenous Hanseniaspora strain as a sole fermentative agent during cider production.
Collapse
Affiliation(s)
- Marina Al Daccache
- Faculté des Sciences, Centre d'Analyses et de Recherche, UR TVA (Technologies de Valorisation Agroalimentaires, Laboratoire CTA, Université Saint-Joseph, Beyrouth 1104 2020, Lebanon.,Sorbonne University, Université de technologie de Compiègne, ESCOM, EA 4297 TIMR, Centre de recherche Royallieu, CS 60319, 60203 Compiègne CEDEX, France
| | - Dominique Salameh
- Faculté des Sciences, Centre d'Analyses et de Recherche, UR TVA (Technologies de Valorisation Agroalimentaires, Laboratoire CTA, Université Saint-Joseph, Beyrouth 1104 2020, Lebanon
| | - Laure E L Chamy
- Faculté des Sciences, Centre d'Analyses et de Recherche, UR GPF, Laboratoire BGF, Université Saint-Joseph, Beirut 1104 2020, Lebanon
| | - Mohamed Koubaa
- ESCOM, UTC, EA 4297 TIMR, 1 allée du réseau Jean-Marie Buckmaster, 60200 Compiègne, France
| | - Richard G Maroun
- Faculté des Sciences, Centre d'Analyses et de Recherche, UR TVA (Technologies de Valorisation Agroalimentaires, Laboratoire CTA, Université Saint-Joseph, Beyrouth 1104 2020, Lebanon
| | - Eugène Vorobiev
- Sorbonne University, Université de technologie de Compiègne, ESCOM, EA 4297 TIMR, Centre de recherche Royallieu, CS 60319, 60203 Compiègne CEDEX, France
| | - Nicolas Louka
- Faculté des Sciences, Centre d'Analyses et de Recherche, UR TVA (Technologies de Valorisation Agroalimentaires, Laboratoire CTA, Université Saint-Joseph, Beyrouth 1104 2020, Lebanon
| |
Collapse
|
25
|
Zhang H, Li Y, Chen L, Zhang Q. Effect of zinc ion on photo-fermentative hydrogen production performance, kinetics and electronic distribution in biohydrogen production by HAU-M1. BIORESOURCE TECHNOLOGY 2021; 324:124680. [PMID: 33445013 DOI: 10.1016/j.biortech.2021.124680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
The aim of this work was to study the characteristics, kinetics and electronic distribution of photo-fermentation hydrogen production (PFHP) with Zn2+ addition then gave the main results that the addition of Zn2+ can effectively improve hydrogen production with an increasing of 1-5 mg/L Zn2+ concentration. The maximum hydrogen yield of 592 ± 13 mL and shortest lag time of 4.67 h were obtained at 2 mg/L Zn2+. 26.42% of the substrate energy was diverted to H2. Modified Gompertz and Hane-Levenspiel models were applied to evaluate the effect of Zn2+ on PFHP by mixed bacteria HAU-M1, the constants n and m obtained by fitting models were 14.97 and 58.79, respectively, indicating the fermentation system was noncompetitive inhibition, the predicted critical Zn2+ concentration was 40.83 mg/L.
Collapse
Affiliation(s)
- Huan Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy, MOA of China, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Zhengzhou 450002, China
| | - Yameng Li
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy, MOA of China, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Zhengzhou 450002, China
| | - Lei Chen
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy, MOA of China, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Zhengzhou 450002, China
| | - Quanguo Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy, MOA of China, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Zhengzhou 450002, China.
| |
Collapse
|
26
|
A Focus on the Transformation Processes for the Valorization of Glycerol Derived from the Production Cycle of Biofuels. Catalysts 2021. [DOI: 10.3390/catal11020280] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Glycerol is a valuable by-product in the biodiesel industries. However, the increase in biodiesel production resulted in an excess production of glycerol, with a limited market compared to its availability. Precisely because glycerol became a waste to be disposed of, the costs of biodiesel production have reduced. From an environmental point of view, identifying reactions that can convert glycerol into new products that can be reused in different applications has become a real necessity. According to the unique structural characteristics of glycerol, transformation processes can lead to different chemical functionalities through redox reactions, dehydration, esterification, and etherification, with the formation of products that can be applied both at the finest chemical level and to bulk chemistry.
Collapse
|
27
|
Mohammadi M, Martín-Hernández E, Martín M, Harjunkoski I. Modeling and Analysis of Organic Waste Management Systems in Centralized and Decentralized Supply Chains Using Generalized Disjunctive Programming. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c04638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Maryam Mohammadi
- Research Group of Process Control and Automation, Department of Chemical and Metallurgical Engineering, School of Chemical Engineering, Aalto University, Espoo FI-00076, Finland
| | - Edgar Martín-Hernández
- Department of Chemical Engineering, University of Salamanca, Plz. Caídos 1-5, Salamanca 37008, Spain
| | - Mariano Martín
- Department of Chemical Engineering, University of Salamanca, Plz. Caídos 1-5, Salamanca 37008, Spain
| | - Iiro Harjunkoski
- Research Group of Process Control and Automation, Department of Chemical and Metallurgical Engineering, School of Chemical Engineering, Aalto University, Espoo FI-00076, Finland
- Hitachi ABB Power Grids Research, Kallstadter Straße 1, Mannheim 68309, Germany
| |
Collapse
|
28
|
Sustainable Second-Generation Bioethanol Production from Enzymatically Hydrolyzed Domestic Food Waste Using Pichia anomala as Biocatalyst. SUSTAINABILITY 2020. [DOI: 10.3390/su13010259] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In the current study, a domestic food waste containing more than 50% of carbohydrates was assessed as feedstock to produce second-generation bioethanol. Aiming to the maximum exploitation of the carbohydrate fraction of the waste, its hydrolysis via cellulolytic and amylolytic enzymatic blends was investigated and the saccharification efficiency was assessed in each case. Fermentation experiments were performed using the non-conventional yeast Pichia anomala (Wickerhamomyces anomalus) under both separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) modes to evaluate the conversion efficiencies and ethanol yields for different enzymatic loadings. It was shown that the fermentation efficiency of the yeast was not affected by the fermentation mode and was high for all handlings, reaching 83%, whereas the enzymatic blend containing the highest amount of both cellulolytic and amylolytic enzymes led to almost complete liquefaction of the waste, resulting also in ethanol yields reaching 141.06 ± 6.81 g ethanol/kg waste (0.40 ± 0.03 g ethanol/g consumed carbohydrates). In the sequel, a scale-up fermentation experiment was performed with the highest loading of enzymes in SHF mode, from which the maximum specific growth rate, μmax, and the biomass yield, Yx/s, of the yeast from the hydrolyzed waste were estimated. The ethanol yields that were achieved were similar to those of the respective small scale experiments reaching 138.67 ± 5.69 g ethanol/kg waste (0.40 ± 0.01 g ethanol/g consumed carbohydrates).
Collapse
|
29
|
Bioconversion of Sweet Sorghum Residues by Trichoderma citrinoviride C1 Enzymes Cocktail for Effective Bioethanol Production. Catalysts 2020. [DOI: 10.3390/catal10111292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Improved cost-effective bioethanol production using inexpensive enzymes preparation was investigated. Three types of waste lignocellulosic materials were converted—for the production of enzyme preparation, a mixture of sugar beet pulp and wheat bran, while the source of sugars in hydrolysates was sweet sorghum biomass. A novel enzyme cocktail of Trichoderma citrinoviride C1 is presented. The one-step ultrafiltration process of crude enzyme extract resulted in a threefold increase of cellulolytic and xylanolytic activities. The effectiveness of enzyme preparation, compared to Cellic® CTec2, was tested in an optimized enzymatic hydrolysis process. Depending on the test conditions, hydrolysates with different glucose concentrations were obtained—from 6.3 g L−1 to 14.6 g L−1 (representing from 90% to 79% of the CTec2 enzyme yield, respectively). Furthermore, ethanol production by Saccharomyces cerevisiae SIHA Active Yeast 6 strain DF 639 in optimal conditions reached about 120 mL kg d.m.−1 (75% compared with the CTec2 process). The achieved yields suggested that the produced enzyme cocktail C1 could be potentially used to reduce the cost of bioethanol production from sweet sorghum biomass.
Collapse
|
30
|
Vieira RC, De Farias Silva CE, da Silva LOM, Almeida RMRG, de Oliveira Carvalho F, dos Santos Silva MC. Kinetic modelling of ethanolic fermented tomato must (Lycopersicon esculentum Mill) in batch system: influence of sugar content in the chaptalization step and inoculum concentration. REACTION KINETICS MECHANISMS AND CATALYSIS 2020. [DOI: 10.1007/s11144-020-01810-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Lipid Production by Yeasts Growing on Commercial Xylose in Submerged Cultures with Process Water Being Partially Replaced by Olive Mill Wastewaters. Processes (Basel) 2020. [DOI: 10.3390/pr8070819] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Six yeast strains belonging to Rhodosporidium toruloides, Lipomyces starkeyi, Rhodotorula glutinis and Cryptococcus curvatus were shake-flask cultured on xylose (initial sugar—S0 = 70 ± 10 g/L) under nitrogen-limited conditions. C. curvatus ATCC 20509 and L. starkeyi DSM 70296 were further cultured in media where process waters were partially replaced by the phenol-containing olive mill wastewaters (OMWs). In flasks with S0 ≈ 100 g/L and OMWs added yielding to initial phenolic compounds concentration (PCC0) between 0.0 g/L (blank experiment) and 2.0 g/L, C. curvatus presented maximum total dry cell weight—TDCWmax ≈ 27 g/L, in all cases. The more the PCC0 increased, the fewer lipids were produced. In OMW-enriched media with PCC0 ≈ 1.2 g/L, TDCW = 20.9 g/L containing ≈ 40% w/w of lipids was recorded. In L. starkeyi cultures, when PCC0 ≈ 2.0 g/L, TDCW ≈ 25 g/L was synthesized, whereas lipids in TDCW = 24–28% w/w, similar to the experiments without OMWs, were recorded. Non-negligible dephenolization and species-dependent decolorization of the wastewater occurred. A batch-bioreactor trial by C. curvatus only with xylose (S0 ≈ 110 g/L) was performed and TDCW = 35.1 g/L (lipids in TDCW = 44.3% w/w) was produced. Yeast total lipids were composed of oleic and palmitic and to lesser extent linoleic and stearic acids. C. curvatus lipids were mainly composed of nonpolar fractions (i.e., triacylglycerols).
Collapse
|
32
|
Mikucka W, Zielińska M. Distillery Stillage: Characteristics, Treatment, and Valorization. Appl Biochem Biotechnol 2020; 192:770-793. [PMID: 32557233 PMCID: PMC7578141 DOI: 10.1007/s12010-020-03343-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/22/2020] [Indexed: 12/22/2022]
Abstract
Distilleries are among the most polluting industries because ethanol fermentation results in the discharge of large quantities of high-strength liquid effluents with high concentrations of organic matter and nitrogen compounds, low pH, high temperature, dark brown color, and high salinity. The most common method of managing this wastewater (distillery stillage) is to use it for soil conditioning, but this requires thickening the wastewater and may cause soil pollution due to its high nitrogen content. Therefore, treatment of distillery stillage is preferable. This review discusses individual biological and physico-chemical treatment methods and combined technologies. In addition, special attention is paid to valorization of distillery stillage, which is a valuable source of polysaccharides and volatile fatty acids (VFAs), as well as natural antioxidants, including polyphenols and other bioactive compounds of interest to the pharmaceutical, cosmetic, and food industries. New directions in improvement of valorization technologies are highlighted, including the search for new eutectic solvents for extracting these compounds. Such technologies are essential for sustainable development, which requires the use of management and valorization strategies for recovery of valuable compounds with minimal disposal of waste streams.
Collapse
Affiliation(s)
- Wioleta Mikucka
- Department of Environmental Biotechnology, University of Warmia and Mazury in Olsztyn, Słoneczna St. 45G, 10-709, Olsztyn, Poland
| | - Magdalena Zielińska
- Department of Environmental Biotechnology, University of Warmia and Mazury in Olsztyn, Słoneczna St. 45G, 10-709, Olsztyn, Poland.
| |
Collapse
|
33
|
Diamantopoulou P, Filippousi R, Antoniou D, Varfi E, Xenopoulos E, Sarris D, Papanikolaou S. Production of added-value microbial metabolites during growth of yeast strains on media composed of biodiesel-derived crude glycerol and glycerol/xylose blends. FEMS Microbiol Lett 2020; 367:5818764. [DOI: 10.1093/femsle/fnaa063] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 04/07/2020] [Indexed: 12/11/2022] Open
Abstract
ABSTRACT
A total of 11 yeast strains of Yarrowia lipolytica, Metschnikowia sp., Rhodotorula sp. and Rhodosporidium toruloides were grown under nitrogen-limited conditions with crude glycerol employed as substrate in shake flasks, presenting interesting dry cell weight (DCW) production. Three of these strains belonging to Metschnikowia sp. accumulated significant quantities of endopolysaccharides (i.e. the strain V.V.-D4 produced 11.0 g/L of endopolysaccharides, with polysaccharides in DCW ≈ 63% w/w). A total of six Y. lipolytica strains produced either citric acid or mannitol. Most of the screened yeasts presented somehow elevated lipid and polysaccharides in DCW values at the early steps of growth despite nitrogen appearance in the fermentation medium. Lipid in DCW values decreased as growth proceeded. R. toruloides DSM 4444 cultivated on media presenting higher glycerol concentrations presented interesting lipid-accumulating capacities (maximum lipid = 12.5 g/L, maximum lipid in DCW = 43.0–46.0% w/w, conversion yield on glycerol = 0.16 g/g). Replacement of crude glycerol by xylose resulted in somehow decreased lipid accumulation. In xylose/glycerol mixtures, xylose was more rapidly assimilated from glycerol. R. toruloides total lipids were mainly composed of triacylglycerols. Total cellular fatty acid composition on xylose presented some differences compared with that on glycerol. Cellular lipids contained mainly oleic and palmitic acid.
Collapse
Affiliation(s)
- Panagiota Diamantopoulou
- Institute of Technology of Agricultural Products (ITAP), Hellenic Agricultural Organization – Demeter, 1 Sofokli Venizelou street, 14123 – Lykovryssi, Attiki Greece
| | - Rosanina Filippousi
- Institute of Technology of Agricultural Products (ITAP), Hellenic Agricultural Organization – Demeter, 1 Sofokli Venizelou street, 14123 – Lykovryssi, Attiki Greece
- Department of Food Science & Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 – Athens, Greece
| | - Dimitrios Antoniou
- Department of Food Science & Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 – Athens, Greece
| | - Evaggelia Varfi
- Institute of Technology of Agricultural Products (ITAP), Hellenic Agricultural Organization – Demeter, 1 Sofokli Venizelou street, 14123 – Lykovryssi, Attiki Greece
- Department of Food Science & Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 – Athens, Greece
| | - Evangelos Xenopoulos
- Department of Food Science & Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 – Athens, Greece
| | - Dimitris Sarris
- Institute of Technology of Agricultural Products (ITAP), Hellenic Agricultural Organization – Demeter, 1 Sofokli Venizelou street, 14123 – Lykovryssi, Attiki Greece
- Department of Food Science & Nutrition, School of the Environment, University of the Aegean, 81400 Myrina, Lemnos, Greece
| | - Seraphim Papanikolaou
- Department of Food Science & Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 – Athens, Greece
| |
Collapse
|
34
|
Genomic Considerations for the Modification of Saccharomyces cerevisiae for Biofuel and Metabolite Biosynthesis. Microorganisms 2020; 8:microorganisms8030321. [PMID: 32110897 PMCID: PMC7143498 DOI: 10.3390/microorganisms8030321] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/02/2020] [Accepted: 02/24/2020] [Indexed: 11/22/2022] Open
Abstract
The growing global population and developing world has put a strain on non-renewable natural resources, such as fuels. The shift to renewable sources will, thus, help meet demands, often through the modification of existing biosynthetic pathways or the introduction of novel pathways into non-native species. There are several useful biosynthetic pathways endogenous to organisms that are not conducive for the scale-up necessary for industrial use. The use of genetic and synthetic biological approaches to engineer these pathways in non-native organisms can help ameliorate these challenges. The budding yeast Saccharomyces cerevisiae offers several advantages for genetic engineering for this purpose due to its widespread use as a model system studied by many researchers. The focus of this review is to present a primer on understanding genomic considerations prior to genetic modification and manipulation of S. cerevisiae. The choice of a site for genetic manipulation can have broad implications on transcription throughout a region and this review will present the current understanding of position effects on transcription.
Collapse
|
35
|
Terpou A, Dimopoulou M, Belka A, Kallithraka S, Nychas GJE, Papanikolaou S. Effect of Myclobutanil Pesticide on the Physiological Behavior of Two Newly Isolated Saccharomyces cerevisiae Strains during Very-High-Gravity Alcoholic Fermentation. Microorganisms 2019; 7:E666. [PMID: 31835377 PMCID: PMC6956295 DOI: 10.3390/microorganisms7120666] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/28/2019] [Accepted: 12/02/2019] [Indexed: 12/31/2022] Open
Abstract
Yeasts are able to act as biosorbents, as their cell wall includes several components capable of binding organic xenobiotic compounds that can potentially be removed during various fermentation processes. In the present investigation, two novel Saccharomyces cerevisiae strains (LMBF-Y 16 and LMBF-Y-18), previously isolated from grapes, were studied regarding their physiological behavior (dry cell weight-DCW production, substrate uptake, and ethanol and glycerol biosynthesis) during fermentations of grape must, in some cases enriched with commercial glucose and fructose (initial total sugar concentration approximately 150 and 250 g/L, respectively). Myclobutanil (a chiral triazole fungicide broadly used as a protective agent of vine) was also added to the culture media at various concentrations in order to assess the ability of the yeasts to simultaneously perform alcoholic fermentations and detoxify the medium (i.e., to remove the fungicide). In the first set of experiments and for both tested strains, trials were carried out in either 250 mL or 2.0 L agitated shake flasks in either synthetic glucose-based experiments or grape musts. Since the results obtained in the trials where the cultures were placed in 2.0 L flasks with grape musts as substrates were superior in terms of both DCW and ethanol production, these experimental conditions were selected for the subsequent studies. Both strains showed high fermentative efficiency, producing high amounts of DCW (9.5-10.5 g/L) in parallel with high ethanol production, which in some cases achieved values very close to the maximum theoretical ethanol production yield (≈0.49 g of ethanol per g of sugar). When using grape must with initial total sugars at approximately 250 g/L (very high gravity fermentation media, close to winemaking conditions), significantly high ethanol quantities (i.e., ranging between 105 and 123 g/L) were produced. Myclobutanil addition slightly negatively affected sugar conversion into ethanol; however, in all cases, ethanol production was very satisfactory. A non-negligible myclobutanil removal during fermentation, which ranged between 5%-27%, as a result of the adsorptive or degradative capacity of the yeast was also reported. The presence of myclobutanil had no effect on DCW production and resulted in no significant differences in the biosynthesis of glycerol. Therefore, these newly isolated yeast strains could be excellent candidates for simultaneous high ethanol production and parallel pesticide removal in a general biorefinery concept demonstrating many environmental benefits.
Collapse
Affiliation(s)
| | | | | | | | | | - Seraphim Papanikolaou
- Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece; (A.T.); (M.D.); (A.B.); (S.K.); (G.-J.E.N.)
| |
Collapse
|
36
|
Dabassa Koricha A, Han DY, Bacha K, Bai FY. Occurrence and Molecular Identification of Wild Yeasts from Jimma Zone, South West Ethiopia. Microorganisms 2019; 7:E633. [PMID: 31801247 PMCID: PMC6956043 DOI: 10.3390/microorganisms7120633] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 12/25/2022] Open
Abstract
Yeasts are common inhabitants of most fruit trees' rhizospheres and phyllospheres. Wild yeasts are the major driving force behind several modern industrial biotechnologies. This study focused on determining the occurrence and frequency of wild yeasts associated with domestic and wild edible tree barks, fruits, and rhizosphere soil samples collected over two seasons (i.e., spring and summer) in South West Ethiopia. A total of 182 yeast strains were isolated from 120 samples. These strains belonged to 16 genera and 27 species as identified based on the sequence analysis of the D1/D2 domain of the large subunit (26S) ribosomal RNA gene. Candida blattae, Pichia kudriavzevii, Candida glabrata, Saccharomyces cerevisiae, and Candida humilis were the most dominant yeast species isolated from the bark samples. Only Pichia kudriavzevii was regularly detected from the bark, rhizosphere, fruit, and sugarcane samples. The retrieval of yeasts from bark samples was more frequent and diverse than that of soil, fruits, and sugarcane. The frequency of detection of yeasts during the spring was significantly higher than in the summer season. However, there was no significant seasonal variation in the frequency of detection of yeast species between the rhizosphere and phyllosphere samples.
Collapse
Affiliation(s)
- Anbessa Dabassa Koricha
- State Key Laboratory of Mycology, Institute of Microbiology, Beijing 100101, China; (A.D.K.); (D.-Y.H.)
| | - Da-Yong Han
- State Key Laboratory of Mycology, Institute of Microbiology, Beijing 100101, China; (A.D.K.); (D.-Y.H.)
| | | | - Feng-Yan Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Beijing 100101, China; (A.D.K.); (D.-Y.H.)
| |
Collapse
|
37
|
Evaluation of Ionic Liquids as In Situ Extraction Agents during the Alcoholic Fermentation of Carob Pod Extracts. FERMENTATION-BASEL 2019. [DOI: 10.3390/fermentation5040090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Anhydrous ethanol is a promising alternative to gasoline in fuel engines. However, since ethanol forms an azeotrope with water, high-energy-consumption separation techniques such as azeotropic distillation, extractive distillation, and molecular sieves are needed to produce anhydrous ethanol. This work discusses the potential development of an integrated process for bioethanol production using ionic liquids and Ceratonia siliqua as a carbohydrate source for further fermentation of the aqueous extracts. A four-stage counter-current system was designed to improve the sugar extraction yield to values close to 99%. The alcoholic fermentation of the extracts showed ethanol concentrations of 95 g/L using the microorganism Saccharomyces cerevisae. The production of anhydrous ethanol through extractive distillation with ethylene glycol was simulated using CHEMCAD software, with an energy consumption of 13.23 MJ/Kg of anhydrous ethanol. Finally, several ionic liquids were analyzed and are proposed as potential solvents for the recovery of bioethanol for the design of an integrated extraction–fermentation–separation process, according to their ability to extract ethanol from aqueous solutions and their biocompatibility with the microorganism used in this study.
Collapse
|
38
|
Effect of Salt Addition upon the Production of Metabolic Compounds by Yarrowia lipolytica Cultivated on Biodiesel-Derived Glycerol Diluted with Olive-Mill Wastewaters. ENERGIES 2019. [DOI: 10.3390/en12193649] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
One of the major environmental problems is the highly toxic agro-industrial waste called olive mill wastewater (OMW), deriving from olive oil production. On the other hand, the continuous development of the biological liquid fuel industry (biodiesel and bioethanol) makes it mandatory the process and exploitation of their main by-products, crude glycerol. This study dealt with the biotechnological conversions of biodiesel-derived crude glycerol with the use of the non-conventional yeast Yarrowia lipolytica in media that had been diluted with OMWs. OMWs, employed as simultaneous liquid medium and substrate, is a new trend recently appearing in Industrial Biotechnology, where value-added metabolites could be produced with simultaneous partial detoxification (i.e. decolorization and phenol removal) of the used residue. In the present study, diluted OMWs (containing 2.0 g/L of total phenolic compounds) blended with 70.0 g/L crude glycerol were employed as substrates. Production of value-added compounds by Y. lipolytica strain ACA-YC 5031 was studied in nitrogen-limited media favoring the production of secondary metabolites (i.e. citric acid, polyols, microbial lipids, polysaccharides). Batch-flask cultures were carried out and the impact of the addition of different NaCl concentrations (1.0%, 3.0%, 5.0% w/w) added upon the biochemical behavior of the strain was studied. Remarkable biomass production was observed in all trials, while in the “blank” experiment (no OMWs and no salt added), the metabolism was shifted toward the synthesis of polyols (Σpolyols = mannitol + arabitol + erythritol > 20 g/L and maximum total citric acid-Cit (sum of citric and isocitric acid) = 10.5 g/L). Addition of OMWs resulted in Citmax = 32.7 g/L, while Σpolyols concentration dropped to <15 g/L. Addition of salt in the OMW-based media slightly reduced the produced biomass, while Cit production drastically increased, reaching a final value of 54.0 g/L (conversion yield of Cit produced per unit of glycerol consumed = 0.82 g/g) in the trial with addition of 5.0% NaCl. Finally, significant color and phenols removal were observed, evaluating the yeast as a decontamination medium for the OMW and a great candidate for the production of value-added compounds.
Collapse
|
39
|
Hirsch E, Pataki H, Domján J, Farkas A, Vass P, Fehér C, Barta Z, Nagy ZK, Marosi GJ, Csontos I. Inline noninvasive Raman monitoring and feedback control of glucose concentration during ethanol fermentation. Biotechnol Prog 2019; 35:e2848. [DOI: 10.1002/btpr.2848] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/14/2019] [Accepted: 05/14/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Edit Hirsch
- Department of Organic Chemistry and TechnologyBudapest University of Technology and Economics Budapest Hungary
| | - Hajnalka Pataki
- Department of Organic Chemistry and TechnologyBudapest University of Technology and Economics Budapest Hungary
| | - Júlia Domján
- Department of Organic Chemistry and TechnologyBudapest University of Technology and Economics Budapest Hungary
| | - Attila Farkas
- Department of Organic Chemistry and TechnologyBudapest University of Technology and Economics Budapest Hungary
| | - Panna Vass
- Department of Organic Chemistry and TechnologyBudapest University of Technology and Economics Budapest Hungary
| | - Csaba Fehér
- Department of Applied Biotechnology and Food ScienceBudapest University of Technology and Economics Budapest Hungary
| | - Zsolt Barta
- Department of Applied Biotechnology and Food ScienceBudapest University of Technology and Economics Budapest Hungary
- Viresol Ltd. Visonta Hungary
| | - Zsombor K. Nagy
- Department of Organic Chemistry and TechnologyBudapest University of Technology and Economics Budapest Hungary
| | - György J. Marosi
- Department of Organic Chemistry and TechnologyBudapest University of Technology and Economics Budapest Hungary
| | - István Csontos
- Department of Organic Chemistry and TechnologyBudapest University of Technology and Economics Budapest Hungary
| |
Collapse
|
40
|
Martínez-Cartas ML, Olivares MI, Sánchez S. Production of bioalcohols and antioxidant compounds by acid hydrolysis of lignocellulosic wastes and fermentation of hydrolysates with Hansenula polymorpha. Eng Life Sci 2019; 19:522-536. [PMID: 32625029 DOI: 10.1002/elsc.201900011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/04/2019] [Accepted: 05/21/2019] [Indexed: 11/12/2022] Open
Abstract
The effect of the H2SO4 concentration in the hydrolysis of sunflower-stalk waste, at 95ºC and using a liquid/solid relation of 20, was studied. In a later stage, the hydrolysates were fermented at different temperatures with the aim of ethanol and xylitol production. A total conversion of the hemicellulose at the acid concentration of 0.5 mol/L was achieved; whereas an acid concentration of 2.5 mol/L was needed to reach the maximum value in the conversion of the cellulose fraction. The analysis of the hydrolysis kinetics has enabled to determine the apparent reaction order, which was 1.3. The hydrolysates from hydrolysis process with H2SO4 0.5 mol/L, once detoxified, were fermented at pH 5.5, temperatures 30, 40, and 50ºC with the yeast Hansenula polymorpha (ATCC 34438), resulting in a sequential uptake of sugars. In relation to ethanol and xylitol yields, the best results were observed at 50°C ( Y E / s O = 0.11 g/g; Y X y / s O = 0.12 g/g). Instantaneous xylitol yields were higher than in ethanol, at the three temperatures essayed. Different phenolic compounds were analyzed in the hydrolysates; hydroxytyrosol was the most abundant (3.79 mg/L). The recovery of these compounds entails the elimination of inhibitors in the fermentation process and the production of high value-added antioxidant products.
Collapse
Affiliation(s)
| | - Mª Inmaculada Olivares
- Department of Chemical Environmental and Materials Engineering University of Jaén Linares Jaén Spain
| | - Sebastián Sánchez
- Department of Chemical Environmental and Materials Engineering University of Jaén Linares Jaén Spain
| |
Collapse
|
41
|
Kinetic Modeling and Techno-economic Feasibility of Ethanol Production From Carob Extract Based Medium in Biofilm Reactor. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9102121] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this study, different carob extract-based media containing Medium A (included all ingredients), Medium B (included yeast extract and salts), Medium C (included (NH4)2SO4 and salts), Medium D (included only salts) and Medium E (included no ingredients) were evaluated for ethanol fermentation by Saccharomyces cerevisiae in a biofilm reactor and their results were used for kinetic modeling. The logistic model for cell growth, Luedeking-Piret model for ethanol production and Modified Luedeking-Piret model for substrate consumption were studied. Kinetic parameters were determined by fitting the observed values of the models. The findings indicated that the predicted data with the suggested kinetic model for each medium fitted very well the experimental data. Estimated kinetics were also in good agreement with experimental kinetics. The techno-economic analysis was performed with the unit costs of the components used in the medium and ethanol. Medium-based process economic feasibility proved carob extract-based Medium E and subsequently Medium D as most economical for ethanol production. The present study verified the potential of carob extract-based medium for increased economical production of ethanol. In conclusion, the ethanol production in a biofilm reactor is growth-associated since α (gP/gX) was greater than β (gP/gX.h) and Media D and E increased the economic production of carob extract-based ethanol.
Collapse
|
42
|
Sakwa L, Cripwell RA, Rose SH, Viljoen-Bloom M. Consolidated bioprocessing of raw starch with Saccharomyces cerevisiae strains expressing fungal alpha-amylase and glucoamylase combinations. FEMS Yeast Res 2019; 18:5061630. [PMID: 30085077 DOI: 10.1093/femsyr/foy085] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 07/27/2018] [Indexed: 01/10/2023] Open
Abstract
Cost-effective consolidated bioprocessing (CBP) of raw starch for biofuel production requires recombinant Saccharomyces cerevisiae strains expressing α-amylases and glucoamylases. Native Aureobasidium pullulans apuA, Aspergillus terreus ateA, Cryptococcus sp. S-2 cryA and Saccharomycopsis fibuligera sfiA genes encoding raw-starch α-amylases were cloned and expressed in the S. cerevisiae Y294 laboratory strain. Recombinant S. cerevisiae Y294[ApuA] and Y294[AteA] strains produced the highest extracellular α-amylase activities (2.17 U mL-1 and 2.98 U mL-1, respectively). Both the ApuA and AteA α-amylases displayed a preference for pH 4 to 5 and retained more than 75% activity after 5 days at 30°C. When ateA was co-expressed with the previously reported Aspergillus. tubingensis glucoamylase gene (glaA), the amylolytic S. cerevisiae Y294[AteA-GlaA] strain produced 45.77 g L-1 ethanol after 6 days. Ethanol production by this strain was improved with the addition of either 2.83 μL STARGEN 002 (54.54 g L-1 ethanol and 70.44% carbon conversion) or 20 μL commercial glucoamylase from Sigma-Aldrich (73.80 g L-1 ethanol and 90.19% carbon conversion). This is the first report of an engineered yeast strain that can replace up to 90% of the enzymes required for raw starch hydrolysis, and thus contributes to the realisation of a CBP yeast for starch-based biofuel production.
Collapse
Affiliation(s)
- L Sakwa
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - R A Cripwell
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - S H Rose
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - M Viljoen-Bloom
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| |
Collapse
|
43
|
Sources of microbial oils with emphasis to Mortierella (Umbelopsis) isabellina fungus. World J Microbiol Biotechnol 2019; 35:63. [PMID: 30923965 DOI: 10.1007/s11274-019-2631-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/08/2019] [Indexed: 10/27/2022]
Abstract
The last years a constantly rising number of publications have appeared in the literature in relation to the production of oils and fats deriving from microbial sources (the "single cell oils"-SCOs). SCOs can be used as precursors for the synthesis of lipid-based biofuels or employed as substitutes of expensive oils rarely found in the plant or animal kingdom. In the present review-article, aspects concerning SCOs (economics, biochemistry, substrates, technology, scale-up), with emphasis on the potential of Mortierella isabellina were presented. Fats and hydrophilic substrates have been used as carbon sources for cultivating Zygomycetes. Among them, wild-type M. isabellina strains have been reported as excellent SCO-producers, with conversion yields on sugar consumed and lipid in DCW values reported comparable to the maximum ones achieved for genetically engineered SCO-producing strains. Lipids produced on glucose contain γ-linolenic acid (GLA), a polyunsaturated fatty acid (PUFA) of high dietary and pharmaceutical importance, though in low concentrations. Nevertheless, due to their abundance in oleic acid, these lipids are perfect precursors for the synthesis of 2nd generation biodiesel, while GLA can be recovered and directed to other usages. Genetic engineering focusing on over-expression of Δ6 and Δ12 desaturases and of C16 elongase may improve the fatty acid composition (viz. increasing the concentration of GLA or other nutritionally important PUFAs) of these lipids.
Collapse
|
44
|
Hassanpour M, Cai G, Gebbie LK, Speight RE, Junior Te'o VS, O'Hara IM, Zhang Z. Co-utilization of acidified glycerol pretreated-sugarcane bagasse for microbial oil production by a novel Rhodosporidium strain. Eng Life Sci 2019; 19:217-228. [PMID: 32625004 DOI: 10.1002/elsc.201800127] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 12/02/2018] [Accepted: 01/18/2019] [Indexed: 11/06/2022] Open
Abstract
Acidified glycerol pretreatment is very effective to deconstruct lignocellulosics for producing glucose. Co-utilization of pretreated biomass and residual glycerol to bioproducts could reduce the costs associated with biomass wash and solvent recovery. In this study, a novel strain Rhodosporidium toruloides RP 15, isolated from sugarcane bagasse, was selected and tested for coconversion of pretreated biomass and residual glycerol to microbial oils. In the screening trails, Rh. toruloides RP 15 demonstrated the highest oil production capacity on glucose, xylose, and glycerol among the 10 strains. At the optimal C:N molar ratio of 140:1, this strain accumulated 56.7, 38.3, and 54.7% microbial oils based on dry cell biomass with 30 g/L glucose, xylose, and glycerol, respectively. Furthermore, sugarcane bagasse medium containing 32.6 g/L glucose from glycerol-pretreated bagasse and 23.4 g/L glycerol from pretreatment hydrolysate were used to produce microbial oils by Rh. toruloides RP 15. Under the preliminary conditions without pH control, this strain produced 7.7 g/L oil with an oil content of 59.8%, which was comparable or better than those achieved with a synthetic medium. In addition, this strain also produced 3.5 mg/L carotenoid as a by-product. It is expected that microbial oil production can be significantly improved through process optimization.
Collapse
Affiliation(s)
- Morteza Hassanpour
- Centre for Tropical Crops and Biocommodities Queensland University of Technology Brisbane QLD Australia
| | - Guiqin Cai
- Centre for Tropical Crops and Biocommodities Queensland University of Technology Brisbane QLD Australia
| | - Leigh K Gebbie
- School of Chemistry, Physics and Mechanical Engineering Queensland University of Technology Brisbane QLD Australia
| | - Robert E Speight
- School of Chemistry, Physics and Mechanical Engineering Queensland University of Technology Brisbane QLD Australia
| | - Valentino S Junior Te'o
- School of Earth Environmental and Biological Sciences Queensland University of Technology Brisbane QLD Australia
| | - Ian M O'Hara
- Centre for Tropical Crops and Biocommodities Queensland University of Technology Brisbane QLD Australia
| | - Zhanying Zhang
- Centre for Tropical Crops and Biocommodities Queensland University of Technology Brisbane QLD Australia
| |
Collapse
|
45
|
Current situation of biofuel production and its enhancement by CRISPR/Cas9-mediated genome engineering of microbial cells. Microbiol Res 2019; 219:1-11. [DOI: 10.1016/j.micres.2018.10.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 10/10/2018] [Accepted: 10/30/2018] [Indexed: 12/26/2022]
|
46
|
Mo W, Wang M, Zhan R, Yu Y, He Y, Lu H. Kluyveromyces marxianus developing ethanol tolerance during adaptive evolution with significant improvements of multiple pathways. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:63. [PMID: 30949239 PMCID: PMC6429784 DOI: 10.1186/s13068-019-1393-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 03/06/2019] [Indexed: 05/12/2023]
Abstract
BACKGROUND Kluyveromyces marxianus, the known fastest-growing eukaryote on the earth, has remarkable thermotolerance and capacity to utilize various agricultural residues to produce low-cost bioethanol, and hence is industrially important to resolve the imminent energy shortage crisis. Currently, the poor ethanol tolerance hinders its operable application in the industry, and it is necessary to improve K. marxianus' ethanol resistance and unravel the underlying systematical mechanisms. However, this has been seldom reported to date. RESULTS We carried out a wild-type haploid K. marxianus FIM1 in adaptive evolution in 6% (v/v) ethanol. After 100-day evolution, the KM-100d population was obtained; its ethanol tolerance increased up to 10% (v/v). Interestingly, DNA analysis and RNA-seq analysis showed that KM-100d yeasts' ethanol tolerance improvement was not due to ploidy change or meaningful mutations, but founded on transcriptional reprogramming in a genome-wide range. Even growth in an ethanol-free medium, many genes in KM-100d maintained their up-regulation. Especially, pathways of ethanol consumption, membrane lipid biosynthesis, anti-osmotic pressure, anti-oxidative stress, and protein folding were generally up-regulated in KM-100d to resist ethanol. Notably, enhancement of the secretory pathway may be the new strategy KM-100d developed to anti-osmotic pressure, instead of the traditional glycerol production way in S. cerevisiae. Inferred from the transcriptome data, besides ethanol tolerance, KM-100d may also develop the ability to resist osmotic, oxidative, and thermic stresses, and this was further confirmed by the cell viability test. Furthermore, under such environmental stresses, KM-100d greatly improved ethanol production than the original strain. In addition, we found that K. marxianus may adopt distinct routes to resist different ethanol concentrations. Trehalose biosynthesis was required for low ethanol, while sterol biosynthesis and the whole secretory pathway were activated for high ethanol. CONCLUSIONS This study reveals that ethanol-driven laboratory evolution could improve K. marxianus' ethanol tolerance via significant up-regulation of multiple pathways including anti-osmotic, anti-oxidative, and anti-thermic processes, and indeed consequently raised ethanol yield in industrial high-temperature and high-ethanol circumstance. Our findings give genetic clues for further rational optimization of K. marxianus' ethanol production, and also partly confirm the positively correlated relationship between yeast's ethanol tolerance and production.
Collapse
Affiliation(s)
- Wenjuan Mo
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, 200438 China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438 China
| | - Mengzhu Wang
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, 200438 China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438 China
| | - Rongrong Zhan
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, 200438 China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438 China
| | - Yao Yu
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, 200438 China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438 China
| | - Yungang He
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032 China
| | - Hong Lu
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, 200438 China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438 China
| |
Collapse
|
47
|
Second Generation Bioethanol Production: On the Use of Pulp and Paper Industry Wastes as Feedstock. FERMENTATION-BASEL 2018. [DOI: 10.3390/fermentation5010004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Due to the health and environment impacts of fossil fuels utilization, biofuels have been investigated as a potential alternative renewable source of energy. Bioethanol is currently the most produced biofuel, mainly of first generation, resulting in food-fuel competition. Second generation bioethanol is produced from lignocellulosic biomass, but a costly and difficult pretreatment is required. The pulp and paper industry has the biggest income of biomass for non-food-chain production, and, simultaneously generates a high amount of residues. According to the circular economy model, these residues, rich in monosaccharides, or even in polysaccharides besides lignin, can be utilized as a proper feedstock for second generation bioethanol production. Biorefineries can be integrated in the existing pulp and paper industrial plants by exploiting the high level of technology and also the infrastructures and logistics that are required to fractionate and handle woody biomass. This would contribute to the diversification of products and the increase of profitability of pulp and paper industry with additional environmental benefits. This work reviews the literature supporting the feasibility of producing ethanol from Kraft pulp, spent sulfite liquor, and pulp and paper sludge, presenting and discussing the practical attempt of biorefineries implementation in pulp and paper mills for bioethanol production.
Collapse
|
48
|
Costa S, Rugiero I, Larenas Uria C, Pedrini P, Tamburini E. Lignin Degradation Efficiency of Chemical Pre-Treatments on Banana Rachis Destined to Bioethanol Production. Biomolecules 2018; 8:biom8040141. [PMID: 30423995 PMCID: PMC6316140 DOI: 10.3390/biom8040141] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/26/2018] [Accepted: 11/02/2018] [Indexed: 01/13/2023] Open
Abstract
Valuable biomass conversion processes are highly dependent on the use of effective pretreatments for lignocellulose degradation and enzymes for saccharification. Among the nowadays available treatments, chemical delignification represents a promising alternative to physical-mechanical treatments. Banana is one of the most important fruit crops around the world. After harvesting, it generates large amounts of rachis, a lignocellulosic residue, that could be used for second generation ethanol production, via saccharification and fermentation. In the present study, eight chemical pretreatments for lignin degradation (organosolv based on organic solvents, sodium hypochlorite, hypochlorous acid, hydrogen peroxide, alkaline hydrogen peroxide, and some combinations thereof) have been tested on banana rachis and the effects evaluated in terms of lignin removal, material losses, and chemical composition of pretreated material. Pretreatment based on lignin oxidation have demonstrated to reach the highest delignification yield, also in terms of monosaccharides recovery. In fact, all the delignified samples were then saccharified with enzymes (cellulase and beta-glucosidase) and hydrolysis efficiency was evaluated in terms of final sugars recovery before fermentation. Analysis of Fourier transform infrared spectra (FTIR) has been carried out on treated samples, in order to better understand the structural effects of delignification on lignocellulose. Active chlorine oxidations, hypochlorous acid in particular, were the best effective for lignin removal obtaining in the meanwhile the most promising cellulose-to-glucose conversion.
Collapse
Affiliation(s)
- Stefania Costa
- Department of Life Science and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy.
| | - Irene Rugiero
- Department of Life Science and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy.
| | - Christian Larenas Uria
- Laboratorio de Biotecnología, Universidad Poilitécnica Salesiana, Av. Isabel La Católica N 23-52 y Madrid, Quito-Ecuador 170109, Quito, Ecuador.
| | - Paola Pedrini
- Department of Life Science and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy.
| | - Elena Tamburini
- Department of Life Science and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy.
| |
Collapse
|
49
|
The Efficiency of Nitrogen and Flue Gas as Operating Gases in Explosive Decompression Pretreatment. ENERGIES 2018. [DOI: 10.3390/en11082074] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
As the pretreatment process is the most expensive and energy-consuming step in the overall second generation bioethanol production process, it is vital that it is studied and optimized in order to be able to develop the most efficient production process. The aim of this paper was to investigate chemical and physical changes in biomass during the process of applying the explosive decompression pretreatment method using two different gases—N2 and synthetic flue gas. The explosive decompression method is economically and environmentally attractive since no chemicals are used—rather it is pressure that is applied—and water is used to break down the biomass structure. Both pre-treatment methods were used at different temperatures. To be able to compare the effects of the pretreatment, samples from different process steps were gathered together and analysed. The results were used to assess the efficiency of the pretreatment, the chemical and physical changes in the biomass and, finally, the mass balances were compiled for the process during the different process steps of bioethanol production. The results showed that both pre-treatment methods are effective in hemicellulose dissolution, while the cellulose content decreases to a smaller degree. The high glucose and ethanol yields were gained with both explosive pretreatment methods at 175 °C (15.2–16.0 g glucose and 5.6–9.0 g ethanol per 100 g of dry biomass, respectively).
Collapse
|
50
|
Algal Biorefineries for Biofuels and Other Value-Added Products. BIOFUEL AND BIOREFINERY TECHNOLOGIES 2018. [DOI: 10.1007/978-3-319-67678-4_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|