1
|
Lussier AA, Schuurmans IK, Großbach A, Maclsaac J, Dever K, Koen N, Zar HJ, Stein DJ, Kobor MS, Dunn EC. Technical variability across the 450K, EPICv1, and EPICv2 DNA methylation arrays: lessons learned for clinical and longitudinal studies. Clin Epigenetics 2024; 16:166. [PMID: 39578866 PMCID: PMC11583407 DOI: 10.1186/s13148-024-01761-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/11/2024] [Indexed: 11/24/2024] Open
Abstract
DNA methylation (DNAm) is the most commonly measured epigenetic mechanism in human populations, with most studies using Illumina arrays to assess DNAm levels. In 2023, Illumina updated their DNAm arrays to the EPIC version 2 (EPICv2), building on prior iterations, namely the EPIC version 1 (EPICv1) and 450K arrays. Whether DNAm measurements are stable across these three generations of arrays has yet not been investigated, limiting the ability of researchers-especially those with longitudinal data-to compare and replicate results across arrays. Here, we present results from a study of 30 child participants (15 male; 15 female) from the Drakenstein Child Health Study, who had DNAm measured on all three of the latest arrays: 450K, EPICv1, and EPICv2. Using these data, we created an annotation of probe quality across arrays, which includes the intraclass correlations, interquartile ranges, correlations, and array bias (i.e., the extent to which DNAm levels were explained by array type) of all CpGs. We also present results from an analysis of sex differences, where we found that CpGs with lower replicability across arrays had higher array-based variance, suggesting this variance metric help guide replication efforts. We also showed that epigenetic age estimates across arrays were more stable when using the principal component versions of epigenetic clocks. Ultimately, this collection of results provides a framework for investigating the replicability and longitudinal stability of epigenetic changes across multiple versions of Illumina DNAm arrays.
Collapse
Affiliation(s)
- Alexandre A Lussier
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
- Stanley Center for Psychiatric Research, The Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| | - Isabel K Schuurmans
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Anna Großbach
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- School of Mathematical and Statistical Sciences, University of Galway, Galway, Ireland
- The SFI Centre for Research Training in Genomics Data Science, Dublin, Ireland
| | - Julie Maclsaac
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Kristy Dever
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Nastassja Koen
- SAMRC Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Heather J Zar
- Department of Pediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council (SAMRC) Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Dan J Stein
- SAMRC Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Michael S Kobor
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
- Edwin S.H. Leong Centre for Healthy Aging, University of British Columbia, Vancouver, BC, Canada
| | - Erin C Dunn
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
- Stanley Center for Psychiatric Research, The Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Sociology, College of Liberal Arts, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
2
|
Schuurmans IK, Dunn EC, Lussier AA. DNA methylation as a possible mechanism linking childhood adversity and health: results from a 2-sample mendelian randomization study. Am J Epidemiol 2024; 193:1541-1552. [PMID: 38754872 PMCID: PMC11538561 DOI: 10.1093/aje/kwae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 03/07/2024] [Accepted: 05/14/2024] [Indexed: 05/18/2024] Open
Abstract
Childhood adversity is an important risk factor for adverse health across the life course. Epigenetic modifications, such as DNA methylation (DNAm), are a hypothesized mechanism linking adversity to disease susceptibility. Yet, few studies have determined whether adversity-related DNAm alterations are causally related to future health outcomes or if their developmental timing plays a role in these relationships. Here, we used 2-sample mendelian randomization to obtain stronger causal inferences about the association between adversity-associated DNAm loci across development (ie, birth, childhood, adolescence, and young adulthood) and 24 mental, physical, and behavioral health outcomes. We identified particularly strong associations between adversity-associated DNAm and attention-deficit/hyperactivity disorder, depression, obsessive-compulsive disorder, suicide attempts, asthma, coronary artery disease, and chronic kidney disease. More of these associations were identified for birth and childhood DNAm, whereas adolescent and young adulthood DNAm were more closely linked to mental health. Childhood DNAm loci also had primarily risk-suppressing relationships with health outcomes, suggesting that DNAm might reflect compensatory or buffering mechanisms against childhood adversity rather than acting solely as an indicator of disease risk. Together, our results suggest adversity-related DNAm alterations are linked to both physical and mental health outcomes, with particularly strong impacts of DNAm differences emerging earlier in development.
Collapse
Affiliation(s)
- Isabel K Schuurmans
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, United States
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, 3000 CA Rotterdam, the Netherlands
| | - Erin C Dunn
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA 02215, United States
- Stanley Center for Psychiatric Research, The Broad Institute of Harvard and MIT, Cambridge, MA 02142, United States
| | - Alexandre A Lussier
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA 02215, United States
- Stanley Center for Psychiatric Research, The Broad Institute of Harvard and MIT, Cambridge, MA 02142, United States
| |
Collapse
|
3
|
Creasey N, Leijten P, Tollenaar MS, Boks MP, Overbeek G. DNA methylation variation after a parenting program for child conduct problems: Findings from a randomized controlled trial. Child Dev 2024; 95:1462-1477. [PMID: 38436454 DOI: 10.1111/cdev.14090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
This study investigated associations of the Incredible Years (IY) parenting program with children's DNA methylation. Participants were 289 Dutch children aged 3-9 years (75% European ancestry, 48% female) with above-average conduct problems. Saliva was collected 2.5 years after families were randomized to IY or care as usual (CAU). Using an intention-to-treat approach, confirmatory multiple-regression analyses revealed no significant differences between the IY and CAU groups in children's methylation levels at the NR3C1 and FKBP5 genes. However, exploratory epigenome-wide analyses revealed nine differentially methylated regions between groups, coinciding with SLAMF1, MITF, FAM200B, PSD3, SNX31, and CELSR1. The study provides preliminary evidence for associations of IY with children's salivary methylation levels and highlights the need for further research into biological outcomes of parenting programs.
Collapse
Affiliation(s)
- Nicole Creasey
- Research Institute of Child Development and Education, University of Amsterdam, Amsterdam, The Netherlands
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Patty Leijten
- Research Institute of Child Development and Education, University of Amsterdam, Amsterdam, The Netherlands
| | - Marieke S Tollenaar
- Institute of Psychology & Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands
| | - Marco P Boks
- Institute of Psychology & Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands
- Department of Psychiatry, Brain Center University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Geertjan Overbeek
- Research Institute of Child Development and Education, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Schuurmans IK, Mulder RH, Baltramonaityte V, Lahtinen A, Qiuyu F, Rothmann LM, Staginnus M, Tuulari J, Burt SA, Buss C, Craig JM, Donald KA, Felix JF, Freeman TP, Grassi-Oliveira R, Huels A, Hyde LW, Jones SA, Karlsson H, Karlsson L, Koen N, Lawn W, Mitchell C, Monk CS, Mooney MA, Muetzel R, Nigg JT, Belangero SIN, Notterman D, O'Connor T, O'Donnell KJ, Pan PM, Paunio T, Ryabinin P, Saffery R, Salum GA, Seal M, Silk TJ, Stein DJ, Zar H, Walton E, Cecil CAM. Consortium Profile: The Methylation, Imaging and NeuroDevelopment (MIND) Consortium. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.23.24309353. [PMID: 38978656 PMCID: PMC11230303 DOI: 10.1101/2024.06.23.24309353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Epigenetic processes, such as DNA methylation, show potential as biological markers and mechanisms underlying gene-environment interplay in the prediction of mental health and other brain-based phenotypes. However, little is known about how peripheral epigenetic patterns relate to individual differences in the brain itself. An increasingly popular approach to address this is by combining epigenetic and neuroimaging data; yet, research in this area is almost entirely comprised of cross-sectional studies in adults. To bridge this gap, we established the Methylation, Imaging and NeuroDevelopment (MIND) Consortium, which aims to bring a developmental focus to the emerging field of Neuroimaging Epigenetics by (i) promoting collaborative, adequately powered developmental research via multi-cohort analyses; (ii) increasing scientific rigor through the establishment of shared pipelines and open science practices; and (iii) advancing our understanding of DNA methylation-brain dynamics at different developmental periods (from birth to emerging adulthood), by leveraging data from prospective, longitudinal pediatric studies. MIND currently integrates 15 cohorts worldwide, comprising (repeated) measures of DNA methylation in peripheral tissues (blood, buccal cells, and saliva) and neuroimaging by magnetic resonance imaging across up to five time points over a period of up to 21 years (Npooled DNAm = 11,299; Npooled neuroimaging = 10,133; Npooled combined = 4,914). By triangulating associations across multiple developmental time points and study types, we hope to generate new insights into the dynamic relationships between peripheral DNA methylation and the brain, and how these ultimately relate to neurodevelopmental and psychiatric phenotypes.
Collapse
|
5
|
Burenkova OV, Grigorenko EL. The role of epigenetic mechanisms in the long-term effects of early-life adversity and mother-infant relationship on physiology and behavior of offspring in laboratory rats and mice. Dev Psychobiol 2024; 66:e22479. [PMID: 38470450 PMCID: PMC10959231 DOI: 10.1002/dev.22479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/23/2024] [Accepted: 02/16/2024] [Indexed: 03/13/2024]
Abstract
Maternal care during the early postnatal period of altricial mammals is a key factor in the survival and adaptation of offspring to environmental conditions. Natural variations in maternal care and experimental manipulations with maternal-child relationships modeling early-life adversity (ELA) in laboratory rats and mice have a strong long-term influence on the physiology and behavior of offspring in rats and mice. This literature review is devoted to the latest research on the role of epigenetic mechanisms in these effects of ELA and mother-infant relationship, with a focus on the regulation of hypothalamic-pituitary-adrenal axis and brain-derived neurotrophic factor. An important part of this review is dedicated to pharmacological interventions and epigenetic editing as tools for studying the causal role of epigenetic mechanisms in the development of physiological and behavioral profiles. A special section of the manuscript will discuss the translational potential of the discussed research.
Collapse
Affiliation(s)
- Olga V. Burenkova
- Department of Psychology, University of Houston, Houston, Texas, USA
- Texas Institute for Measurement, Evaluation, and Statistics, University of Houston, Houston, Texas, USA
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Elena L. Grigorenko
- Department of Psychology, University of Houston, Houston, Texas, USA
- Texas Institute for Measurement, Evaluation, and Statistics, University of Houston, Houston, Texas, USA
- Center for Cognitive Sciences, Sirius University of Science and Technology, Sochi, Russia
- Departments of Molecular and Human Genetics and Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Child Study Center, Yale University, New Haven, Connecticut, USA
- Research Administration, Moscow State University for Psychology and Education, Moscow, Russia
| |
Collapse
|
6
|
Chen Y, Wang H. The changes in adrenal developmental programming and homeostasis in offspring induced by glucocorticoids exposure during pregnancy. VITAMINS AND HORMONES 2024; 124:463-490. [PMID: 38408809 DOI: 10.1016/bs.vh.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Clinically, synthetic glucocorticoids are often used to treat maternal and fetal related diseases, such as preterm birth and autoimmune diseases. Although its clinical efficacy is positive, it will expose the fetus to exogenous glucocorticoids. Adverse environments during pregnancy (e.g., exogenous glucocorticoids exposure, malnutrition, infection, hypoxia, and stress) can lead to fetal overexposure to endogenous maternal glucocorticoids. Basal glucocorticoids levels in utero are crucial in determining fetal tissue maturation and its postnatal fate. As the synthesis and secretion organ of glucocorticoids, the adrenal development is crucial for the growth and development of the body. Studies have found that glucocorticoids exposure during pregnancy could cause abnormal fetal adrenal development, which could last after birth or even adulthood. As the key organ of fetal-originated adult disease, the adrenal developmental programming has a profound impact on the health of offspring, which can lead to many chronic diseases in adulthood. However, the aberrant adrenal development in offspring caused by glucocorticoids exposure during pregnancy and its intrauterine programming mechanism have not been systematically clarified. Therefore, this review summarizes recent research progress on the short and long-term hazards of aberrant adrenal development induced by glucocorticoids exposure during pregnancy, which is of great significance for the analysis of aberrant adrenal development and clarify the intrauterine origin mechanism of fetal-originated adult disease.
Collapse
Affiliation(s)
- Yawen Chen
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, P.R. China; Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, P.R. China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, P.R. China.
| |
Collapse
|
7
|
Manzotti A, Panisi C, Pivotto M, Vinciguerra F, Benedet M, Brazzoli F, Zanni S, Comassi A, Caputo S, Cerritelli F, Chiera M. An in-depth analysis of the polyvagal theory in light of current findings in neuroscience and clinical research. Dev Psychobiol 2024; 66:e22450. [PMID: 38388187 DOI: 10.1002/dev.22450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 09/04/2023] [Accepted: 12/01/2023] [Indexed: 02/24/2024]
Abstract
The polyvagal theory has led to the understanding of the functions of the autonomic nervous system in biological development in humans, since the vagal system, a key structure within the polyvagal theory, plays a significant role in addressing challenges of the mother-child dyad. This article aims to summarize the neurobiological aspects of the polyvagal theory, highlighting some of its strengths and limitations through the lens of new evidence emerging in several research fields-including comparative anatomy, embryology, epigenetics, psychology, and neuroscience-in the 25 years since the theory's inception. Rereading and incorporating the polyvagal idea in light of modern scientific findings helps to interpret the role of the vagus nerve through the temporal dimension (beginning with intrauterine life) and spatial dimension (due to the numerous connections of the vagus with various structures and systems) in the achievement and maintenance of biopsychosocial well-being, from the uterus to adulthood.
Collapse
Affiliation(s)
- Andrea Manzotti
- Division of Neonatology, "V. Buzzi" Children's Hospital, ASST-FBF-Sacco, Milan, Italy
- RAISE Lab, Clinical-Based Human Research Department, Foundation COME Collaboration, Pescara, Italy
- Research Department, SOMA Istituto Osteopatia Milano, Milan, Italy
| | - Cristina Panisi
- Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Micol Pivotto
- Research Department, SOMA Istituto Osteopatia Milano, Milan, Italy
| | | | - Matteo Benedet
- Research Department, SOMA Istituto Osteopatia Milano, Milan, Italy
| | | | - Silvia Zanni
- Research Department, SOMA Istituto Osteopatia Milano, Milan, Italy
| | - Alberto Comassi
- Research Department, SOMA Istituto Osteopatia Milano, Milan, Italy
| | - Sara Caputo
- Research Department, SOMA Istituto Osteopatia Milano, Milan, Italy
| | - Francesco Cerritelli
- RAISE Lab, Clinical-Based Human Research Department, Foundation COME Collaboration, Pescara, Italy
| | - Marco Chiera
- RAISE Lab, Clinical-Based Human Research Department, Foundation COME Collaboration, Pescara, Italy
| |
Collapse
|
8
|
Eichenauer H, Ehlert U. The association between prenatal famine, DNA methylation and mental disorders: a systematic review and meta-analysis. Clin Epigenetics 2023; 15:152. [PMID: 37716973 PMCID: PMC10505322 DOI: 10.1186/s13148-023-01557-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/14/2023] [Indexed: 09/18/2023] Open
Abstract
BACKGROUND Undernutrition in pregnant women is an unfavorable environmental condition that can affect the intrauterine development via epigenetic mechanisms and thus have long-lasting detrimental consequences for the mental health of the offspring later in life. One epigenetic mechanism that has been associated with mental disorders and undernutrition is alterations in DNA methylation. The effect of prenatal undernutrition on the mental health of adult offspring can be analyzed through quasi-experimental studies such as famine studies. The present systematic review and meta-analysis aims to analyze the association between prenatal famine exposure, DNA methylation, and mental disorders in adult offspring. We further investigate whether altered DNA methylation as a result of prenatal famine exposure is prospectively linked to mental disorders. METHODS We conducted a systematic search of the databases PubMed and PsycINFO to identify relevant records up to September 2022 on offspring whose mothers experienced famine directly before and/or during pregnancy, examining the impact of prenatal famine exposure on the offspring's DNA methylation and/or mental disorders or symptoms. RESULTS The systematic review showed that adults who were prenatally exposed to famine had an increased risk of schizophrenia and depression. Several studies reported an association between prenatal famine exposure and hyper- or hypomethylation of specific genes. The largest number of studies reported differences in DNA methylation of the IGF2 gene. Altered DNA methylation of the DUSP22 gene mediated the association between prenatal famine exposure and schizophrenia in adult offspring. Meta-analysis confirmed the increased risk of schizophrenia following prenatal famine exposure. For DNA methylation, meta-analysis was not suitable due to different microarrays/data processing approaches and/or unavailable data. CONCLUSION Prenatal famine exposure is associated with an increased risk of mental disorders and DNA methylation changes. The findings suggest that changes in DNA methylation of genes involved in neuronal, neuroendocrine, and immune processes may be a mechanism that promotes the development of mental disorders such as schizophrenia and depression in adult offspring. Such findings are crucial given that undernutrition has risen worldwide, increasing the risk of famine and thus also of negative effects on mental health.
Collapse
Affiliation(s)
- Heike Eichenauer
- Clinical Psychology and Psychotherapy, University of Zurich, Binzmühlestrasse 14, 8050, Zurich, Switzerland
| | - Ulrike Ehlert
- Clinical Psychology and Psychotherapy, University of Zurich, Binzmühlestrasse 14, 8050, Zurich, Switzerland.
| |
Collapse
|
9
|
Siller Wilks SJ, Westneat DF, Heidinger BJ, Solomon J, Rubenstein DR. Epigenetic modification of the hypothalamic-pituitary-adrenal (HPA) axis during development in the house sparrow (Passer domesticus). Gen Comp Endocrinol 2023; 341:114336. [PMID: 37328040 DOI: 10.1016/j.ygcen.2023.114336] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/23/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023]
Abstract
Epigenetic modifications such as DNA methylation are important mechanisms for mediating developmental plasticity, where ontogenetic processes and their phenotypic outcomes are shaped by early environments. In particular, changes in DNA methylation of genes within the hypothalamic-pituitary-adrenal (HPA) axis can impact offspring growth and development. This relationship has been well documented in mammals but is less understood in other taxa. Here, we use target-enriched enzymatic methyl sequencing (TEEM-seq) to assess how DNA methylation in a suite of 25 genes changes over development, how these modifications relate to the early environment, and how they predict differential growth trajectories in the house sparrow (Passer domesticus). We found that DNA methylation changes dynamically over the postnatal developmental period: genes with initially low DNA methylation tended to decline in methylation over development, whereas genes with initially high DNA methylation tended to increase in methylation. However, sex-specific differentially methylated regions (DMRs) were maintained across the developmental period. We also found significant differences in post-hatching DNA methylation in relation to hatch date, with higher levels of DNA methylation in nestlings hatched earlier in the season. Although these differences were largely absent by the end of development, a number of DMRs in HPA-related genes (CRH, MC2R, NR3C1, NR3C2, POMC)-and to a lesser degree HPG-related genes (GNRHR2)-predicted nestling growth trajectories over development. These findings provide insight into the mechanisms by which the early environment shapes DNA methylation in the HPA axis, and how these changes subsequently influence growth and potentially mediate developmental plasticity.
Collapse
Affiliation(s)
- Stefanie J Siller Wilks
- Department of Ecology Evolution and Environmental Biology, Columbia University, New York, NY, USA.
| | - David F Westneat
- Department of Biology, University of Kentucky, Lexington, KY, USA
| | - Britt J Heidinger
- Biological Sciences Department, North Dakota State University, Fargo, ND, USA
| | - Joseph Solomon
- Department of Ecology Evolution and Environmental Biology, Columbia University, New York, NY, USA
| | - Dustin R Rubenstein
- Department of Ecology Evolution and Environmental Biology, Columbia University, New York, NY, USA
| |
Collapse
|
10
|
Bashir T, Obeng-Gyasi E. Combined Effects of Multiple Per- and Polyfluoroalkyl Substances Exposure on Allostatic Load Using Bayesian Kernel Machine Regression. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20105808. [PMID: 37239535 DOI: 10.3390/ijerph20105808] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/01/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023]
Abstract
This study aims to investigate the combined effects of per- and polyfluoroalkyl substances (PFAS) on allostatic load, an index of chronic stress that is linked to several chronic diseases, including cardiovascular disease and cancer. Using data from the National Health and Nutrition Examination Survey (NHANES) 2007-2014, this study examines the relationship between six PFAS variables (PFDE, PFNA, PFOS, PFUA, PFOA, and PFHS) and allostatic load using Bayesian Kernel Machine Regression (BKMR) analysis. The study also investigates the impact of individual and combined PFAS exposure on allostatic load using various exposure-response relationships, such as univariate, bivariate, or multivariate models. The analysis reveals that the combined exposure to PFDE, PFNA, and PFUA had the most significant positive trend with allostatic load when it was modeled as a binary variable, while PFDE, PFOS, and PFNA had the most significant positive trend with allostatic load when modeled as a continuous variable. These findings provide valuable insight into the consequences of cumulative exposure to multiple PFAS on allostatic load, which can help public health practitioners identify the dangers associated with potential combined exposure to select PFAS of interest. In summary, this study highlights the critical role of PFAS exposure in chronic stress-related diseases and emphasizes the need for effective strategies to minimize exposure to these chemicals to reduce the risk of chronic diseases. It underscores the importance of considering the combined effects of PFAS when assessing their impact on human health and offers valuable information for policymakers and regulators to develop strategies to protect public health.
Collapse
Affiliation(s)
- Tahir Bashir
- Department of Built Environment, North Carolina A&T State University, Greensboro, NC 27411, USA
- Environmental Health and Disease Laboratory, North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Emmanuel Obeng-Gyasi
- Department of Built Environment, North Carolina A&T State University, Greensboro, NC 27411, USA
- Environmental Health and Disease Laboratory, North Carolina A&T State University, Greensboro, NC 27411, USA
| |
Collapse
|
11
|
Chen J, Long MD, Sribenja S, Ma SJ, Yan L, Hu Q, Liu S, Khoury T, Hong CC, Bandera E, Singh AK, Repasky EA, Bouchard EG, Higgins M, Ambrosone CB, Yao S. An epigenome-wide analysis of socioeconomic position and tumor DNA methylation in breast cancer patients. Clin Epigenetics 2023; 15:68. [PMID: 37101222 PMCID: PMC10131486 DOI: 10.1186/s13148-023-01470-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 03/21/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND Disadvantaged socioeconomic position (SEP), including lower educational attainment and household income, may influence cancer risk and outcomes. We hypothesized that DNA methylation could function as an intermediary epigenetic mechanism that internalizes and reflects the biological impact of SEP. METHODS Based on tumor DNA methylation data from the Illumina 450 K array from 694 breast cancer patients in the Women's Circle of Health Study, we conducted an epigenome-wide analysis in relation to educational attainment and household income. Functional impact of the identified CpG sites was explored in silico using data from publicly available databases. RESULTS We identified 25 CpG sites associated with household income at an array-wide significance level, but none with educational attainment. Two of the top CpG sites, cg00452016 and cg01667837, were in promoter regions of NNT and GPR37, respectively, with multiple epigenetic regulatory features identified in each region. NNT is involved in β-adrenergic stress signaling and inflammatory responses, whereas GPR37 is involved in neurological and immune responses. For both loci, gene expression was inversely correlated to the levels of DNA methylation. The associations were consistent between Black and White women and did not differ by tumor estrogen receptor (ER) status. CONCLUSIONS In a large breast cancer patient population, we discovered evidence of the significant biological impact of household income on the tumor DNA methylome, including genes in the β-adrenergic stress and immune response pathways. Our findings support biological effects of socioeconomic status on tumor tissues, which might be relevant to cancer development and progression.
Collapse
Affiliation(s)
- Jianhong Chen
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Mark D Long
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Sirinapa Sribenja
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Sung Jun Ma
- Department of Radiation Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Li Yan
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Qiang Hu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Thaer Khoury
- Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Chi-Chen Hong
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Elisa Bandera
- Cancer Prevention and Control Program, Rutgers Cancer Institute of New Jersey, The State University of New Jersey, New Brunswick, NJ, USA
| | - Anurag K Singh
- Department of Radiation Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Elizabeth A Repasky
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Elizabeth G Bouchard
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Michael Higgins
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Christine B Ambrosone
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Song Yao
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.
| |
Collapse
|
12
|
Bashir T, Obeng-Gyasi E. The Association of Combined Per- and Polyfluoroalkyl Substances and Metals with Allostatic Load Using Bayesian Kernel Machine Regression. Diseases 2023; 11:diseases11010052. [PMID: 36975601 PMCID: PMC10047702 DOI: 10.3390/diseases11010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/01/2023] [Accepted: 03/19/2023] [Indexed: 03/29/2023] Open
Abstract
Background/Objective: This study aimed to investigate the effect of exposure to per- and polyfluoroalkyl substances (PFAS), a class of organic compounds utilized in commercial and industrial applications, on allostatic load (AL), a measure of chronic stress. PFAS, such as perfluorodecanoic acid (PFDE), perfluorononanoic acid (PFNA), perfluorooctane sulfonic acid (PFOS), perfluoroundecanoic acid (PFUA), perfluorooctanoic acid (PFOA), and perfluorohexane sulfonic acid (PFHS), and metals, such as mercury (Hg), barium (Ba), cadmium (Cd), cobalt (Co), cesium (Cs), molybdenum (Mo), lead (Pb), antimony (Sb), thallium (TI), tungsten (W), and uranium (U) were investigated. This research was performed to explore the effects of combined exposure to PFAS and metals on AL, which may be a disease mediator. Methods: Data from the National Health and Nutrition Examination Survey (NHANES) from 2007 to 2014 were used to conduct this study on persons aged 20 years and older. A cumulative index of 10 biomarkers from the cardiovascular, inflammatory, and metabolic systems was used to calculate AL out of 10. If the overall index was ≥ 3, an individual was considered to be chronically stressed (in a state of AL). In order to assess the dose-response connections between mixtures and outcomes and to limit the effects of multicollinearity and other potential interaction effects between exposures, Bayesian kernel machine regression (BKMR) was used. Results: The most significant positive trend between mixed PFAS and metal exposure and AL was revealed by combined exposure to cesium, molybdenum, PFHS, PFNA, and mercury (posterior inclusion probabilities, PIP = 1, 1, 0.854, 0.824, and 0.807, respectively). Conclusions: Combined exposure to metals and PFAS increases the likelihood of being in a state of AL.
Collapse
Affiliation(s)
- Tahir Bashir
- Department of Built Environment, North Carolina A&T State University, Greensboro, NC 27411, USA
- Environmental Health and Disease Laboratory, North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Emmanuel Obeng-Gyasi
- Department of Built Environment, North Carolina A&T State University, Greensboro, NC 27411, USA
- Environmental Health and Disease Laboratory, North Carolina A&T State University, Greensboro, NC 27411, USA
| |
Collapse
|
13
|
Hossain SR, Karem H, Jafari Z, Kolb BE, Mohajerani MH. Tactile stimulation improves cognition, motor, and anxiety-like behaviors and attenuates the Alzheimer's disease pathology in adult APP NL-G-F/NL-G-F mice. Synapse 2023; 77:e22257. [PMID: 36255152 DOI: 10.1002/syn.22257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 09/05/2022] [Accepted: 09/28/2022] [Indexed: 01/29/2023]
Abstract
Alzheimer's disease (AD) is one of the largest health crises in the world. There are limited pharmaceutical interventions to treat AD, however, and most of the treatment options are not for cure or prevention, but rather to slow down the progression of the disease. The aim of this study was to examine the effect of tactile stimulation (TS) on AD-like symptoms and pathology in APPNL-G-F/NL-G-F mice, a mouse model of AD. The results show that TS reduces the AD-like symptoms on tests of cognition, motor, and anxiety-like behaviors and these improvements in behavior are associated with reduced AD pathology in APP mice. Thus, TS appears to be a promising noninvasive strategy for slowing the onset of dementia in aging animals.
Collapse
Affiliation(s)
- Shakhawat R Hossain
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Hadil Karem
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Zahra Jafari
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Bryan E Kolb
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Majid H Mohajerani
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| |
Collapse
|
14
|
Liu J, Cerutti J, Lussier AA, Zhu Y, Smith BJ, Smith ADAC, Dunn EC. Socioeconomic changes predict genome-wide DNA methylation in childhood. Hum Mol Genet 2023; 32:709-719. [PMID: 35899434 PMCID: PMC10365844 DOI: 10.1093/hmg/ddac171] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/01/2022] [Accepted: 07/22/2022] [Indexed: 01/25/2023] Open
Abstract
Childhood socioeconomic position (SEP) is a major determinant of health and well-being across the entire life course. To effectively prevent and reduce health risks related to SEP, it is critical to better understand when and under what circumstances socioeconomic adversity shapes biological processes. DNA methylation (DNAm) is one such mechanism for how early life adversity 'gets under the skin'. In this study, we evaluated the dynamic relationship between SEP and DNAm across childhood using data from 946 mother-child pairs in the Avon Longitudinal Study of Parents and Children. We assessed six SEP indicators spanning financial, occupational and residential domains during very early childhood (ages 0-2), early childhood (ages 3-5) and middle childhood (ages 6-7). Epigenome-wide DNAm was measured at 412 956 cytosine-guanines (CpGs) from peripheral blood at age 7. Using an innovative two-stage structured life-course modeling approach, we tested three life-course hypotheses for how SEP shapes DNAm profiles-accumulation, sensitive period and mobility. We showed that changes in the socioeconomic environment were associated with the greatest differences in DNAm, and that middle childhood may be a potential sensitive period when socioeconomic instability is especially important in shaping DNAm. Top SEP-related DNAm CpGs were overrepresented in genes involved in pathways important for neural development, immune function and metabolic processes. Our findings highlight the importance of socioeconomic stability during childhood and if replicated, may emphasize the need for public programs to help children and families experiencing socioeconomic instability and other forms of socioeconomic adversity.
Collapse
Affiliation(s)
- Jiaxuan Liu
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Janine Cerutti
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Alexandre A Lussier
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Yiwen Zhu
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Brooke J Smith
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Andrew D A C Smith
- Mathematics and Statistics Research Group, University of the West of England, Bristol BS8 1QU, UK
| | - Erin C Dunn
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Harvard Center on the Developing Child, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
15
|
Raval M, Mishra S, Tiwari AK. Epigenetic regulons in Alzheimer's disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 198:185-247. [DOI: 10.1016/bs.pmbts.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
16
|
Prichard MR, Grogan KE, Merritt JR, Root J, Maney DL. Allele-specific cis-regulatory methylation of the gene for vasoactive intestinal peptide in white-throated sparrows. GENES, BRAIN, AND BEHAVIOR 2022; 21:e12831. [PMID: 36220804 PMCID: PMC9744568 DOI: 10.1111/gbb.12831] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 08/05/2022] [Accepted: 08/31/2022] [Indexed: 11/06/2022]
Abstract
White-throated sparrows (Zonotrichia albicollis) offer a unique opportunity to connect genotype with behavioral phenotype. In this species, a rearrangement of the second chromosome is linked with territorial aggression; birds with a copy of this "supergene" rearrangement are more aggressive than those without it. The supergene has captured the gene VIP, which encodes vasoactive intestinal peptide, a neuromodulator that drives aggression in other songbirds. In white-throated sparrows, VIP expression is higher in the anterior hypothalamus of birds with the supergene than those without it, and expression of VIP in this region predicts the level of territorial aggression regardless of genotype. Here, we aimed to identify epigenetic mechanisms that could contribute to differential expression of VIP both in breeding adults, which exhibit morph differences in territorial aggression, and in nestlings, before territorial behavior develops. We extracted and bisulfite-converted DNA from samples of the hypothalamus in wild-caught adults and nestlings and used high-throughput sequencing to measure DNA methylation of a region upstream of the VIP start site. We found that the allele inside the supergene was less methylated than the alternative allele in both adults and nestlings. The differential methylation was attributed primarily to CpG sites that were shared between the alleles, not to polymorphic sites, which suggests that epigenetic regulation is occurring independently of the genetic differentiation within the supergene. This work represents an initial step toward understanding how epigenetic differentiation inside chromosomal inversions leads to the development of alternative behavioral phenotypes.
Collapse
Affiliation(s)
| | - Kathleen E. Grogan
- Department of PsychologyEmory UniversityAtlantaGeorgiaUSA
- Present address:
Departments of Anthropology and BiologyUniversity of CincinnatiCincinnatiOhioUSA
| | - Jennifer R. Merritt
- Department of PsychologyEmory UniversityAtlantaGeorgiaUSA
- Present address:
Zuckerman Mind Brain Behavior Institute and Department of Ecology, Evolution and Environmental BiologyColumbia UniversityNew YorkNew YorkUSA
| | - Jessica Root
- Department of PsychologyEmory UniversityAtlantaGeorgiaUSA
- Present address:
Department of Pharmacology and Chemical BiologyEmory UniversityAtlantaGeorgiaUSA
| | - Donna L. Maney
- Department of PsychologyEmory UniversityAtlantaGeorgiaUSA
| |
Collapse
|
17
|
Wang L, Zou HO, Liu J, Hong JF. Associations between adverse childhood experiences and overweight, obese, smoking and binge drinking among adult patients with depression in China. CURRENT PSYCHOLOGY 2022. [DOI: 10.1007/s12144-022-03798-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
18
|
Aldawood N, Jalouli M, Alrezaki A, Nahdi S, Alamri A, Alanazi M, Manoharadas S, Alwasel S, Harrath AH. Fetal programming: in utero exposure to acrylamide leads to intergenerational disrupted ovarian function and accelerated ovarian aging. Aging (Albany NY) 2022; 14:6887-6904. [PMID: 36069806 PMCID: PMC9512500 DOI: 10.18632/aging.204269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/26/2022] [Indexed: 12/03/2022]
Abstract
In this study we investigated the effects of multigenerational exposures to acrylamide (ACR) on ovarian function. Fifty-day-old Wistar albino female rats were divided into the control and ACR-treated groups (2.5, 10, and 20 mg/kg/day) from day 6 of pregnancy until delivery. The obtained females of the first (AF1) and second generation (AF2) were euthanized at 4 weeks of age, and plasma and ovary samples were collected. We found that in utero multigenerational exposure to ACR reduced fertility and ovarian function in AF1 through inducing histopathological changes as evidenced by the appearance of cysts and degenerating follicles, oocyte vacuolization, and pyknosis in granulosa cells. TMR red positive cells confirmed by TUNEL assay were mostly detected in the stroma of the treated groups. Estradiol and IGF-1 concentrations significantly decreased as a result of decreased CYP19 gene and its protein expression. However, ACR exposure in AF2 led to early ovarian aging as evidenced by high estradiol and progesterone levels among all treated groups compared to control group, corresponding to the upregulation of the CYP19 gene and protein expression. The apoptotic cells of the stroma were greatly detected compared to that in the control group, whereas no significant difference was reported in ESR1 and ESR2 gene expression. This study confirms the developmental adverse effects of ACR on ovarian function and fertility in at least two consecutive generations. It emphasizes the need for more effective strategies during pregnancy, such as eating healthy foods and avoiding consumption of ACR-rich products, including fried foods and coffee.
Collapse
Affiliation(s)
- Nouf Aldawood
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Maroua Jalouli
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdulkarem Alrezaki
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saber Nahdi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah Alamri
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed Alanazi
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Salim Manoharadas
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saleh Alwasel
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdel Halim Harrath
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
19
|
Abstract
Advances in high-throughput technologies and the generation of multiomics, such as genomic, epigenomic, transcriptomic, and metabolomic data, are paving the way for the biological risk stratification and prediction of oral diseases. When integrated with electronic health records, survey, census, and/or epidemiologic data, multiomics are anticipated to facilitate data-driven precision oral health, or the delivery of the right oral health intervention to the right individuals/populations at the right time. Meanwhile, multiomics may be modified by a multitude of social exposures, cumulatively along the life course and at various time points from conception onward, also referred to as the socio-exposome. For example, adverse exposures, such as precarious social and living conditions and related psychosocial stress among others, have been linked to specific genes being switched "on and off" through epigenetic mechanisms. These in turn are associated with various health conditions in different age groups and populations. This article argues that considering the impact of the socio-exposome in the biological profiling for precision oral health applications is necessary to ensure that definitions of biological risk do not override social ones. To facilitate the uptake of the socio-exposome in multiomics oral health studies and subsequent interventions, 3 pertinent facets are discussed. First, a summary of the epigenetic landscape of oral health is presented. Next, findings from the nondental literature are drawn on to elaborate the pathways and mechanisms that link the socio-exposome with gene expression-or the biological embedding of social experiences through epigenetics. Then, methodological considerations for implementing social epigenomics into oral health research are highlighted, with emphasis on the implications for study design and interpretation. The article concludes by shedding light on some of the current and prospective opportunities for social epigenomics research applied to the study of life course oral epidemiology.
Collapse
Affiliation(s)
- N Gomaa
- Schulich School of Medicine and Dentistry, Western University, London, Canada.,Children's Health Research Institute, London, Canada
| |
Collapse
|
20
|
Sensation-seeking-related DNA methylation and the development of delinquency: A longitudinal epigenome-wide study. Dev Psychopathol 2022; 35:791-799. [PMID: 35734807 DOI: 10.1017/s0954579422000049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Heightened sensation-seeking is related to the development of delinquency. Moreover, sensation-seeking, or biological correlates of sensation-seeking, are suggested as factors linking victimization to delinquency. Here, we focused on epigenetic correlates of sensation-seeking. First, we identified DNA methylation (DNAm) patterns related to sensation-seeking. Second, we investigated the association between sensation-seeking related DNAm and the development of delinquency. Third, we examined whether victimization was related to sensation-seeking related DNAm and the development of delinquency. Participants (N = 905; 49% boys) came from the Avon Longitudinal Study of Parents and Children. DNAm was assessed at birth, age 7 and age 15-17. Sensation-seeking (self-reports) was assessed at age 11 and 14. Delinquency (self-reports) was assessed at age 17-19. Sensation-seeking epigenome-wide association study revealed that no probes reached the critical significance level. However, 20 differential methylated probes reached marginal significance. With these 20 suggestive sites, a sensation-seeking cumulative DNAm risk score was created. Results showed that this DNAm risk score at age 15-17 was related to delinquency at age 17-19. Moreover, an indirect effect of victimization to delinquency via DNAm was found. Sensation-seeking related DNAm is a potential biological correlate that can help to understand the development of delinquency, including how victimization might be associated with adolescent delinquency.
Collapse
|
21
|
Kwasek K, Patula S, Wojno M, Oliaro F, Cabay C, Pinnell LJ. Does Exposure of Broodstock to Dietary Soybean Meal Affect Its Utilization in the Offspring of Zebrafish (Danio rerio)? Animals (Basel) 2022; 12:ani12121475. [PMID: 35739814 PMCID: PMC9219465 DOI: 10.3390/ani12121475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Replacement of fishmeal in fish diets with plant protein has been an ongoing challenge. High-quality plant protein concentrates are widely used since their digestibility can be comparable to fishmeal. However, their price can exceed the cost of marine raw materials. Progress with utilization of lower-quality plant protein sources has been made but a number of concerns must be overcome to maintain acceptable growth rates at high fishmeal substitution levels. Nutritional programming represents a promising approach to offset the negative effects of dietary plant protein through its exposure in early life. We tested an unconventional programming strategy by exposing parental zebrafish to soybean meal diet to improve dietary soybean meal utilization in progeny fish. The study observed a strong trend showing better growth performance between progeny zebrafish fed soybean meal diet that originated from broodstock exposed to soybean meal as opposed to progeny fish fed soybean meal diet that originated from fishmeal diet fed broodstock. However, the study found no changes in the richness, diversity, or composition of gut microbial communities associated with progeny fish from fishmeal or soybean meal fed broodstock. Hence, the mechanism behind nutritional programming does not seem to be associated with modified gut microbiome. Abstract Nutritional programming (NP) is a concept in which early nutritional events alter the physiology of an animal and its response to different dietary regimes later in life. The objective of this study was to determine if NP via broodstock with dietary plant protein (PP) has any effect on the gut microbiome of the progeny fish and whether this modified gut microbiome leads to better utilization of PP diet. The experiment consisted of four different treatments as follows: (1) progeny that received FM diet obtained from fishmeal (FM)-fed broodstock (FMBS-FM, +control); (2) progeny that received PP diet obtained from FM-fed parents (FMBS-PP); (3) progeny that received PP diet obtained from “nutritionally programmed” parents (PPBS-PP; −control); and (4) progeny that received FM diet obtained from “nutritionally programmed” parents (PPBS-FM). Zebrafish was used as a model species. This study found that parental programming seems to have some positive effect on dietary PP utilization in progeny. However, the influence of NP with PP through broodstock on gut microbiota of the offspring fish was not detected.
Collapse
Affiliation(s)
- Karolina Kwasek
- Center for Fisheries, Aquaculture, and Aquatic Sciences, Southern Illinois University, 1125 Lincoln Dr. Life Science II, Room 251, Carbondale, IL 62901, USA; (S.P.); (M.W.)
- Correspondence: ; Tel.: +1-618-453-2890
| | - Samuel Patula
- Center for Fisheries, Aquaculture, and Aquatic Sciences, Southern Illinois University, 1125 Lincoln Dr. Life Science II, Room 251, Carbondale, IL 62901, USA; (S.P.); (M.W.)
| | - Michal Wojno
- Center for Fisheries, Aquaculture, and Aquatic Sciences, Southern Illinois University, 1125 Lincoln Dr. Life Science II, Room 251, Carbondale, IL 62901, USA; (S.P.); (M.W.)
| | - Frank Oliaro
- A. Watson Armour III Center for Animal Health and Welfare, John G. Shedd Aquarium, Chicago, IL 60605, USA; (F.O.); (C.C.)
| | - Chrissy Cabay
- A. Watson Armour III Center for Animal Health and Welfare, John G. Shedd Aquarium, Chicago, IL 60605, USA; (F.O.); (C.C.)
| | - Lee J. Pinnell
- Veterinary Education, Research, and Outreach Program, Texas A&M University, Canyon, TX 79015, USA;
| |
Collapse
|
22
|
Szyf M. The epigenetics of early life adversity and trauma inheritance: an interview with Moshe Szyf. Epigenomics 2022; 14:309-314. [PMID: 34877868 DOI: 10.2217/epi-2021-0483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this interview, Professor Moshe Szyf speaks with Storm Johnson, Commissioning Editor for Epigenomics, on his work to date in the field of social epigenetics. Szyf received his PhD from the Hebrew University and did his postdoctoral fellowship in genetics at Harvard Medical School, joined the Department of Pharmacology and Therapeutics at McGill University in Montreal in 1989 and is a fellow of the Royal Society of Canada and the Academy of Health Sciences of Canada. He is the founding codirector of the Sackler Institute for Epigenetics and Psychobiology at McGill and is a Fellow of the Canadian Institute for Advanced Research Experience-Based Brain and Biological Development program. Szyf was the founder of the first pharma to develop epigenetic pharmacology, Methylgene Inc., and the journal Epigenetics. The Szyf lab proposed two decades ago that DNA methylation is a prime therapeutic target in cancer and other diseases and postulated and provided the first set of evidence that the social environment early in life can alter DNA methylation, launching the emerging field of social epigenetics.
Collapse
Affiliation(s)
- Moshe Szyf
- McGill University, Montreal, Quebec, H3A 0G4, Canada
| |
Collapse
|
23
|
Faustino B. Minding my brain: Fourteen neuroscience-based principles to enhance psychotherapy responsiveness. Clin Psychol Psychother 2022; 29:1254-1275. [PMID: 35112428 DOI: 10.1002/cpp.2719] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 12/21/2021] [Accepted: 01/28/2022] [Indexed: 11/12/2022]
Abstract
Intersections between psychotherapy and neurosciences are at its dawn. The quest to understand the neural underpinnings of psychological processes has led several generations of scientists to explore neural correlates between mind, brain, and behavior. Neuroscience methods and research has given psychology new perspectives and insights about the structure and function of complex neural pathways, that underly human functioning (cognition, emotion, motivation, and interpersonal behavior). By translating neuroscientific findings into psychotherapeutic principles of change, it is possible to promote responsiveness towards brain dysfunction that underlies patients' psychological malfunctioning. In psychotherapy, responsiveness is a core aspect of the therapeutic change process, especially to adapt psychological interventions to patients' motivational stages and preferences, coping styles, neurobehavioral modes, and emotional needs. Within a transtheoretical and translational approach, contemporary neuroscientific findings are revised, discussed, and used to attempt to build-on fourteen theoretical brain-based principles that may be applied to psychotherapy. Translating these empirical findings into practical principles, clinical strategies and tasks is expected to enhance psychotherapy responsiveness grounded on a science-based knowledge of brain functioning.
Collapse
Affiliation(s)
- Bruno Faustino
- Faculdade de Psicologia da Universidade de Lisboa, Portugal.,HEI-Lab, Lusófona University, Lisbon, Portugal
| |
Collapse
|
24
|
Gonadotropin-inhibitory hormone as a regulator of social interactions in vertebrates. Front Neuroendocrinol 2022; 64:100954. [PMID: 34757092 DOI: 10.1016/j.yfrne.2021.100954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/12/2021] [Accepted: 10/11/2021] [Indexed: 12/14/2022]
Abstract
The social environment changes circulating hormone levels and expression of social behavior in animals. Social information is perceived by sensory systems, leading to cellular and molecular changes through neural processes. Peripheral reproductive hormone levels are regulated by activity in the hypothalamic-pituitary-gonadal (HPG) axis. Until the end of the last century, the neurochemical systems that convey social information to the HPG axis were not well understood. Gonadotropin-inhibitory hormone (GnIH) was the first hypothalamic neuropeptide shown to inhibit gonadotropin release, in 2000. GnIH is now regarded as a negative upstream regulator of the HPG axis, and it is becoming increasingly evident that it responds to social cues. In addition to controlling reproductive physiology, GnIH seems to modulate the reproductive behavior of animals. Here, we review studies investigating how GnIH neurons respond to social information and describe the mechanisms through which GnIH regulates social behavior.
Collapse
|
25
|
Cerutti J, Lussier AA, Zhu Y, Liu J, Dunn EC. Associations between indicators of socioeconomic position and DNA methylation: a scoping review. Clin Epigenetics 2021; 13:221. [PMID: 34906220 PMCID: PMC8672601 DOI: 10.1186/s13148-021-01189-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/21/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Socioeconomic position (SEP) is a major determinant of health across the life course. Yet, little is known about the biological mechanisms explaining this relationship. One possibility widely pursued in the scientific literature is that SEP becomes biologically embedded through epigenetic processes such as DNA methylation (DNAm), wherein the socioeconomic environment causes no alteration in the DNA sequence but modifies gene activity in ways that shape health. METHODS To understand the evidence supporting a potential SEP-DNAm link, we performed a scoping review of published empirical findings on the association between SEP assessed from prenatal development to adulthood and DNAm measured across the life course, with an emphasis on exploring how the developmental timing, duration, and type of SEP exposure influenced DNAm. RESULTS Across the 37 identified studies, we found that: (1) SEP-related DNAm signatures varied across the timing, duration, and type of SEP indicator; (2) however, longitudinal studies examining repeated SEP and DNAm measures are generally lacking; and (3) prior studies are conceptually and methodologically diverse, limiting the interpretability of findings across studies with respect to these three SEP features. CONCLUSIONS Given the complex relationship between SEP and DNAm across the lifespan, these findings underscore the importance of analyzing SEP features, including timing, duration, and type. To guide future research, we highlight additional research gaps and propose four recommendations to further unravel the relationship between SEP and DNAm.
Collapse
Affiliation(s)
- Janine Cerutti
- Department of Pscyhology, University of Vermont, 2 Colchester Ave, Burlington, VT, USA
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge Street, Simches Research Building 6th Floor, Boston, MA, 02114, USA
| | - Alexandre A Lussier
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge Street, Simches Research Building 6th Floor, Boston, MA, 02114, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Yiwen Zhu
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge Street, Simches Research Building 6th Floor, Boston, MA, 02114, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jiaxuan Liu
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge Street, Simches Research Building 6th Floor, Boston, MA, 02114, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Erin C Dunn
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge Street, Simches Research Building 6th Floor, Boston, MA, 02114, USA.
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
- Stanley Center for Psychiatric Research, The Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
26
|
Reduction of DNMT3a and RORA in the nucleus accumbens plays a causal role in post-traumatic stress disorder-like behavior: reversal by combinatorial epigenetic therapy. Mol Psychiatry 2021; 26:7481-7497. [PMID: 34253866 DOI: 10.1038/s41380-021-01178-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 04/28/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023]
Abstract
Post-traumatic stress disorder (PTSD) is an incapacitating trauma-related disorder, with no reliable therapy. Although PTSD has been associated with epigenetic alterations in peripheral white blood cells, it is unknown where such changes occur in the brain, and whether they play a causal role in PTSD. Using an animal PTSD model, we show distinct DNA methylation profiles of PTSD susceptibility in the nucleus accumbens (NAc). Data analysis revealed overall hypomethylation of different genomic CG sites in susceptible animals. This was correlated with the reduction in expression levels of the DNA methyltransferase, DNMT3a. Since epigenetic changes in diseases involve different gene pathways, rather than single candidate genes, we next searched for pathways that may be involved in PTSD. Analysis of differentially methylated sites identified enrichment in the RAR activation and LXR/RXR activation pathways that regulate Retinoic Acid Receptor (RAR) Related Orphan Receptor A (RORA) activation. Intra-NAc injection of a lentiviral vector expressing either RORA or DNMT3a reversed PTSD-like behaviors while knockdown of RORA and DNMT3a increased PTSD-like behaviors. To translate our results into a potential pharmacological therapeutic strategy, we tested the effect of systemic treatment with the global methyl donor S-adenosyl methionine (SAM), for supplementing DNA methylation, or retinoic acid, for activating RORA downstream pathways. We found that combined treatment with the methyl donor SAM and retinoic acid reversed PTSD-like behaviors. Thus, our data point to a novel approach to the treatment of PTSD, which is potentially translatable to humans.
Collapse
|
27
|
Martins J, Czamara D, Sauer S, Rex-Haffner M, Dittrich K, Dörr P, de Punder K, Overfeld J, Knop A, Dammering F, Entringer S, Winter SM, Buss C, Heim C, Binder EB. Childhood adversity correlates with stable changes in DNA methylation trajectories in children and converges with epigenetic signatures of prenatal stress. Neurobiol Stress 2021; 15:100336. [PMID: 34095363 PMCID: PMC8163992 DOI: 10.1016/j.ynstr.2021.100336] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/01/2021] [Accepted: 05/01/2021] [Indexed: 12/12/2022] Open
Abstract
Childhood maltreatment (CM) is an established major risk factor for a number of negative health outcomes later in life. While epigenetic mechanisms, such as DNA methylation (DNAm), have been proposed as a means of embedding this environmental risk factor, little is known about its timing and trajectory, especially in very young children. It is also not clear whether additional environmental adversities, often experienced by these children, converge on similar DNAm changes. Here, we calculated a cumulative adversity score, which additionally to CM includes socioeconomic status (SES), other life events, parental psychopathology and epigenetic biomarkers of prenatal smoking and alcohol consumption. We investigated the effects of CM alone as well as the adversity score on longitudinal DNAm trajectories in the Berlin Longitudinal Child Study. This is a cohort of 173 children aged 3-5 years at baseline of whom 86 were exposed to CM. These children were followed-up for 2 years with extensive psychometric and biological assessments as well as saliva collection at 5 time points providing genome-wide DNAm levels. Overall, only a few DNAm patterns were stable over this timeframe, but less than 10 DNAm regions showed significant changes. At baseline, neither CM nor the adversity score associated with DNAm changes. However, in 6 differentially methylated regions (DMRs), CM and the adversity score significantly moderated DNAm trajectories over time. A number of these DMRs have previously been associated with adverse prenatal exposures. In our study, children exposed to CM also presented with epigenetic signatures indicative of increased prenatal exposure to tobacco and alcohol, as compared to non-CM exposed children. These epigenetic signatures of prenatal exposure strongly correlate with DNAm regions associated with CM and the adversity score. Finally, weighted correlation network analysis revealed a module of CpGs exclusively associated with CM. While our study identifies DNAm loci specifically associated with CM, especially within long non-coding RNAs, the majority of associations were found with the adversity score with convergent association with indicators of adverse prenatal exposures. This study highlights the importance of mapping not only of the epigenome but also the exposome and extending the observational timeframe to well before birth.
Collapse
Affiliation(s)
- Jade Martins
- Dept. of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Darina Czamara
- Dept. of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Susann Sauer
- Dept. of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Monika Rex-Haffner
- Dept. of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Katja Dittrich
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Campus Virchow, Department of Child and Adolescent Psychiatry, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Peggy Dörr
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Campus Virchow, Department of Child and Adolescent Psychiatry, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Karin de Punder
- Natura Foundation, Research and Development, Numansdrop, 3281, NC, Netherlands
| | - Judith Overfeld
- Charité − Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Medical Psychology, Campus Charité Mitte, Luisenstraße 57, 10117 Berlin, Germany
| | - Andrea Knop
- Charité − Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Medical Psychology, Campus Charité Mitte, Luisenstraße 57, 10117 Berlin, Germany
| | - Felix Dammering
- Charité − Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Medical Psychology, Campus Charité Mitte, Luisenstraße 57, 10117 Berlin, Germany
| | - Sonja Entringer
- Charité − Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Medical Psychology, Campus Charité Mitte, Luisenstraße 57, 10117 Berlin, Germany
- University of California, Irvine, Development, Health, and Disease Research Program, Orange, CA, USA
| | - Sibylle M. Winter
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Campus Virchow, Department of Child and Adolescent Psychiatry, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Claudia Buss
- Charité − Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Medical Psychology, Campus Charité Mitte, Luisenstraße 57, 10117 Berlin, Germany
- University of California, Irvine, Development, Health, and Disease Research Program, Orange, CA, USA
| | - Christine Heim
- Charité − Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Medical Psychology, Campus Charité Mitte, Luisenstraße 57, 10117 Berlin, Germany
- Dept. of Biobehavioral Health, College of Health & Human Development, The Pennsylvania State University, University Park, PA, USA
| | - Elisabeth B. Binder
- Dept. of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, 30329, USA
| |
Collapse
|
28
|
Matveeva N, Titov B, Bazyleva E, Pevzner A, Favorova O. Towards Understanding the Genetic Nature of Vasovagal Syncope. Int J Mol Sci 2021; 22:10316. [PMID: 34638656 PMCID: PMC8508958 DOI: 10.3390/ijms221910316] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 11/17/2022] Open
Abstract
Syncope, defined as a transient loss of consciousness caused by transient global cerebral hypoperfusion, affects 30-40% of humans during their lifetime. Vasovagal syncope (VVS) is the most common cause of syncope, the etiology of which is still unclear. This review summarizes data on the genetics of VVS, describing the inheritance pattern of the disorder, candidate gene association studies and genome-wide studies. According to this evidence, VVS is a complex disorder, which can be caused by the interplay between genetic factors, whose contribution varies from monogenic Mendelian inheritance to polygenic inherited predisposition, and external factors affecting the monogenic (resulting in incomplete penetrance) and polygenic syncope types.
Collapse
Affiliation(s)
- Natalia Matveeva
- National Medical Research Center for Cardiology, 121552 Moscow, Russia; (N.M.); (B.T.); (E.B.); (A.P.)
- Department of Molecular Biology and Medical Biotechnology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Boris Titov
- National Medical Research Center for Cardiology, 121552 Moscow, Russia; (N.M.); (B.T.); (E.B.); (A.P.)
- Department of Molecular Biology and Medical Biotechnology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Elizabeth Bazyleva
- National Medical Research Center for Cardiology, 121552 Moscow, Russia; (N.M.); (B.T.); (E.B.); (A.P.)
| | - Alexander Pevzner
- National Medical Research Center for Cardiology, 121552 Moscow, Russia; (N.M.); (B.T.); (E.B.); (A.P.)
| | - Olga Favorova
- National Medical Research Center for Cardiology, 121552 Moscow, Russia; (N.M.); (B.T.); (E.B.); (A.P.)
- Department of Molecular Biology and Medical Biotechnology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
29
|
Duncan KA, Garijo-Garde S. Sex, Genes, and Traumatic Brain Injury (TBI): A Call for a Gender Inclusive Approach to the Study of TBI in the Lab. Front Neurosci 2021; 15:681599. [PMID: 34025346 PMCID: PMC8131651 DOI: 10.3389/fnins.2021.681599] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/12/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Kelli A Duncan
- Department of Biology, Vassar College, Poughkeepsie, NY, United States.,Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, NY, United States
| | - Sarah Garijo-Garde
- Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, NY, United States
| |
Collapse
|
30
|
Filipe AM, Lloyd S, Larivée A. Troubling Neurobiological Vulnerability: Psychiatric Risk and the Adverse Milieu in Environmental Epigenetics Research. FRONTIERS IN SOCIOLOGY 2021; 6:635986. [PMID: 33912612 PMCID: PMC8072338 DOI: 10.3389/fsoc.2021.635986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
In post-genomic science, the development of etiological models of neurobiological vulnerability to psychiatric risk has expanded exponentially in recent decades, particularly since the neuromolecular and biosocial turns in basic research. Among this research is that of McGill Group for Suicide Studies (MGSS) whose work centers on the identification of major risk factors and epigenetic traits that help to identify a specific profile of vulnerability to psychiatric conditions (e.g., depression) and predict high-risk behaviors (e.g., suicidality). Although the MGSS has attracted attention for its environmental epigenetic models of suicide risk over the years and the translation of findings from rodent studies into human populations, its overall agenda includes multiple research axes, ranging from retrospective studies to clinical and epidemiological research. Common to these research axes is a concern with the long-term effects of adverse experiences on maladaptive trajectories and negative mental health outcomes. As these findings converge with post-genomic understandings of health and also translate into new orientations in global public health, our article queries the ways in which neurobiological vulnerability is traced, measured, and profiled in environmental epigenetics and in the MGSS research. Inspired by the philosophy of Georges Canguilhem and by literature from the social studies of risk and critical public health, we explore how the epigenetic models of neurobiological vulnerability tie into a particular way of thinking about the normal, the pathological, and the milieu in terms of risk. Through this exploration, we examine how early life adversity (ELA) and neurobiological vulnerability are localized and materialized in those emerging models while also considering their broader conceptual and translational implications in the contexts of mental health and global public health interventions. In particular, we consider how narratives of maladaptive trajectories and vulnerable selves who are at risk of harm might stand in as a "new pathological" with healthy trajectories and resilient selves being potentially equated with a "new normal" way of living in the face of adversity. By troubling neurobiological vulnerability as a universal biosocial condition, we suggest that an ecosocial perspective may help us to think differently about the dynamics of mental health and distress in the adverse milieu.
Collapse
Affiliation(s)
- Angela Marques Filipe
- Department of Sociology and Centre for Research on Children & Families, McGill University, Montréal, QC, Canada
- Centre for Biomedicine, Self & Society, Usher Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Stephanie Lloyd
- Department of Anthropology, Université Laval, Québec, QC, Canada
| | | |
Collapse
|
31
|
Van Aswegen T, Bosmans G, Goossens L, Van Leeuwen K, Claes S, Van Den Noortgate W, Hankin BL. Epigenetics in Families: Covariance between Mother and Child Methylation Patterns. Brain Sci 2021; 11:brainsci11020190. [PMID: 33557123 PMCID: PMC7913850 DOI: 10.3390/brainsci11020190] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 12/22/2022] Open
Abstract
Theory and research both point at epigenetic processes affecting both parenting behavior and child functioning. However, little is known about the convergence of mother and child’s epigenetic patterns in families. Therefore, the current study investigated epigenetic covariance in mother–child dyads’ methylation levels regarding four stress-regulation related genes (5HTT, NR3C1, FKBP5, and BDNF). Covariance was tested in a general population sample, consisting of early adolescents (Mage = 11.63, SDage = 2.3) and mothers (N = 160 dyads). Results showed that mother and offspring 5HTT and NR3C1 methylation patterns correlated. Furthermore, when averaged across genes, methylation levels strongly correlated. These findings partially supported that child and parent methylation levels covary. It might be important to consider this covariance to understand maladaptive parent–child relationships.
Collapse
Affiliation(s)
- Tanya Van Aswegen
- Department of Psychiatry, University of Stellenbosch, 7505 Cape Town, Tygerberg, South Africa;
- Department of Clinical Psychology, VU University Amsterdam, 1081 BT Amsterdam, The Netherlands
| | - Guy Bosmans
- Clinical Psychology, Faculty of Psychology and Educational Sciences, KU Leuven, 3000 Leuven, Belgium
- Correspondence:
| | - Luc Goossens
- School Psychology and Development in Context, Faculty of Psychology and Educational Sciences, KU Leuven, 3000 Leuven, Belgium;
| | - Karla Van Leeuwen
- Parenting and Special Education, Faculty of Psychology and Educational Sciences, KU Leuven, 3000 Leuven, Belgium;
| | - Stephan Claes
- University Psychiatric Center, Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium;
| | - Wim Van Den Noortgate
- Faculty of Psychology and Educational Sciences, KU Leuven Campus Kulak Kortrijk, 8500 Kortrijk, Belgium;
- ITEC, IMEC Research Group at KU Leuven, 8500 Kortrijk, Belgium
| | - Benjamin L. Hankin
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA;
| |
Collapse
|
32
|
Alcohol. Alcohol 2021. [DOI: 10.1016/b978-0-12-816793-9.00001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
33
|
Rehman MYA, Taqi MM, Hussain I, Nasir J, Rizvi SHH, Syed JH. Elevated exposure to polycyclic aromatic hydrocarbons (PAHs) may trigger cancers in Pakistan: an environmental, occupational, and genetic perspective. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:42405-42423. [PMID: 32875453 DOI: 10.1007/s11356-020-09088-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 04/27/2020] [Indexed: 05/22/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic compounds which are emitted through incomplete combustion of organic materials, fossil fuels, consumption of processed meat, smoked food, and from various industrial activities. High molecular mass and mobility make PAHs widespread and lethal for human health. A cellular system in human detoxifies these toxicants through specialized enzymatic machinery called xenobiotic-metabolizing (CYP450) and phase-II (GSTs) enzymes (XMEs). These metabolizing enzymes include cytochromes P450 family (CYP1, CYP2), glutathione s-transferases, and ALDHs. Gene polymorphisms in XMEs encoding genes can compromise their metabolizing capacity to detoxify ingested carcinogens (PAHs etc.) that may lead to prolong and elevated exposure to ingested toxicants and may consequently lead to cancer. Moreover, PAHs can induce cancer through reprograming XMEs' gene functions by altering their epigenetic markers. This review article discusses possible interplay between individual's gene polymorphism in XMEs' genes, their altered epigenetic markers, and exposure to PAHs in cancer susceptibility in Pakistan.
Collapse
Affiliation(s)
- Muhammad Yasir Abdur Rehman
- Environmental Biology and Ecotoxicology Laboratory, Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, PO, 45320, Pakistan
| | | | - Imran Hussain
- Department of Biotechnology, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, PO, 45320, Pakistan
- Business Unit Environmental Resources and Technologies, Center for Energy, Austrian Institute of Technology (AIT), Vienna, Austria
| | - Jawad Nasir
- Earth Sciences Directorate, Pakistan Space and Upper Atmosphere Research Commission (SUPARCO), P.O. Box 8402, Karachi, 75270, Pakistan
| | - Syed Hussain Haider Rizvi
- Earth Sciences Directorate, Pakistan Space and Upper Atmosphere Research Commission (SUPARCO), P.O. Box 8402, Karachi, 75270, Pakistan
| | - Jabir Hussain Syed
- Department of Meteorology, COMSATS University Islamabad, Park Road, Tarlai Kalan, Islamabad, 45550, Pakistan.
| |
Collapse
|
34
|
Adherence to the Mediterranean diet partially mediates socioeconomic differences in leukocyte LINE-1 methylation: evidence from a cross-sectional study in Italian women. Sci Rep 2020; 10:14360. [PMID: 32873815 PMCID: PMC7463235 DOI: 10.1038/s41598-020-71352-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 08/07/2020] [Indexed: 12/11/2022] Open
Abstract
Although previous research demonstrated that socioeconomic status (SES) might affect DNA methylation, social inequalities alone do not completely explain this relationship. We conducted a cross-sectional study on 349 women (Catania, Italy) to investigate whether behaviors might mediate the association between SES and long interspersed nuclear elements (LINE-1) methylation, a surrogate marker of global DNA methylation. Educational level, used as an indicator of SES, and data on behaviors (i.e. diet, smoking habits, physical activity, and weight status) were collected using structured questionnaires. Adherence to Mediterranean diet (MD) was assessed by the Mediterranean Diet Score (MDS). Leukocyte LINE-1 methylation was assessed by pyrosequencing. Mediation analysis was conducted using the procedure described by Preacher and Hayes. Women with high educational level exhibited higher MDS (β = 0.669; 95%CI 0.173-1.165; p < 0.01) and LINE-1 methylation level (β = 0.033; 95%CI 0.022-0.043; p < 0.001) than their less educated counterpart. In line with this, mediation analysis demonstrated a significant indirect effect of high educational level on LINE-1 methylation through the adherence to MD (β = 0.003; 95%CI 0.001-0.006). Specifically, the mediator could account for 9.5% of the total effect. To our knowledge, this is the first study demonstrating the mediating effect of diet in the relationship between SES and DNA methylation. Although these findings should be confirmed by prospective research, they add value to the promotion of healthy dietary habits in social disadvantaged people.
Collapse
|
35
|
An epigenome-wide association study of early-onset major depression in monozygotic twins. Transl Psychiatry 2020; 10:301. [PMID: 32843619 PMCID: PMC7447798 DOI: 10.1038/s41398-020-00984-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 06/18/2020] [Accepted: 07/22/2020] [Indexed: 12/20/2022] Open
Abstract
Major depression (MD) is a debilitating mental health condition with peak prevalence occurring early in life. Genome-wide examination of DNA methylation (DNAm) offers an attractive complement to studies of allelic risk given it can reflect the combined influence of genes and environment. The current study used monozygotic twins to identify differentially and variably methylated regions of the genome that distinguish twins with and without a lifetime history of early-onset MD. The sample included 150 Caucasian monozygotic twins between the ages of 15 and 20 (73% female; Mage = 17.52 SD = 1.28) who were assessed during a developmental stage characterized by relatively distinct neurophysiological changes. All twins were generally healthy and currently free of medications with psychotropic effects. DNAm was measured in peripheral blood cells using the Infinium Human BeadChip 450 K Array. MD associations with early-onset MD were detected at 760 differentially and variably methylated probes/regions that mapped to 428 genes. Genes and genomic regions involved neural circuitry formation, projection, functioning, and plasticity. Gene enrichment analyses implicated genes related to neuron structures and neurodevelopmental processes including cell-cell adhesion genes (e.g., PCDHA genes). Genes previously implicated in mood and psychiatric disorders as well as chronic stress (e.g., NRG3) also were identified. DNAm regions associated with early-onset MD were found to overlap genetic loci identified in the latest Psychiatric Genomics Consortium meta-analysis of depression. Understanding the time course of epigenetic influences during emerging adulthood may clarify developmental phases where changes in the DNA methylome may modulate individual differences in MD risk.
Collapse
|
36
|
Barrero-Castillero A, Morton SU, Nelson CA, Smith VC. Psychosocial Stress and Adversity: Effects from the Perinatal Period to Adulthood. Neoreviews 2020; 20:e686-e696. [PMID: 31792156 DOI: 10.1542/neo.20-12-e686] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Early exposure to stress and adversity can have both immediate and lasting effects on physical and psychological health. Critical periods have been identified in infancy, during which the presence or absence of experiences can alter developmental trajectories. There are multiple explanations for how exposure to psychosocial stress, before conception or early in life, has an impact on later increased risk for developmental delays, mental health, and chronic metabolic diseases. Through both epidemiologic and animal models, the mechanisms by which experiences are transmitted across generations are being identified. Because psychosocial stress has multiple components that can act as stress mediators, a comprehensive understanding of the complex interactions between multiple adverse or beneficial experiences and their ultimate effects on health is essential to best identify interventions that will improve health and outcomes. This review outlines what is known about the biology, transfer, and effects of psychosocial stress and early life adversity from the perinatal period to adulthood. This information can be used to identify potential areas in which clinicians in neonatal medicine could intervene to improve outcomes.
Collapse
Affiliation(s)
- Alejandra Barrero-Castillero
- Division of Neonatology, Beth Israel Deaconess Medical Center, Boston, MA.,Division of Newborn Medicine, Boston Children's Hospital, Boston, MA.,Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Sarah U Morton
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA.,Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Charles A Nelson
- Department of Pediatrics, Harvard Medical School, Boston, MA.,Harvard Graduate School of Education, Boston, MA
| | - Vincent C Smith
- Division of Neonatology, Boston Medical Center, Boston, MA.,Department of Pediatrics, Boston University, Boston, MA
| |
Collapse
|
37
|
Consequences of 22q11.2 Microdeletion on the Genome, Individual and Population Levels. Genes (Basel) 2020; 11:genes11090977. [PMID: 32842603 PMCID: PMC7563277 DOI: 10.3390/genes11090977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 12/27/2022] Open
Abstract
Chromosomal 22q11.2 deletion syndrome (22q11.2DS) (ORPHA: 567) caused by microdeletion in chromosome 22 is the most common chromosomal microdeletion disorder in humans. Despite the same change on the genome level, like in the case of monozygotic twins, phenotypes are expressed differently in 22q11.2 deletion individuals. The rest of the genome, as well as epigenome and environmental factors, are not without influence on the variability of phenotypes. The penetrance seems to be more genotype specific than deleted locus specific. The transcript levels of deleted genes are not usually reduced by 50% as assumed due to haploinsufficiency. 22q11.2DS is often an undiagnosed condition, as each patient may have a different set out of 180 possible clinical manifestations. Diverse dysmorphic traits are present in patients from different ethnicities, which makes diagnosis even more difficult. 22q11.2 deletion syndrome serves as an example of a genetic syndrome that is not easy to manage at all stages: diagnosis, consulting and dealing with.
Collapse
|
38
|
Molinari GS, McCracken VJ, Wojno M, Rimoldi S, Terova G, Kwasek K. Can intestinal absorption of dietary protein be improved through early exposure to plant-based diet? PLoS One 2020; 15:e0228758. [PMID: 32497052 PMCID: PMC7272038 DOI: 10.1371/journal.pone.0228758] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/20/2020] [Indexed: 12/18/2022] Open
Abstract
Nutritional Programming (NP) has been studied as a means of mitigating the negative effects of dietary plant protein (PP), but the optimal timing and mechanism behind NP are still unknown. The objectives of this study were: 1) To determine whether zebrafish (Danio rerio) can be programmed to soybean meal (SBM) through early feeding and broodstock exposure to improve SBM utilization; 2) To determine if NP in zebrafish affects expression of genes associated with intestinal nutrient uptake; 3) To determine if early stage NP and/or broodstock affects gene expression associated with intestinal inflammation or any morphological changes in the intestinal tract that might improve dietary SBM utilization. Two broodstocks were used to form the six experimental groups. One broodstock group received fishmeal (FM) diet (FMBS), while the other was fed ("programmed with") SBM diet (PPBS). The first ((+) Control) and the second group ((-) Control) received FM and SBM diet for the entire study, respectively, and were progeny of FMBS. The last four groups consisted of a non-programmed (FMBS-X-PP and PPBS-X-PP) and a programmed group (FMBS-NP-PP and PPBS-NP-PP) from each of the broodstocks. The programming occurred through feeding with SBM diet during 13-23 dph. The non-control groups underwent a PP-Challenge, receiving SBM diet during 36-60 dph. During the PP-Challenge, both PPBS groups experienced significantly lower weight gains than the (+) Control group. NP in early life stages significantly increased the expression of PepT1 in PPBS-NP-PP, compared to PPBS-X-PP. NP also tended to increase the expression of fabp2 in the programmed vs. non-programmed groups of both broodstocks. The highest distal villus length-to-width ratio was observed in the dual-programmed group, suggesting an increase in surface area for nutrient absorption within the intestine. The results of this study suggest that NP during early life stages may increase intestinal absorption of nutrients from PP-based feeds.
Collapse
Affiliation(s)
- Giovanni S. Molinari
- Center for Fisheries, Aquaculture, and Aquatic Sciences, Southern Illinois University, Carbondale, Illinois, United States of America
| | - Vance J. McCracken
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, Illinois, United States of America
| | - Michal Wojno
- Center for Fisheries, Aquaculture, and Aquatic Sciences, Southern Illinois University, Carbondale, Illinois, United States of America
| | - Simona Rimoldi
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Genciana Terova
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Karolina Kwasek
- Center for Fisheries, Aquaculture, and Aquatic Sciences, Southern Illinois University, Carbondale, Illinois, United States of America
- * E-mail:
| |
Collapse
|
39
|
Brown G. Towards a New Understanding of Decision-Making by Hematopoietic Stem Cells. Int J Mol Sci 2020; 21:ijms21072362. [PMID: 32235353 PMCID: PMC7178065 DOI: 10.3390/ijms21072362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 12/15/2022] Open
Abstract
Cells within the hematopoietic stem cell compartment selectively express receptors for cytokines that have a lineage(s) specific role; they include erythropoietin, macrophage colony-stimulating factor, granulocyte colony-stimulating factor, granulocyte/macrophage colony-stimulating factor and the ligand for the fms-like tyrosine kinase 3. These hematopoietic cytokines can instruct the lineage fate of hematopoietic stem and progenitor cells in addition to ensuring the survival and proliferation of cells that belong to a particular cell lineage(s). Expression of the receptors for macrophage colony-stimulating factor and granulocyte colony-stimulating factor is positively autoregulated and the presence of the cytokine is therefore likely to enforce a lineage bias within hematopoietic stem cells that express these receptors. In addition to the above roles, macrophage colony-stimulating factor and granulocyte/macrophage colony-stimulating factor are powerful chemoattractants. The multiple roles of some hematopoietic cytokines leads us towards modelling hematopoietic stem cell decision-making whereby these cells can 'choose' just one lineage fate and migrate to a niche that both reinforces the fate and guarantees the survival and expansion of cells as they develop.
Collapse
Affiliation(s)
- Geoffrey Brown
- School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
40
|
Lineage Decision-Making within Normal Haematopoietic and Leukemic Stem Cells. Int J Mol Sci 2020; 21:ijms21062247. [PMID: 32213936 PMCID: PMC7139697 DOI: 10.3390/ijms21062247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/20/2020] [Accepted: 03/21/2020] [Indexed: 11/20/2022] Open
Abstract
To produce the wide range of blood and immune cell types, haematopoietic stem cells can “choose” directly from the entire spectrum of blood cell fate-options. Affiliation to a single cell lineage can occur at the level of the haematopoietic stem cell and these cells are therefore a mixture of some pluripotent cells and many cells with lineage signatures. Even so, haematopoietic stem cells and their progeny that have chosen a particular fate can still “change their mind” and adopt a different developmental pathway. Many of the leukaemias arise in haematopoietic stem cells with the bulk of the often partially differentiated leukaemia cells belonging to just one cell type. We argue that the reason for this is that an oncogenic insult to the genome “hard wires” leukaemia stem cells, either through development or at some stage, to one cell lineage. Unlike normal haematopoietic stem cells, oncogene-transformed leukaemia stem cells and their progeny are unable to adopt an alternative pathway.
Collapse
|
41
|
Abstract
The investigation of hormones, brain function and behavior over the past 50 years has played a major role in elucidating how the brain and body communicate reciprocally via hormones and other mediators and how this impacts brain and body health both positively and negatively. This is illustrated here for the hippocampus, a uniquely sensitive and vulnerable brain region, study of which as a hormone target has provided a gateway into the rest of the brain. Hormone actions on the brain and hormones generated within the brain are now recognized to include not only steroid hormones but also metabolic hormones and chemical signals from bone and muscle. Moreover, steroid hormones, and some metabolic hormones, and their receptors, are generated by the brain for specific functions that synergize with effects of those circulating hormones. Hormone actions in hippocampus have revealed its capacity, and that of other brain regions, for adaptive plasticity, loss of which needs external intervention in, for example, mood disorders. Early life experiences as well as in utero and transgenerational effects are now appreciated for their lasting effects at the level of gene expression affecting the capacity for adaptive plasticity. Moreover sex differences are recognized as affecting the whole brain via both genetic and epigenetic mechanisms. The demonstrated plasticity of a healthy brain gives hope that interventions throughout the life course can ameliorate negative effects by reactivating that plasticity and the underlying epigenetic activity to produce compensatory changes in the brain with more positive consequences for the body.
Collapse
Affiliation(s)
- Bruce S McEwen
- Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States of America.
| |
Collapse
|
42
|
Epigenetic Biomarkers for Environmental Exposures and Personalized Breast Cancer Prevention. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17041181. [PMID: 32069786 PMCID: PMC7068429 DOI: 10.3390/ijerph17041181] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 12/11/2022]
Abstract
Environmental and lifestyle factors are believed to account for >80% of breast cancers; however, it is not well understood how and when these factors affect risk and which exposed individuals will actually develop the disease. While alcohol consumption, obesity, and hormone therapy are some known risk factors for breast cancer, other exposures associated with breast cancer risk have not yet been identified or well characterized. In this paper, it is proposed that the identification of blood epigenetic markers for personal, in utero, and ancestral environmental exposures can help researchers better understand known and potential relationships between exposures and breast cancer risk and may enable personalized prevention strategies.
Collapse
|
43
|
Prenatal maternal stress is associated with increased sensitivity to neuropathic pain and sex-specific changes in supraspinal mRNA expression of epigenetic- and stress-related genes in adulthood. Behav Brain Res 2020; 380:112396. [DOI: 10.1016/j.bbr.2019.112396] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 12/15/2022]
|
44
|
McEwen BS, Bulloch K. Epigenetic impact of the social and physical environment on brain and body. Metabolism 2019; 100S:153941. [PMID: 31610853 DOI: 10.1016/j.metabol.2019.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 07/05/2019] [Indexed: 01/25/2023]
Abstract
Modern biomedical scientists are often trapped in silos of knowledge and practice, such as those who study brain structure, function and behavior, on the one hand, and body systems and disorders, on the other. Scientists and physicians in each of those silos have not often paid attention to the brain-body communication that leads to multi-morbidity of systemic and brain-related disorders [eg. depression with diabetes or cardiovascular disease]. Outside of biomedicine, social scientists have long recognized the impact of the social and physical environment on individuals and populations but have not usually connected these effects with changes in underlying biology. However, with the rise of epigenetics, science and the public understanding of science is leaving an era in which the DNA sequence was thought to be "destiny" and entering an era where the environment shapes the biology and behavior of individuals and groups through its interactive effects on brain and body. It does so, at least in part, by shaping epigenetically the structure and function of brain and body systems that show a considerable amount of adaptive plasticity throughout development and adult life. This results in substantial individual differences even between identical twins. These individual differences are produced epigenetically by the two-way interaction between the brain and hormones, immune system mediators and the autonomic nervous system. Disorders, then, are often multimorbid involving both brain and body, such as depression with diabetes and cardiovascular disease. It is therefore imperative to incorporate into "precision medicine" a better understanding of how these differences affect the efficacy of pharmacological, behavioral and psychosocial interventions. This article presents an overview of this new synthesis, using as an example emerging evidence about the linkages between systemic inflammation, insulin resistance and mental health and neurodegenerative diseases.
Collapse
Affiliation(s)
- Bruce S McEwen
- Laboratory of Neuroendocrinology and Neuroimmunology and Inflammation Program The Rockefeller University, 1230 York Ave, New York, N.Y. 10065, United States of America.
| | - Karen Bulloch
- Laboratory of Neuroendocrinology and Neuroimmunology and Inflammation Program The Rockefeller University, 1230 York Ave, New York, N.Y. 10065, United States of America
| |
Collapse
|
45
|
The epigenome of twins as a perfect laboratory for studying behavioural traits. Neurosci Biobehav Rev 2019; 107:192-195. [PMID: 31536737 DOI: 10.1016/j.neubiorev.2019.09.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/11/2019] [Accepted: 09/13/2019] [Indexed: 01/04/2023]
Abstract
The debate upon the relative importance of nature vs nurture in the development of human behaviour can be traced back to ancient times. Traditional epidemiology and genetic epidemiology have confirmed the association of environmental and genetic factors with behavioural traits. Current genomic studies are identifying genetic variants associated with various behavioural traits. However, exploring the relationship of abundant environmental factors with the complex epigenome that mediates human behaviour is just at its beginning. Identical twins can serve as perfect experiments for studying the environmental impact on behavioural epigenetics advantaged by enriched power in association analysis due to controlling of their genetic make-ups. Recent development in causal inference using twin-based models adds more values in twins. This review briefly introduces the various approaches in making use of twins in studying behavioural epigenetics from experiment design to practical applications. Exploring the epigenome of twins using the powerful twin-based study designs and analytical approaches will help identifying causal epigenetic markers mediating environmental exposures and behavioural traits enabling both pharmaceutical intervention and effective prevention.
Collapse
|
46
|
Taff CC, Campagna L, Vitousek MN. Genome-wide variation in DNA methylation is associated with stress resilience and plumage brightness in a wild bird. Mol Ecol 2019; 28:3722-3737. [PMID: 31330076 DOI: 10.1111/mec.15186] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 12/24/2022]
Abstract
Individuals often differ in their ability to cope with challenging environmental and social conditions. Evidence from model systems suggests that patterns of DNA methylation are associated with variation in coping ability. These associations could arise directly if methylation plays a role in controlling the physiological response to stressors by, among other things, regulating the release of glucocorticoids in response to challenges. Alternatively, the association could arise indirectly if methylation and resilience have a common cause, such as early-life conditions. In either case, methylation might act as a biomarker for coping ability. At present, however, relatively little is known about whether variation in methylation is associated with organismal performance and resilience under natural conditions. We studied genome-wide patterns of DNA methylation in free-living female tree swallows (Tachycineta bicolor) using methylated DNA immunoprecipitation (MeDIP) and a tree swallow genome that was assembled for this study. We identified areas of the genome that were differentially methylated with respect to social signal expression (breast brightness) and physiological traits (ability to terminate the glucocorticoid stress response through negative feedback). We also asked whether methylation predicted resilience to a subsequent experimentally imposed challenge. Individuals with brighter breast plumage and higher stress resilience had lower methylation at differentially methylated regions across the genome. Thus, widespread differences in methylation predicted both social signal expression and the response to future challenges under natural conditions. These results have implications for predicting individual differences in resilience, and for understanding the mechanistic basis of resilience and its environmental and social mediators.
Collapse
Affiliation(s)
- Conor C Taff
- Department of Ecology & Evolutionary Biology, Cornell University, Ithaca, New York.,Lab of Ornithology, Cornell University, Ithaca, New York
| | - Leonardo Campagna
- Department of Ecology & Evolutionary Biology, Cornell University, Ithaca, New York.,Lab of Ornithology, Cornell University, Ithaca, New York
| | - Maren N Vitousek
- Department of Ecology & Evolutionary Biology, Cornell University, Ithaca, New York.,Lab of Ornithology, Cornell University, Ithaca, New York
| |
Collapse
|
47
|
Abstract
Non-communicable diseases (NCD) such as type-2 diabetes and CVD are now highly prevalent in both developed and developing countries. Evidence from both human and animal studies shows that early-life nutrition is an important determinant of NCD risk in later life. The mechanism by which the early-life environment influences future disease risk has been suggested to include the altered epigenetic regulation of gene expression. Epigenetic processes regulate the accessibility of genes to the cellular proteins that control gene transcription, determining where and when a gene is switched on and its level of activity. Epigenetic processes not only play a central role in regulating gene expression but also allow an organism to adapt to the environment. In this review, we will focus on how both maternal and paternal nutrition can alter the epigenome and the evidence that these changes are causally involved in determining future disease risk.
Collapse
Affiliation(s)
- Mark A Burton
- Academic Unit of Human Development and Health, Faculty of Medicine,University of Southampton,Southampton,UK
| | - Karen A Lillycrop
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences,University of Southampton,Southampton,UK
| |
Collapse
|
48
|
Guthrie NL, Carpenter J, Edwards KL, Appelbaum KJ, Dey S, Eisenberg DM, Katz DL, Berman MA. Emergence of digital biomarkers to predict and modify treatment efficacy: machine learning study. BMJ Open 2019; 9:e030710. [PMID: 31337662 PMCID: PMC6661657 DOI: 10.1136/bmjopen-2019-030710] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES Development of digital biomarkers to predict treatment response to a digital behavioural intervention. DESIGN Machine learning using random forest classifiers on data generated through the use of a digital therapeutic which delivers behavioural therapy to treat cardiometabolic disease. Data from 13 explanatory variables (biometric and engagement in nature) generated in the first 28 days of a 12-week intervention were used to train models. Two levels of response to treatment were predicted: (1) systolic change ≥10 mm Hg (SC model), and (2) shift down to a blood pressure category of elevated or better (ER model). Models were validated using leave-one-out cross validation and evaluated using area under the curve receiver operating characteristics (AUROC) and specificity- sensitivity. Ability to predict treatment response with a subset of nine variables, including app use and baseline blood pressure, was also tested (models SC-APP and ER-APP). SETTING Data generated through ad libitum use of a digital therapeutic in the USA. PARTICIPANTS Deidentified data from 135 adults with a starting blood pressure ≥130/80, who tracked blood pressure for at least 7 weeks using the digital therapeutic. RESULTS The SC model had an AUROC of 0.82 and a sensitivity of 58% at a specificity of 90%. The ER model had an AUROC of 0.69 and a sensitivity of 32% at a specificity at 91%. Dropping explanatory variables related to blood pressure resulted in an AUROC of 0.72 with a sensitivity of 42% at a specificity of 90% for the SC-APP model and an AUROC of 0.53 for the ER-APP model. CONCLUSIONS Machine learning was used to transform data from a digital therapeutic into digital biomarkers that predicted treatment response in individual participants. Digital biomarkers have potential to improve treatment outcomes in a digital behavioural intervention.
Collapse
Affiliation(s)
| | | | | | | | | | - David M Eisenberg
- Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - David L Katz
- Better Therapeutics LLC, San Francisco, California, USA
- Griffen Hospital, Yale University Prevention Research Center, Derby, Connecticut, USA
| | - Mark A Berman
- Better Therapeutics LLC, San Francisco, California, USA
| |
Collapse
|
49
|
From serendipity to clinical relevance: How clinical psychology and neuroscience converged to illuminate psychoneuroendocrinology. Psychoneuroendocrinology 2019; 105:36-43. [PMID: 30309685 DOI: 10.1016/j.psyneuen.2018.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 09/01/2018] [Accepted: 09/10/2018] [Indexed: 01/01/2023]
Abstract
Dirk Hellhammer and his colleagues have played a major role in creating the field of psychoneuroendocrinology from their roots in psychology. In this review, using examples from the history of the McEwen laboratory and neuroscience and neuroendocrinology colleagues, I summarize my own perspective as to how the fields of neuroscience and neuroendocrinology have contributed to psychoneuroendocrinology and how they converged with the contributions from Dirk Hellhammer and his colleagues.
Collapse
|
50
|
Ng JH, Ward LM, Shea M, Hart L, Guerino P, Scholle SH. Explaining the Relationship Between Minority Group Status and Health Disparities: A Review of Selected Concepts. Health Equity 2019; 3:47-60. [PMID: 30868139 PMCID: PMC6413828 DOI: 10.1089/heq.2018.0035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Purpose: There is growing concern that value-based payment for health care may disadvantage health care organizations that serve populations with social risk. In the broader investigation of social risk factors, including income, education, neighborhood deprivation, and other risks, the focus on race and ethnicity as a risk factor for disparities in health and health care has diminished. Understanding the independent contribution of minority group status is critical to this discussion. This narrative review discusses four concepts-minority stress, resilience, epigenetics, and life course-that may help explain the contribution of minority group status and its association with health disparities. Methods: We briefly describe each concept and the supporting evidence. Results: Our results indicate that all four concepts have potential relevance for understanding and addressing health disparities. The life course perspective emphasizes the importance of understanding explanatory mechanisms and factors that contribute to health-including biological, physical, and social factors-over a person's life span. Both minority stress and resilience may influence health in either a negative or positive manner that potentially underlies health changes. Exposure to these factors and others may interact with and modify epigenetic regulation-biological processes that impact how our genes are expressed. This may increase the risk of disease and negative health outcomes, particularly among groups that may be at disproportionate risk because of social circumstances and environmental exposure over the life course. Conclusion: Despite these concepts' relevance, more research is needed to assess how they may explain the relationship between minority status and disparities in health. Such evidence is needed to focus interventions and to inform the design of delivery and payment models that can spur actions to reduce disparities.
Collapse
Affiliation(s)
- Judy H. Ng
- National Committee for Quality Assurance, Washington, District of Columbia
| | - Lauren M. Ward
- Columbia University Mailman School of Public Health, New York, New York
| | - Madeleine Shea
- Health Management Associates, Washington, District of Columbia
| | - Liz Hart
- National Committee for Quality Assurance, Washington, District of Columbia
| | - Paul Guerino
- American Hospital Association, Chicago, Illinois
| | | |
Collapse
|