1
|
Mendez-Gomez HR, DeVries A, Castillo P, von Roemeling C, Qdaisat S, Stover BD, Xie C, Weidert F, Zhao C, Moor R, Liu R, Soni D, Ogando-Rivas E, Chardon-Robles J, McGuiness J, Zhang D, Chung MC, Marconi C, Michel S, Barpujari A, Jobin GW, Thomas N, Ma X, Campaneria Y, Grippin A, Karachi A, Li D, Sahay B, Elliott L, Foster TP, Coleman KE, Milner RJ, Sawyer WG, Ligon JA, Simon E, Cleaver B, Wynne K, Hodik M, Molinaro AM, Guan J, Kellish P, Doty A, Lee JH, Massini T, Kresak JL, Huang J, Hwang EI, Kline C, Carrera-Justiz S, Rahman M, Gatica S, Mueller S, Prados M, Ghiaseddin AP, Silver NL, Mitchell DA, Sayour EJ. RNA aggregates harness the danger response for potent cancer immunotherapy. Cell 2024; 187:2521-2535.e21. [PMID: 38697107 PMCID: PMC11767857 DOI: 10.1016/j.cell.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 01/09/2024] [Accepted: 04/03/2024] [Indexed: 05/04/2024]
Abstract
Cancer immunotherapy remains limited by poor antigenicity and a regulatory tumor microenvironment (TME). Here, we create "onion-like" multi-lamellar RNA lipid particle aggregates (LPAs) to substantially enhance the payload packaging and immunogenicity of tumor mRNA antigens. Unlike current mRNA vaccine designs that rely on payload packaging into nanoparticle cores for Toll-like receptor engagement in immune cells, systemically administered RNA-LPAs activate RIG-I in stromal cells, eliciting massive cytokine/chemokine response and dendritic cell/lymphocyte trafficking that provokes cancer immunogenicity and mediates rejection of both early- and late-stage murine tumor models. In client-owned canines with terminal gliomas, RNA-LPAs improved survivorship and reprogrammed the TME, which became "hot" within days of a single infusion. In a first-in-human trial, RNA-LPAs elicited rapid cytokine/chemokine release, immune activation/trafficking, tissue-confirmed pseudoprogression, and glioma-specific immune responses in glioblastoma patients. These data support RNA-LPAs as a new technology that simultaneously reprograms the TME while eliciting rapid and enduring cancer immunotherapy.
Collapse
Affiliation(s)
- Hector R Mendez-Gomez
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Anna DeVries
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Paul Castillo
- University of Florida, Department of Pediatrics, Division of Hematology-Oncology, Gainesville, FL 32610, USA
| | - Christina von Roemeling
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Sadeem Qdaisat
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA; University of Florida Genetics Institute, Gainesville, FL 32610, USA
| | - Brian D Stover
- University of Florida, Department of Pediatrics, Division of Hematology-Oncology, Gainesville, FL 32610, USA
| | - Chao Xie
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Frances Weidert
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Chong Zhao
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Rachel Moor
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Ruixuan Liu
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Dhruvkumar Soni
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Elizabeth Ogando-Rivas
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Jonathan Chardon-Robles
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - James McGuiness
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Dingpeng Zhang
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Michael C Chung
- University of Texas at Austin, College of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, Austin TX 78712
| | - Christiano Marconi
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Stephen Michel
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Arnav Barpujari
- University of Florida, Department of Pediatrics, Division of Hematology-Oncology, Gainesville, FL 32610, USA
| | - Gabriel W Jobin
- University of Florida, Department of Pediatrics, Division of Hematology-Oncology, Gainesville, FL 32610, USA
| | - Nagheme Thomas
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Xiaojie Ma
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA; University of Florida, Department of Pediatrics, Division of Hematology-Oncology, Gainesville, FL 32610, USA
| | - Yodarlynis Campaneria
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Adam Grippin
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Aida Karachi
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Derek Li
- University of Florida, Division of Quantitative Sciences, UF Health Cancer Center, Gainesville, FL 32610, USA
| | - Bikash Sahay
- University of Florida, College of Veterinary Medicine, Gainesville, FL 32610, USA
| | - Leighton Elliott
- University of Florida, Department of Medicine, Division of Hematology-Oncology, Gainesville, FL 32610, USA
| | - Timothy P Foster
- University of Florida, Department of Pediatrics, Division of Hematology-Oncology, Gainesville, FL 32610, USA
| | - Kirsten E Coleman
- University of Florida, Department of Pediatrics, Division of Hematology-Oncology, Gainesville, FL 32610, USA
| | - Rowan J Milner
- University of Florida, College of Veterinary Medicine, Gainesville, FL 32610, USA
| | - W Gregory Sawyer
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - John A Ligon
- University of Florida, Department of Pediatrics, Division of Hematology-Oncology, Gainesville, FL 32610, USA
| | - Eugenio Simon
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Brian Cleaver
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Kristine Wynne
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Marcia Hodik
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Annette M Molinaro
- University of California, San Francisco, Department of Neurological Surgery, San Francisco, CA 94158, USA
| | - Juan Guan
- University of Texas at Austin, College of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, Austin TX 78712
| | - Patrick Kellish
- University of Florida Interdisciplinary Center for Biotechnology Research, Gainesville, FL 32610, USA
| | - Andria Doty
- University of Florida Interdisciplinary Center for Biotechnology Research, Gainesville, FL 32610, USA
| | - Ji-Hyun Lee
- University of Florida, Department of Biostatistics, Gainesville, FL 32610, USA
| | - Tara Massini
- University of Florida, Department of Radiology, Gainesville, FL 32610, USA
| | - Jesse L Kresak
- University of Florida, Department of Pathology, Gainesville, FL 32610, USA
| | - Jianping Huang
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Eugene I Hwang
- Children's National Hospital, Center for Cancer and Blood Disorders, Washington, DC 20010, USA
| | - Cassie Kline
- University of Pennsylvania Perelman School of Medicine, Children's Hospital of Philadelphia, Department of Pediatrics, Division of Oncology, Philadelphia, PA 19104, USA
| | | | - Maryam Rahman
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Sebastian Gatica
- University of Florida, Department of Anesthesiology, Gainesville, FL 32610, USA
| | - Sabine Mueller
- University of California, San Francisco, Department of Neurology, Neurological Surgery, and Pediatrics, San Francisco, CA 94158, USA
| | - Michael Prados
- University of California, San Francisco, Department of Neurological Surgery, San Francisco, CA 94158, USA
| | - Ashley P Ghiaseddin
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Natalie L Silver
- Cleveland Clinic, Center of Immunotherapy and Precision Immuno-Oncology/Head and Neck Institute, Cleveland, OH 44106, USA
| | - Duane A Mitchell
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Elias J Sayour
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA; University of Florida, Department of Pediatrics, Division of Hematology-Oncology, Gainesville, FL 32610, USA.
| |
Collapse
|
2
|
Root-Bernstein R. T-Cell Receptor Sequences Identify Combined Coxsackievirus- Streptococci Infections as Triggers for Autoimmune Myocarditis and Coxsackievirus- Clostridia Infections for Type 1 Diabetes. Int J Mol Sci 2024; 25:1797. [PMID: 38339075 PMCID: PMC10855694 DOI: 10.3390/ijms25031797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/19/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Recent research suggests that T-cell receptor (TCR) sequences expanded during human immunodeficiency virus and SARS-CoV-2 infections unexpectedly mimic these viruses. The hypothesis tested here is that TCR sequences expanded in patients with type 1 diabetes mellitus (T1DM) and autoimmune myocarditis (AM) mimic the infectious triggers of these diseases. Indeed, TCR sequences mimicking coxsackieviruses, which are implicated as triggers of both diseases, are statistically significantly increased in both T1DM and AM patients. However, TCRs mimicking Clostridia antigens are significantly expanded in T1DM, whereas TCRs mimicking Streptococcal antigens are expanded in AM. Notably, Clostridia antigens mimic T1DM autoantigens, such as insulin and glutamic acid decarboxylase, whereas Streptococcal antigens mimic cardiac autoantigens, such as myosin and laminins. Thus, T1DM may be triggered by combined infections of coxsackieviruses with Clostridia bacteria, while AM may be triggered by coxsackieviruses with Streptococci. These TCR results are consistent with both epidemiological and clinical data and recent experimental studies of cross-reactivities of coxsackievirus, Clostridial, and Streptococcal antibodies with T1DM and AM antigens. These data provide the basis for developing novel animal models of AM and T1DM and may provide a generalizable method for revealing the etiologies of other autoimmune diseases. Theories to explain these results are explored.
Collapse
|
3
|
Britanova OV, Lupyr KR, Staroverov DB, Shagina IA, Aleksandrov AA, Ustyugov YY, Somov DV, Klimenko A, Shostak NA, Zvyagin IV, Stepanov AV, Merzlyak EM, Davydov AN, Izraelson M, Egorov ES, Bogdanova EA, Vladimirova AK, Iakovlev PA, Fedorenko DA, Ivanov RA, Skvortsova VI, Lukyanov S, Chudakov DM. Targeted depletion of TRBV9 + T cells as immunotherapy in a patient with ankylosing spondylitis. Nat Med 2023; 29:2731-2736. [PMID: 37872223 PMCID: PMC10667094 DOI: 10.1038/s41591-023-02613-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/26/2023] [Indexed: 10/25/2023]
Abstract
Autoimmunity is intrinsically driven by memory T and B cell clones inappropriately targeted at self-antigens. Selective depletion or suppression of self-reactive T cells remains a holy grail of autoimmune therapy, but disease-associated T cell receptors (TCRs) and cognate antigenic epitopes remained elusive. A TRBV9-containing CD8+ TCR motif was recently associated with the pathogenesis of ankylosing spondylitis, psoriatic arthritis and acute anterior uveitis, and cognate HLA-B*27-presented epitopes were identified. Following successful testing in nonhuman primate models, here we report human TRBV9+ T cell elimination in ankylosing spondylitis. The patient achieved remission within 3 months and ceased anti-TNF therapy after 5 years of continuous use. Complete remission has now persisted for 4 years, with three doses of anti-TRBV9 administered per year. We also observed a profound improvement in spinal mobility metrics and the Bath Ankylosing Spondylitis Metrology Index (BASMI). This represents a possibly curative therapy of an autoimmune disease via selective depletion of a TRBV-defined group of T cells. The anti-TRBV9 therapy could potentially be applicable to other HLA-B*27-associated spondyloarthropathies. Such targeted elimination of the underlying cause of the disease without systemic immunosuppression could offer a new generation of safe and efficient therapies for autoimmunity.
Collapse
Affiliation(s)
- Olga V Britanova
- Pirogov Russian National Research Medical University, Moscow, Russia
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Kseniia R Lupyr
- Pirogov Russian National Research Medical University, Moscow, Russia
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Dmitry B Staroverov
- Pirogov Russian National Research Medical University, Moscow, Russia
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Irina A Shagina
- Pirogov Russian National Research Medical University, Moscow, Russia
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | | | | | - Dmitry V Somov
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Alesia Klimenko
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Nadejda A Shostak
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Ivan V Zvyagin
- Pirogov Russian National Research Medical University, Moscow, Russia
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Alexey V Stepanov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Ekaterina M Merzlyak
- Pirogov Russian National Research Medical University, Moscow, Russia
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Alexey N Davydov
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- MiLaboratories Inc., Sunnyvale, CA, USA
| | | | - Evgeniy S Egorov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | | | | | | | - Denis A Fedorenko
- Department of Hematology and Chemotherapy, Pirogov National Medical and Surgical Center, Moscow, Russia
| | | | - Veronika I Skvortsova
- Pirogov Russian National Research Medical University, Moscow, Russia
- Federal Medical Biological Agency, Moscow, Russia
| | - Sergey Lukyanov
- Pirogov Russian National Research Medical University, Moscow, Russia
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Dmitry M Chudakov
- Pirogov Russian National Research Medical University, Moscow, Russia.
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
- Abu Dhabi Stem Cell Center, Al Muntazah, United Arab Emirates.
| |
Collapse
|
4
|
Ciacchi L, van de Garde MDB, Ladell K, Farenc C, Poelen MCM, Miners KL, Llerena C, Reid HH, Petersen J, Price DA, Rossjohn J, van Els CACM. CD4 + T cell-mediated recognition of a conserved cholesterol-dependent cytolysin epitope generates broad antibacterial immunity. Immunity 2023; 56:1082-1097.e6. [PMID: 37100059 DOI: 10.1016/j.immuni.2023.03.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/31/2022] [Accepted: 03/30/2023] [Indexed: 04/28/2023]
Abstract
CD4+ T cell-mediated immunity against Streptococcus pneumoniae (pneumococcus) can protect against recurrent bacterial colonization and invasive pneumococcal diseases (IPDs). Although such immune responses are common, the pertinent antigens have remained elusive. We identified an immunodominant CD4+ T cell epitope derived from pneumolysin (Ply), a member of the bacterial cholesterol-dependent cytolysins (CDCs). This epitope was broadly immunogenic as a consequence of presentation by the pervasive human leukocyte antigen (HLA) allotypes DPB1∗02 and DPB1∗04 and recognition via architecturally diverse T cell receptors (TCRs). Moreover, the immunogenicity of Ply427-444 was underpinned by core residues in the conserved undecapeptide region (ECTGLAWEWWR), enabling cross-recognition of heterologous bacterial pathogens expressing CDCs. Molecular studies further showed that HLA-DP4-Ply427-441 was engaged similarly by private and public TCRs. Collectively, these findings reveal the mechanistic determinants of near-global immune focusing on a trans-phyla bacterial epitope, which could inform ancillary strategies to combat various life-threatening infectious diseases, including IPDs.
Collapse
Affiliation(s)
- Lisa Ciacchi
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Martijn D B van de Garde
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Utrecht 3721MA, the Netherlands
| | - Kristin Ladell
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff CF14 4XN, UK
| | - Carine Farenc
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Martien C M Poelen
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Utrecht 3721MA, the Netherlands
| | - Kelly L Miners
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff CF14 4XN, UK
| | - Carmen Llerena
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Hugh H Reid
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Jan Petersen
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff CF14 4XN, UK; Systems Immunity Research Institute, Cardiff University School of Medicine, University Hospital of Wales, Cardiff CF14 4XN, UK.
| | - Jamie Rossjohn
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff CF14 4XN, UK; Systems Immunity Research Institute, Cardiff University School of Medicine, University Hospital of Wales, Cardiff CF14 4XN, UK.
| | - Cécile A C M van Els
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Utrecht 3721MA, the Netherlands; Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht 3584CL, the Netherlands.
| |
Collapse
|
5
|
Stanevich OV, Alekseeva EI, Sergeeva M, Fadeev AV, Komissarova KS, Ivanova AA, Simakova TS, Vasilyev KA, Shurygina AP, Stukova MA, Safina KR, Nabieva ER, Garushyants SK, Klink GV, Bakin EA, Zabutova JV, Kholodnaia AN, Lukina OV, Skorokhod IA, Ryabchikova VV, Medvedeva NV, Lioznov DA, Danilenko DM, Chudakov DM, Komissarov AB, Bazykin GA. SARS-CoV-2 escape from cytotoxic T cells during long-term COVID-19. Nat Commun 2023; 14:149. [PMID: 36627290 PMCID: PMC9831376 DOI: 10.1038/s41467-022-34033-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 10/11/2022] [Indexed: 01/11/2023] Open
Abstract
Evolution of SARS-CoV-2 in immunocompromised hosts may result in novel variants with changed properties. While escape from humoral immunity certainly contributes to intra-host evolution, escape from cellular immunity is poorly understood. Here, we report a case of long-term COVID-19 in an immunocompromised patient with non-Hodgkin's lymphoma who received treatment with rituximab and lacked neutralizing antibodies. Over the 318 days of the disease, the SARS-CoV-2 genome gained a total of 40 changes, 34 of which were present by the end of the study period. Among the acquired mutations, 12 reduced or prevented the binding of known immunogenic SARS-CoV-2 HLA class I antigens. By experimentally assessing the effect of a subset of the escape mutations, we show that they resulted in a loss of as much as ~1% of effector CD8 T cell response. Our results indicate that CD8 T cell escape represents a major underappreciated contributor to SARS-CoV-2 evolution in humans.
Collapse
Affiliation(s)
| | | | - Maria Sergeeva
- Smorodintsev Research Institute of Influenza, Saint-Petersburg, Russia
| | - Artem V Fadeev
- Smorodintsev Research Institute of Influenza, Saint-Petersburg, Russia
| | | | - Anna A Ivanova
- Smorodintsev Research Institute of Influenza, Saint-Petersburg, Russia
| | | | - Kirill A Vasilyev
- Smorodintsev Research Institute of Influenza, Saint-Petersburg, Russia
| | | | - Marina A Stukova
- Smorodintsev Research Institute of Influenza, Saint-Petersburg, Russia
| | - Ksenia R Safina
- Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia
| | - Elena R Nabieva
- A.A. Kharkevich Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Sofya K Garushyants
- A.A. Kharkevich Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russia.,National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Galya V Klink
- A.A. Kharkevich Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Evgeny A Bakin
- First Pavlov State Medical University, Saint-Petersburg, Russia.,Bioinformatics Institute, Saint Petersburg, Russia
| | | | - Anastasia N Kholodnaia
- First Pavlov State Medical University, Saint-Petersburg, Russia.,City Hospital 31, Saint-Petersburg, Russia
| | - Olga V Lukina
- First Pavlov State Medical University, Saint-Petersburg, Russia
| | | | | | | | - Dmitry A Lioznov
- Smorodintsev Research Institute of Influenza, Saint-Petersburg, Russia.,First Pavlov State Medical University, Saint-Petersburg, Russia
| | - Daria M Danilenko
- Smorodintsev Research Institute of Influenza, Saint-Petersburg, Russia
| | - Dmitriy M Chudakov
- Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | | | - Georgii A Bazykin
- Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia. .,A.A. Kharkevich Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
6
|
Gao S, Wu Z, Arnold B, Diamond C, Batchu S, Giudice V, Alemu L, Raffo DQ, Feng X, Kajigaya S, Barrett J, Ito S, Young NS. Single-cell RNA sequencing coupled to TCR profiling of large granular lymphocyte leukemia T cells. Nat Commun 2022; 13:1982. [PMID: 35411048 PMCID: PMC9001664 DOI: 10.1038/s41467-022-29175-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 02/22/2022] [Indexed: 12/17/2022] Open
Abstract
AbstractT-cell large granular lymphocyte leukemia (T-LGLL) is a lymphoproliferative disease and bone marrow failure syndrome which responds to immunosuppressive therapies. We show single-cell TCR coupled with RNA sequencing of CD3+ T cells from 13 patients, sampled before and after alemtuzumab treatments. Effector memory T cells and loss of T cell receptor (TCR) repertoire diversity are prevalent in T-LGLL. Shared TCRA and TCRB clonotypes are absent. Deregulation of cell survival and apoptosis gene programs, and marked downregulation of apoptosis genes in CD8+ clones, are prominent features of T-LGLL cells. Apoptosis genes are upregulated after alemtuzumab treatment, especially in responders than non-responders; baseline expression levels of apoptosis genes are predictive of hematologic response. Alemtuzumab does not attenuate TCR clonality, and TCR diversity is further skewed after treatment. Inferences made from analysis of single cell data inform understanding of the pathophysiologic mechanisms of clonal expansion and persistence in T-LGLL.
Collapse
|
7
|
Bertaina A, Abraham A, Bonfim C, Cohen S, Purtill D, Ruggeri A, Weiss D, Wynn R, Boelens JJ, Prockop S. An ISCT Stem Cell Engineering Committee Position Statement on Immune Reconstitution: the importance of predictable and modifiable milestones of immune reconstitution to transplant outcomes. Cytotherapy 2022; 24:385-392. [PMID: 35331394 DOI: 10.1016/j.jcyt.2021.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/14/2021] [Accepted: 09/18/2021] [Indexed: 11/19/2022]
Abstract
Allogeneic stem cell transplantation is a potentially curative therapy for some malignant and non-malignant disease. There have been substantial advances since the approaches first introduced in the 1970s, and the development of approaches to transplant with HLA incompatible or alternative donors has improved access to transplant for those without a fully matched donor. However, success is still limited by morbidity and mortality from toxicity and imperfect disease control. Here we review our emerging understanding of how reconstitution of effective immunity after allogeneic transplant can protect from these events and improve outcomes. We provide perspective on milestones of immune reconstitution that are easily measured and modifiable.
Collapse
Affiliation(s)
- Alice Bertaina
- Center for Cancer and Immunology Research, CETI, Children's National Hospital, Washington, District of Columbia, USA
| | - Allistair Abraham
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, California, USA
| | - Carmem Bonfim
- Pediatric Bone Marrow Transplantation Division, Hospital Pequeno Principe, Curitiba, Brazil
| | - Sandra Cohen
- Université de Montréal and Maisonneuve Rosemont Hospital, Montréal, Québec, Canada
| | - Duncan Purtill
- Department of Haematology, Fiona Stanley Hospital, Perth, Western Australia, Australia
| | | | | | - Robert Wynn
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Jaap Jan Boelens
- Stem Cell Transplantation and Cellular Therapies, Memorial Sloan Kettering Cancer Center, and Department of Pediatrics, Weill Cornell Medical College of Cornell University, New York, New York, USA
| | - Susan Prockop
- Stem Cell Transplant Program, Division of Hematology/Oncology Boston Children's Hospital and Department of Pediatric Oncology, Dana Farber Cancer Institute.
| |
Collapse
|
8
|
Pai JA, Satpathy AT. High-throughput and single-cell T cell receptor sequencing technologies. Nat Methods 2021; 18:881-892. [PMID: 34282327 PMCID: PMC9345561 DOI: 10.1038/s41592-021-01201-8] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 06/07/2021] [Indexed: 02/06/2023]
Abstract
T cells express T cell receptors (TCRs) composed of somatically recombined TCRα and TCRβ chains, which mediate recognition of major histocompatibility complex (MHC)-antigen complexes and drive the antigen-specific adaptive immune response to pathogens and cancer. The TCR repertoire in each individual is highly diverse, which allows for recognition of a wide array of foreign antigens, but also presents a challenge in analyzing this response using conventional methods. Recent studies have developed high-throughput sequencing technologies to identify TCR sequences, analyze their antigen specificities using experimental and computational tools, and pair TCRs with transcriptional and epigenetic cell state phenotypes in single cells. In this Review, we highlight these technological advances and describe how they have been applied to discover fundamental insights into T cell-mediated immunity.
Collapse
Affiliation(s)
- Joy A Pai
- Program in Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ansuman T Satpathy
- Program in Immunology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
9
|
Lange A, Lange J, Jaskuła E. Cytokine Overproduction and Immune System Dysregulation in alloHSCT and COVID-19 Patients. Front Immunol 2021; 12:658896. [PMID: 34149697 PMCID: PMC8206782 DOI: 10.3389/fimmu.2021.658896] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/14/2021] [Indexed: 12/18/2022] Open
Abstract
The COVID-19 pathomechanism depends on (i) the pathogenicity of the virus, (ii) ability of the immune system to respond to the cytopathic effect of the virus infection, (iii) co-morbidities. Inflammatory cytokine production constitutes a hallmark of COVID-19 that is facilitated by inability of adaptive immunity to control virus invasion. The effect of cytokine release syndrome is deleterious, but the severity of it depends on other confounding factors: age and comorbidities. In this study, we analyze the literature data on the post-transplant course of allogeneic hematopoietic stem cell transplanted (alloHSCT) patients, which is affected by generated inflammatory cytokines. The sequence of events boosting cytokine production was analyzed in relation to clinical and laboratory data highlighting the impact of cytokine generation on the post-transplant course. The collected data were compared to those from studies on COVID-19 patients. The similarities are: (i) the damage/pathogen-associated molecular pattern (DAMP/PAMP) stage is similar except for the initiation hit being sterile in alloHSCT (toxic damage of conditioning regimen) and viral in COVID-19; (ii) genetic host-derived factors play a role; (iii) adaptive immunity fails, DAMP signal(s) increases, over-production of cytokines occurs; (iv) monocytes lacking HLADR expression emerge, being suppressor cells hampering adaptive immunity; (v) immune system homeostasis is broken, the patient's status deteriorates to bed dependency, leading to hypo-oxygenation and malnutrition, which in turn stimulates the intracellular alert pathways with vigorous transcription of cytokine genes. All starts with the interaction between DAMPs with appropriate receptors, which leads to the production of pro-inflammatory cytokines, the inflammatory process spreads, tissue is damaged, DAMPs are released and a vicious cycle occurs. Attempts to modify intracellular signaling pathways in patients with post-alloHSCT graft vs host disease have already been undertaken. The similarities documented in this study show that this approach may also be used in COVID-19 patients for tuning signal transduction processes to interrupt the cycle that powers the cytokine overproduction.
Collapse
Affiliation(s)
- Andrzej Lange
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
- Lower Silesian Center for Cellular Transplantation with National Bone Marrow Donor Registry, Wroclaw, Poland
| | - Janusz Lange
- Lower Silesian Center for Cellular Transplantation with National Bone Marrow Donor Registry, Wroclaw, Poland
| | - Emilia Jaskuła
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
- Lower Silesian Center for Cellular Transplantation with National Bone Marrow Donor Registry, Wroclaw, Poland
| |
Collapse
|
10
|
Tickotsky-Moskovitz N, Louzoun Y, Dvorkin S, Rotkopf A, Kuperman AA, Efroni S. CDR3 and V genes show distinct reconstitution patterns in T cell repertoire post-allogeneic bone marrow transplantation. Immunogenetics 2021; 73:163-173. [PMID: 33475766 DOI: 10.1007/s00251-020-01200-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022]
Abstract
Restoration of T cell repertoire diversity after allogeneic bone marrow transplantation (allo-BMT) is crucial for immune recovery. T cell diversity is produced by rearrangements of germline gene segments (V (D) and J) of the T cell receptor (TCR) α and β chains, and selection induced by binding of TCRs to MHC-peptide complexes. Multiple measures were proposed for this diversity. We here focus on the V-gene usage and the CDR3 sequences of the beta chain. We compared multiple T cell repertoires to follow T cell repertoire changes post-allo-BMT in HLA-matched related donor and recipient pairs. Our analyses of the differences between donor and recipient complementarity determining region 3 (CDR3) beta composition and V-gene profile show that the CDR3 sequence composition does not change during restoration, implying its dependence on the HLA typing. In contrast, V-gene usage followed a time-dependent pattern, initially following the donor profile and then shifting back to the recipients' profile. The final long-term repertoire was more similar to that of the recipient's original one than the donor's; some recipients converged within months, while others took multiple years. Based on the results of our analyses, we propose that donor-recipient V-gene distribution differences may serve as clinical biomarkers for monitoring immune recovery.
Collapse
Affiliation(s)
| | - Yoram Louzoun
- Department of Mathematics, Bar Ilan University, Ramat Gan, Israel.
| | - Shirit Dvorkin
- Department of Mathematics, Bar Ilan University, Ramat Gan, Israel
| | - Adi Rotkopf
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Amir Asher Kuperman
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
- Blood Coagulation Service and Pediatric Hematology Clinic, Galilee Medical Center, Nahariya, Israel
| | - Sol Efroni
- The Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel
| |
Collapse
|
11
|
Ultra-efficient sequencing of T Cell receptor repertoires reveals shared responses in muscle from patients with Myositis. EBioMedicine 2020; 59:102972. [PMID: 32891935 PMCID: PMC7484536 DOI: 10.1016/j.ebiom.2020.102972] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/10/2020] [Accepted: 08/10/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Myositis, or idiopathic inflammatory myopathy (IIM), is a group disorders of unknown etiology characterized by the inflammation of skeletal muscle. The role of T cells and their antigenic targets in IIM initiation and progression is poorly understood. T cell receptor (TCR) repertoire sequencing is a powerful approach for characterizing complex T cell responses. However, current TCR sequencing methodologies are complex, expensive, or both, greatly limiting the scale of feasible studies. METHODS Here we present Framework Region 3 AmplifiKation sequencing ("FR3AK-seq"), a simplified multiplex PCR-based approach for the ultra-efficient and quantitative analysis of TCR complementarity determining region 3 (CDR3) repertoires. By using minimal primer sets targeting a conserved region immediately upstream of CDR3, undistorted amplicons are analyzed via short read, single-end sequencing. We also introduce the novel algorithm Inferring Sequences via Efficiency Projection and Primer Incorporation ("ISEPPI") for linking CDR3s to their associated variable genes. FINDINGS We find that FR3AK-seq is sensitive and quantitative, performing comparably to two different industry standards. FR3AK-seq and ISEPPI were used to efficiently and inexpensively characterize the T cell infiltrates of surgical muscle biopsies obtained from 145 patients with IIM and controls. A cluster of closely related TCRs was identified in samples from patients with sporadic inclusion body myositis (IBM). INTERPRETATION The ease and minimal cost of FR3AK-seq removes critical barriers to routine, large-scale TCR CDR3 repertoire analyses, thereby democratizing the quantitative assessment of human TCR repertoires in disease-relevant target tissues. Importantly, discovery of closely related TCRs in muscle from patients with IBM provides evidence for a shared antigen-driven T cell response in this disease of unknown pathogenesis. FUNDING This work was supported by NIH grant U24AI118633 and a Prostate Cancer Foundation Young Investigator Award.
Collapse
|
12
|
Pogorelyy MV, Shugay M. A Framework for Annotation of Antigen Specificities in High-Throughput T-Cell Repertoire Sequencing Studies. Front Immunol 2019; 10:2159. [PMID: 31616409 PMCID: PMC6775185 DOI: 10.3389/fimmu.2019.02159] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 08/28/2019] [Indexed: 12/28/2022] Open
Abstract
Recently developed molecular methods allow large-scale profiling of T-cell receptor (TCR) sequences that encode for antigen specificity and immunological memory of these cells. However, it is well-known that the even unperturbed TCR repertoire structure is extremely complex due to the high diversity of TCR rearrangements and multiple biases imprinted by VDJ rearrangement process. The latter gives rise to the phenomenon of "public" TCR clonotypes that can be shared across multiple individuals and non-trivial structure of the TCR similarity network. Here, we outline a framework for TCR sequencing data analysis that can control for these biases in order to infer TCRs that are involved in response to antigens of interest. We apply two previously published methods, ALICE and TCRNET, to detect groups of homologous TCRs that are enriched in samples of interest. Using an example dataset of donors with known HLA haplotype and CMV status, we demonstrate that by applying HLA restriction rules and matching against a database of TCRs with known antigen specificity, it is possible to robustly detect motifs of epitope-specific responses in individual repertoires. We also highlight potential shortcomings of TCR clustering methods and demonstrate that highly expanded TCRs should be individually assessed to get the full picture of antigen-specific response.
Collapse
Affiliation(s)
- Mikhail V Pogorelyy
- Genomics of Adaptive Immunity Department, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.,Institute of Translational Medicine, Pirogov Russian Medical State University, Moscow, Russia
| | - Mikhail Shugay
- Genomics of Adaptive Immunity Department, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.,Institute of Translational Medicine, Pirogov Russian Medical State University, Moscow, Russia.,Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| |
Collapse
|
13
|
RNA sequencing identifies clonal structure of T-cell repertoires in patients with adult T-cell leukemia/lymphoma. NPJ Genom Med 2019; 4:10. [PMID: 31069115 PMCID: PMC6502857 DOI: 10.1038/s41525-019-0084-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 04/11/2019] [Indexed: 12/11/2022] Open
Abstract
The diversity of T-cell receptor (TCR) repertoires, as generated by somatic DNA rearrangements, is central to immune system function. High-throughput sequencing technologies now allow examination of antigen receptor repertoires at single-nucleotide and, more recently, single-cell resolution. The TCR repertoire can be altered in the context of infections, malignancies or immunological disorders. Here we examined the diversity of TCR clonality and its association with pathogenesis and prognosis in adult T-cell leukemia/lymphoma (ATL), a malignancy caused by infection with human T-cell leukemia virus type-1 (HTLV-1). We analyzed 62 sets of high-throughput RNA sequencing data from 59 samples of HTLV-1−infected individuals—asymptomatic carriers (ACs), smoldering, chronic, acute and lymphoma ATL subtypes—and three uninfected controls to evaluate TCR distribution. Based on these TCR profiles, CD4-positive cells and ACs showed polyclonal patterns, whereas ATL patients showed oligo- or monoclonal patterns (with 446 average clonotypes across samples). Expression of TCRα and TCRβ genes in the dominant clone differed among the samples. ACs, CD4-positive samples and smoldering patients showed significantly higher TCR diversity compared with chronic, acute and lymphoma subtypes. CDR3 sequence length distribution, amino acid conservation and gene usage variability for ATL patients resembled those of peripheral blood cells from ACs and healthy donors. Thus, determining monoclonal architecture and clonal diversity by RNA sequencing might be useful for prognostic purposes and for personalizing ATL diagnosis and assessment of treatments.
Collapse
|
14
|
Shi M, Jevremovic D, Otteson GE, Timm MM, Olteanu H, Horna P. Single Antibody Detection of T-Cell Receptor αβ Clonality by Flow Cytometry Rapidly Identifies Mature T-Cell Neoplasms and Monotypic Small CD8-Positive Subsets of Uncertain Significance. CYTOMETRY PART B-CLINICAL CYTOMETRY 2019; 98:99-107. [PMID: 30972977 DOI: 10.1002/cyto.b.21782] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/07/2019] [Accepted: 03/26/2019] [Indexed: 02/01/2023]
Abstract
BACKGROUND The diagnosis of T-cell neoplasms is often challenging, due to overlapping features with reactive T-cells and limitations of currently available T-cell clonality assays. The description of an antibody specific for one of two mutually exclusive T-cell receptor (TCR) β-chain constant regions (TRBC1) provide an opportunity to facilitate the detection of clonal TCRαβ T-cells based on TRBC-restriction. METHODS Twenty patients with mature T-cell neoplasms and 44 patients without evidence of T-cell neoplasia were studied. Peripheral blood (51), bone marrow (10), and lymph node (3) specimens were evaluated by 9-color flow cytometry including TRBC1 (CD2/CD3/CD4/CD5/CD7/CD8/CD45/TCRγδ/TRBC1 and/or CD2/CD3/CD4/CD5/CD7/CD8/CD26/CD45/TRBC1). Monophasic TRBC1 expression on any immunophenotypically distinct CD4-positive or CD8-positive/TCRγδ-negative T-cell subset was considered indicative of clonality. RESULTS Monophasic (clonal) TRBC1 expression was identified on immunophenotypically abnormal T-cells from all 20 patients with T-cell malignancies (100% sensitivity), including 17 cases with either >97% or <3% TRBC1-positive events, and three cases with monophasic homogenous TRBC1-dim expression. All immunophenotypically distinct CD4-positive and CD8-positive/TCRγδ-negative T-cell subsets from 44 patients without T-cell malignancies showed the expected mixture of TRBC1-positive and TRBC-1-negative subpopulations (non-clonal), except for seven patients (16%) with very small CD8-positive T-cell subsets exhibiting a monophasic (clonal) pattern. CONCLUSION Inclusion of a single anti-TRBC1 antibody into a diagnostic T-cell flow cytometry panel facilitates the rapid identification of T-cell neoplasms, in addition to small monotypic CD8-positive subsets of uncertain significance. © 2019 International Clinical Cytometry Society.
Collapse
Affiliation(s)
- Min Shi
- Division of Hematopathology, Mayo Clinic, Rochester, Minnesota
| | | | | | - Michael M Timm
- Division of Hematopathology, Mayo Clinic, Rochester, Minnesota
| | - Horatiu Olteanu
- Division of Hematopathology, Mayo Clinic, Rochester, Minnesota
| | - Pedro Horna
- Division of Hematopathology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
15
|
Immune rebound associates with a favorable clinical response to autologous HSCT in systemic sclerosis patients. Blood Adv 2019; 2:126-141. [PMID: 29365321 DOI: 10.1182/bloodadvances.2017011072] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/18/2017] [Indexed: 02/06/2023] Open
Abstract
To evaluate the immunological mechanisms associated with clinical outcomes after autologous hematopoietic stem cell transplantation (AHSCT), focusing on regulatory T- (Treg) and B- (Breg) cell immune reconstitution, 31 systemic sclerosis (SSc) patients underwent simultaneous clinical and immunological evaluations over 36-month posttransplantation follow-up. Patients were retrospectively grouped into responders (n = 25) and nonresponders (n = 6), according to clinical response after AHSCT. Thymic function and B-cell neogenesis were respectively assessed by quantification of DNA excision circles generated during T- and B-cell receptor rearrangements. At the 1-year post-AHSCT evaluation of the total set of transplanted SSc patients, thymic rebound led to renewal of the immune system, with higher T-cell receptor (TCR) diversity, positive correlation between recent thymic emigrant and Treg counts, and higher expression of CTLA-4 and GITR on Tregs, when compared with pretransplant levels. In parallel, increased bone marrow output of newly generated naive B-cells, starting at 6 months after AHSCT, renovated the B-cell populations in peripheral blood. At 6 and 12 months after AHSCT, Bregs increased and produced higher interleukin-10 levels than before transplant. When the nonresponder patients were evaluated separately, Treg and Breg counts did not increase after AHSCT, and high TCR repertoire overlap between pre- and posttransplant periods indicated maintenance of underlying disease mechanisms. These data suggest that clinical improvement of SSc patients is related to increased counts of newly generated Tregs and Bregs after AHSCT as a result of coordinated thymic and bone marrow rebound.
Collapse
|
16
|
Bradley P, Thomas PG. Using T Cell Receptor Repertoires to Understand the Principles of Adaptive Immune Recognition. Annu Rev Immunol 2019; 37:547-570. [PMID: 30699000 DOI: 10.1146/annurev-immunol-042718-041757] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Adaptive immune recognition is mediated by antigen receptors on B and T cells generated by somatic recombination during lineage development. The high level of diversity resulting from this process posed technical limitations that previously limited the comprehensive analysis of adaptive immune recognition. Advances over the last ten years have produced data and approaches allowing insights into how T cells develop, evolutionary signatures of recombination and selection, and the features of T cell receptors that mediate epitope-specific binding and T cell activation. The size and complexity of these data have necessitated the generation of novel computational and analytical approaches, which are transforming how T cell immunology is conducted. Here we review the development and application of novel biological, theoretical, and computational methods for understanding T cell recognition and discuss the potential for improved models of receptor:antigen interactions.
Collapse
Affiliation(s)
- Philip Bradley
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA; .,Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA;
| |
Collapse
|
17
|
Segaliny AI, Li G, Kong L, Ren C, Chen X, Wang JK, Baltimore D, Wu G, Zhao W. Functional TCR T cell screening using single-cell droplet microfluidics. LAB ON A CHIP 2018; 18:3733-3749. [PMID: 30397689 PMCID: PMC6279597 DOI: 10.1039/c8lc00818c] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Adoptive T cell transfer, in particular TCR T cell therapy, holds great promise for cancer immunotherapy with encouraging clinical results. However, finding the right TCR T cell clone is a tedious, time-consuming, and costly process. Thus, there is a critical need for single cell technologies to conduct fast and multiplexed functional analyses followed by recovery of the clone of interest. Here, we use droplet microfluidics for functional screening and real-time monitoring of single TCR T cell activation upon recognition of target tumor cells. Notably, our platform includes a tracking system for each clone as well as a sorting procedure with 100% specificity validated by downstream single cell reverse-transcription PCR and sequencing of TCR chains. Our TCR screening prototype will facilitate immunotherapeutic screening and development of T cell therapies.
Collapse
MESH Headings
- Antigens, Neoplasm/chemistry
- Antigens, Neoplasm/metabolism
- Cell Line, Tumor
- Equipment Design
- Humans
- Immunotherapy, Adoptive
- Microfluidic Analytical Techniques/instrumentation
- Neoplasms/therapy
- Receptors, Antigen, T-Cell/analysis
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/metabolism
- Single-Cell Analysis/instrumentation
- Single-Cell Analysis/methods
- T-Lymphocytes/chemistry
- T-Lymphocytes/cytology
- T-Lymphocytes/metabolism
- T-Lymphocytes/transplantation
Collapse
Affiliation(s)
- Aude I. Segaliny
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, U.S.A
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, U.S.A
- Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, U.S.A
| | - Guideng Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, U.S.A
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
- Suzhou Institute of Systems Medicine, Suzhou 215123, China
| | - Lingshun Kong
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, U.S.A
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, U.S.A
- Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, U.S.A
| | - Ci Ren
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, U.S.A
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, U.S.A
- Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, U.S.A
| | - Xiaoming Chen
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, U.S.A
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, U.S.A
- Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, U.S.A
| | - Jessica K. Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, U.S.A
| | - David Baltimore
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, U.S.A
| | - Guikai Wu
- Amberstone Biosciences LLC, Irvine, CA 92617, U.S.A
| | - Weian Zhao
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, U.S.A
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, U.S.A
- Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, U.S.A
| |
Collapse
|
18
|
Zhang J, Hu M, Wang B, Gao J, Wang L, Li L, Chen S, Cui B, Gu W, Wang W, Ning G. Comprehensive assessment of T-cell repertoire following autologous hematopoietic stem cell transplantation for treatment of type 1 diabetes using high-throughput sequencing. Pediatr Diabetes 2018; 19:1229-1237. [PMID: 30022578 DOI: 10.1111/pedi.12728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/17/2018] [Accepted: 07/09/2018] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVE We aimed to investigate T-cell receptor (TCR) repertoires in type 1 diabetes (T1D) patients receiving autologous hematopoietic stem cell transplantation (AHSCT) treatment. METHODS High-throughput deep TCR beta (TCRB) chain sequencing was performed to assess millions of individual TCRs in five T1D patients receiving AHSCT treatment and another five patients receiving insulin treatment during 12 months of follow-up. RESULTS No significant changes in TCRB sequence reads, complementarity-determining region 3 (CDR3) sequences, or the usage of TCRB VJ gene-segments were observed at 12 months after AHSCT. Compared with the baseline, the usage of TCRB VJ gene-segments at 12 months decreased in the insulin treatment group (1836.4 ± 437.7 vs 2763.6 ± 390.6, P = 0.015), and the change rates were larger than those undergoing AHSCT (-0.62 ± 0.16 vs 0.06 ± 0.45, P = 0.002). Changes in the TCR repertoire were smaller after AHSCT than those with insulin treatment (P = 2.2*10-32 ). TCRBV 7-7/TCRBJ 2-5 was depleted after AHSCT while expanded with insulin treatment. TCRBV 12-4, TCRBV 10-3, TCRBV 12-3/TCRBJ 1-2 were expanded after AHSCT while ablated with insulin treatment. CONCLUSIONS We found that AHSCT is safe without reduction in the diversity of TCR repertoires and TCR repertoires tend to be more stable after AHSCT. Furthermore, these four candidate TCRBV/TCRBJ gene usages on CDR3 regions may act as therapeutic targets and biomarkers.
Collapse
Affiliation(s)
- Juanjuan Zhang
- Department of Endocrine and Metabolic diseases, Ruijin Hospital, Shanghai Jiao-Tong University, School of Medicine, Shanghai Key Laboratory for Endocrine Tumors, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases and Shanghai E-institute for Endocrinology, Shanghai, China
| | - Min Hu
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, University of Sydney, Westmead, NSW, Australia
| | - Bokai Wang
- Department of Endocrine and Metabolic diseases, Ruijin Hospital, Shanghai Jiao-Tong University, School of Medicine, Shanghai Key Laboratory for Endocrine Tumors, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases and Shanghai E-institute for Endocrinology, Shanghai, China
| | - Jie Gao
- Department of Endocrine and Metabolic diseases, Ruijin Hospital, Shanghai Jiao-Tong University, School of Medicine, Shanghai Key Laboratory for Endocrine Tumors, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases and Shanghai E-institute for Endocrinology, Shanghai, China
| | - Li Wang
- Department of Endocrine and Metabolic diseases, Ruijin Hospital, Shanghai Jiao-Tong University, School of Medicine, Shanghai Key Laboratory for Endocrine Tumors, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases and Shanghai E-institute for Endocrinology, Shanghai, China
| | - Li Li
- Department of Endocrine and Metabolic diseases, Ruijin Hospital, Shanghai Jiao-Tong University, School of Medicine, Shanghai Key Laboratory for Endocrine Tumors, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases and Shanghai E-institute for Endocrinology, Shanghai, China
| | - Sisi Chen
- Beijing Genomics Institute, Shenzhen, Guangdong, China
| | - Bin Cui
- Department of Endocrine and Metabolic diseases, Ruijin Hospital, Shanghai Jiao-Tong University, School of Medicine, Shanghai Key Laboratory for Endocrine Tumors, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases and Shanghai E-institute for Endocrinology, Shanghai, China
| | - Weiqiong Gu
- Department of Endocrine and Metabolic diseases, Ruijin Hospital, Shanghai Jiao-Tong University, School of Medicine, Shanghai Key Laboratory for Endocrine Tumors, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases and Shanghai E-institute for Endocrinology, Shanghai, China
| | - Weiqing Wang
- Department of Endocrine and Metabolic diseases, Ruijin Hospital, Shanghai Jiao-Tong University, School of Medicine, Shanghai Key Laboratory for Endocrine Tumors, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases and Shanghai E-institute for Endocrinology, Shanghai, China
| | - Guang Ning
- Department of Endocrine and Metabolic diseases, Ruijin Hospital, Shanghai Jiao-Tong University, School of Medicine, Shanghai Key Laboratory for Endocrine Tumors, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases and Shanghai E-institute for Endocrinology, Shanghai, China.,Laboratory for Endocrine & Metabolic Diseases, Institute of Health Science, Shanghai JiaoTong University, School of Medicine and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
19
|
Gu B, Miao H, Zhang J, Hu J, Zhou W, Gu W, Wang W, Ning G. Clinical benefits of autologous haematopoietic stem cell transplantation in type 1 diabetes patients. DIABETES & METABOLISM 2018; 44:341-345. [DOI: 10.1016/j.diabet.2017.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 12/13/2017] [Accepted: 12/16/2017] [Indexed: 12/29/2022]
|
20
|
Dolton G, Zervoudi E, Rius C, Wall A, Thomas HL, Fuller A, Yeo L, Legut M, Wheeler S, Attaf M, Chudakov DM, Choy E, Peakman M, Sewell AK. Optimized Peptide-MHC Multimer Protocols for Detection and Isolation of Autoimmune T-Cells. Front Immunol 2018; 9:1378. [PMID: 30008714 PMCID: PMC6034003 DOI: 10.3389/fimmu.2018.01378] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/04/2018] [Indexed: 12/14/2022] Open
Abstract
Peptide–MHC (pMHC) multimers have become the “gold standard” for the detection and isolation of antigen-specific T-cells but recent evidence shows that normal use of these reagents can miss fully functional T-cells that bear T-cell receptors (TCRs) with low affinity for cognate antigen. This issue is particularly pronounced for anticancer and autoimmune T-cells as self-reactive T-cell populations are enriched for low-affinity TCRs due to the removal of cells with higher affinity receptors by immune tolerance mechanisms. Here, we stained a wide variety of self-reactive human T-cells using regular pMHC staining and an optimized technique that included: (i) protein kinase inhibitor (PKI), to prevent TCR triggering and internalization, and (ii) anti-fluorochrome antibody, to reduce reagent dissociation during washing steps. Lymphocytes derived from the peripheral blood of type 1 diabetes patients were stained with pMHC multimers made with epitopes from preproinsulin (PPI), insulin-β chain, glutamic acid decarboxylase 65 (GAD65), or glucose-6-phospate catalytic subunit-related protein (IGRP) presented by disease-risk allelles HLA A*02:01 or HLA*24:02. Samples from ankylosing spondylitis patients were stained with a multimerized epitope from vasoactive intestinal polypeptide receptor 1 (VIPR1) presented by HLA B*27:05. Optimized procedures stained an average of 40.5-fold (p = 0.01, range between 1.4 and 198) more cells than could be detected without the inclusion of PKI and cross-linking anti-fluorochrome antibody. Higher order pMHC dextramers recovered more cells than pMHC tetramers in parallel assays, and standard staining protocols with pMHC tetramers routinely recovered less cells than functional assays. HLA A*02:01-restricted PPI-specific and HLA B*27:05-restricted VIPR1-specific T-cell clones generated using the optimized procedure could not be stained by standard pMHC tetramer staining. However, these clones responded well to exogenously supplied peptide and endogenously processed and presented epitopes. We also showed that anti-fluorochrome antibody-conjugated magnetic beads enhanced staining of self-reactive T-cells that could not be stained using standard protocols, thus enabling rapid ex vivo isolation of autoimmune T-cells. We, therefore, conclude that regular pMHC tetramer staining is generally unsuitable for recovering self-reactive T-cells from clinical samples and recommend the use of the optimized protocols described herein.
Collapse
Affiliation(s)
- Garry Dolton
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Efthalia Zervoudi
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Cristina Rius
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Aaron Wall
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Hannah L Thomas
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Anna Fuller
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Lorraine Yeo
- Department of Immunobiology, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom.,NIHR Biomedical Research Centre at Guy's and St Thomas' NHS Foundation Trust and King's College London, London, United Kingdom
| | - Mateusz Legut
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Sophie Wheeler
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Meriem Attaf
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Dmitriy M Chudakov
- Pirogov Russian National Research Medical University, Moscow, Russia.,Centre for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, Skolkovo, Russia.,Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Ernest Choy
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom.,Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Mark Peakman
- Department of Immunobiology, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom.,NIHR Biomedical Research Centre at Guy's and St Thomas' NHS Foundation Trust and King's College London, London, United Kingdom
| | - Andrew K Sewell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom.,Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
21
|
Microfluidic single-cell technology in immunology and antibody screening. Mol Aspects Med 2018; 59:47-61. [DOI: 10.1016/j.mam.2017.09.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 09/06/2017] [Accepted: 09/13/2017] [Indexed: 11/20/2022]
|
22
|
Characterization of the T-cell Repertoire after Autologous HSCT in Patients with Ankylosing Spondylitis. Acta Naturae 2018; 10:48-57. [PMID: 30116615 PMCID: PMC6087820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Autologous hematopoietic stem cell transplantation (HSCT), a safer type of HSCT than allogeneic HSCT, is a promising therapy for patients with severe autoimmune diseases (ADs). Despite the long history of medical practice, structural changes in the adaptive immune system as a result of autologous HSCT in patients with various types of ADs remain poorly understood. In this study, we used high-throughput sequencing to investigate the structural changes in the peripheral blood T-cell repertoire in adult patients with ankylosing spondylitis (AS) during two years after autologous HSCT. The implementation of unique molecular identifiers allowed us to substantially reduce the impact of the biases occurring during the preparation of libraries, to carry out a comparative analysis of the various properties of the T-cell repertoire between different time points, and to track the dynamics of both distinct T-cell clonotypes and T-cell subpopulations. In the first year of the reconstitution, clonal diversity of the T-cell repertoire remained lower than the initial one in both patients. During the second year after HSCT, clonal diversity continued to increase and reached a normal value in one of the patients. The increase in the diversity was associated with the emergence of a large number of low-frequency clonotypes, which were not identified before HSCT. Efficiency of clonotypes detection after HSCT was dependent on their abundance in the initial repertoire. Almost all of the 100 most abundant clonotypes observed before HSCT were detected 2 years after transplantation and remained highly abundant irrespective of their CD4+ or CD8+ phenotype. A total of up to 25% of peripheral blood T cells 2 years after HSCT were represented by clonotypes from the initial repertoire.
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW The genetic susceptibility and dominant protection for type 1 diabetes (T1D) associated with human leukocyte antigen (HLA) haplotypes, along with minor risk variants, have long been thought to shape the T cell receptor (TCR) repertoire and eventual phenotype of autoreactive T cells that mediate β-cell destruction. While autoantibodies provide robust markers of disease progression, early studies tracking autoreactive T cells largely failed to achieve clinical utility. RECENT FINDINGS Advances in acquisition of pancreata and islets from T1D organ donors have facilitated studies of T cells isolated from the target tissues. Immunosequencing of TCR α/β-chain complementarity determining regions, along with transcriptional profiling, offers the potential to transform biomarker discovery. Herein, we review recent studies characterizing the autoreactive TCR signature in T1D, emerging technologies, and the challenges and opportunities associated with tracking TCR molecular profiles during the natural history of T1D.
Collapse
Affiliation(s)
- Laura M Jacobsen
- Department of Pediatrics, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Amanda Posgai
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Howard R Seay
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Michael J Haller
- Department of Pediatrics, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Todd M Brusko
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA.
| |
Collapse
|
24
|
Tickotsky N, Sagiv T, Prilusky J, Shifrut E, Friedman N. McPAS-TCR: a manually curated catalogue of pathology-associated T cell receptor sequences. Bioinformatics 2017; 33:2924-2929. [DOI: 10.1093/bioinformatics/btx286] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 05/02/2017] [Indexed: 11/14/2022] Open
Affiliation(s)
- Nili Tickotsky
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Tal Sagiv
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Jaime Prilusky
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Eric Shifrut
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Nir Friedman
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
25
|
Herati RS, Muselman A, Vella L, Bengsch B, Parkhouse K, Del Alcazar D, Kotzin J, Doyle SA, Tebas P, Hensley SE, Su LF, Schmader KE, Wherry EJ. Successive annual influenza vaccination induces a recurrent oligoclonotypic memory response in circulating T follicular helper cells. Sci Immunol 2017; 2. [PMID: 28620653 DOI: 10.1126/sciimmunol.aag2152] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
T follicular helper (Tfh) CD4 cells are crucial providers of B cell help during adaptive immune responses. A circulating population of CD4 T cells, termed cTfh, have similarity to lymphoid Tfh, can provide B cell help, and responded to influenza vaccination. However, it is unclear whether human vaccination-induced cTfh respond in an antigen-specific manner and whether they form long-lasting memory. Here, we identified a cTfh population that expressed multiple T cell activation markers and could be readily identified by coexpression of ICOS and CD38. This subset expressed more Bcl-6, c-Maf, and IL-21 than other blood CD4 subsets. Influenza vaccination induced a strong response in the ICOS+CD38+ cTfh at day 7, and this population included hemagglutinin-specific cells by tetramer staining and antigen-stimulated Activation Induced Marker (AIM) expression. Moreover, TCRB sequencing identified a clonal response in ICOS+CD38+ cTfh that correlated strongly with the increased circulating ICOS+CD38+ cTfh frequency and the circulating plasmablast response. In subjects who received successive annual vaccinations, a recurrent oligoclonal response was identified in the ICOS+CD38+ cTfh subset at 7 days after every vaccination. These oligoclonal responses in ICOS+CD38+ cTfh after vaccination persisted in the ICOS-CD38- cTfh repertoire in subsequent years, suggesting clonal maintenance in a memory reservoir in the more-stable ICOS-CD38- cTfh subset. These data highlight the antigen-specificity, lineage relationships and memory properties of human cTfh responses to vaccination, providing new avenues for tracking and monitoring cTfh responses during infection and vaccination in humans.
Collapse
Affiliation(s)
- Ramin Sedaghat Herati
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA.,Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Alexander Muselman
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA.,Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Laura Vella
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA.,Department of Medicine, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Bertram Bengsch
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA.,Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | | | - Daniel Del Alcazar
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA.,Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Jonathan Kotzin
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA.,Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Susan A Doyle
- Division of Geriatrics, Department of Medicine, Duke University Medical Center and Geriatric Research, Education, and Clinical Center, Durham VA Medical Center, Durham, North Carolina
| | - Pablo Tebas
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Scott E Hensley
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA.,Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA.,Wistar Institute, Philadelphia, PA
| | - Laura F Su
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA.,Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Kenneth E Schmader
- Division of Geriatrics, Department of Medicine, Duke University Medical Center and Geriatric Research, Education, and Clinical Center, Durham VA Medical Center, Durham, North Carolina
| | - E John Wherry
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA.,Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| |
Collapse
|
26
|
Zvyagin IV, Mamedov IZ, Tatarinova OV, Komech EA, Kurnikova EE, Boyakova EV, Brilliantova V, Shelikhova LN, Balashov DN, Shugay M, Sycheva AL, Kasatskaya SA, Lebedev YB, Maschan AA, Maschan MA, Chudakov DM. Tracking T-cell immune reconstitution after TCRαβ/CD19-depleted hematopoietic cells transplantation in children. Leukemia 2016; 31:1145-1153. [DOI: 10.1038/leu.2016.321] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/14/2016] [Accepted: 10/13/2016] [Indexed: 12/15/2022]
|
27
|
Xu L, You X, Zheng P, Zhang BM, Gupta PK, Lavori P, Meyer E, Zehnder JL. Methodologic Considerations in the Application of Next-Generation Sequencing of Human TRB Repertoires for Clinical Use. J Mol Diagn 2016; 19:72-83. [PMID: 27815002 DOI: 10.1016/j.jmoldx.2016.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/24/2016] [Accepted: 07/28/2016] [Indexed: 01/08/2023] Open
Abstract
Next-generation sequencing (NGS) of immune receptors has become a standard tool to assess minimal residual disease (MRD) in patients treated for lymphoid malignancy, and it is being used to study the T-cell repertoire in many clinical settings. To better understanding the potential clinical utility and limitations of this application outside of MRD, we developed a BIOMED-2 primer-based NGS method and characterized its performance in controls and patients with graft-versus-host disease (GVHD) after allogeneic hematopoietic transplant. For controls and patients with GVHD, replicate sequencing of the same T-cell receptor β (TRB) libraries was highly reproducible. Higher variability was observed in sequencing of different TRB libraries made from the same DNA stock. Variability was increased in patients with GVHD compared with controls; patients with GVHD also had lower diversity than controls. In the T-cell repertoire of a healthy person, approximately 99.6% of the CDR3 clones were in low abundance, with frequency <10-3. A single library could identify >93% of the clones with frequency ≥10-3 in the repertoire. Sequencing in duplicate increased the average detection rate to >97%. This work demonstrates that NGS reliably and robustly characterizes TRB populations in healthy individuals and patients with GVHD with frequency ≥10-3 and provides a methodologic framework for applying NGS immune repertoire methods to clinical testing applications beyond MRD.
Collapse
Affiliation(s)
- Liwen Xu
- Department of Pathology, Stanford School of Medicine, Stanford University, Stanford, California
| | - Xiaoqing You
- Department of Pathology, Stanford School of Medicine, Stanford University, Stanford, California
| | - PingPing Zheng
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford School of Medicine, Stanford University, Stanford, California
| | - Bing M Zhang
- Department of Pathology, Stanford School of Medicine, Stanford University, Stanford, California
| | - Puja K Gupta
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford School of Medicine, Stanford University, Stanford, California
| | - Philip Lavori
- Department of Biomedical Data Science, Stanford School of Medicine, Stanford University, Stanford, California
| | - Everett Meyer
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford School of Medicine, Stanford University, Stanford, California
| | - James L Zehnder
- Department of Pathology, Stanford School of Medicine, Stanford University, Stanford, California.
| |
Collapse
|
28
|
Root-Bernstein R. Autoimmunity and the microbiome: T-cell receptor mimicry of "self" and microbial antigens mediates self tolerance in holobionts: The concepts of "holoimmunity" (TcR-mediated tolerance for the holobiont) and "holoautoimmunity" (loss of tolerance for the holobiont) are introduced. Bioessays 2016; 38:1068-1083. [PMID: 27594308 PMCID: PMC7161894 DOI: 10.1002/bies.201600083] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
I propose a T-cell receptor (TcR)-based mechanism by which immunity mediates both "genetic self" and "microbial self" thereby, connecting microbiome disease with autoimmunity. The hypothesis is based on simple principles. First, TcR are selected to avoid strong cross-reactivity with "self," resulting in selection for a TcR repertoire mimicking "genetic self." Second, evolution has selected for a "microbial self" that mimics "genetic self" so as to share tolerance. In consequence, our TcR repertoire also mimics microbiome antigenicity, providing a novel mechanism for modulating tolerance to it. Also, the microbiome mimics the TcR repertoire, acting as a secondary immune system. I call this TcR-microbiome mimicry "holoimmunity" to denote immune tolerance to the "holobiont self." Logically, microbiome-host mimicry means that autoimmunity directed at host antigens will also attack components of the microbiome, and conversely, an immunological attack on the microbiome may cross-react with host antigens producing "holoautoimmunity."
Collapse
|
29
|
Turchaninova MA, Davydov A, Britanova OV, Shugay M, Bikos V, Egorov ES, Kirgizova VI, Merzlyak EM, Staroverov DB, Bolotin DA, Mamedov IZ, Izraelson M, Logacheva MD, Kladova O, Plevova K, Pospisilova S, Chudakov DM. High-quality full-length immunoglobulin profiling with unique molecular barcoding. Nat Protoc 2016; 11:1599-616. [DOI: 10.1038/nprot.2016.093] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
30
|
Single-cell TCRseq: paired recovery of entire T-cell alpha and beta chain transcripts in T-cell receptors from single-cell RNAseq. Genome Med 2016; 8:80. [PMID: 27460926 PMCID: PMC4962388 DOI: 10.1186/s13073-016-0335-7] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 07/11/2016] [Indexed: 11/24/2022] Open
Abstract
Accurate characterization of the repertoire of the T-cell receptor (TCR) alpha and beta chains is critical to understanding adaptive immunity. Such characterization has many applications across such fields as vaccine development and response, clone-tracking in cancer, and immunotherapy. Here we present a new methodology called single-cell TCRseq (scTCRseq) for the identification and assembly of full-length rearranged V(D)J T-cell receptor sequences from paired-end single-cell RNA sequencing reads. The method allows accurate identification of the V(D)J rearrangements for each individual T-cell and has the novel ability to recover paired alpha and beta segments. Source code is available at https://github.com/ElementoLab/scTCRseq.
Collapse
|
31
|
Bagaev DV, Zvyagin IV, Putintseva EV, Izraelson M, Britanova OV, Chudakov DM, Shugay M. VDJviz: a versatile browser for immunogenomics data. BMC Genomics 2016; 17:453. [PMID: 27297497 PMCID: PMC4907000 DOI: 10.1186/s12864-016-2799-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 05/25/2016] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The repertoire of T- and B-cell receptor sequences encodes the antigen specificity of adaptive immunity system, determines its present state and guides its ability to mount effective response against encountered antigens in future. High throughput sequencing of immune repertoires (Rep-Seq) is a promising technique that allows to profile millions of antigen receptors of an individual in a single experiment. While a substantial number of tools for mapping and assembling Rep-Seq data were published recently, the field still lacks an intuitive and flexible tool that can be used by researchers with little or no computational background for in-depth analysis of immune repertoire profiles. RESULTS Here we report VDJviz, a web tool that can be used to browse, analyze and perform quality control of Rep-Seq results generated by various pre-processing software. On a set of real data examples we show that VDJviz can be used to explore key repertoire characteristics such as spectratype, repertoire clonality, V-(D)-J recombination patterns and to identify shared clonotypes. We also demonstrate the utility of VDJviz in detection of critical Rep-Seq biases such as artificial repertoire diversity and cross-sample contamination. CONCLUSIONS VDJviz is a versatile and lightweight tool that can be easily employed by biologists, immunologists and immunogeneticists for routine analysis and quality control of Rep-Seq data. The software is freely available for non-commercial purposes, and can be downloaded from: https://github.com/antigenomics/vdjviz .
Collapse
Affiliation(s)
- Dmitriy V. Bagaev
- />Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Ivan V. Zvyagin
- />Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- />Pirogov Russian National Research Medical University, Ostrovityanova 1, 117997 Moscow, Russia
- />Central European Institute of Technology, Masaryk University, Brno, Czech republic
| | - Ekaterina V. Putintseva
- />Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- />Central European Institute of Technology, Masaryk University, Brno, Czech republic
| | - Mark Izraelson
- />Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- />Pirogov Russian National Research Medical University, Ostrovityanova 1, 117997 Moscow, Russia
- />Central European Institute of Technology, Masaryk University, Brno, Czech republic
| | - Olga V. Britanova
- />Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- />Pirogov Russian National Research Medical University, Ostrovityanova 1, 117997 Moscow, Russia
- />Central European Institute of Technology, Masaryk University, Brno, Czech republic
| | - Dmitriy M. Chudakov
- />Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- />Pirogov Russian National Research Medical University, Ostrovityanova 1, 117997 Moscow, Russia
- />Central European Institute of Technology, Masaryk University, Brno, Czech republic
| | - Mikhail Shugay
- />Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- />Pirogov Russian National Research Medical University, Ostrovityanova 1, 117997 Moscow, Russia
| |
Collapse
|
32
|
Minervina AA, Komkov AY, Mamedov IZ, Lebedev YB. Advanced lymphoblastic clones detection in T-cell leukemia. DOKL BIOCHEM BIOPHYS 2016; 467:85-8. [PMID: 27193704 DOI: 10.1134/s1607672916020022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Indexed: 11/23/2022]
Abstract
T cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignant neoplasm of the lymphocyte precursors that suffered malignant transformation arresting the lymphoid cell differentiation. Clinical studies revealed monoor, more rarely, oligoclonal nature of the disease. A precise identification of malignant clone markers is both the crucial stage of early diagnostics and the essential prognostic factor for therapeutic treatment. Here we present an improved system for unbiased detection of lymphoblastic clones in bone marrow aspirates of T-ALL patients. The system based on multiplex PCR of rearranged T-cell receptor locus (TRB) and straightforward sequencing of the resulted PCR fragments. Testing of the system on genomic DNA from Jurkat cell line and four clinical bone marrow aspirates revealed a set of unique TRB rearrangements that precisely characterize each of tested samples. Therefore, the outcome of the system produces highly informative molecular genetic markers for further monitoring of minimal residual disease in T-ALL patients.
Collapse
Affiliation(s)
- A A Minervina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow, 117997, Russia
| | - A Y Komkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow, 117997, Russia
| | - I Z Mamedov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow, 117997, Russia
| | - Y B Lebedev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow, 117997, Russia.
| |
Collapse
|
33
|
Britanova OV, Shugay M, Merzlyak EM, Staroverov DB, Putintseva EV, Turchaninova MA, Mamedov IZ, Pogorelyy MV, Bolotin DA, Izraelson M, Davydov AN, Egorov ES, Kasatskaya SA, Rebrikov DV, Lukyanov S, Chudakov DM. Dynamics of Individual T Cell Repertoires: From Cord Blood to Centenarians. THE JOURNAL OF IMMUNOLOGY 2016; 196:5005-13. [PMID: 27183615 DOI: 10.4049/jimmunol.1600005] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/16/2016] [Indexed: 01/29/2023]
Abstract
The diversity, architecture, and dynamics of the TCR repertoire largely determine our ability to effectively withstand infections and malignancies with minimal mistargeting of immune responses. In this study, we have employed deep TCRβ repertoire sequencing with normalization based on unique molecular identifiers to explore the long-term dynamics of T cell immunity. We demonstrate remarkable stability of repertoire, where approximately half of all T cells in peripheral blood are represented by clones that persist and generally preserve their frequencies for 3 y. We further characterize the extremes of lifelong TCR repertoire evolution, analyzing samples ranging from umbilical cord blood to centenarian peripheral blood. We show that the fetal TCR repertoire, albeit structurally maintained within regulated borders due to the lower numbers of randomly added nucleotides, is not limited with respect to observed functional diversity. We reveal decreased efficiency of nonsense-mediated mRNA decay in umbilical cord blood, which may reflect specific regulatory mechanisms in development. Furthermore, we demonstrate that human TCR repertoires are functionally more similar at birth but diverge during life, and we track the lifelong behavior of CMV- and EBV-specific T cell clonotypes. Finally, we reveal gender differences in dynamics of TCR diversity constriction, which come to naught in the oldest age. Based on our data, we propose a more general explanation for the previous observations on the relationships between longevity and immunity.
Collapse
Affiliation(s)
- Olga V Britanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; Pirogov Russian National Research Medical University, Moscow 117997, Russia; Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; and
| | - Mikhail Shugay
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; Pirogov Russian National Research Medical University, Moscow 117997, Russia; Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; and
| | - Ekaterina M Merzlyak
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - Dmitriy B Staroverov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - Ekaterina V Putintseva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - Maria A Turchaninova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; Pirogov Russian National Research Medical University, Moscow 117997, Russia; Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; and
| | - Ilgar Z Mamedov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; and
| | - Mikhail V Pogorelyy
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - Dmitriy A Bolotin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; Pirogov Russian National Research Medical University, Moscow 117997, Russia; Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; and
| | - Mark Izraelson
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; and
| | - Alexey N Davydov
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; and
| | - Evgeny S Egorov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; Pirogov Russian National Research Medical University, Moscow 117997, Russia; Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; and
| | - Sofya A Kasatskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - Denis V Rebrikov
- Pirogov Russian National Research Medical University, Moscow 117997, Russia; Vavilov Institute of General Genetics of the Russian Academy of Sciences, Moscow 119991, Russia
| | - Sergey Lukyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Dmitriy M Chudakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; Pirogov Russian National Research Medical University, Moscow 117997, Russia; Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; and
| |
Collapse
|
34
|
Stubbington MJT, Lönnberg T, Proserpio V, Clare S, Speak AO, Dougan G, Teichmann SA. T cell fate and clonality inference from single-cell transcriptomes. Nat Methods 2016; 13:329-332. [PMID: 26950746 PMCID: PMC4835021 DOI: 10.1038/nmeth.3800] [Citation(s) in RCA: 321] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 01/25/2016] [Indexed: 12/30/2022]
Abstract
We developed TraCeR, a computational method to reconstruct full-length, paired T cell receptor (TCR) sequences from T lymphocyte single-cell RNA sequence data. TraCeR links T cell specificity with functional response by revealing clonal relationships between cells alongside their transcriptional profiles. We found that T cell clonotypes in a mouse Salmonella infection model span early activated CD4(+) T cells as well as mature effector and memory cells.
Collapse
Affiliation(s)
- Michael J T Stubbington
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| | - Tapio Lönnberg
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| | - Valentina Proserpio
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| | - Simon Clare
- Wellcome Trust Sanger Institute, Cambridge, UK
| | | | | | - Sarah A Teichmann
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
- Wellcome Trust Sanger Institute, Cambridge, UK
| |
Collapse
|
35
|
Shugay M, Bagaev DV, Turchaninova MA, Bolotin DA, Britanova OV, Putintseva EV, Pogorelyy MV, Nazarov VI, Zvyagin IV, Kirgizova VI, Kirgizov KI, Skorobogatova EV, Chudakov DM. VDJtools: Unifying Post-analysis of T Cell Receptor Repertoires. PLoS Comput Biol 2015; 11:e1004503. [PMID: 26606115 PMCID: PMC4659587 DOI: 10.1371/journal.pcbi.1004503] [Citation(s) in RCA: 438] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/13/2015] [Indexed: 12/11/2022] Open
Abstract
Despite the growing number of immune repertoire sequencing studies, the field still lacks software for analysis and comprehension of this high-dimensional data. Here we report VDJtools, a complementary software suite that solves a wide range of T cell receptor (TCR) repertoires post-analysis tasks, provides a detailed tabular output and publication-ready graphics, and is built on top of a flexible API. Using TCR datasets for a large cohort of unrelated healthy donors, twins, and multiple sclerosis patients we demonstrate that VDJtools greatly facilitates the analysis and leads to sound biological conclusions. VDJtools software and documentation are available at https://github.com/mikessh/vdjtools.
Collapse
Affiliation(s)
- Mikhail Shugay
- Shemyakin-Ovchinnikov Institute of bioorganic chemistry RAS, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Dmitriy V. Bagaev
- Shemyakin-Ovchinnikov Institute of bioorganic chemistry RAS, Moscow, Russia
| | - Maria A. Turchaninova
- Shemyakin-Ovchinnikov Institute of bioorganic chemistry RAS, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Dmitriy A. Bolotin
- Shemyakin-Ovchinnikov Institute of bioorganic chemistry RAS, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Olga V. Britanova
- Shemyakin-Ovchinnikov Institute of bioorganic chemistry RAS, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Ekaterina V. Putintseva
- Shemyakin-Ovchinnikov Institute of bioorganic chemistry RAS, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | | | - Vadim I. Nazarov
- Shemyakin-Ovchinnikov Institute of bioorganic chemistry RAS, Moscow, Russia
- National Research University Higher School of Economics, Moscow, Russia
| | - Ivan V. Zvyagin
- Shemyakin-Ovchinnikov Institute of bioorganic chemistry RAS, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | | | | | | | - Dmitriy M. Chudakov
- Shemyakin-Ovchinnikov Institute of bioorganic chemistry RAS, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- * E-mail:
| |
Collapse
|
36
|
Ye L, Goodall JC, Zhang L, Putintseva EV, Lam B, Jiang L, Liu W, Yin J, Lin L, Li T, Wu X, Yeo G, Shugay M, Chudakov DM, Gaston H, Xu H. TCR usage, gene expression and function of two distinct FOXP3
+
Treg subsets within CD4
+
CD25
hi
T cells identified by expression of CD39 and CD45RO. Immunol Cell Biol 2015; 94:293-305. [PMID: 26467610 DOI: 10.1038/icb.2015.90] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/29/2015] [Accepted: 09/29/2015] [Indexed: 02/08/2023]
Affiliation(s)
- Lingying Ye
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, The Second Military Medical University Shanghai China
| | - Jane C Goodall
- Department of Medicine, School of Clinical Medicine, Addenbrookes Hospital, University of Cambridge Cambridge UK
| | - Libin Zhang
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, The Second Military Medical University Shanghai China
| | - Ekaterina V Putintseva
- Shemyakin‐Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences Moscow Russian Federation
| | - Brian Lam
- University of Cambridge Metabolic Research Labs, Institute of Metabolic Science, Addenbrookes Hospital Cambridge UK
| | - Lei Jiang
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, The Second Military Medical University Shanghai China
| | - Wei Liu
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, The Second Military Medical University Shanghai China
| | - Jian Yin
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, The Second Military Medical University Shanghai China
| | - Li Lin
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, The Second Military Medical University Shanghai China
| | - Ting Li
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, The Second Military Medical University Shanghai China
| | - Xin Wu
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, The Second Military Medical University Shanghai China
| | - Giles Yeo
- University of Cambridge Metabolic Research Labs, Institute of Metabolic Science, Addenbrookes Hospital Cambridge UK
| | - Mikhail Shugay
- Shemyakin‐Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences Moscow Russian Federation
- Pirogov Russian National Research Medical University Moscow Russia
| | - Dmitriy M Chudakov
- Shemyakin‐Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences Moscow Russian Federation
- Pirogov Russian National Research Medical University Moscow Russia
| | - Hill Gaston
- Department of Medicine, School of Clinical Medicine, Addenbrookes Hospital, University of Cambridge Cambridge UK
| | - Huji Xu
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, The Second Military Medical University Shanghai China
| |
Collapse
|
37
|
Laydon DJ, Bangham CRM, Asquith B. Estimating T-cell repertoire diversity: limitations of classical estimators and a new approach. Philos Trans R Soc Lond B Biol Sci 2015; 370:20140291. [PMID: 26150657 PMCID: PMC4528489 DOI: 10.1098/rstb.2014.0291] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2015] [Indexed: 12/26/2022] Open
Abstract
A highly diverse T-cell receptor (TCR) repertoire is a fundamental property of an effective immune system, and is associated with efficient control of viral infections and other pathogens. However, direct measurement of total TCR diversity is impossible. The diversity is high and the frequency distribution of individual TCRs is heavily skewed; the diversity therefore cannot be captured in a blood sample. Consequently, estimators of the total number of TCR clonotypes that are present in the individual, in addition to those observed, are essential. This is analogous to the 'unseen species problem' in ecology. We review the diversity (species richness) estimators that have been applied to T-cell repertoires and the methods used to validate these estimators. We show that existing approaches have significant shortcomings, and frequently underestimate true TCR diversity. We highlight our recently developed estimator, DivE, which can accurately estimate diversity across a range of immunological and biological systems.
Collapse
MESH Headings
- Animals
- Gene Rearrangement, T-Lymphocyte
- Genetic Variation
- Host-Pathogen Interactions/genetics
- Host-Pathogen Interactions/immunology
- Humans
- Lymphocyte Count
- Models, Genetic
- Models, Immunological
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Statistics, Nonparametric
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Daniel J Laydon
- Section of Immunology, Wright-Fleming Institute, Imperial College School of Medicine, London W2 1PG, UK
| | - Charles R M Bangham
- Section of Immunology, Wright-Fleming Institute, Imperial College School of Medicine, London W2 1PG, UK
| | - Becca Asquith
- Section of Immunology, Wright-Fleming Institute, Imperial College School of Medicine, London W2 1PG, UK
| |
Collapse
|
38
|
Nazarov VI, Pogorelyy MV, Komech EA, Zvyagin IV, Bolotin DA, Shugay M, Chudakov DM, Lebedev YB, Mamedov IZ. tcR: an R package for T cell receptor repertoire advanced data analysis. BMC Bioinformatics 2015; 16:175. [PMID: 26017500 PMCID: PMC4445501 DOI: 10.1186/s12859-015-0613-1] [Citation(s) in RCA: 179] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 05/13/2015] [Indexed: 11/18/2022] Open
Abstract
Background The Immunoglobulins (IG) and the T cell receptors (TR) play the key role in antigen recognition during the adaptive immune response. Recent progress in next-generation sequencing technologies has provided an opportunity for the deep T cell receptor repertoire profiling. However, a specialised software is required for the rational analysis of massive data generated by next-generation sequencing. Results Here we introduce tcR, a new R package, representing a platform for the advanced analysis of T cell receptor repertoires, which includes diversity measures, shared T cell receptor sequences identification, gene usage statistics computation and other widely used methods. The tool has proven its utility in recent research studies. Conclusions tcR is an R package for the advanced analysis of T cell receptor repertoires after primary TR sequences extraction from raw sequencing reads. The stable version can be directly installed from The Comprehensive R Archive Network (http://cran.r-project.org/mirrors.html). The source code and development version are available at tcR GitHub (http://imminfo.github.io/tcr/) along with the full documentation and typical usage examples.
Collapse
Affiliation(s)
- Vadim I Nazarov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya, Moscow, 117997, Russia. .,National Research University Higher School of Economics, 20 Myasnitskaya Ulitsa, Moscow, 101000, Russia.
| | - Mikhail V Pogorelyy
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya, Moscow, 117997, Russia.
| | - Ekaterina A Komech
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya, Moscow, 117997, Russia.
| | - Ivan V Zvyagin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya, Moscow, 117997, Russia. .,Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
| | - Dmitry A Bolotin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya, Moscow, 117997, Russia.
| | - Mikhail Shugay
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya, Moscow, 117997, Russia.
| | - Dmitry M Chudakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya, Moscow, 117997, Russia. .,Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
| | - Yury B Lebedev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya, Moscow, 117997, Russia.
| | - Ilgar Z Mamedov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya, Moscow, 117997, Russia.
| |
Collapse
|
39
|
Egorov ES, Merzlyak EM, Shelenkov AA, Britanova OV, Sharonov GV, Staroverov DB, Bolotin DA, Davydov AN, Barsova E, Lebedev YB, Shugay M, Chudakov DM. Quantitative Profiling of Immune Repertoires for Minor Lymphocyte Counts Using Unique Molecular Identifiers. THE JOURNAL OF IMMUNOLOGY 2015; 194:6155-63. [DOI: 10.4049/jimmunol.1500215] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/08/2015] [Indexed: 12/11/2022]
|
40
|
Calis JJA, Rosenberg BR. Characterizing immune repertoires by high throughput sequencing: strategies and applications. Trends Immunol 2014; 35:581-590. [PMID: 25306219 PMCID: PMC4390416 DOI: 10.1016/j.it.2014.09.004] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 09/05/2014] [Accepted: 09/09/2014] [Indexed: 01/09/2023]
Abstract
As the key cellular effectors of adaptive immunity, T and B lymphocytes utilize specialized receptors to recognize, respond to, and neutralize a diverse array of extrinsic threats. These receptors (immunoglobulins in B lymphocytes, T cell receptors in T lymphocytes) are incredibly variable, the products of specialized genetic diversification mechanisms that generate complex lymphocyte repertoires with extensive collections of antigen specificities. Recent advances in high throughput sequencing (HTS) technologies have transformed our ability to examine antigen receptor repertoires at single nucleotide, and more recently, single cell, resolution. Here we review current approaches to examining antigen receptor repertoires by HTS, and discuss inherent biological and technical challenges. We further describe emerging applications of this powerful methodology for exploring the adaptive immune system.
Collapse
Affiliation(s)
| | - Brad R Rosenberg
- The Rockefeller University, New York, NY, USA; John C. Whitehead Presidential Fellows Program, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
41
|
Assessing T cell clonal size distribution: a non-parametric approach. PLoS One 2014; 9:e108658. [PMID: 25275470 PMCID: PMC4183510 DOI: 10.1371/journal.pone.0108658] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 08/25/2014] [Indexed: 11/24/2022] Open
Abstract
Clonal structure of the human peripheral T-cell repertoire is shaped by a number of homeostatic mechanisms, including antigen presentation, cytokine and cell regulation. Its accurate tuning leads to a remarkable ability to combat pathogens in all their variety, while systemic failures may lead to severe consequences like autoimmune diseases. Here we develop and make use of a non-parametric statistical approach to assess T cell clonal size distributions from recent next generation sequencing data. For 41 healthy individuals and a patient with ankylosing spondylitis, who undergone treatment, we invariably find power law scaling over several decades and for the first time calculate quantitatively meaningful values of decay exponent. It has proved to be much the same among healthy donors, significantly different for an autoimmune patient before the therapy, and converging towards a typical value afterwards. We discuss implications of the findings for theoretical understanding and mathematical modeling of adaptive immunity.
Collapse
|
42
|
Towards error-free profiling of immune repertoires. Nat Methods 2014; 11:653-5. [DOI: 10.1038/nmeth.2960] [Citation(s) in RCA: 317] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 04/09/2014] [Indexed: 01/17/2023]
|
43
|
Distinctive properties of identical twins' TCR repertoires revealed by high-throughput sequencing. Proc Natl Acad Sci U S A 2014; 111:5980-5. [PMID: 24711416 DOI: 10.1073/pnas.1319389111] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Adaptive immunity in humans is provided by hypervariable Ig-like molecules on the surface of B and T cells. The final set of these molecules in each organism is formed under the influence of two forces: individual genetic traits and the environment, which includes the diverse spectra of alien and self-antigens. Here we assess the impact of individual genetic factors on the formation of the adaptive immunity by analyzing the T-cell receptor (TCR) repertoires of three pairs of monozygous twins by next-generation sequencing. Surprisingly, we found that an overlap between the TCR repertoires of monozygous twins is similar to an overlap between the TCR repertoires of nonrelated individuals. However, the number of identical complementary determining region 3 sequences in two individuals is significantly increased for twin pairs in the fraction of highly abundant TCR molecules, which is enriched by the antigen-experienced T cells. We found that the initial recruitment of particular TCR V genes for recombination and subsequent selection in the thymus is strictly determined by individual genetic factors. J genes of TCRs are selected randomly for recombination; however, the subsequent selection in the thymus gives preference to some α but not β J segments. These findings provide a deeper insight into the mechanism of TCR repertoire generation.
Collapse
|
44
|
Muraro PA, Robins H, Malhotra S, Howell M, Phippard D, Desmarais C, de Paula Alves Sousa A, Griffith LM, Lim N, Nash RA, Turka LA. T cell repertoire following autologous stem cell transplantation for multiple sclerosis. J Clin Invest 2014; 124:1168-72. [PMID: 24531550 DOI: 10.1172/jci71691] [Citation(s) in RCA: 203] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 12/13/2013] [Indexed: 12/21/2022] Open
Abstract
Autologous hematopoietic stem cell transplantation (HSCT) is commonly employed for hematologic and non-hematologic malignancies. In clinical trials, HSCT has been evaluated for severe autoimmunity as a method to "reset" the immune system and produce a new, non-autoimmune repertoire. While the feasibility of eliminating the vast majority of mature T cells is well established, accurate and quantitative determination of the relationship of regenerated T cells to the baseline repertoire has been difficult to assess. Here, in a phase II study of HSCT for poor-prognosis multiple sclerosis, we used high-throughput deep TCRβ chain sequencing to assess millions of individual TCRs per patient sample. We found that HSCT has distinctive effects on CD4+ and CD8+ T cell repertoires. In CD4+ T cells, dominant TCR clones present before treatment were undetectable following reconstitution, and patients largely developed a new repertoire. In contrast, dominant CD8+ clones were not effectively removed, and the reconstituted CD8+ T cell repertoire was created by clonal expansion of cells present before treatment. Importantly, patients who failed to respond to treatment had less diversity in their T cell repertoire early during the reconstitution process. These results demonstrate that TCR characterization during immunomodulatory treatment is both feasible and informative, and may enable monitoring of pathogenic or protective T cell clones following HSCT and cellular therapies.
Collapse
|
45
|
Britanova OV, Putintseva EV, Shugay M, Merzlyak EM, Turchaninova MA, Staroverov DB, Bolotin DA, Lukyanov S, Bogdanova EA, Mamedov IZ, Lebedev YB, Chudakov DM. Age-related decrease in TCR repertoire diversity measured with deep and normalized sequence profiling. THE JOURNAL OF IMMUNOLOGY 2014; 192:2689-98. [PMID: 24510963 DOI: 10.4049/jimmunol.1302064] [Citation(s) in RCA: 333] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The decrease of TCR diversity with aging has never been studied by direct methods. In this study, we combined high-throughput Illumina sequencing with unique cDNA molecular identifier technology to achieve deep and precisely normalized profiling of TCR β repertoires in 39 healthy donors aged 6-90 y. We demonstrate that TCR β diversity per 10(6) T cells decreases roughly linearly with age, with significant reduction already apparent by age 40. The percentage of naive T cells showed a strong correlation with measured TCR diversity and decreased linearly up to age 70. Remarkably, the oldest group (average age 82 y) was characterized by a higher percentage of naive CD4(+) T cells, lower abundance of expanded clones, and increased TCR diversity compared with the previous age group (average age 62 y), suggesting the influence of age selection and association of these three related parameters with longevity. Interestingly, cross-analysis of individual TCR β repertoires revealed a set >10,000 of the most representative public TCR β clonotypes, whose abundance among the top 100,000 clones correlated with TCR diversity and decreased with aging.
Collapse
Affiliation(s)
- Olga V Britanova
- Shemiakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, 117997 Moscow, Russia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Thomas N, Heather J, Pollara G, Simpson N, Matjeka T, Shawe-Taylor J, Noursadeghi M, Chain B. The immune system as a biomonitor: explorations in innate and adaptive immunity. Interface Focus 2014; 3:20120099. [PMID: 24427535 DOI: 10.1098/rsfs.2012.0099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The human immune system has a highly complex, multi-layered structure which has evolved to detect and respond to changes in the internal microenvironment of the body. Recognition occurs at the molecular or submolecular scale, via classical reversible receptor-ligand interactions, and can lead to a response with great sensitivity and speed. Remarkably, recognition is coupled to memory, such that responses are modulated by events which occurred years or even decades before. Although the immune system in general responds differently and more vigorously to stimuli entering the body from the outside (e.g. infections), this is an emergent property of the system: many of the recognition molecules themselves have no inherent bias towards external stimuli (non-self) but also bind targets found within the body (self). It is quite clear that the immune response registers pathophysiological changes in general. Cancer, wounding and chronic tissue injury are some obvious examples. Against this background, the immune system 'state' tracks the internal processes of the body, and is likely to encode information regarding both current and past disease processes. Moreover, the distributed nature of most immune responses (e.g. typically involving lymphoid tissue, non-lymphoid tissue, bone marrow, blood, extracellular interstitial spaces, etc.) means that many of the changes associated with immune responses are manifested systemically, and specifically can be detected in blood. This provides a very convenient route to sampling immune cells. We consider two different and complementary ways of querying the human immune 'state' using high-dimensional genomic screening methodologies, and discuss the potentials of these approaches and some of the technological and computational challenges to be overcome.
Collapse
Affiliation(s)
- Niclas Thomas
- CoMPLEX, University College London, Gower Street, London WC1E 6BT, UK
| | - James Heather
- Division of Infection and Immunity, University College London, Gower Street, London WC1E 6BT, UK
| | - Gabriel Pollara
- Division of Infection and Immunity, University College London, Gower Street, London WC1E 6BT, UK
| | - Nandi Simpson
- Division of Infection and Immunity, University College London, Gower Street, London WC1E 6BT, UK
| | - Theres Matjeka
- Division of Infection and Immunity, University College London, Gower Street, London WC1E 6BT, UK
| | - John Shawe-Taylor
- Department of Computer Science, University College London, Gower Street, London WC1E 6BT, UK
| | - Mahdad Noursadeghi
- Division of Infection and Immunity, University College London, Gower Street, London WC1E 6BT, UK
| | - Benjamin Chain
- Division of Infection and Immunity, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
47
|
Putintseva EV, Britanova OV, Staroverov DB, Merzlyak EM, Turchaninova MA, Shugay M, Bolotin DA, Pogorelyy MV, Mamedov IZ, Bobrynina V, Maschan M, Lebedev YB, Chudakov DM. Mother and child T cell receptor repertoires: deep profiling study. Front Immunol 2013; 4:463. [PMID: 24400004 PMCID: PMC3872299 DOI: 10.3389/fimmu.2013.00463] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 12/03/2013] [Indexed: 12/03/2022] Open
Abstract
The relationship between maternal and child immunity has been actively studied in the context of complications during pregnancy, autoimmune diseases, and haploidentical transplantation of hematopoietic stem cells and solid organs. Here, we have for the first time used high-throughput Illumina HiSeq sequencing to perform deep quantitative profiling of T cell receptor (TCR) repertoires for peripheral blood samples of three mothers and their six children. Advanced technology allowed accurate identification of 5 × 105 to 2 × 106 TCR beta clonotypes per individual. We performed comparative analysis of these TCR repertoires with the aim of revealing characteristic features that distinguish related mother-child pairs, such as relative TCR beta variable segment usage frequency and relative overlap of TCR beta complementarity-determining region 3 (CDR3) repertoires. We show that thymic selection essentially and similarly shapes the initial output of the TCR recombination machinery in both related and unrelated pairs, with minor effect from inherited differences. The achieved depth of TCR profiling also allowed us to test the hypothesis that mature T cells transferred across the placenta during pregnancy can expand and persist as functional microchimeric clones in their new host, using characteristic TCR beta CDR3 variants as clonal identifiers.
Collapse
Affiliation(s)
- Ekaterina V Putintseva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science , Moscow , Russia
| | - Olga V Britanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science , Moscow , Russia
| | - Dmitriy B Staroverov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science , Moscow , Russia
| | - Ekaterina M Merzlyak
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science , Moscow , Russia
| | - Maria A Turchaninova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science , Moscow , Russia
| | - Mikhail Shugay
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science , Moscow , Russia
| | - Dmitriy A Bolotin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science , Moscow , Russia
| | - Mikhail V Pogorelyy
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science , Moscow , Russia
| | - Ilgar Z Mamedov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science , Moscow , Russia
| | - Vlasta Bobrynina
- Federal Scientific Clinical Center of Pediatric Hematology, Oncology and Immunology , Moscow , Russia
| | - Mikhail Maschan
- Federal Scientific Clinical Center of Pediatric Hematology, Oncology and Immunology , Moscow , Russia
| | - Yuri B Lebedev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science , Moscow , Russia
| | - Dmitriy M Chudakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science , Moscow , Russia ; Central European Institute of Technology (CEITEC), Masaryk University , Brno , Czech Republic
| |
Collapse
|
48
|
Mamedov IZ, Britanova OV, Zvyagin IV, Turchaninova MA, Bolotin DA, Putintseva EV, Lebedev YB, Chudakov DM. Preparing unbiased T-cell receptor and antibody cDNA libraries for the deep next generation sequencing profiling. Front Immunol 2013; 4:456. [PMID: 24391640 PMCID: PMC3870325 DOI: 10.3389/fimmu.2013.00456] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 11/30/2013] [Indexed: 11/25/2022] Open
Abstract
High-throughput sequencing has the power to reveal the nature of adaptive immunity as represented by the full complexity of T-cell receptor (TCR) and antibody (IG) repertoires, but is at present severely compromised by the quantitative bias, bottlenecks, and accumulated errors that inevitably occur in the course of library preparation and sequencing. Here we report an optimized protocol for the unbiased preparation of TCR and IG cDNA libraries for high-throughput sequencing, starting from thousands or millions of live cells in an investigated sample. Critical points to control are revealed, along with tips that allow researchers to minimize quantitative bias, accumulated errors, and cross-sample contamination at each stage, and to enhance the subsequent bioinformatic analysis. The protocol is simple, reliable, and can be performed in 1–2 days.
Collapse
Affiliation(s)
- Ilgar Z Mamedov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science , Moscow , Russia ; CEITEC, Masaryk University , Brno , Czech Republic
| | - Olga V Britanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science , Moscow , Russia
| | - Ivan V Zvyagin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science , Moscow , Russia ; CEITEC, Masaryk University , Brno , Czech Republic
| | - Maria A Turchaninova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science , Moscow , Russia
| | - Dmitriy A Bolotin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science , Moscow , Russia
| | - Ekaterina V Putintseva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science , Moscow , Russia
| | - Yuriy B Lebedev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science , Moscow , Russia
| | - Dmitriy M Chudakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science , Moscow , Russia ; CEITEC, Masaryk University , Brno , Czech Republic
| |
Collapse
|
49
|
Woodsworth DJ, Castellarin M, Holt RA. Sequence analysis of T-cell repertoires in health and disease. Genome Med 2013; 5:98. [PMID: 24172704 PMCID: PMC3979016 DOI: 10.1186/gm502] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
T-cell antigen receptor (TCR) variability enables the cellular immune system to discriminate between self and non-self. High-throughput TCR sequencing (TCR-seq) involves the use of next generation sequencing platforms to generate large numbers of short DNA sequences covering key regions of the TCR coding sequence, which enables quantification of T-cell diversity at unprecedented resolution. TCR-seq studies have provided new insights into the healthy human T-cell repertoire, such as revised estimates of repertoire size and the understanding that TCR specificities are shared among individuals more frequently than previously anticipated. In the context of disease, TCR-seq has been instrumental in characterizing the recovery of the immune repertoire after hematopoietic stem cell transplantation, and the method has been used to develop biomarkers and diagnostics for various infectious and neoplastic diseases. However, T-cell repertoire sequencing is still in its infancy. It is expected that maturation of the field will involve the introduction of improved, standardized tools for data handling, deposition and statistical analysis, as well as the emergence of new and equivalently large-scale technologies for T-cell functional analysis and antigen discovery. In this review, we introduce this nascent field and TCR-seq methodology, we discuss recent insights into healthy and diseased TCR repertoires, and we examine the applications and challenges for TCR-seq in the clinic.
Collapse
Affiliation(s)
- Daniel J Woodsworth
- BC Cancer Agency, Michael Smith Genome Sciences Centre, Vancouver, British Columbia V5Z 1L3, Canada
- Genome Sciences & Technology Program, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Mauro Castellarin
- BC Cancer Agency, Michael Smith Genome Sciences Centre, Vancouver, British Columbia V5Z 1L3, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Robert A Holt
- BC Cancer Agency, Michael Smith Genome Sciences Centre, Vancouver, British Columbia V5Z 1L3, Canada
- Genome Sciences & Technology Program, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
50
|
Estorninho M, Gibson VB, Kronenberg-Versteeg D, Liu YF, Ni C, Cerosaletti K, Peakman M. A Novel Approach to Tracking Antigen-Experienced CD4 T Cells into Functional Compartments via Tandem Deep and Shallow TCR Clonotyping. THE JOURNAL OF IMMUNOLOGY 2013; 191:5430-40. [DOI: 10.4049/jimmunol.1300622] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|