1
|
Dias M, Moraes A, Shiroma T, Pessoa V, Ermoges A, Vital T, Hagström L, de Sousa D, de Castro M, Dallago B, Bastos IMD, Nitz N, Hecht M. Beyond Trypanosoma cruzi: LINE-1 Activation as a Driver of Chronic Inflammation in Chagas Disease. Int J Mol Sci 2025; 26:4466. [PMID: 40429613 PMCID: PMC12111687 DOI: 10.3390/ijms26104466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/29/2025] [Accepted: 05/02/2025] [Indexed: 05/29/2025] Open
Abstract
Chagas disease (CD) is endemic in Latin America, with its pathogenesis linked to Trypanosoma cruzi (Tc) persistence and autoimmune responses. This study investigates the role of LINE-1 (L1) activation in inflammation and loss of self-tolerance during Tc infection. In vitro assays evaluated the expression of genes involved in L1 regulation and interferon signaling under basal conditions and following L1 suppression via CRISPR/dCas9. In vivo analyses in a murine model included L1 and IFN expression profiling, autoantibody quantification, and histopathological assessments of liver, spleen, intestine, and heart. Tc infection induced L1 upregulation, correlating with an increased expression of its inhibitors, MOV-10 and APOBEC-3, suggesting host-driven regulatory mechanisms. L1 activation was also associated with the upregulation of DNA repair pathways (MMR and NHEJ) and RNA-sensing pathways (MDA-5 and RIG-I), leading to type I interferon responses. In the murine model, L1 expression was highest in the intestine and heart, independent of parasite burden, and correlated with increased interferon gene expression and autoantibody production. Our findings suggest that CD pathogenesis involves L1-induced chronic inflammation, which may contribute to late-stage symptoms. This highlights self-recognition mechanisms in disease severity and reveals potential therapeutic targets for novel treatments.
Collapse
Affiliation(s)
- Marina Dias
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasília, Brasília 70910-900, Brazil; (M.D.); (A.M.); (T.S.); (V.P.); (A.E.); (T.V.); (L.H.); (B.D.); (N.N.)
| | - Aline Moraes
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasília, Brasília 70910-900, Brazil; (M.D.); (A.M.); (T.S.); (V.P.); (A.E.); (T.V.); (L.H.); (B.D.); (N.N.)
| | - Tatiana Shiroma
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasília, Brasília 70910-900, Brazil; (M.D.); (A.M.); (T.S.); (V.P.); (A.E.); (T.V.); (L.H.); (B.D.); (N.N.)
| | - Vitória Pessoa
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasília, Brasília 70910-900, Brazil; (M.D.); (A.M.); (T.S.); (V.P.); (A.E.); (T.V.); (L.H.); (B.D.); (N.N.)
| | - Antonio Ermoges
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasília, Brasília 70910-900, Brazil; (M.D.); (A.M.); (T.S.); (V.P.); (A.E.); (T.V.); (L.H.); (B.D.); (N.N.)
| | - Tamires Vital
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasília, Brasília 70910-900, Brazil; (M.D.); (A.M.); (T.S.); (V.P.); (A.E.); (T.V.); (L.H.); (B.D.); (N.N.)
| | - Luciana Hagström
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasília, Brasília 70910-900, Brazil; (M.D.); (A.M.); (T.S.); (V.P.); (A.E.); (T.V.); (L.H.); (B.D.); (N.N.)
| | - Davi de Sousa
- Veterinary Pathology and Forensics, Faculty of Veterinary Medicine, University of Brasília, Brasília 70910-900, Brazil; (D.d.S.); (M.d.C.)
| | - Márcio de Castro
- Veterinary Pathology and Forensics, Faculty of Veterinary Medicine, University of Brasília, Brasília 70910-900, Brazil; (D.d.S.); (M.d.C.)
| | - Bruno Dallago
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasília, Brasília 70910-900, Brazil; (M.D.); (A.M.); (T.S.); (V.P.); (A.E.); (T.V.); (L.H.); (B.D.); (N.N.)
| | | | - Nadjar Nitz
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasília, Brasília 70910-900, Brazil; (M.D.); (A.M.); (T.S.); (V.P.); (A.E.); (T.V.); (L.H.); (B.D.); (N.N.)
| | - Mariana Hecht
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasília, Brasília 70910-900, Brazil; (M.D.); (A.M.); (T.S.); (V.P.); (A.E.); (T.V.); (L.H.); (B.D.); (N.N.)
| |
Collapse
|
2
|
Zhang A, Luo X, Li Y, Yan L, Lai X, Yang Q, Zhao Z, Huang G, Li Z, Wu Q, Wang J. Epigenetic changes driven by environmental pollutants in lung carcinogenesis: a comprehensive review. Front Public Health 2024; 12:1420933. [PMID: 39440184 PMCID: PMC11493668 DOI: 10.3389/fpubh.2024.1420933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024] Open
Abstract
Lung cancer remains the leading cause of cancer-related mortality globally, with environmental pollutants identified as significant risk factors, especially for nonsmokers. The intersection of these pollutants with epigenetic mechanisms has emerged as a critical area of interest for understanding the etiology and progression of lung cancer. Epigenetic changes, including DNA methylation, histone modifications, and non-coding RNAs, can induce alterations in gene expression without affecting the DNA sequence and are influenced by environmental factors, contributing to the transformation of normal cells into malignant cells. This review assessed the literature on the influence of environmental pollutants on lung cancer epigenetics. A comprehensive search across databases such as PubMed, Web of Science, Cochrane Library, and Embase yielded 3,254 publications, with 22 high-quality papers included for in-depth analysis. These studies demonstrated the role of epigenetic markers, such as DNA methylation patterns of genes like F2RL3 and AHRR and alterations in the miRNA expression profiles, as potential biomarkers for lung cancer diagnosis and treatment. The review highlights the need to expand research beyond homogenous adult male groups typically found in high-risk occupational environments to broader population demographics. Such diversification can reduce biases and enhance the relevance of findings to various clinical contexts, fostering the development of personalized preventive and therapeutic measures. In conclusion, our findings underscore the potential of innovative epigenetic therapies, such as DNA demethylating drugs and histone modification agents, to counter environmental toxins' carcinogenic effects. The growing interest in miRNA therapies and studies aiming to correct aberrant methylation patterns indicate significant strides toward better lung cancer management and a healthier future for global communities.
Collapse
Affiliation(s)
- Aijia Zhang
- Faculty of Humanities and Arts, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Xuexing Luo
- Faculty of Humanities and Arts, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Yu Li
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau SAR, China
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Lunchun Yan
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
- Department of Comprehensive Surgery, Hengqin Hospital, The First Affiliated Hospital of Guangzhou Medical University, Guangdong-Macao in-Depth Cooperation Zone in Hengqin, Hengqin, China
| | - Xin Lai
- Department of Traditional Chinese Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qianxu Yang
- Centre for Epidemiology and Evidence-Based Practice, Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Ziming Zhao
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau SAR, China
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Guanghui Huang
- Faculty of Humanities and Arts, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Zheng Li
- Jiangsu Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, College of Health Sciences, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau SAR, China
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou, Guangdong Province, China
| | - Jue Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau SAR, China
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou, Guangdong Province, China
| |
Collapse
|
3
|
Craver A, Luo J, Kibriya MG, Randorf N, Bahl K, Connellan E, Powell J, Zakin P, Jones RR, Argos M, Ho J, Kim K, Daviglus ML, Greenland P, Ahsan H, Aschebrook-Kilfoy B. Air quality and cancer risk in the All of Us Research Program. Cancer Causes Control 2024; 35:749-760. [PMID: 38145439 PMCID: PMC11045436 DOI: 10.1007/s10552-023-01823-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 10/31/2023] [Indexed: 12/26/2023]
Abstract
INTRODUCTION The NIH All of Us Research Program has enrolled over 544,000 participants across the US with unprecedented racial/ethnic diversity, offering opportunities to investigate myriad exposures and diseases. This paper aims to investigate the association between PM2.5 exposure and cancer risks. MATERIALS AND METHODS This work was performed on data from 409,876 All of Us Research Program participants using the All of Us Researcher Workbench. Cancer case ascertainment was performed using data from electronic health records and the self-reported Personal Medical History questionnaire. PM2.5 exposure was retrieved from NASA's Earth Observing System Data and Information Center and assigned using participants' 3-digit zip code prefixes. Multivariate logistic regression was used to estimate the odds ratio (OR) and 95% confidence interval (CI). Generalized additive models (GAMs) were used to investigate non-linear relationships. RESULTS A total of 33,387 participants and 46,176 prevalent cancer cases were ascertained from participant EHR data, while 20,297 cases were ascertained from self-reported survey data from 18,133 participants; 9,502 cancer cases were captured in both the EHR and survey data. Average PM2.5 level from 2007 to 2016 was 8.90 μg/m3 (min 2.56, max 15.05). In analysis of cancer cases from EHR, an increased odds for breast cancer (OR 1.17, 95% CI 1.09-1.25), endometrial cancer (OR 1.33, 95% CI 1.09-1.62) and ovarian cancer (OR 1.20, 95% CI 1.01-1.42) in the 4th quartile of exposure compared to the 1st. In GAM, higher PM2.5 concentration was associated with increased odds for blood cancer, bone cancer, brain cancer, breast cancer, colon and rectum cancer, endocrine system cancer, lung cancer, pancreatic cancer, prostate cancer, and thyroid cancer. CONCLUSIONS We found evidence of an association of PM2.5 with breast, ovarian, and endometrial cancers. There is little to no prior evidence in the literature on the impact of PM2.5 on risk of these cancers, warranting further investigation.
Collapse
Affiliation(s)
- Andrew Craver
- Institute for Population and Precision Health, University of Chicago, Chicago, IL, USA
| | - Jiajun Luo
- Institute for Population and Precision Health, University of Chicago, Chicago, IL, USA
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Muhammad G Kibriya
- Institute for Population and Precision Health, University of Chicago, Chicago, IL, USA
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Nina Randorf
- Institute for Population and Precision Health, University of Chicago, Chicago, IL, USA
| | - Kendall Bahl
- Institute for Population and Precision Health, University of Chicago, Chicago, IL, USA
| | - Elizabeth Connellan
- Institute for Population and Precision Health, University of Chicago, Chicago, IL, USA
| | - Johnny Powell
- Institute for Population and Precision Health, University of Chicago, Chicago, IL, USA
| | - Paul Zakin
- Institute for Population and Precision Health, University of Chicago, Chicago, IL, USA
| | - Rena R Jones
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Maria Argos
- Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois at Chicago, Chicago, IL, USA
| | - Joyce Ho
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Karen Kim
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Martha L Daviglus
- Institute for Minority Health Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Philip Greenland
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Habibul Ahsan
- Institute for Population and Precision Health, University of Chicago, Chicago, IL, USA
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
- Comprehensive Cancer Center, University of Chicago, Chicago, IL, USA
| | - Briseis Aschebrook-Kilfoy
- Institute for Population and Precision Health, University of Chicago, Chicago, IL, USA.
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA.
- Comprehensive Cancer Center, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
4
|
Jiménez-Garza O, Ghosh M, Barrow TM, Godderis L. Toxicomethylomics revisited: A state-of-the-science review about DNA methylation modifications in blood cells from workers exposed to toxic agents. Front Public Health 2023; 11:1073658. [PMID: 36891347 PMCID: PMC9986591 DOI: 10.3389/fpubh.2023.1073658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/25/2023] [Indexed: 02/22/2023] Open
Abstract
Introduction Epigenetic marks have been proposed as early changes, at the subcellular level, in disease development. To find more specific biomarkers of effect in occupational exposures to toxicants, DNA methylation studies in peripheral blood cells have been performed. The goal of this review is to summarize and contrast findings about DNA methylation in blood cells from workers exposed to toxicants. Methods A literature search was performed using PubMed and Web of Science. After first screening, we discarded all studies performed in vitro and in experimental animals, as well as those performed in other cell types other than peripheral blood cells. Results: 116 original research papers met the established criteria, published from 2007 to 2022. The most frequent investigated exposures/labor group were for benzene (18.9%) polycyclic aromatic hydrocarbons (15.5%), particulate matter (10.3%), lead (8.6%), pesticides (7.7%), radiation (4.3%), volatile organic compound mixtures (4.3%), welding fumes (3.4%) chromium (2.5%), toluene (2.5%), firefighters (2.5%), coal (1.7%), hairdressers (1.7%), nanoparticles (1.7%), vinyl chloride (1.7%), and others. Few longitudinal studies have been performed, as well as few of them have explored mitochondrial DNA methylation. Methylation platforms have evolved from analysis in repetitive elements (global methylation), gene-specific promoter methylation, to epigenome-wide studies. The most reported observations were global hypomethylation as well as promoter hypermethylation in exposed groups compared to controls, while methylation at DNA repair/oncogenes genes were the most studied; studies from genome-wide studies detect differentially methylated regions, which could be either hypo or hypermethylated. Discussion Some evidence from longitudinal studies suggest that modifications observed in cross-sectional designs may be transitory; then, we cannot say that DNA methylation changes are predictive of disease development due to those exposures. Conclusion Due to the heterogeneity in the genes studied, and scarcity of longitudinal studies, we are far away from considering DNA methylation changes as biomarkers of effect in occupational exposures, and nor can we establish a clear functional or pathological correlate for those epigenetic modifications associated with the studied exposures.
Collapse
Affiliation(s)
- Octavio Jiménez-Garza
- Health Sciences Institute, Autonomous University of Hidalgo State, Pachuca Hidalgo, Mexico
| | - Manosij Ghosh
- Environment and Health Department, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Timothy M Barrow
- Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland, United Kingdom
| | - Lode Godderis
- Environment and Health Department, Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|
5
|
Xu J, Zhang Q, Su Z, Liu Y, Yan T, Zhang Y, Wang T, Wei X, Chen Z, Hu G, Chen T, Jia G. Genetic damage and potential mechanism exploration under different air pollution patterns by multi-omics. ENVIRONMENT INTERNATIONAL 2022; 170:107636. [PMID: 36423397 DOI: 10.1016/j.envint.2022.107636] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/02/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Ambient air pollution was classified as carcinogenic to humans (Group 1) for lung cancer. DNA damage was an important first step in the process of carcinogenesis, and could also be induced by air pollution. In this study, intratracheal instillation and real-time air exposure system were combined to establish SHP (short-term high-level PM2.5) and LLPO (long-term low-level PM2.5 and O3) exposure patterns, respectively. Hierarchical levels of genetic biomarkers were analyzed to explore DNA damage effects in rats. Representative DNA repair genes from different repair pathways were selected to explore the relative expression levels. The methylation level of differentially expressed repair genes were also determined. Besides, miRNA sequencing and non-targeted metabolomic analysis were performed in rat lungs. KEGG and multi-omics analysis were used to explore the potential mechanism of genetic damage under different air pollution patterns. We found that LLPO exposure induced DSBs and chromosome damage. SHP exposure could induce DSBs and DNA oxidative damage, and the effects of genetic damage under this pollution pattern could be repaired by natural repair. Repair genes involved in two pattern were different. SHP exposure could induce higher methylation levels of RAD51, which might be a potential epigenetic mechanism for high-level PM2.5 induced down-regulated expression of RAD51 and DSBs. Besides, 29 overlapped alterations in metabolic pathways were identified by metabolomic and miRNA sequencing, including purine metabolism and pyrimidine metabolism after LLPO exposure. Differential miRNAs expression in lung tissue were associated with apoptosis, DNA damage and damage repair. We concluded that under different air pollution patterns, DNA damage biomarkers and activated targets of DNA damage repair network were both different. The genetic damage effects caused by high-level short-term PM2.5 can be alleviated by natural repair. We provided possible mechanisms by multi-omics which could explain the increased carcinogenic risk caused by air pollution.
Collapse
Affiliation(s)
- Jiayu Xu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100083, China
| | - Qiaojian Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100083, China
| | - Zekang Su
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100083, China
| | - Yu Liu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100083, China
| | - Tenglong Yan
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100083, China
| | - Yali Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100083, China
| | - Tiancheng Wang
- Department of Clinical Laboratory, Third Hospital of Peking University, Beijing 100083, China
| | - Xuetao Wei
- Department of Toxicology, School of Public Health, Peking University, Beijing 100083, China
| | - Zhangjian Chen
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100083, China
| | - Guiping Hu
- School of Medical Science and Engineering, Beihang University, Beijing 100191, China
| | - Tian Chen
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Guang Jia
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100083, China.
| |
Collapse
|
6
|
Mukherjee S, Dasgupta S, Mishra PK, Chaudhury K. Air pollution-induced epigenetic changes: disease development and a possible link with hypersensitivity pneumonitis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:55981-56002. [PMID: 34498177 PMCID: PMC8425320 DOI: 10.1007/s11356-021-16056-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/16/2021] [Indexed: 05/16/2023]
Abstract
Air pollution is a serious threat to our health and has become one of the major causes of many diseases including cardiovascular disease, respiratory disease, and cancer. The association between air pollution and various diseases has long been a topic of research interest. However, it remains unclear how air pollution actually impacts health by modulating several important cellular functions. Recently, some evidence has emerged about air pollution-induced epigenetic changes, which are linked with the etiology of various human diseases. Among several epigenetic modifications, DNA methylation represents the most prominent epigenetic alteration underlying the air pollution-induced pathogenic mechanism. Several other types of epigenetic changes, such as histone modifications, miRNA, and non-coding RNA expression, have also been found to have been linked with air pollution. Hypersensitivity pneumonitis (HP), one of the most prevalent forms of interstitial lung diseases (ILDs), is triggered by the inhalation of certain organic and inorganic substances. HP is characterized by inflammation in the tissues around the lungs' airways and may lead to irreversible lung scarring over time. This review, in addition to other diseases, attempts to understand whether certain pollutants influence HP development through such epigenetic modifications.
Collapse
Affiliation(s)
- Suranjana Mukherjee
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
| | - Sanjukta Dasgupta
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Pradyumna K Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, 462030, India
| | - Koel Chaudhury
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| |
Collapse
|
7
|
Factors Regulating the Activity of LINE1 Retrotransposons. Genes (Basel) 2021; 12:genes12101562. [PMID: 34680956 PMCID: PMC8535693 DOI: 10.3390/genes12101562] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
LINE-1 (L1) is a class of autonomous mobile genetic elements that form somatic mosaicisms in various tissues of the organism. The activity of L1 retrotransposons is strictly controlled by many factors in somatic and germ cells at all stages of ontogenesis. Alteration of L1 activity was noted in a number of diseases: in neuropsychiatric and autoimmune diseases, as well as in various forms of cancer. Altered activity of L1 retrotransposons for some pathologies is associated with epigenetic changes and defects in the genes involved in their repression. This review discusses the molecular genetic mechanisms of the retrotransposition and regulation of the activity of L1 elements. The contribution of various factors controlling the expression and distribution of L1 elements in the genome occurs at all stages of the retrotransposition. The regulation of L1 elements at the transcriptional, post-transcriptional and integration into the genome stages is described in detail. Finally, this review also focuses on the evolutionary aspects of L1 accumulation and their interplay with the host regulation system.
Collapse
|
8
|
Wu Y, Qie R, Cheng M, Zeng Y, Huang S, Guo C, Zhou Q, Li Q, Tian G, Han M, Zhang Y, Wu X, Li Y, Zhao Y, Yang X, Feng Y, Liu D, Qin P, Hu D, Hu F, Xu L, Zhang M. Air pollution and DNA methylation in adults: A systematic review and meta-analysis of observational studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117152. [PMID: 33895575 DOI: 10.1016/j.envpol.2021.117152] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 04/04/2021] [Accepted: 04/05/2021] [Indexed: 05/24/2023]
Abstract
This systematic review and meta-analysis aimed to investigate the association between air pollution and DNA methylation in adults from published observational studies. PubMed, Web of Science and Embase databases were systematically searched for available studies on the association between air pollution and DNA methylation published up to March 9, 2021. Three DNA methylation approaches were considered: global methylation, candidate-gene, and epigenome-wide association studies (EWAS). Meta-analysis was used to summarize the combined estimates for the association between air pollutants and global DNA methylation levels. Heterogeneity was assessed with the Cochran Q test and quantified with the I2 statistic. In total, 38 articles were included in this study: 16 using global methylation, 18 using candidate genes, and 11 using EWAS, with 7 studies using more than one approach. Meta-analysis revealed an imprecise but inverse association between exposure to PM2.5 and global DNA methylation (for each 10-μg/m3 PM2.5, combined estimate: 0.39; 95% confidence interval: 0.97 - 0.19). The candidate-gene results were consistent for the ERCC3 and SOX2 genes, suggesting hypermethylation in ERCC3 associated with benzene and that in SOX2 associated with PM2.5 exposure. EWAS identified 201 CpG sites and 148 differentially methylated regions that showed differential methylation associated with air pollution. Among the 307 genes investigated in 11 EWAS, a locus in nucleoredoxin gene was found to be positively associated with PM2.5 in two studies. Current meta-analysis indicates that PM2.5 is imprecisely and inversely associated with DNA methylation. The candidate-gene results consistently suggest hypermethylation in ERCC3 associated with benzene exposure and that in SOX2 associated with PM2.5 exposure. The Kyoto Encyclopedia of Genes and Genomes (KEGG) network analyses revealed that these genes were associated with African trypanosomiasis, Malaria, Antifolate resistance, Graft-versus-host disease, and so on. More evidence is needed to clarify the association between air pollution and DNA methylation.
Collapse
Affiliation(s)
- Yuying Wu
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China; Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China
| | - Ranran Qie
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Min Cheng
- Department of Cardiology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China
| | - Yunhong Zeng
- Center for Health Management, The Affiliated Shenzhen Hospital of University of Chinese Academy of Sciences, Shenzhen, Guangdong, People's Republic of China
| | - Shengbing Huang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Chunmei Guo
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Qionggui Zhou
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China; Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China
| | - Quanman Li
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Gang Tian
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Minghui Han
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yanyan Zhang
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China; Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China
| | - Xiaoyan Wu
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China; Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China
| | - Yang Li
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China; Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China
| | - Yang Zhao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Xingjin Yang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yifei Feng
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Dechen Liu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Pei Qin
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China; Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China
| | - Dongsheng Hu
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China; Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China; Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Fulan Hu
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China; Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China
| | - Lidan Xu
- Department of Nutrition, The Second Affiliated Hospital, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China
| | - Ming Zhang
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China; Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China.
| |
Collapse
|
9
|
Ijomone OM, Ijomone OK, Iroegbu JD, Ifenatuoha CW, Olung NF, Aschner M. Epigenetic influence of environmentally neurotoxic metals. Neurotoxicology 2020; 81:51-65. [PMID: 32882300 PMCID: PMC7708394 DOI: 10.1016/j.neuro.2020.08.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/25/2020] [Accepted: 08/25/2020] [Indexed: 02/08/2023]
Abstract
Continuous globalization and industrialization have ensured metals are an increasing aspect of daily life. Their usefulness in manufacturing has made them vital to national commerce, security and global economy. However, excess exposure to metals, particularly as a result of environmental contamination or occupational exposures, has been detrimental to overall health. Excess exposure to several metals is considered environmental risk in the aetiology of several neurological and neurodegenerative diseases. Metal-induced neurotoxicity has been a major health concern globally with intensive research to unravel the mechanisms associated with it. Recently, greater focus has been directed at epigenetics to better characterize the underlying mechanisms of metal-induced neurotoxicity. Epigenetic changes are those modifications on the DNA that can turn genes on or off without altering the DNA sequence. This review discusses how epigenetic changes such as DNA methylation, post translational histone modification and noncoding RNA-mediated gene silencing mediate the neurotoxic effects of several metals, focusing on manganese, arsenic, nickel, cadmium, lead, and mercury.
Collapse
Affiliation(s)
- Omamuyovwi M Ijomone
- The Neuro- Lab, Department of Human Anatomy, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria.
| | - Olayemi K Ijomone
- The Neuro- Lab, Department of Human Anatomy, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria; Department of Anatomy, University of Medical Sciences, Ondo, Nigeria
| | - Joy D Iroegbu
- The Neuro- Lab, Department of Human Anatomy, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| | - Chibuzor W Ifenatuoha
- The Neuro- Lab, Department of Human Anatomy, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| | - Nzube F Olung
- The Neuro- Lab, Department of Human Anatomy, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| | - Michael Aschner
- Departments of Molecular Pharmacology and Neurosciences, Albert Einstein College of Medicine, NY, USA.
| |
Collapse
|
10
|
Silva IR, Francisco LFV, Bernardo C, Oliveira MA, Barbosa F, Silveira HCS. DNA methylation changes in promoter region of CDKN2A gene in workers exposed in construction environment. Biomarkers 2020; 25:594-602. [PMID: 32875942 DOI: 10.1080/1354750x.2020.1817981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PURPOSE Construction workers are exposed to a mixture of substances in the workplace considered carcinogenic. This study aimed to characterise gene-specific changes in DNA methylation over the workweek in this population as this type of environmental exposure has not been studied extensively. MATERIALS AND METHODS We evaluated their DNA methylation in 4 gene-promoter regions (CDKN2A, RASSF1A, MLH1 and APC) and 2 repeat elements (ALU and LINE-1) in blood samples obtained on the first and fifth day of the same workweek of a group of 39 male construction workers. DNA methylation was measured by bisulphite-PCR-Pyrosequencing. We also measured the levels of trace elements in the whole blood by ICP-MS. RESULTS Only the CDKN2A gene had significant differences in the average methylation level between the first and fifth day of the workweek. We also observed that the levels of Cu, Pb, Se, Mn, and Ti decreased during the fifth day of exposure, and only lead, titanium and copper showed a low significant correlation with the methylation level mean for three specific CpG sites of the CDKN2A. CONCLUSIONS In summary, the data suggest that altered levels of CDKN2A methylation in construction workers may be a potential biomarker of recent exposure in this environment.
Collapse
Affiliation(s)
| | | | - Cassia Bernardo
- Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo, Brazil
| | | | - Fernando Barbosa
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Henrique César Santejo Silveira
- Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo, Brazil.,University of Cuiabá, Mato Grosso, Cuiabá, 78008-000, Brazil Cuiabá
| |
Collapse
|
11
|
Turner MC, Andersen ZJ, Baccarelli A, Diver WR, Gapstur SM, Pope CA, Prada D, Samet J, Thurston G, Cohen A. Outdoor air pollution and cancer: An overview of the current evidence and public health recommendations. CA Cancer J Clin 2020; 70:10.3322/caac.21632. [PMID: 32964460 PMCID: PMC7904962 DOI: 10.3322/caac.21632] [Citation(s) in RCA: 378] [Impact Index Per Article: 75.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 12/24/2022] Open
Abstract
Outdoor air pollution is a major contributor to the burden of disease worldwide. Most of the global population resides in places where air pollution levels, because of emissions from industry, power generation, transportation, and domestic burning, considerably exceed the World Health Organization's health-based air-quality guidelines. Outdoor air pollution poses an urgent worldwide public health challenge because it is ubiquitous and has numerous serious adverse human health effects, including cancer. Currently, there is substantial evidence from studies of humans and experimental animals as well as mechanistic evidence to support a causal link between outdoor (ambient) air pollution, and especially particulate matter (PM) in outdoor air, with lung cancer incidence and mortality. It is estimated that hundreds of thousands of lung cancer deaths annually worldwide are attributable to PM air pollution. Epidemiological evidence on outdoor air pollution and the risk of other types of cancer, such as bladder cancer or breast cancer, is more limited. Outdoor air pollution may also be associated with poorer cancer survival, although further research is needed. This report presents an overview of outdoor air pollutants, sources, and global levels, as well as a description of epidemiological evidence linking outdoor air pollution with cancer incidence and mortality. Biological mechanisms of air pollution-derived carcinogenesis are also described. This report concludes by summarizing public health/policy recommendations, including multilevel interventions aimed at individual, community, and regional scales. Specific roles for medical and health care communities with regard to prevention and advocacy and recommendations for further research are also described.
Collapse
Affiliation(s)
- Michelle C. Turner
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, Ontario, Canada
| | - Zorana J. Andersen
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Andrea Baccarelli
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, United States
| | - W. Ryan Diver
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, Georgia, United States
| | - Susan M. Gapstur
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, Georgia, United States
| | - C. Arden Pope
- Department of Economics, Brigham Young University, Provo, Utah, United States
| | - Diddier Prada
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, United States
- Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Jonathan Samet
- Colorado School of Public Health, Aurora, Colorado, United States
| | - George Thurston
- New York University School of Medicine, New York, New York, United States
| | - Aaron Cohen
- Health Effects Institute, Boston, Massachusetts, United States
- Institute for Health Metrics and Evaluation, Seattle, Washington, United States
| |
Collapse
|
12
|
Juarez PD, Hood DB, Song MA, Ramesh A. Use of an Exposome Approach to Understand the Effects of Exposures From the Natural, Built, and Social Environments on Cardio-Vascular Disease Onset, Progression, and Outcomes. Front Public Health 2020; 8:379. [PMID: 32903514 PMCID: PMC7437454 DOI: 10.3389/fpubh.2020.00379] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/30/2020] [Indexed: 12/17/2022] Open
Abstract
Obesity, diabetes, and hypertension have increased by epidemic proportions in recent years among African Americans in comparison to Whites resulting in significant adverse cardiovascular disease (CVD) disparities. Today, African Americans are 30% more likely to die of heart disease than Whites and twice as likely to have a stroke. The causes of these disparities are not yet well-understood. Improved methods for identifying underlying risk factors is a critical first step toward reducing Black:White CVD disparities. This article will focus on environmental exposures in the external environment and how they can lead to changes at the cellular, molecular, and organ level to increase the personal risk for CVD and lead to population level CVD racial disparities. The external environment is defined in three broad domains: natural (air, water, land), built (places you live, work, and play) and social (social, demographic, economic, and political). We will describe how environmental exposures in the natural, built, and social environments "get under the skin" to affect gene expression though epigenetic, pan-omics, and related mechanisms that lead to increased risk for adverse CVD health outcomes and population level disparities. We also will examine the important role of metabolomics, proteomics, transcriptomics, genomics, and epigenomics in understanding how exposures in the natural, built, and social environments lead to CVD disparities with implications for clinical, public health, and policy interventions. In this review, we apply an exposome approach to Black:White CVD racial disparities. The exposome is a measure of all the exposures of an individual across the life course and the relationship of those exposures to health effects. The exposome represents the totality of exogenous (external) and endogenous (internal) exposures from conception onwards, simultaneously distinguishing, characterizing, and quantifying etiologic, mediating, moderating, and co-occurring risk and protective factors and their relationship to disease. Specifically, it assesses the biological mechanisms and underlying pathways through which chemical and non-chemical environmental exposures are associated with CVD onset, progression and outcomes. The exposome is a promising approach for understanding the complex relationships among environment, behavior, biology, genetics, and disease phenotypes that underlie population level, Black: White CVD disparities.
Collapse
Affiliation(s)
- Paul D Juarez
- Meharry Medical College, Nashville, TN, United States
| | - Darryl B Hood
- College of Public Health, The Ohio State University, Columbus, OH, United States
| | - Min-Ae Song
- College of Public Health, The Ohio State University, Columbus, OH, United States
| | | |
Collapse
|
13
|
DuPré NC, Heng YJ, Raby BA, Glass K, Hart JE, Chu JH, Askew C, Eliassen AH, Hankinson SE, Kraft P, Laden F, Tamimi RM. Involvement of fine particulate matter exposure with gene expression pathways in breast tumor and adjacent-normal breast tissue. ENVIRONMENTAL RESEARCH 2020; 186:109535. [PMID: 32668536 PMCID: PMC7368092 DOI: 10.1016/j.envres.2020.109535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/18/2020] [Accepted: 04/12/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Fine particulate matter (PM2.5) has been associated with breast cancer specific mortality, particularly for women with Stage I cancer. We examined the biological pathways that are perturbed by PM2.5 exposures by analyzing gene expression measurements from breast tissue specimens. METHODS The Nurses' Health Studies (NHS and NHSII) are prospective cohorts with archival breast tissue specimens from breast cancer cases. Global gene expression data were ascertained with the Affymetrix Glue Human Transcriptome Array 3.0. PM2.5 was estimated using spatio-temporal models linked to participants' home addresses. All analyses were performed separately in tumor (n = 591) and adjacent-normal (n = 497) samples, and stratified by estrogen receptor (ER) status and stage. We used multivariable linear regression, gene-set enrichment analyses (GSEA), and the least squares kernel machine (LSKM) to assess whether 3-year cumulative average pre-diagnosis PM2.5 exposure was associated with breast-tissue gene expression pathways among predominately Stage I and II women (90.7%) and postmenopausal (81.2%) women. Replication samples (tumor, n = 245; adjacent-normal, n = 165) were measured on Affymetrix Human Transcriptome Array (HTA 2.0). RESULTS Overall, no pathways in the tumor area were significantly associated with PM2.5 exposure. Among 272 adjacent-normal samples from Stage I ER-positive women, PM2.5 was associated with perturbations in the oxidative phosphorylation, protein secretion, and mTORC1 signaling pathways (GSEA and LSKM p-values <0.05); however, results were not replicated in a small set of replication samples (n = 80). CONCLUSIONS PM2.5 was generally not associated with breast tissue gene expression though was suggested to perturb oxidative phosphorylation and regulation of proteins and cellular signaling in adjacent-normal breast tissue. More research is needed on the biological role of PM2.5 that influences breast tumor progression.
Collapse
Affiliation(s)
- Natalie C DuPré
- Channing Division of Network Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology and Population Health, University of Louisville School of Public Health and Information Sciences, Louisville, KY, USA.
| | - Yujing J Heng
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Benjamin A Raby
- Channing Division of Network Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, USA; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kimberly Glass
- Channing Division of Network Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02215, USA
| | - Jaime E Hart
- Channing Division of Network Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jen-Hwa Chu
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Catherine Askew
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - A Heather Eliassen
- Channing Division of Network Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Susan E Hankinson
- Channing Division of Network Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02215, USA
| | - Francine Laden
- Channing Division of Network Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Rulla M Tamimi
- Channing Division of Network Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
14
|
Zhang Z, Yan W, Chen Q, Zhou N, Xu Y. The relationship between exposure to particulate matter and breast cancer incidence and mortality: A meta-analysis. Medicine (Baltimore) 2019; 98:e18349. [PMID: 31852135 PMCID: PMC6922579 DOI: 10.1097/md.0000000000018349] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/21/2019] [Accepted: 11/11/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Particulate matter (PM) acts as an environment pollutant and thus plays a vital role in the development of human lung cancer. Whether PM is a risk factor for breast cancer (BC) morbidity and mortality, however, is not clear. Recently, several studies have reported inconsistent results for the association between PM and BC risk. This meta-analysis examines the indefinite relationship between exposure to PM and BC morbidity and mortality. METHODS Based on a search of Pubmed, Embase, Web of Science and Cochrane Library, the hazard ratio (HR) and 95% confidence interval (CI) were extracted and analyzed by Review Manager 5.3 and Stata14.0 to estimate the association between PM and BC morbidity and mortality. The heterogeneity for the included studies was evaluated using a Chi-square test and the I statistic. Forest plot was used to illustrate the pooled HR and mean difference. A Funnel plot, Begg test, and Egger test were performed to explore the publication bias between the included studies.All analyses were based on previous published studies, thus, no ethical approval and patient consent are required. RESULTS A total of 14 of 284 publications with 1,004,128 BC cases were gathered. The analysis showed each 10 μg/m of PM2.5 (diameter ≤2.5 μm) was associated with 1.17 (95% CI: 1.05-1.30, P = .004) fold risk BC mortality, and each 10 μg/m of PM10 (diameter ≤10 μm) was associated with 1.11 (95% CI: 1.02-1.21, P = .021) fold risk BC mortality. However, neither PM10 nor PM2.5 was found to be significantly associated with BC morbidity. Publication bias was detected in studies on PM2.5 and BC mortality. CONCLUSIONS Our study suggests that PM exposure may raise the mortality but not the morbidity of BC. Still, further studies may be necessary to confirm this finding.
Collapse
Affiliation(s)
- Zhe Zhang
- Department of Breast and Thyroid Surgery, Daping Hospital
| | | | - Qing Chen
- Institute of Toxicology, College of Preventive Medicine, Army Military Medical University (Third Military Medical University), Chongqing, China
| | - Niya Zhou
- Institute of Toxicology, College of Preventive Medicine, Army Military Medical University (Third Military Medical University), Chongqing, China
| | - Yan Xu
- Department of Breast and Thyroid Surgery, Daping Hospital
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW Epigenetic marks are emerging as mediators of genetics and the environment on complex disease phenotypes, including childhood asthma and allergy. RECENT FINDINGS Epigenome-wide association studies over the past year have added to the growing body of evidence supporting significant associations of epigenetic regulation of gene expression and asthma and allergy. Studies in children have identified signatures of eosinophils in peripheral blood, Th2 cell transcription factors and cytokines in peripheral blood mononuclear cells, and epithelial dysfunction in the respiratory epithelium. Importantly, studies at birth have begun to decipher the contribution of epigenetic marks to asthma inception. Few studies have also begun to address the contribution of genetics and the environment to these associations. SUMMARY Next generation of epigenome-wide association studies that will deal with confounders, study the influence of the genetics and environment, and incorporate multiple datasets to provide better interpretation of the findings are on the horizon. Identification of key epigenetic marks that are shaped by genetics and the environment, and impact transcription of specific genes will help us have a better understanding of etiology, heterogeneity and severity of asthma, and will also empower us to develop biologically driven therapeutics and biomarkers for secondary prevention of this disease.
Collapse
|
16
|
Shukla A, Bunkar N, Kumar R, Bhargava A, Tiwari R, Chaudhury K, Goryacheva IY, Mishra PK. Air pollution associated epigenetic modifications: Transgenerational inheritance and underlying molecular mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 656:760-777. [PMID: 30530146 DOI: 10.1016/j.scitotenv.2018.11.381] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/23/2018] [Accepted: 11/25/2018] [Indexed: 05/28/2023]
Abstract
Air pollution is one of the leading causes of deaths in Southeast Asian countries including India. Exposure to air pollutants affects vital cellular mechanisms and is intimately linked with the etiology of a number of chronic diseases. Earlier work from our laboratory has shown that airborne particulate matter disturbs the mitochondrial machinery and causes significant damage to the epigenome. Mitochondrial reactive oxygen species possess the ability to trigger redox-sensitive signaling mechanisms and induce irreversible epigenomic changes. The electrophilic nature of reactive metabolites can directly result in deprotonation of cytosine at C-5 position or interfere with the DNA methyltransferases activity to cause alterations in DNA methylation. In addition, it also perturbs level of cellular metabolites critically involved in different epigenetic processes like acetylation and methylation of histone code and DNA hypo or hypermethylation. Interestingly, these modifications may persist through downstream generations and result in the transgenerational epigenomic inheritance. This phenomenon of subsequent transfer of epigenetic modifications is mainly associated with the germ cells and relies on the germline stability of the epigenetic states. Overall, the recent literature supports, and arguably strengthens, the contention that air pollution might contribute to transmission of epimutations from gametes to zygotes by involving mitochondrial DNA, parental allele imprinting, histone withholding and non-coding RNAs. However, larger prospective studies using innovative, integrated epigenome-wide metabolomic strategy are highly warranted to assess the air pollution induced transgenerational epigenetic inheritance and associated human health effects.
Collapse
Affiliation(s)
- Anushi Shukla
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Neha Bunkar
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Rajat Kumar
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Arpit Bhargava
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Rajnarayan Tiwari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Koel Chaudhury
- School of Medical Science & Technology, Indian Institute of Technology, Kharagpur, India
| | - Irina Y Goryacheva
- Department of General and Inorganic Chemistry, Saratov State University, Saratov, Russia
| | - Pradyumna K Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| |
Collapse
|
17
|
Silva IR, Ramos MCAS, Arantes LMRB, Lengert AVH, Oliveira MA, Cury FP, Martins Pereira G, Santos AG, Barbosa F, Vasconcellos PC, Cuenin C, Herceg Z, Silveira HCS. Evaluation of DNA Methylation Changes and Micronuclei in Workers Exposed to a Construction Environment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E902. [PMID: 30871143 PMCID: PMC6466300 DOI: 10.3390/ijerph16060902] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/24/2019] [Accepted: 03/04/2019] [Indexed: 12/15/2022]
Abstract
Methylation levels in tumor-suppressor genes and repetitive sequences have previously been used to study the relationship between environmental air pollution and epigenetic changes related to cancer. In this study, we measured the methylation profiles of the promoter regions CDKN2A, MLH1 and APC and the repetitive sequence LINE-1 in 59 workers exposed to the construction environment and in 49 unexposed workers. We also evaluated the micronuclei frequency and levels of trace elements in the blood of all workers. We evaluated of levels of particulate matter and polycyclic aromatic hydrocarbons (PAHs) at the construction site to characterize the environmental exposure. Our findings demonstrated that exposed workers exhibited significantly higher average levels of promoter methylation of CDKN2A, APC, and MLH1 genes and increased hypomethylation of the LINE-1 in comparison to unexposed workers (all p < 0.05). A higher frequency of micronuclei was observed in the exposed group (2 ± 2) compared to the unexposed group (1 ± 1) with p < 0.001. High levels of particulate matter (51⁻841 μg/m³) and some PAHs were found in samples from the construction environment. In summary, we provide evidence of increased DNA damage and altered DNA methylation of exposed workers, suggesting that genomic approaches to biomonitoring may be an effective way of estimating future cancer risk for construction workers.
Collapse
Affiliation(s)
- Isana R Silva
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, São Paulo, Brazil.
| | - Manoela C A S Ramos
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, São Paulo, Brazil.
| | - Lídia M R B Arantes
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, São Paulo, Brazil.
| | - André V H Lengert
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, São Paulo, Brazil.
| | - Marco A Oliveira
- Center for Research Support (NAP), Barretos Cancer Hospital, Barretos 14784-400, São Paulo, Brazil.
| | - Fernanda P Cury
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, São Paulo, Brazil.
| | | | | | - Fernando Barbosa
- School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto 14040-903, São Paulo, Brazil.
| | | | - Cyrille Cuenin
- Epigenetics Group, International Agency for Research on Cancer (IARC), 150 Cours Albert-Thomas, 69008 Lyon, France.
| | - Zdenko Herceg
- Epigenetics Group, International Agency for Research on Cancer (IARC), 150 Cours Albert-Thomas, 69008 Lyon, France.
| | - Henrique C S Silveira
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, São Paulo, Brazil.
- University of Cuiabá, Campus Beira Rio, Cuiabá 78008-000, Mato Grosso, Brazil.
| |
Collapse
|
18
|
Shi Y, Zhao T, Yang X, Sun B, Li Y, Duan J, Sun Z. PM 2.5-induced alteration of DNA methylation and RNA-transcription are associated with inflammatory response and lung injury. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:908-921. [PMID: 30308865 DOI: 10.1016/j.scitotenv.2018.09.085] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/09/2018] [Accepted: 09/06/2018] [Indexed: 06/08/2023]
Abstract
The mechanisms of systemic pulmonary inflammation and toxicity of fine particulate matter (PM2.5) exposure remains unclear. The current study investigated the inflammatory response and lung toxicity of PM2.5 in rats following intratracheal instillation of PM2.5. After repeated (treated every 3 days for 30 days) PM2.5 exposure, total protein (TP), lactate dehydrogenase (LDH) activity and inflammatory cytokines including interleukin 6 (IL-6), interleukin 1β (IL-1β) and tumor necrosis factor α (TNF-α) levels in bronchoalveolar lavage fluid (BALF) were markedly elevated. The expression levels of IL-6, IL-1β, TNF-α and NF-κB in rat lung tissue and BEAS-2B cells were significantly upregulated after PM2.5 exposure. Histopathological evaluation suggested that the major pathological changes were alveolar wall thickening and inflammatory cell infiltration of the lungs. Genome wide DNA methylation and RNA-transcription analysis was performed on human bronchial epithelial cells (BEAS-2B) to explore the potential mechanisms in vitro. PM2.5 induced genome wide DNA methylation and transcription changes. Differentially methylated CpGs were located in gene promoter region linked with CpG islands. Integrated analysis with DNA methylation and transcription data indicated a clear bias toward transcriptional alteration by differential methylation. Disease ontology of differentially methylated and expressed genes addressed their prominent role in respiratory disease. Functional enrichment revealed their involvement in inflammation or immune response, cellular community, cellular motility, cell growth, development and differentiation, signal transduction and responses to exogenous stimuli. Gene expression validation of ACTN4, CXCL1, MARK2, ABR, PSEN1, PSMA3, PSMD1 verified their functional participation in critical biological processes and supported the microarray bioinformatics analysis. Collectively, our data shows that PM2.5 induced genome wide methylome and transcriptome alterations that could be involved in pulmonary toxicity and pathological process of respiratory disease, providing new insight into the toxicity mechanisms of PM2.5.
Collapse
Affiliation(s)
- Yanfeng Shi
- Department of Toxicology and Sanitary Chemistry, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Tong Zhao
- Department of Toxicology and Sanitary Chemistry, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Xiaozhe Yang
- Department of Toxicology and Sanitary Chemistry, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Baiyang Sun
- Department of Toxicology and Sanitary Chemistry, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Yang Li
- Department of Toxicology and Sanitary Chemistry, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
19
|
DuPré NC, Hart JE, Holmes MD, Poole EM, James P, Kraft P, Laden F, Tamimi RM. Particulate Matter and Traffic-Related Exposures in Relation to Breast Cancer Survival. Cancer Epidemiol Biomarkers Prev 2019; 28:751-759. [PMID: 30647065 DOI: 10.1158/1055-9965.epi-18-0803] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/19/2018] [Accepted: 01/10/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Although particulate matter (PM) has not been consistently associated with breast cancer risk, two studies have reported harmful associations for breast cancer survival. We examined PM exposures and breast cancer survival in two U.S.-based prospective cohort studies. METHODS The Nurses' Health Study (NHS) and NHSII are cohorts with detailed data on medical history, lifestyle factors, and causes of death. Women with Stage I-III breast cancer (n = 8,936) were followed through June 2014. Residential PM was estimated using spatio-temporal models. We performed Cox regression to estimate hazard ratios (HR) of breast cancer-specific mortality and all-cause mortality for 10 μg/m3 increases in post-diagnosis PM. RESULTS There were 1,211 breast cancer-specific deaths. Overall, PM was not associated with breast cancer-specific mortality [PM2.5: HR, 1.09; 95% confidence interval (CI), 0.87-1.36; PM2.5-10: HR, 1.03; 95% CI, 0.85-1.24; PM10: HR, 1.05; 95% CI, 0.89-1.24], but was associated with modest increases in all-cause mortality (PM2.5: HR, 1.12; 95% CI, 0.96-1.30; PM2.5-10: HR, 1.12; 95% CI, 1.00-1.24; PM10: HR, 1.09; 95% CI, 1.01-1.18). However, among participants with Stage I disease, PM2.5 was associated with higher breast cancer-specific mortality (HR, 1.64; 95% CI, 1.11-2.43). CONCLUSIONS PM was not associated with breast cancer-specific death overall; however, higher PM was associated with all-cause mortality. Higher PM2.5 was associated with higher breast cancer-specific mortality among patients with Stage I breast cancer even after adjustment. IMPACT Studies on ambient PM and breast cancer survival demonstrate that PM2.5 may have broader health effects than previously recognized and warrants further research on breast tumor progression.
Collapse
Affiliation(s)
- Natalie C DuPré
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts. .,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jaime E Hart
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.,Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Michelle D Holmes
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Elizabeth M Poole
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Peter James
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.,Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Healthcare Institute, Boston, Massachusetts
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Francine Laden
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.,Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Rulla M Tamimi
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
20
|
Torres P, Ferreira J, Monteiro A, Costa S, Pereira MC, Madureira J, Mendes A, Teixeira JP. Air pollution: A public health approach for Portugal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 643:1041-1053. [PMID: 30189521 DOI: 10.1016/j.scitotenv.2018.06.281] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/19/2018] [Accepted: 06/22/2018] [Indexed: 06/08/2023]
Abstract
At the global level, several epidemiological studies have conclusively pointed out the associations between short-term exposure to air pollution and acute health effects, and long-term exposure with adverse health effects such as premature mortality from severe respiratory and cardiovascular diseases. This study intended to characterize exposures and their adverse health effects. Three independent sets of vectors were analyzed on a nationwide level and annual basis: air pollutant emissions, ambient air concentrations and health indicators of the period 2009 to 2015. The emissions analysis, for the studied pollutants, pointed out the main findings: (i) Lisbon Metropolitan Area presents the most problematic region with regard to the emissions of all the pollutants under study; (ii) the regions of the Alentejo and Algarve showed reduced emissions of the studied pollutants compared to other parts of the country; (iii) Northern regions PM10 concentrations decreased during the two years in analysis. Regarding the analysis of air quality, it was concluded that: (i) regarding ozone, concentration shown a decreasing trend throughout the country; (ii) nitrogen dioxide and particulate matter, concentrations demonstrated an increasing trend in most of the northern part of the country; (iii) the regions of Alentejo and Lisbon Metropolitan Area showed increasing trends for sulfur dioxide and fine particles for the evaluated period. Decreasing trends in mortality associated with cardiovascular and respiratory causes are found mainly in the Alentejo and Algarve regions. In comparison, the North, Central regions, as well as, Lisbon Metropolitan Area exhibited higher mortality values related to this health indicators.
Collapse
Affiliation(s)
- Pedro Torres
- LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, R. Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Joana Ferreira
- CESAM & Dept of Environment and Planning (CESAM), Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Alexandra Monteiro
- CESAM & Dept of Environment and Planning (CESAM), Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Solange Costa
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, no 135, 4050-600 Porto, Portugal; Environmental Health Department, National Health Institute Dr. Ricardo Jorge, Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
| | - Maria Carmo Pereira
- LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, R. Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Joana Madureira
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, no 135, 4050-600 Porto, Portugal
| | - Ana Mendes
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, no 135, 4050-600 Porto, Portugal; Environmental Health Department, National Health Institute Dr. Ricardo Jorge, Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal.
| | - João Paulo Teixeira
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, no 135, 4050-600 Porto, Portugal; Environmental Health Department, National Health Institute Dr. Ricardo Jorge, Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
| |
Collapse
|
21
|
Alfano R, Herceg Z, Nawrot TS, Chadeau-Hyam M, Ghantous A, Plusquin M. The Impact of Air Pollution on Our Epigenome: How Far Is the Evidence? (A Systematic Review). Curr Environ Health Rep 2018; 5:544-578. [PMID: 30361985 DOI: 10.1007/s40572-018-0218-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PURPOSE OF REVIEW This systematic review evaluated existing evidence linking air pollution exposure in humans to major epigenetic mechanisms: DNA methylation, microRNAs, long noncoding RNAs, and chromatin regulation. RECENT FINDINGS Eighty-two manuscripts were eligible, most of which were observational (85%), conducted in adults (66%) and based on DNA methylation (79%). Most observational studies, except panel, demonstrated modest effects of air pollution on the methylome. Panel and experimental studies revealed a relatively large number of significant methylome alterations, though based on smaller sample sizes. Particulate matter levels were positively associated in several studies with global or LINE-1 hypomethylation, a hallmark of several diseases, and with decondensed chromatin structure. Several air pollution species altered the DNA methylation clock, inducing accelerated biological aging. The causal nature of identified associations is not clear, however, especially that most originate from countries with low air pollution levels. Existing evidence, gaps, and perspectives are highlighted herein.
Collapse
Affiliation(s)
- Rossella Alfano
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Zdenko Herceg
- Epigenetics Group, International Agency for Research on Cancer (IARC), 150 Cours Albert-Thomas, 69008, Lyon, France
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
- Environment & Health Unit, Leuven University, Leuven, Belgium
| | - Marc Chadeau-Hyam
- Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London, UK
| | - Akram Ghantous
- Epigenetics Group, International Agency for Research on Cancer (IARC), 150 Cours Albert-Thomas, 69008, Lyon, France.
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium.
| |
Collapse
|
22
|
Rodosthenous RS, Kloog I, Colicino E, Zhong J, Herrera LA, Vokonas P, Schwartz J, Baccarelli AA, Prada D. Extracellular vesicle-enriched microRNAs interact in the association between long-term particulate matter and blood pressure in elderly men. ENVIRONMENTAL RESEARCH 2018; 167:640-649. [PMID: 30216846 PMCID: PMC6173640 DOI: 10.1016/j.envres.2018.09.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/31/2018] [Accepted: 09/04/2018] [Indexed: 05/19/2023]
Abstract
BACKGROUND Several studies have shown that exposure to particulate matter (PM) may lead to increased systemic blood pressure, but the underlying biological mechanisms remain unknown. Emerging evidence shows that extracellular vesicle-enriched miRNAs (evmiRNAs) are associated with PM exposure and cardiovascular risk. In this study, we investigated the role of evmiRNAs in the association between PM and blood pressure, as well as their epigenetic regulation by DNA methylation. METHODS Participants (n = 22, men) were randomly selected from the Veterans Affairs Normative Aging Study (NAS). Long-term (1-year and 6-month average) PM2.5 exposure was estimated at 1 × 1-km resolution using spatio-temporal prediction models and BC was estimated using validated time varying land use regression models. We analyzed 31 evmiRNAs detected in ≥ 90% of all individuals and for statistical analysis, we used mixed effects models with random intercept adjusted for age, body mass index, smoking, C-reactive protein, platelets, and white blood cells. RESULTS We found that per each 2-standard deviations increase in 6-month PM2.5 ambient levels, there was an increase in 0.19 mm Hg (95% Confidence Interval [95%CI]: 0.11, 0.28 mmHg; p < 0.001) in systolic blood pressure (SBP). Per each 2-standard deviations increase in 1-year PM2.5 levels, there was an increase in 0.11 mm Hg (95% Confidence Interval [95% CI]: 0.03, 0.19 mmHg; p = 0.012) in SBP in older male individuals. We also found that both miR-199a/b (β = 6.13 mmHg; 95% CI: 0.87, 11.39; pinteraction = 0.07) and miR-223-3p (β = 30.17 mmHg; 95% CI: 11.96, 48.39 mmHg; pinteraction = 0.01) modified the association between 1-year PM2.5 and SBP. When exploring DNA methylation as a potential mechanism that could epigenetically regulate expression of evmiRNAs, we found that PM2.5 ambient levels were negatively associated with DNA methylation levels at CpG (cg23972892) near the enhancer region of miR-199a/b (β = -13.11; 95% CI: -17.70, -8.52; pBonferroni< 0.01), but not miR-223-3p. CONCLUSIONS Our findings suggest that expression of evmiRNAs may be regulated by DNA methylation in response to long-term PM2.5 ambient levels and modify the magnitude of association between PM2.5 and systolic blood pressure in older individuals.
Collapse
Affiliation(s)
- Rodosthenis S Rodosthenous
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, 665 Huntington Ave, Boston, MA 02115, United States; Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, United States.
| | - Itai Kloog
- Department of Geography and Environmental Development, Ben-Gurion University of the Negev, 663 Beer Sheva, Israel.
| | - Elena Colicino
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, 665 Huntington Ave, Boston, MA 02115, United States; Icahn School of Medicine, Mount Sinai Hospital, 1 Gustave L. Levy Place, New York, NY 10029-5674, United States.
| | - Jia Zhong
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, 665 Huntington Ave, Boston, MA 02115, United States.
| | - Luis A Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología - Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico.
| | - Pantel Vokonas
- Veterans Affairs Boston Healthcare System, 150 South Huntington Ave, Boston, MA 02130, United States; Department of Epidemiology, Boston University School of Public Health, 715 Albany Street, Boston, MA 02118, United States; Department of Medicine, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, United States.
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, 665 Huntington Ave, Boston, MA 02115, United States.
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032, United States.
| | - Diddier Prada
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, 665 Huntington Ave, Boston, MA 02115, United States; Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología - Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico.
| |
Collapse
|
23
|
de Oliveira AAF, de Oliveira TF, Dias MF, Medeiros MHG, Di Mascio P, Veras M, Lemos M, Marcourakis T, Saldiva PHN, Loureiro APM. Genotoxic and epigenotoxic effects in mice exposed to concentrated ambient fine particulate matter (PM 2.5) from São Paulo city, Brazil. Part Fibre Toxicol 2018; 15:40. [PMID: 30340610 PMCID: PMC6194750 DOI: 10.1186/s12989-018-0276-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 10/03/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The Metropolitan Area of São Paulo has a unique composition of atmospheric pollutants, and positive correlations between exposure and the risk of diseases and mortality have been observed. Here we assessed the effects of ambient fine particulate matter (PM2.5) on genotoxic and global DNA methylation and hydroxymethylation changes, as well as the activities of antioxidant enzymes, in tissues of AJ mice exposed whole body to ambient air enriched in PM2.5, which was concentrated in a chamber near an avenue of intense traffic in São Paulo City, Brazil. RESULTS Mice exposed to concentrated ambient PM2.5 (1 h daily, 3 months) were compared to in situ ambient air exposed mice as the study control. The concentrated PM2.5 exposed group presented increased levels of the oxidized nucleoside 8-oxo-7,8-dihydro-2'-deoxyguanosine in lung and kidney DNA and increased levels of the etheno adducts 1,N6-etheno-2'-deoxyadenosine and 1,N2-etheno-2'-deoxyguanosine in kidney and liver DNA, respectively. Apart from the genotoxic effects, the exposure to PM2.5 led to decreased levels of the epigenetic mark 5-hydroxymethylcytosine (5-hmC) in lung and liver DNA. Changes in lung, liver, and erythrocyte antioxidant enzyme activities were also observed. Decreased glutathione reductase and increased superoxide dismutase (SOD) activities were observed in the lungs, while the liver presented increased glutathione S-transferase and decreased SOD activities. An increase in SOD activity was also observed in erythrocytes. These changes are consistent with the induction of local and systemic oxidative stress. CONCLUSIONS Mice exposed daily to PM2.5 at a concentration that mimics 24-h exposure to the mean concentration found in ambient air presented, after 3 months, increased levels of DNA lesions related to the occurrence of oxidative stress in the lungs, liver, and kidney, in parallel to decreased global levels of 5-hmC in lung and liver DNA. Genetic and epigenetic alterations induced by pollutants may affect the genes committed to cell cycle control, apoptosis, and cell differentiation, increasing the chance of cancer development, which merits further investigation.
Collapse
Affiliation(s)
- Antonio Anax Falcão de Oliveira
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Av. Prof. Lineu Prestes 580, Bloco 13 B, São Paulo, CEP 05508-000 Brazil
| | - Tiago Franco de Oliveira
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Av. Prof. Lineu Prestes 580, Bloco 13 B, São Paulo, CEP 05508-000 Brazil
- Present address: Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Rua Sarmento Leite 245, Porto Alegre, Rio Grande do Sul CEP 90050-170 Brazil
| | - Michelle Francini Dias
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Av. Prof. Lineu Prestes 580, Bloco 13 B, São Paulo, CEP 05508-000 Brazil
| | - Marisa Helena Gennari Medeiros
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, CEP 05508-000 Brazil
| | - Paolo Di Mascio
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, CEP 05508-000 Brazil
| | - Mariana Veras
- Laboratório de Poluição Atmosférica Experimental – LIM05, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, Av. Dr. Arnaldo 455, São Paulo, CEP 01246903 Brazil
| | - Miriam Lemos
- Laboratório de Poluição Atmosférica Experimental – LIM05, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, Av. Dr. Arnaldo 455, São Paulo, CEP 01246903 Brazil
| | - Tania Marcourakis
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Av. Prof. Lineu Prestes 580, Bloco 13 B, São Paulo, CEP 05508-000 Brazil
| | - Paulo Hilário Nascimento Saldiva
- Laboratório de Poluição Atmosférica Experimental – LIM05, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, Av. Dr. Arnaldo 455, São Paulo, CEP 01246903 Brazil
- Instituto de Estudos Avançados, Universidade de São Paulo, R. do Anfiteatro, 513, São Paulo, CEP 05508060 Brazil
| | - Ana Paula Melo Loureiro
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Av. Prof. Lineu Prestes 580, Bloco 13 B, São Paulo, CEP 05508-000 Brazil
| |
Collapse
|
24
|
Yang HL, Yang YL, Yu CH, Shiao SPK. Meta-Prediction of MTHFR Gene Polymorphism and Air Pollution on the Risks of Congenital Heart Defects Worldwide: A Transgenerational Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15081660. [PMID: 30081597 PMCID: PMC6121605 DOI: 10.3390/ijerph15081660] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 12/18/2022]
Abstract
Congenital heart disease (CHD) is the leading cause of death in children, and is affected by genetic and environmental factors. To investigate the association of air pollution with methylene-tetrahydrofolate reductase (MTHFR) polymorphisms and the risk of CHD, we included 58 study groups of children and parents, with 12,347 cases and 18,106 controls worldwide. Both MTHFR C677T (rs 1801133) and A1298C (rs 1801131) gene polymorphisms were risks for CHD in children with transgenerational effects from their parents. Countries with greater risks of CHD with a pooled risk ratio (RR) > 2 from MTHFR 677 polymorphisms included Germany, Portugal, China, and Egypt for children; and Brazil, Puerto Rico, Mexico, China, and Egypt for mothers. Whereas, countries with greater risk of CHD with RR > 2 from MTHFR 1298 polymorphisms included Taiwan, Turkey, and Egypt for children; and Brazil, China, and Egypt for mothers. Additionally, meta-prediction analysis revealed that the percentages of MTHFR 677TT and TT plus CT polymorphisms together were increased in countries with higher levels of air pollution, with a trend of increased CHD risks with higher levels of air pollution for children (p = 0.07). Our findings may have significant implications for inflammatory pathways in association with MTHFR polymorphisms and future intervention studies to correct for folate-related enzyme deficits resulted from MTHFR polymorphisms to prevent CHDs for future generations.
Collapse
Affiliation(s)
- Hsiao-Ling Yang
- School of Nursing, College of Medicine, National Taiwan University, Taipei 10051, Taiwan.
| | - Ya-Ling Yang
- School of Nursing, College of Medicine, National Taiwan University, Taipei 10051, Taiwan.
| | - Chong Ho Yu
- Department of Psychology, Azusa Pacific University, Azusa, CA 91702, USA.
| | | |
Collapse
|
25
|
Lanata CM, Chung SA, Criswell LA. DNA methylation 101: what is important to know about DNA methylation and its role in SLE risk and disease heterogeneity. Lupus Sci Med 2018; 5:e000285. [PMID: 30094041 PMCID: PMC6069928 DOI: 10.1136/lupus-2018-000285] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 06/25/2018] [Indexed: 12/20/2022]
Abstract
SLE is a complex autoimmune disease that results from the interplay of genetics, epigenetics and environmental exposures. DNA methylation is an epigenetic mechanism that regulates gene expression and tissue differentiation. Among all the epigenetic modifications, DNA methylation perturbations have been the most widely studied in SLE. It mediates processes relevant to SLE, including lymphocyte development, X-chromosome inactivation and the suppression of endogenous retroviruses. The establishment of most DNA methylation marks occurs in utero; however, a small percentage of epigenetic marks are dynamic and can change throughout a person’s lifetime and in relation to exposures. In this review, we discuss the current understanding of the biology of DNA methylation and its regulators, the measurement and interpretation of methylation marks, the effects of genetics on DNA methylation and the role of environmental exposures with relevance to SLE. We also summarise research findings associated with SLE disease risk and heterogeneity. The robust finding of hypomethylation of interferon-responsive genes in patients with SLE and new associations beyond interferon-responsive genes such as cell-specific methylation abnormalities are described. We also discuss methylation changes associated with lupus nephritis, autoantibody status and disease activity. Lastly, we explore future research directions, emphasising the need for longitudinal studies, cell tissue and context-specific profiling, as well as integrative approaches. With new technologies, DNA methylation perturbations could be targeted and edited, offering novel therapeutic approaches.
Collapse
Affiliation(s)
- Cristina M Lanata
- Russell/Engleman Rheumatology Research Center, Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Sharon A Chung
- Russell/Engleman Rheumatology Research Center, Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Lindsey A Criswell
- Russell/Engleman Rheumatology Research Center, Department of Medicine, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
26
|
Yang D, Yang X, Deng F, Guo X. Ambient Air Pollution and Biomarkers of Health Effect. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1017:59-102. [PMID: 29177959 DOI: 10.1007/978-981-10-5657-4_4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Recently, the air pollution situation of our country is very serious along with the development of urbanization and industrialization. Studies indicate that the exposure of air pollution can cause a rise of incidence and mortality of many diseases, such as chronic obstructive pulmonary disease (COPD), asthma, myocardial infarction, and so on. However, there is now growing evidence showing that significant air pollution exposures are associated with early biomarkers in various systems of the body. In order to better prevent and control the damage effect of air pollution, this article summarizes comprehensively epidemiological studies about the bad effects on the biomarkers of respiratory system, cardiovascular system, and genetic and epigenetic system exposure to ambient air pollution.
Collapse
Affiliation(s)
- Di Yang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, No. 38 Xueyuan Road, Beijing, China
| | - Xuan Yang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, No. 38 Xueyuan Road, Beijing, China
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, No. 38 Xueyuan Road, Beijing, China.
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, No. 38 Xueyuan Road, Beijing, China
| |
Collapse
|
27
|
Li R, Zhou R, Zhang J. Function of PM2.5 in the pathogenesis of lung cancer and chronic airway inflammatory diseases. Oncol Lett 2018; 15:7506-7514. [PMID: 29725457 DOI: 10.3892/ol.2018.8355] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 02/28/2018] [Indexed: 12/14/2022] Open
Abstract
Previous research has identified that air pollution is associated with various respiratory diseases, but few studies have investigated the function served by particulate matter 2.5 (PM2.5) in these diseases. PM2.5 is known to cause epigenetic and microenvironmental alterations in lung cancer, including tumor-associated signaling pathway activation mediated by microRNA dysregulation, DNA methylation, and increased levels of cytokines and inflammatory cells. Autophagy and apoptosis of tumor cells may also be detected in lung cancer associated with PM2.5 exposure. A number of mechanisms are involved in triggering and aggravating asthma and COPD, including PM2.5-induced cytokine release and oxidative stress. The present review is an overview of the underlying molecular mechanisms of PM2.5-induced pathogenesis in lung cancer and chronic airway inflammatory diseases.
Collapse
Affiliation(s)
- Ruyi Li
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Rui Zhou
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Jiange Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| |
Collapse
|
28
|
Callahan CL, Bonner MR, Nie J, Han D, Wang Y, Tao MH, Shields PG, Marian C, Eng KH, Trevisan M, Beyea J, Freudenheim JL. Lifetime exposure to ambient air pollution and methylation of tumor suppressor genes in breast tumors. ENVIRONMENTAL RESEARCH 2018; 161:418-424. [PMID: 29197760 PMCID: PMC5747980 DOI: 10.1016/j.envres.2017.11.040] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 06/01/2023]
Abstract
BACKGROUND We previously reported increased risk of breast cancer associated with early life exposure to two measures of air pollution exposure, total suspended particulates (TSP) and traffic emissions (TE), possible proxies for exposure to polycyclic aromatic hydrocarbons (PAHs). Exposure to PAHs has been shown to be associated with aberrant patterns of DNA methylation in peripheral blood of healthy individuals. Exposure to PAHs and methylation in breast tumor tissue has received little attention. We examined the association of early life exposure to TSP and TE with patterns of DNA methylation in breast tumors. METHODS We conducted a study of women enrolled in the Western New York Exposures and Breast Cancer (WEB) Study. Methylation of nine genes (SFN, SCGB3A1, RARB, GSTP1, CDKN2A CCND2, BRCA1, FHIT, and SYK) was assessed using bisulfite-based pyrosequencing. TSP exposure at each woman's home address at birth, menarche, and when she had her first child was estimated. TE exposure was modeled for each woman's residence at menarche, her first birth, and twenty and ten years prior to diagnosis. Unconditional logistic regression was employed to estimate odds ratios (OR) of having methylation greater than the median value, adjusting for age, secondhand smoke exposure before age 20, current smoking status, and estrogen receptor status. RESULTS Exposure to higher TSP at a woman's first birth was associated with lower methylation of SCGB3A1 (OR = 0.48, 95% CI: 0.23-0.99) and higher methylation of SYK (OR = 1.86, 95% CI: 1.03-3.35). TE at menarche was associated with increased methylation of SYK (OR = 2.37, 95% CI: 1.05-5.33). TE at first birth and ten years prior to diagnosis was associated with decreased methylation of CCND2 (OR ten years prior to diagnosis=0.48, 95% CI: 0.26-0.89). Although these associations were nominally significant, none were significant after adjustment for multiple comparisons (p < 0.01). CONCLUSIONS We observed suggestive evidence that exposure to ambient air pollution throughout life, measured as TSP and TE, may be associated with DNA methylation of some tumor suppressor genes in breast tumor tissue. Future studies with a larger sample size that assess methylation of more sites are warranted.
Collapse
Affiliation(s)
- Catherine L Callahan
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, United States.
| | - Matthew R Bonner
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, United States
| | - Jing Nie
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, United States
| | - Daikwon Han
- Department of Epidemiology and Biostatistics, Texas A&M Texas A&M University, College Station, TX, United States
| | - Youjin Wang
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, United States
| | - Meng-Hua Tao
- Department of Biostatistics and Epidemiology, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Peter G Shields
- Division of Cancer Prevention and Control, College of Medicine and The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Catalin Marian
- Division of Cancer Prevention and Control, College of Medicine and The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States; Department of Biochemistry and Pharmacology, University of Medicine an Pharmacy Timisoara, Timisoara, Romania
| | - Kevin H Eng
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY, United States
| | | | - Jan Beyea
- Consulting in the Public Interest, Lambertville, NJ, United States
| | - Jo L Freudenheim
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
29
|
Martin EM, Fry RC. Environmental Influences on the Epigenome: Exposure- Associated DNA Methylation in Human Populations. Annu Rev Public Health 2018; 39:309-333. [PMID: 29328878 DOI: 10.1146/annurev-publhealth-040617-014629] [Citation(s) in RCA: 411] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
DNA methylation is the most well studied of the epigenetic regulators in relation to environmental exposures. To date, numerous studies have detailed the manner by which DNA methylation is influenced by the environment, resulting in altered global and gene-specific DNA methylation. These studies have focused on prenatal, early-life, and adult exposure scenarios. The present review summarizes currently available literature that demonstrates a relationship between DNA methylation and environmental exposures. It includes studies on aflatoxin B1, air pollution, arsenic, bisphenol A, cadmium, chromium, lead, mercury, polycyclic aromatic hydrocarbons, persistent organic pollutants, tobacco smoke, and nutritional factors. It also addresses gaps in the literature and future directions for research. These gaps include studies of mixtures, sexual dimorphisms with respect to environmentally associated methylation changes, tissue specificity, and temporal stability of the methylation marks.
Collapse
Affiliation(s)
- Elizabeth M Martin
- Department of Environmental Sciences and Engineering, and Curriculum in Toxicology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina 27599, USA; ,
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, and Curriculum in Toxicology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina 27599, USA; ,
| |
Collapse
|
30
|
DuPre NC, Hart JE, Bertrand KA, Kraft P, Laden F, Tamimi RM. Residential particulate matter and distance to roadways in relation to mammographic density: results from the Nurses' Health Studies. Breast Cancer Res 2017; 19:124. [PMID: 29169389 PMCID: PMC5701365 DOI: 10.1186/s13058-017-0915-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/07/2017] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND High mammographic density is a strong, well-established breast cancer risk factor. Three studies conducted in various smaller geographic settings reported inconsistent findings between air pollution and mammographic density. We assessed whether particulate matter (PM) exposures (PM2.5, PM2.5-10, and PM10) and distance to roadways were associated with mammographic density among women residing across the United States. METHODS The Nurses' Health Studies are prospective cohorts for whom a subset has screening mammograms from the 1990s (interquartile range 1990-1999). PM was estimated using spatio-temporal models linked to residential addresses. Among 3258 women (average age at mammogram 52.7 years), we performed multivariable linear regression to assess associations between square-root-transformed mammographic density and PM within 1 and 3 years before the mammogram. For linear regression estimates of PM in relation to untransformed mammographic density outcomes, bootstrapped robust standard errors are used to calculate 95% confidence intervals (CIs). Analyses were stratified by menopausal status and region of residence. RESULTS Recent PM and distance to roadways were not associated with mammographic density in premenopausal women (PM2.5 within 3 years before mammogram β = 0.05, 95% CI -0.16, 0.27; PM2.5-10 β = 0, 95%, CI -0.15, 0.16; PM10 β = 0.02, 95% CI -0.10, 0.13) and postmenopausal women (PM2.5 within 3 years before mammogram β = -0.05, 95% CI -0.27, 0.17; PM2.5-10 β = -0.01, 95% CI -0.16, 0.14; PM10 β = -0.02, 95% CI -0.13, 0.09). Largely null associations were observed within regions. Suggestive associations were observed among postmenopausal women in the Northeast (n = 745), where a 10-μg/m3 increase in PM2.5 within 3 years before the mammogram was associated with 3.4 percentage points higher percent mammographic density (95% CI -0.5, 7.3). CONCLUSIONS These findings do not support that recent PM or roadway exposures influence mammographic density. Although PM was largely not associated with mammographic density, we cannot rule out the role of PM during earlier exposure time windows and possible associations among northeastern postmenopausal women.
Collapse
Affiliation(s)
- Natalie C. DuPre
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA USA
| | - Jaime E. Hart
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | | | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Francine Laden
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Rulla M. Tamimi
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA USA
| |
Collapse
|
31
|
Heßelbach K, Kim GJ, Flemming S, Häupl T, Bonin M, Dornhof R, Günther S, Merfort I, Humar M. Disease relevant modifications of the methylome and transcriptome by particulate matter (PM 2.5) from biomass combustion. Epigenetics 2017; 12:779-792. [PMID: 28742980 PMCID: PMC5739103 DOI: 10.1080/15592294.2017.1356555] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Exposure to particulate matter (PM) is recognized as a major health hazard, but molecular responses are still insufficiently described. We analyzed the epigenetic impact of ambient PM2.5 from biomass combustion on the methylome of primary human bronchial epithelial BEAS-2B cells using the Illumina HumanMethylation450 BeadChip. The transcriptome was determined by the Affymetrix HG-U133 Plus 2.0 Array. PM2.5 induced genome wide alterations of the DNA methylation pattern, including differentially methylated CpGs in the promoter region associated with CpG islands. Gene ontology analysis revealed that differentially methylated genes were significantly clustered in pathways associated with the extracellular matrix, cellular adhesion, function of GTPases, and responses to extracellular stimuli, or were involved in ion binding and shuttling. Differential methylations also affected tandem repeats. Additionally, 45 different miRNA CpG loci showed differential DNA methylation, most of them proximal to their promoter. These miRNAs are functionally relevant for lung cancer, inflammation, asthma, and other PM-associated diseases. Correlation of the methylome and transcriptome demonstrated a clear bias toward transcriptional activation by hypomethylation. Genes that exhibited both differential methylation and expression were functionally linked to cytokine and immune responses, cellular motility, angiogenesis, inflammation, wound healing, cell growth, differentiation and development, or responses to exogenous matter. Disease ontology of differentially methylated and expressed genes indicated their prominent role in lung cancer and their participation in dominant cancer related signaling pathways. Thus, in lung epithelial cells, PM2.5 alters the methylome of genes and noncoding transcripts or elements that might be relevant for PM- and lung-associated diseases.
Collapse
Affiliation(s)
- Katharina Heßelbach
- a Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-University Freiburg , Freiburg , Germany
| | - Gwang-Jin Kim
- b Pharmaceutical Bioinformatics, Albert-Ludwigs-University Freiburg , Freiburg , Germany
| | - Stephan Flemming
- b Pharmaceutical Bioinformatics, Albert-Ludwigs-University Freiburg , Freiburg , Germany
| | - Thomas Häupl
- c Department of Rheumatology and Clinical Immunology , Charité University Hospital Berlin , Germany
| | - Marc Bonin
- a Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-University Freiburg , Freiburg , Germany
| | - Regina Dornhof
- a Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-University Freiburg , Freiburg , Germany
| | - Stefan Günther
- d Pharmaceutical Bioinformatics and Freiburg Institute for Advanced Studies (FRIAS), Albert-Ludwigs University Freiburg , Freiburg , Germany
| | - Irmgard Merfort
- a Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-University Freiburg , Freiburg , Germany
| | - Matjaz Humar
- a Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-University Freiburg , Freiburg , Germany
| |
Collapse
|
32
|
Yang IV, Lozupone CA, Schwartz DA. The environment, epigenome, and asthma. J Allergy Clin Immunol 2017; 140:14-23. [PMID: 28673400 DOI: 10.1016/j.jaci.2017.05.011] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 05/10/2017] [Accepted: 05/12/2017] [Indexed: 12/21/2022]
Abstract
Asthma prevalence has been on the increase, especially in North America compared with other continents. However, the prevalence of asthma differs worldwide, and in many countries the prevalence is stable or decreasing. This highlights the influence of environmental exposures, such as allergens, air pollution, and the environmental microbiome, on disease etiology and pathogenesis. The epigenome might provide the unifying mechanism that translates the influence of environmental exposures to changes in gene expression, respiratory epithelial function, and immune cell skewing that are hallmarks of asthma. In this review we will introduce the concept of the environmental epigenome in asthmatic patients, summarize previous publications of relevance to this field, and discuss future directions.
Collapse
Affiliation(s)
- Ivana V Yang
- Department of Medicine, University of Colorado, School of Medicine, Aurora, Colo; National Jewish Health, Denver, Colo; Department of Epidemiology, Colorado School of Public Health, University of Colorado, Aurora, Colo.
| | - Catherine A Lozupone
- Department of Medicine, University of Colorado, School of Medicine, Aurora, Colo
| | - David A Schwartz
- Department of Medicine, University of Colorado, School of Medicine, Aurora, Colo; National Jewish Health, Denver, Colo; Department of Immunology, University of Colorado, Denver, Colo
| |
Collapse
|
33
|
Abstract
BACKGROUND Apolipoprotein A5 (APOA5) 1131 is one of the most investigated gene polymorphisms in association with cardiovascular diseases (CVD) for its roles in epigenetics pathways. OBJECTIVES The major objective of this metaprediction study was to comprehensively examine the association of polymorphism risk subtypes of APOA5 1131 gene and potential contributing factors of CVD risks in global populations. METHODS This study is a meta-analysis to determine APOA5 gene polymorphisms as risk factors for CVDs. Following the guidelines of meta-analyses, we applied big data analytics including the recursive partition tree, nonlinear association curve fit, and heat maps for data visualization-in addition to the conventional pooled analyses. RESULTS A total of 17,692 CVD cases and 23,566 controls from 50 study groups were included. The frequency of APOA5 1131 CC and TC polymorphisms in Asian populations (22.2%-52.6%) were higher than that in other populations, including Caucasians and Eurasians (10.0%-25.0%). The homozygous CC and heterozygous TC genotypes (both p < .0001) were associated with increased risks for CVD and were higher in many Western nations, including Canada, Spain, the Czech Republic, Hungary, Turkey, Egypt, France, and Iran. The CC genotype was associated with greater risks (RR > 2.00, p < .0001) for dyslipidemia and myocardial infarction, whereas RR > 1.00 was associated with metabolic syndrome, coronary artery disease, and stroke. Air pollution was significantly associated with APOA5 1131 CC and TC polymorphisms. DISCUSSION The findings of this study provided novel insight to further understand the associations among APOA5 1131 polymorphisms, air pollution, and the development of CVDs. Methylation studies are needed to examine epigenetic factors associated with APOA5 1131 polymorphisms and CVD and to suggest potential prevention strategies for CVD.
Collapse
|
34
|
Dose- and time- effect responses of DNA methylation and histone H3K9 acetylation changes induced by traffic-related air pollution. Sci Rep 2017; 7:43737. [PMID: 28256616 PMCID: PMC5335614 DOI: 10.1038/srep43737] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 01/30/2017] [Indexed: 11/08/2022] Open
Abstract
As an important risk factor of respiratory disorders, traffic-related air pollution (TRAP) has caused extensive concerns. Epigenetic change has been considered a link between TRAP and respiratory diseases. However, the exact effects of TRAP on epigenetic changes are still unclear. Here we investigated the dose- and time- effect responses of TRAP on DNA methylations and H3K9 acetylation (H3K9ac) in both blood and lung tissues of rats. The findings showed that every 1 μg/m3 increase of TRAP components were associated with changes in %5 mC (95% CI) in LINE-1, iNOS, p16CDKN2A, and APC ranging from −0.088% (−0.150, −0.026) to 0.102 (0.049, 0.154), as well as 0.276 (0.053, 0.498) to 0.475 (0.103, 0.848) ng/mg increase of H3K9ac. In addition, every 1 more day exposure at high level of TRAP (in tunnel) also significantly changed the levels of DNA methylation (ranging from −0.842% to 0.248%) and H3K9ac (16.033 and 15.718 ng/mg pro in PBMC and lung tissue, respectively) changes. Season and/or sex could interact with air pollutants in affecting DNA methylation and H3K9ac. The findings showed that TRAP exposure is dose- and time- dependently associated with the changes of DNA methylation and H3K9ac.
Collapse
|
35
|
Yang L, Hou XY, Wei Y, Thai P, Chai F. Biomarkers of the health outcomes associated with ambient particulate matter exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 579:1446-1459. [PMID: 27908628 DOI: 10.1016/j.scitotenv.2016.11.146] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 11/18/2016] [Accepted: 11/21/2016] [Indexed: 05/22/2023]
Abstract
Epidemiologic evidence supports the positive association of cardiopulmonary morbidity and mortality, and lung cancer risk with exposure to airborne particulate matter (PM). Oxidative stress and inflammation have been proposed to be the major causal factors involved in mediating PM effects on both cardiovascular and pulmonary health outcomes. However, the mechanism whereby PM causes the health effects is not fully elucidated. To evaluate and investigate human exposure to PM, it is essential to have a specific, sensitive and robust characterization of individual exposure to PM. Biomarkers may mark important intermediate steps leading to overt health effects after PM exposure. Thus biomarkers are promising indicators, which could serve as representative measures of the exposure to PM for assessing the health impacts and understanding the mechanism. Indeed, a number of biomarkers are already in use in the field of epidemiological studies and toxicological research. However, we are facing now the challenges to select robust, specific and sensitive biomarkers, which can be employed in large-scale of population to assess the health risk and to monitor the effectiveness of interventions. In this review, we describe a range of biomarkers that are associated with air pollution exposure, particularly markers of oxidative stress, inflammatory factors, and microRNAs, as well as markers of pollutants metabolites. Understanding the nature of the association of these biomarkers with PM exposure may shed some light on the process of selecting biomarkers for large-scale population studies, developing novel preventative and therapeutic strategies.
Collapse
Affiliation(s)
- Lixin Yang
- Department of Environmental Pollution and Health, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012 Beijing, China.
| | - Xiang-Yu Hou
- School of Public Health and Social Work, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Yongjie Wei
- Department of Environmental Pollution and Health, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012 Beijing, China
| | - Phong Thai
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Fahe Chai
- Chinese Research Academy of Environmental Sciences, 100012 Beijing, China.
| |
Collapse
|
36
|
Weight-of-evidence evaluation of associations between particulate matter exposure and biomarkers of lung cancer. Regul Toxicol Pharmacol 2016; 82:53-93. [DOI: 10.1016/j.yrtph.2016.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 10/10/2016] [Accepted: 10/16/2016] [Indexed: 12/16/2022]
|
37
|
Peng C, Bind MAC, Colicino E, Kloog I, Byun HM, Cantone L, Trevisi L, Zhong J, Brennan K, Dereix AE, Vokonas PS, Coull BA, Schwartz JD, Baccarelli AA. Particulate Air Pollution and Fasting Blood Glucose in Nondiabetic Individuals: Associations and Epigenetic Mediation in the Normative Aging Study, 2000-2011. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:1715-1721. [PMID: 27219535 PMCID: PMC5089881 DOI: 10.1289/ehp183] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 02/09/2016] [Accepted: 05/09/2016] [Indexed: 05/05/2023]
Abstract
BACKGROUND Among nondiabetic individuals, higher fasting blood glucose (FBG) independently predicts diabetes risk, cardiovascular disease, and dementia. Ambient PM2.5 (particulate matter with aerodynamic diameter ≤ 2.5 μm) is an emerging determinant of glucose dysregulation. PM2.5 effects and mechanisms are understudied among nondiabetic individuals. OBJECTIVES Our goals were to investigate whether PM2.5 is associated with an increase in FBG and to explore potential mediating roles of epigenetic gene regulation. METHODS In 551 nondiabetic participants in the Normative Aging Study, we measured FBG, and DNA methylation of four inflammatory genes (IFN-γ, IL-6, ICAM-1, and TLR-2), up to four times between 2000 and 2011 (median = 2). We estimated short- and medium-term (1-, 7-, and 28-day preceding each clinical visit) ambient PM2.5 at each participant's address using a validated hybrid land-use regression satellite-based model. We fitted covariate-adjusted regression models accounting for repeated measures. RESULTS Mean FBG was 99.8 mg/dL (SD = 10.7), 18% of the participants had impaired fasting glucose (IFG; i.e., 100-125 mg/dL FBG) at first visit. Interquartile increases in 1-, 7-, and 28-day PM2.5 were associated with 0.57 mg/dL (95% CI: 0.02, 1.11, p = 0.04), 1.02 mg/dL (95% CI: 0.41, 1.63, p = 0.001), and 0.89 mg/dL (95% CI: 0.32, 1.47, p = 0.003) higher FBG, respectively. The same PM2.5 metrics were associated with 13% (95% CI: -3%, 33%, p = 0.12), 27% (95% CI: 6%, 52%, p = 0.01) and 32% (95% CI: 10%, 58%, p = 0.003) higher odds of IFG, respectively. PM2.5 was negatively correlated with ICAM-1 methylation (p = 0.01), but not with other genes. Mediation analysis estimated that ICAM-1 methylation mediated 9% of the association of 28-day PM2.5 with FBG. CONCLUSIONS Among nondiabetics, short- and medium-term PM2.5 were associated with higher FBG. Mediation analysis indicated that part of this association was mediated by ICAM-1 promoter methylation. Citation: Peng C, Bind MA, Colicino E, Kloog I, Byun HM, Cantone L, Trevisi L, Zhong J, Brennan K, Dereix AE, Vokonas PS, Coull BA, Schwartz JD, Baccarelli AA. 2016. Particulate air pollution and fasting blood glucose in nondiabetic individuals: associations and epigenetic mediation in the Normative Aging Study, 2000-2011. Environ Health Perspect 124:1715-1721; http://dx.doi.org/10.1289/EHP183.
Collapse
Affiliation(s)
- Cheng Peng
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Address correspondence to C. Peng, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Building 1, G-7, 665 Huntington Ave., Boston, MA 02115 USA. E-mail:
| | | | - Elena Colicino
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Itai Kloog
- Department of Geography and Environmental Development, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Hyang-Min Byun
- Human Nutrition Research Center, Institute of Cellular Medicine, Newcastle University, Newcastle, United Kingdom
| | - Laura Cantone
- Molecular Epidemiology and Environmental Epigenetics Laboratory, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Letizia Trevisi
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Jia Zhong
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Kasey Brennan
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Alexandra E. Dereix
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Pantel S. Vokonas
- VA Normative Aging Study, Veterans Affairs Boston Healthcare System, Boston, Massachusetts, USA
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Brent A. Coull
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Joel D. Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Channing Laboratory, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrea A. Baccarelli
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
38
|
Ji H, Biagini Myers JM, Brandt EB, Brokamp C, Ryan PH, Khurana Hershey GK. Air pollution, epigenetics, and asthma. Allergy Asthma Clin Immunol 2016; 12:51. [PMID: 27777592 PMCID: PMC5069789 DOI: 10.1186/s13223-016-0159-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 10/04/2016] [Indexed: 12/13/2022] Open
Abstract
Exposure to traffic-related air pollution (TRAP) has been implicated in asthma development, persistence, and exacerbation. This exposure is highly significant as large segments of the global population resides in zones that are most impacted by TRAP and schools are often located in high TRAP exposure areas. Recent findings shed new light on the epigenetic mechanisms by which exposure to traffic pollution may contribute to the development and persistence of asthma. In order to delineate TRAP induced effects on the epigenome, utilization of newly available innovative methods to assess and quantify traffic pollution will be needed to accurately quantify exposure. This review will summarize the most recent findings in each of these areas. Although there is considerable evidence that TRAP plays a role in asthma, heterogeneity in both the definitions of TRAP exposure and asthma outcomes has led to confusion in the field. Novel information regarding molecular characterization of asthma phenotypes, TRAP exposure assessment methods, and epigenetics are revolutionizing the field. Application of these new findings will accelerate the field and the development of new strategies for interventions to combat TRAP-induced asthma.
Collapse
Affiliation(s)
- Hong Ji
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave. MLC 7037, Cincinnati, OH 45229 USA ; Pyrosequencing lab for Genomic and Epigenomic research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229 USA
| | - Jocelyn M Biagini Myers
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave. MLC 7037, Cincinnati, OH 45229 USA
| | - Eric B Brandt
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave. MLC 7037, Cincinnati, OH 45229 USA
| | - Cole Brokamp
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229 USA
| | - Patrick H Ryan
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229 USA
| | - Gurjit K Khurana Hershey
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave. MLC 7037, Cincinnati, OH 45229 USA
| |
Collapse
|
39
|
Liu C, Guo H, Cheng X, Shao M, Wu C, Wang S, Li H, Wei L, Gao Y, Tan W, Cheng S, Wu T, Yu D, Lin D. Exposure to airborne PM2.5 suppresses microRNA expression and deregulates target oncogenes that cause neoplastic transformation in NIH3T3 cells. Oncotarget 2016; 6:29428-39. [PMID: 26338969 PMCID: PMC4745737 DOI: 10.18632/oncotarget.5005] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 08/11/2015] [Indexed: 12/15/2022] Open
Abstract
Long-term exposure to airborne PM2.5 is associated with increased lung cancer risk but the underlying mechanism remains unclear. We characterized global microRNA and mRNA expression in human bronchial epithelial cells exposed to PM2.5 organic extract and integrally analyzed microRNA-mRNA interactions. Foci formation and xenograft tumorigenesis in mice with NIH3T3 cells expressing genes targeted by microRNAs were performed to explore the oncogenic potential of these genes. We also detected plasma levels of candidate microRNAs in subjects exposed to different levels of air PM2.5 and examined the aberrant expression of genes targeted by these microRNAs in human lung cancer. Under our experimental conditions, treatment of cells with PM2.5 extract resulted in downregulation of 138 microRNAs and aberrant expression of 13 mRNAs (11 upregulation and 2 downregulation). In silico and biochemical analyses suggested SLC30A1, SERPINB2 and AKR1C1, among the upregulated genes, as target for miR-182 and miR-185, respectively. Ectopic expression of each of these genes significantly enhanced foci formation in NIH3T3 cells. Following subcutaneous injection of these cells into nude mice, fibrosarcoma were formed from SLC30A1- or SERPINB2-expressing cells. Reduced plasma levels of miR-182 were detected in subjects exposed to high level of PM2.5 than in those exposed to low level of PM2.5 (P = 0.043). Similar results were seen for miR-185 although the difference was not statistically significant (P = 0.328). Increased expressions of SLC30A1, SERPINB2 and AKR1C1 were detected in human lung cancer. These results suggest that modulation of miR-182 and miR-185 and their target genes may contribute to lung carcinogenesis attributable to PM2.5 exposure.
Collapse
Affiliation(s)
- Chunling Liu
- State Key Laboratory of Molecular Oncology and Department of Etiology and Carcinogenesis, Cancer Institute and Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Huan Guo
- Department of Occupational and Environmental Health and Ministry of Education Key Lab for Environment and Health, School of Public Health, Huazhong University of Sciences and Technology, Wuhan, China
| | - Xinxin Cheng
- State Key Laboratory of Molecular Oncology and Department of Etiology and Carcinogenesis, Cancer Institute and Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Mingming Shao
- State Key Laboratory of Molecular Oncology and Department of Etiology and Carcinogenesis, Cancer Institute and Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Chen Wu
- State Key Laboratory of Molecular Oncology and Department of Etiology and Carcinogenesis, Cancer Institute and Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Suhan Wang
- Department of Occupational and Environmental Health and Ministry of Education Key Lab for Environment and Health, School of Public Health, Huazhong University of Sciences and Technology, Wuhan, China
| | - Hongmin Li
- State Key Laboratory of Molecular Oncology and Department of Etiology and Carcinogenesis, Cancer Institute and Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Lixuan Wei
- State Key Laboratory of Molecular Oncology and Department of Etiology and Carcinogenesis, Cancer Institute and Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yanning Gao
- State Key Laboratory of Molecular Oncology and Department of Etiology and Carcinogenesis, Cancer Institute and Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Wen Tan
- State Key Laboratory of Molecular Oncology and Department of Etiology and Carcinogenesis, Cancer Institute and Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Shujun Cheng
- State Key Laboratory of Molecular Oncology and Department of Etiology and Carcinogenesis, Cancer Institute and Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Tangchun Wu
- Department of Occupational and Environmental Health and Ministry of Education Key Lab for Environment and Health, School of Public Health, Huazhong University of Sciences and Technology, Wuhan, China
| | - Dianke Yu
- State Key Laboratory of Molecular Oncology and Department of Etiology and Carcinogenesis, Cancer Institute and Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Dongxin Lin
- State Key Laboratory of Molecular Oncology and Department of Etiology and Carcinogenesis, Cancer Institute and Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
40
|
Goodrich JM, Reddy P, Naidoo RN, Asharam K, Batterman S, Dolinoy DC. Prenatal exposures and DNA methylation in newborns: a pilot study in Durban, South Africa. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2016; 18:908-17. [PMID: 27359112 PMCID: PMC4945397 DOI: 10.1039/c6em00074f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The in utero environment has the potential to influence epigenetic programming and subsequently the health of offspring. Even though pregnant women living in urban Africa are exposed to multiple chemicals and infectious agents that may impact their developing children, the neonatal epigenome has not been studied in these regions. We assessed whether prenatal exposures to air pollution and maternal human immunodeficiency virus (HIV) are associated with changes to DNA methylation throughout the epigenome using a pilot sample from the Mother and Child Environmental (MACE) birth cohort, of which 36% of the mothers are HIV positive. Families living in a high air pollution region (south Durban, n = 11) and a low air pollution region (north Durban, n = 11) with comparable socioeconomic characteristics were selected for analysis. DNA methylation was quantified in cord blood plasma DNA at >430 000 CpG sites using the Infinium HumanMethylation450 BeadChip. Sites associated with living in south Durban or maternal HIV infection (p < 0.001) were more likely to be hypomethylated and located in CpG islands. Top differentially methylated sites by region of Durban were enriched in pathways related to xenobiotic metabolism, oxygen and gas transport, and sensory perception of chemical stimuli when performing gene set enrichment testing with LRpath. Differentially methylated sites by maternal HIV status were enriched in cytochrome P450s, pathways involved in detection of chemical stimuli, metabolic processes, and viral regulation and processing. Given the small sample size of the study, future work examining the impact of prenatal exposures to air pollution, maternal infection, and antiviral treatment on the epigenome and downstream health implications is merited in Sub-Saharan African populations.
Collapse
Affiliation(s)
- Jaclyn M Goodrich
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109, USA.
| | - Poovendhree Reddy
- Department of Community Health Studies, Durban University of Technology, Durban, South Africa
| | - Rajen N Naidoo
- Discipline of Occupational and Environmental Health, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa
| | - Kareshma Asharam
- Discipline of Occupational and Environmental Health, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa
| | - Stuart Batterman
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109, USA.
| | - Dana C Dolinoy
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109, USA. and Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
41
|
Yeh YH, Chou JC, Weng TC, Lieu FK, Lin JY, Yeh CC, Hu S, Wang PS, Idova G, Wang SW. Effects of acrolein on the production of corticosterone in male rats. Steroids 2016; 111:139-147. [PMID: 26996390 DOI: 10.1016/j.steroids.2016.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/09/2016] [Accepted: 03/11/2016] [Indexed: 11/30/2022]
Abstract
Acrolein, an α, β-unsaturated aldehyde, exists in a wide range of sources. Acrolein can be not only generated from all types of smoke but also produced endogenously from the metabolism by lipid peroxidation. The cellular influence of acrolein is due to its electrophilic character via binding to and depleting cellular nucleophiles. Although the toxicity of acrolein has been extensively studied, there is relatively little information about its impact on hormone release. This study aimed at the effect of acrolein on hypothalamic-pituitary-adrenal (H-P-A) axis. In an in vivo study, male rats were administrated with acrolein for 1 or 3days. The plasma corticosterone in response to a single injection of adrenocorticotropic hormone (ACTH) increased slowly in acrolein-pretreated rats than in control rats. Further investigating the steroidogenic pathway, the protein expressions of steroidogenic acute regulatory protein (StAR) and the upper receptor-melanocortin 2 receptor (MC2R) were attenuated in acrolein-treated groups. Another experiment using trilostane showed less activity of P450scc in zona fasciculata-reticularis (ZFR) cells in acrolein-treated groups. In addition to the suppressed ability of corticosterone production in ZFR cells, acrolein even had extended influence at higher concentrations. The lower ACTH was observed in the plasma from acrolein-pretreated rats. In an in vitro study, ZFR cells were incubated with acrolein and the results showed that corticosterone concentrations in media were decreased in a dose-dependent manner. Acrolein also desensitized the response of the ZFR cells to ACTH. These results suggested that acrolein decreased the releasing ability of corticosterone via an inhibition on the response of ZFR cells to ACTH and the reduction of protein expressions of StAR and MC2R as well as the activity of P450scc in rat ZFR cells. The present evidences showed that the H-P-A axis was affected by the administration of acrolein.
Collapse
Affiliation(s)
- Yung-Hsing Yeh
- Department of Physiology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan, ROC
| | - Jou-Chun Chou
- Medical Center of Aging Research, China Medical University Hospital, Taichung 40402, Taiwan, ROC; Department of Life Sciences, National Chung Hsing University, Taichung 40254, Taiwan, ROC
| | - Ting-Chun Weng
- Medical Center of Aging Research, China Medical University Hospital, Taichung 40402, Taiwan, ROC
| | - Fu-Kong Lieu
- Department of Rehabilitation, Cheng-Hsin General Hospital, Taipei 11283, Taiwan, ROC
| | - Jou-Yu Lin
- Department of Rehabilitation, Cheng-Hsin General Hospital, Taipei 11283, Taiwan, ROC
| | - Chii-Chang Yeh
- Department of Internal Medicine, Zhongxiao Branch, Taipei City Hospital, Taipei 11146, Taiwan, ROC
| | - Sindy Hu
- Aesthetic Medical Center, Department of Dermatology, Chang Gung Memorial Hospital, Taoyuan 33333, Taiwan, ROC; Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33333, Taiwan, ROC
| | - Paulus S Wang
- Department of Physiology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan, ROC; Medical Center of Aging Research, China Medical University Hospital, Taichung 40402, Taiwan, ROC; Graduate Institute of Basic Medical Science, College of Medicine, China Medical University, Taichung 40402, Taiwan, ROC; Department of Biotechnology, College of Health Science, Asia University, Taichung 41354, Taiwan, ROC; Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei 11217, Taiwan, ROC.
| | - Galina Idova
- State Scientific Research Institute of Physiology and Basic Medicine, Timakova Street, 4, Novosibirsk 630117, Russia
| | - Shyi-Wu Wang
- Aesthetic Medical Center, Department of Dermatology, Chang Gung Memorial Hospital, Taoyuan 33333, Taiwan, ROC; Department of Physiology and Pharmacology, College of Medicine, Chang-Gung University, Taoyuan 33333, Taiwan, ROC.
| |
Collapse
|
42
|
Panni T, Mehta AJ, Schwartz JD, Baccarelli AA, Just AC, Wolf K, Wahl S, Cyrys J, Kunze S, Strauch K, Waldenberger M, Peters A. Genome-Wide Analysis of DNA Methylation and Fine Particulate Matter Air Pollution in Three Study Populations: KORA F3, KORA F4, and the Normative Aging Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:983-90. [PMID: 26731791 PMCID: PMC4937859 DOI: 10.1289/ehp.1509966] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 12/18/2015] [Indexed: 05/17/2023]
Abstract
BACKGROUND Epidemiological studies have reported associations between particulate matter (PM) concentrations and cancer and respiratory and cardiovascular diseases. DNA methylation has been identified as a possible link but so far it has only been analyzed in candidate sites. OBJECTIVES We studied the association between DNA methylation and short- and mid-term air pollution exposure using genome-wide data and identified potential biological pathways for additional investigation. METHODS We collected whole blood samples from three independent studies-KORA F3 (2004-2005) and F4 (2006-2008) in Germany, and the Normative Aging Study (1999-2007) in the United States-and measured genome-wide DNA methylation proportions with the Illumina 450k BeadChip. PM concentration was measured daily at fixed monitoring stations and three different trailing averages were considered and regressed against DNA methylation: 2-day, 7-day and 28-day. Meta-analysis was performed to pool the study-specific results. RESULTS Random-effect meta-analysis revealed 12 CpG (cytosine-guanine dinucleotide) sites as associated with PM concentration (1 for 2-day average, 1 for 7-day, and 10 for 28-day) at a genome-wide Bonferroni significance level (p ≤ 7.5E-8); 9 out of these 12 sites expressed increased methylation. Through estimation of I2 for homogeneity assessment across the studies, 4 of these sites (annotated in NSMAF, C1orf212, MSGN1, NXN) showed p > 0.05 and I2 < 0.5: the site from the 7-day average results and 3 for the 28-day average. Applying false discovery rate, p-value < 0.05 was observed in 8 and 1,819 additional CpGs at 7- and 28-day average PM2.5 exposure respectively. CONCLUSION The PM-related CpG sites found in our study suggest novel plausible systemic pathways linking ambient PM exposure to adverse health effect through variations in DNA methylation. CITATION Panni T, Mehta AJ, Schwartz JD, Baccarelli AA, Just AC, Wolf K, Wahl S, Cyrys J, Kunze S, Strauch K, Waldenberger M, Peters A. 2016. A genome-wide analysis of DNA methylation and fine particulate matter air pollution in three study populations: KORA F3, KORA F4, and the Normative Aging Study. Environ Health Perspect 124:983-990; http://dx.doi.org/10.1289/ehp.1509966.
Collapse
Affiliation(s)
- Tommaso Panni
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | | | | | - Andrea A. Baccarelli
- Laboratory of Environmental Epigenetics, Exposure Epidemiology and Risk Program, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | | | - Kathrin Wolf
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Simone Wahl
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Research Unit of Molecular Epidemiology, and
| | - Josef Cyrys
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Sonja Kunze
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Research Unit of Molecular Epidemiology, and
| | - Konstantin Strauch
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Department of Genetic Epidemiology, Institute of Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Melanie Waldenberger
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Research Unit of Molecular Epidemiology, and
| | - Annette Peters
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Research Center for Cardiovascular Disease (Deutsches Zentrum Für Herz-Kreislauf-Forschung E.V.), Munich, Germany
| |
Collapse
|
43
|
Breton CV, Gao L, Yao J, Siegmund KD, Lurmann F, Gilliland F. Particulate matter, the newborn methylome, and cardio-respiratory health outcomes in childhood. ENVIRONMENTAL EPIGENETICS 2016; 2:dvw005. [PMID: 29492287 PMCID: PMC5804519 DOI: 10.1093/eep/dvw005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/18/2016] [Accepted: 03/22/2016] [Indexed: 05/22/2023]
Abstract
Ambient air pollution is associated with adverse health outcomes including cardio-respiratory diseases. Epigenetic mechanisms such as DNA methylation may play a role in driving such associations. We investigated the effects of prenatal particulate matter (PM) exposure on DNA methylation of 178,309 promoter regions in 240 newborns using the Infinium HumanMethylation450 BeadChip, using a generalized linear regression model with a quasi-binomial link family, adjusted for gender, plate, and cell types. PM-associated CpG loci were then investigated for their associations with childhood asthma, carotid intima-media thickness (CIMT), and blood pressure (BP) using logistic or linear regression. Thirty-one loci were associated with either PM10 or PM2.5 using FDR-corrected p-values of less than 0.15. Two loci were evaluated for replication in a separate population of 280 Children's Health Study (CHS) subjects using Pyrosequencing, of which one successfully replicated (COLEC11 cg03579365). Three of the 31 loci were also associated with physician-diagnosed asthma at 6 years old, two were associated with CIMT and one with systolic BP at 10 years old. A higher methylation level in TM9SF2 (cg02015529) and UBE2S (cg00035623), respectively, was associated with a 2SD increase in prenatal PM and was also associated with 36% and 98% increased odds of asthma; whereas methylation of TDRD6 (cg22329831) was negatively associated with PM and a 24% decreased odds of asthma. Prenatal PM exposure was associated with altered DNA methylation in newborn blood in a small number of gene promoters, some of which were also associated with cardio-respiratory health outcomes later in childhood. Keywords: methylation, particulate matter, air pollution, asthma, cardiovascular.
Collapse
Affiliation(s)
- Carrie V. Breton
- University of Southern California, Dept of Preventive Medicine, 2001 N Soto St, Los Angeles, CA 90089, USA
- *Correspondence address: Carrie Breton, ScD., Department of Preventive Medicine, USC Keck School of Medicine, 2001 N. Soto Street, Los Angeles, CA 90032, USA. Tel: +1 (323) 442-7383; Fax: +1 (323) 442-3272; E-mail:
| | - Lu Gao
- University of Southern California, Dept of Preventive Medicine, 2001 N Soto St, Los Angeles, CA 90089, USA
| | - Jin Yao
- University of Southern California, Dept of Preventive Medicine, 2001 N Soto St, Los Angeles, CA 90089, USA
| | - Kimberly D. Siegmund
- University of Southern California, Dept of Preventive Medicine, 2001 N Soto St, Los Angeles, CA 90089, USA
| | - Fred Lurmann
- Sonoma Technology Inc, 1455 N. McDowell Blvd, Suite D, Petaluma, CA 94954-6503, USA
| | - Frank Gilliland
- University of Southern California, Dept of Preventive Medicine, 2001 N Soto St, Los Angeles, CA 90089, USA
| |
Collapse
|
44
|
Tabish AM, Baccarelli AA, Godderis L, Barrow TM, Hoet P, Byun HM. Assessment of Changes in Global DNA Methylation Levels by Pyrosequencing® of Repetitive Elements. Methods Mol Biol 2016; 1315:201-7. [PMID: 26103901 DOI: 10.1007/978-1-4939-2715-9_15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Transposable elements (TE) comprise half of the human genome. LINE-1 and ALU are the most common TE, and they have been used to assess changes in the DNA methylation of repetitive elements in response to intrinsic and extrinsic cellular events. Pyrosequencing(®) is a real-time sequencing technology that enables quantitative assessment of TE methylation at single-base resolution. In Pyrosequencing, a region of interest is first amplified from bisulfite-converted DNA by polymerase chain reaction (PCR), before PCR amplicons are rendered single stranded and annealed with the Pyrosequencing primer prior to sequencing. In this chapter, we provide an overview of the analysis of repetitive element DNA methylation by bisulfite Pyrosequencing, and we describe a protocol that can be used for such purposes.
Collapse
Affiliation(s)
- Ali M Tabish
- Department of Public Health and Primary Care, Katholieke Universiteit Leuven, Kapucijnenvoer 35 Blok D, Leuven, B-3000, Belgium,
| | | | | | | | | | | |
Collapse
|
45
|
Sanchez-Guerra M, Zheng Y, Osorio-Yanez C, Zhong J, Chervona Y, Wang S, Chang D, McCracken JP, Díaz A, Bertazzi PA, Koutrakis P, Kang CM, Zhang X, Zhang W, Byun HM, Schwartz J, Hou L, Baccarelli AA. Effects of particulate matter exposure on blood 5-hydroxymethylation: results from the Beijing truck driver air pollution study. Epigenetics 2016; 10:633-42. [PMID: 25970091 PMCID: PMC4623004 DOI: 10.1080/15592294.2015.1050174] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Previous studies have reported epigenetic changes induced by environmental exposures. However, previous investigations did not distinguish 5-methylcytosine (5mC) from a similar oxidative form with opposite functions, 5-hydroxymethylcytosine (5hmC). Here, we measured blood DNA global 5mC and 5hmC by ELISA and used adjusted mixed-effects regression models to evaluate the effects of ambient PM10 and personal PM2.5 and its elemental components—black carbon (BC), aluminum (Al), calcium (Ca), potassium (K), iron (Fe), sulfur (S), silicon (Si), titanium (Ti), and zinc (Zn)—on blood global 5mC and 5hmC levels. The study was conducted in 60 truck drivers and 60 office workers in Beijing, China from The Beijing Truck Driver Air Pollution Study at 2 exams separated by one to 2 weeks. Blood 5hmC level (0.08%) was ∼83-fold lower than 5mC (6.61%). An inter-quartile range (IQR) increase in same-day PM10 was associated with increases in 5hmC of 26.1% in office workers (P = 0.004), 20.2% in truck drivers (P = 0.014), and 21.9% in all participants combined (P < 0.001). PM10 effects on 5hmC were increasingly stronger when averaged over 4, 7, and 14 d preceding assessment (up to 132.6% for the 14-d average in all participants, P < 0.001). PM10 effects were also significant after controlling for multiple testing (family-wise error rate; FWER < 0.05). 5hmC was not correlated with personal measures of PM2.5 and elemental components (FWER > 0.05). 5mC showed no correlations with PM10, PM2.5, and elemental components measures (FWER > 0.05). Our study suggests that exposure to ambient PM10 affects 5hmC over time, but not 5mC. This finding demonstrates the need to differentiate 5hmC and 5mC in environmental studies of DNA methylation.
Collapse
Key Words
- 10 μm
- 2.5 μm
- 5-hydroxymethylcytosine
- 5-methylcytosine
- 5hmC, 5-hydroxymethylcytosine
- 5mC, 5-methylcytosine
- Al, aluminum
- BC, black carbon
- BMI, body mass index
- CI, confidence interval
- Ca, calcium
- DNA methylation
- ELISA, enzyme-linked immunosorbent assay
- Epigenetics
- FWER, family-wise error rate
- Fe, iron
- HPLC, high-performance liquid chromatography
- K, potassium
- PM, particulate matter
- PM10, particulate matter ≤
- PM2.5, particulate matter ≤
- Particulate Matter
- S, sulfur
- Si: silicon
- TET, ten-eleven translocation enzymes
- Ti, titanium and Zn: zinc.
Collapse
Affiliation(s)
- Marco Sanchez-Guerra
- a Department of Environmental Health; Harvard T.H. Chan School of Public Health ; Boston , MA , USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Nilsen FM, Parrott BB, Bowden JA, Kassim BL, Somerville SE, Bryan TA, Bryan CE, Lange TR, Delaney JP, Brunell AM, Long SE, Guillette LJ. Global DNA methylation loss associated with mercury contamination and aging in the American alligator (Alligator mississippiensis). THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 545-546:389-97. [PMID: 26748003 PMCID: PMC4972023 DOI: 10.1016/j.scitotenv.2015.12.059] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 12/10/2015] [Accepted: 12/13/2015] [Indexed: 04/13/2023]
Abstract
Mercury is a widespread environmental contaminant with exposures eliciting a well-documented catalog of adverse effects. Yet, knowledge regarding the underlying mechanisms by which mercury exposures are translated into biological effects remains incomplete. DNA methylation is an epigenetic modification that is sensitive to environmental cues, and alterations in DNA methylation at the global level are associated with a variety of diseases. Using a liquid chromatography tandem mass spectrometry-based (LC-MS/MS) approach, global DNA methylation levels were measured in red blood cells of 144 wild American alligators (Alligator mississippiensis) from 6 sites with variable levels of mercury contamination across Florida's north-south axis. Variation in mercury concentrations measured in whole blood was highly associated with location, allowing the comparison of global DNA methylation levels across different "treatments" of mercury. Global DNA methylation in alligators across all locations was weakly associated with increased mercury exposure. However, a much more robust relationship was observed in those animals sampled from locations more highly contaminated with mercury. Also, similar to other vertebrates, global DNA methylation appears to decline with age in alligators. The relationship between age-associated loss of global DNA methylation and varying mercury exposures was examined to reveal a potential interaction. These findings demonstrate that global DNA methylation levels are associated with mercury exposure, and give insights into interactions between contaminants, aging, and epigenetics.
Collapse
Affiliation(s)
- Frances M Nilsen
- National Institute of Standards and Technology, Chemical Sciences Division, Environmental Chemical Sciences Group, Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC 29412, United States; Medical University of South Carolina, Marine Biomedicine and Environmental Sciences, 221 Fort Johnson Road, Charleston, SC 29412, United States; Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC 29412, United States.
| | - Benjamin B Parrott
- Medical University of South Carolina, Marine Biomedicine and Environmental Sciences, 221 Fort Johnson Road, Charleston, SC 29412, United States; Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, SC 29403, United States; Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC 29412, United States
| | - John A Bowden
- National Institute of Standards and Technology, Chemical Sciences Division, Environmental Chemical Sciences Group, Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC 29412, United States; Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC 29412, United States
| | - Brittany L Kassim
- National Institute of Standards and Technology, Chemical Sciences Division, Environmental Chemical Sciences Group, Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC 29412, United States; Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC 29412, United States
| | - Stephen E Somerville
- Medical University of South Carolina, Marine Biomedicine and Environmental Sciences, 221 Fort Johnson Road, Charleston, SC 29412, United States; Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, SC 29403, United States; Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC 29412, United States
| | - Teresa A Bryan
- Medical University of South Carolina, Marine Biomedicine and Environmental Sciences, 221 Fort Johnson Road, Charleston, SC 29412, United States; Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, SC 29403, United States; Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC 29412, United States
| | - Colleen E Bryan
- National Institute of Standards and Technology, Chemical Sciences Division, Environmental Chemical Sciences Group, Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC 29412, United States; Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC 29412, United States
| | - Ted R Lange
- Florida Fish and Wildlife Conservation Commission, 601 W. Woodward Ave, Eustis, FL 32726, United States
| | - J Patrick Delaney
- Deseret Ranches- 13754 Deseret Lane, St. Cloud, Florida 34773-9381, United States
| | - Arnold M Brunell
- Florida Fish and Wildlife Conservation Commission, 601 W. Woodward Ave, Eustis, FL 32726, United States
| | - Stephen E Long
- National Institute of Standards and Technology, Chemical Sciences Division, Environmental Chemical Sciences Group, Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC 29412, United States; Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC 29412, United States
| | - Louis J Guillette
- Medical University of South Carolina, Marine Biomedicine and Environmental Sciences, 221 Fort Johnson Road, Charleston, SC 29412, United States; Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, SC 29403, United States; Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC 29412, United States
| |
Collapse
|
47
|
Shiao SPK, Yu CH. Meta-Prediction of MTHFR Gene Polymorphism Mutations and Associated Risk for Colorectal Cancer. Biol Res Nurs 2016; 18:357-69. [PMID: 26858257 PMCID: PMC4904378 DOI: 10.1177/1099800415628054] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The methylenetetrahydrofolate reductase (MTHFR) gene is one of
the most investigated of the genes associated with chronic human diseases
because of its associations with hyperhomocysteinemia and toxicity. It has been
proposed as a prototype gene for the prevention of colorectal cancer (CRC). The
major objectives of this meta-analysis were to examine the polymorphism-mutation
patterns of MTHFR and their associations with risk for CRC as
well as potential contributing factors for mutations and disease risks. This
analysis included 33,626 CRC cases and 48,688 controls across 92 studies for
MTHFR 677 and 16,367 cases and 24,874 controls across 54
studies for MTHFR 1298, comprising data for various racial and
ethnic groups, both genders, and multiple cancer sites. MTHFR
677 homozygous TT genotype was protective (p < .05) for CRC
for all included populations; however, with heterogeneity across various
racial–ethnic groups and opposing findings, it was a risk genotype for the
subgroup of Hispanics (p < .01). Additional countries for
which subgroup analyses resulted in 677 TT as a risk genotype included Turkey,
Romania, Croatia, Hungary, Portugal, Mexico, Brazil, U.S. Hawai’i, Taiwan,
India, and Egypt. Countries with the highest mutation rates and risks for both
MTHFR 677 and 1298 genotypes are presented using global
maps to visualize the grouping patterns. Meta-predictive analyses revealed that
air pollution levels were associated with gene polymorphisms for both genotypes.
Future nursing research should be conducted to develop proactive measures to
protect populations in cities where air pollution causes more deaths.
Collapse
Affiliation(s)
- S P K Shiao
- College of Nursing, Augusta University, Augusta, GA, USA
| | - C H Yu
- Department of Psychology, Azusa Pacific University, Azusa CA, USA
| |
Collapse
|
48
|
Miousse IR, Chalbot MCG, Pathak R, Lu X, Nzabarushimana E, Krager K, Aykin-Burns N, Hauer-Jensen M, Demokritou P, Kavouras IG, Koturbash I. In Vitro Toxicity and Epigenotoxicity of Different Types of Ambient Particulate Matter. Toxicol Sci 2015; 148:473-87. [PMID: 26342214 PMCID: PMC5009441 DOI: 10.1093/toxsci/kfv200] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Exposure to ambient particulate matter (PM) has been associated with adverse health effects, including pulmonary and cardiovascular disease. Studies indicate that ambient PM originated from different sources may cause distinct biological effects. In this study, we sought to investigate the potential of various types of PM to cause epigenetic alterations in the in vitro system. RAW264.7 murine macrophages were exposed for 24 and 72 h to 5- and 50-μg/ml doses of the water soluble extract of 6 types of PM: soil dust, road dust, agricultural dust, traffic exhausts, biomass burning, and pollen, collected in January-April of 2014 in the area of Little Rock, Arkansas. Cytotoxicity, oxidative potential, epigenetic endpoints, and chromosomal aberrations were addressed. Exposure to 6 types of PM resulted in induction of cytotoxicity and oxidative stress in a type-, time-, and dose-dependent manner. Epigenetic alterations were characterized by type-, time-, and dose-dependent decreases of DNA methylation/demethylation machinery, increased DNA methyltransferases enzymatic activity and protein levels, and transcriptional activation and subsequent silencing of transposable elements LINE-1, SINE B1/B2. The most pronounced changes were observed after exposure to soil dust that were also characterized by hypomethylation and reactivation of satellite DNA and structural chromosomal aberrations in the exposed cells. The results of our study indicate that the water-soluble fractions of the various types of PM have differential potential to target the cellular epigenome.
Collapse
Affiliation(s)
- Isabelle R Miousse
- *Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health and
| | - Marie-Cecile G Chalbot
- *Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health and
| | - Rupak Pathak
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Xiaoyan Lu
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts; and
| | - Etienne Nzabarushimana
- *Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health and Department of Biology, Indiana University, Bloomington, Indiana 47405
| | - Kimberly Krager
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Nukhet Aykin-Burns
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Martin Hauer-Jensen
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts; and
| | - Ilias G Kavouras
- *Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health and
| | - Igor Koturbash
- *Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health and
| |
Collapse
|
49
|
Environmental Impact on DNA Methylation in the Germline: State of the Art and Gaps of Knowledge. BIOMED RESEARCH INTERNATIONAL 2015; 2015:123484. [PMID: 26339587 PMCID: PMC4538313 DOI: 10.1155/2015/123484] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 05/03/2015] [Indexed: 12/19/2022]
Abstract
The epigenome consists of chemical changes in DNA and chromatin that without modifying the DNA sequence modulate gene expression and cellular phenotype. The epigenome is highly plastic and reacts to changing external conditions with modifications that can be inherited to daughter cells and across generations. Whereas this innate plasticity allows for adaptation to a changing environment, it also implies the potential of epigenetic derailment leading to so-called epimutations. DNA methylation is the most studied epigenetic mark. DNA methylation changes have been associated with cancer, infertility, cardiovascular, respiratory, metabolic, immunologic, and neurodegenerative pathologies. Experiments in rodents demonstrate that exposure to a variety of chemical stressors, occurring during the prenatal or the adult life, may induce DNA methylation changes in germ cells, which may be transmitted across generations with phenotypic consequences. An increasing number of human biomonitoring studies show environmentally related DNA methylation changes mainly in blood leukocytes, whereas very few data have been so far collected on possible epigenetic changes induced in the germline, even by the analysis of easily accessible sperm. In this paper, we review the state of the art on factors impinging on DNA methylation in the germline, highlight gaps of knowledge, and propose priorities for future studies.
Collapse
|
50
|
Demetriou CA, Vineis P. Carcinogenicity of ambient air pollution: use of biomarkers, lessons learnt and future directions. J Thorac Dis 2015; 7:67-95. [PMID: 25694819 DOI: 10.3978/j.issn.2072-1439.2014.12.31] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 11/20/2014] [Indexed: 12/11/2022]
Abstract
The association between ambient air pollution (AAP) exposure and lung cancer risk has been investigated in prospective studies and the results are generally consistent, indicating that long-term exposure to air pollution can cause lung cancer. Biomarkers can enhance research on the health effects of air pollution by improving exposure assessment, increasing the understanding of mechanisms, and enabling the investigation of individual susceptibility. In this review, we assess DNA adducts as biomarkers of exposure to AAP and early biological effect, and DNA methylation as biomarker of early biological change and discuss critical issues arising from their incorporation in AAP health impact evaluations, such as confounding, individual susceptibilities, timing, intensity and duration of exposure, and investigated tissue. DNA adducts and DNA methylation are treated as paradigms. However, the lessons, learned from their use in the examination of AAP carcinogenicity, can be applied to investigations of other biomarkers involved in AAP carcinogenicity.
Collapse
Affiliation(s)
- Christiana A Demetriou
- 1 MRC-PHE Center for Environment and Health, School of Public Health, Imperial College London, London, UK ; 2 Department of Electron Microscopy/Molecular Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Paolo Vineis
- 1 MRC-PHE Center for Environment and Health, School of Public Health, Imperial College London, London, UK ; 2 Department of Electron Microscopy/Molecular Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| |
Collapse
|