1
|
Carias AM, Anderson M, McRaven M, Allen E, Fought AJ, Hope TJ. Transcytosis as a Mechanism of HIV-1 Entry into Columnar Epithelial Explants of the Female Reproductive Tract. AIDS Res Hum Retroviruses 2025; 41:167-173. [PMID: 39665594 PMCID: PMC11971551 DOI: 10.1089/aid.2024.0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024] Open
Abstract
During male-to-female transmission, HIV-1 must cross the mucosal epithelium of the female reproductive tract to gain access to underlying target cells. Previously, we demonstrated that HIV-1 can penetrate intact columnar and squamous genital epithelia in both ex vivo and in vivo systems. We found that the virus enters the squamous epithelium via a diffusion-based mechanism, but the mechanism of entry in columnar epithelium remained elusive. Using a similar set of approaches, we now demonstrate that HIV enters the endocervical simple columnar epithelium via endocytosis. By exposing human endocervical explant tissue to small molecule endocytosis inhibitors prior to virus exposure, we show that virus penetration into the simple columnar barrier is impeded. These data suggest a transcytosis-based mechanism for HIV-1 penetration into the endocervical columnar barrier.
Collapse
Affiliation(s)
- Ann M. Carias
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Meegan Anderson
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Michael McRaven
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Edward Allen
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Angela J. Fought
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, Minnesota, USA
| | - Thomas J. Hope
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
2
|
Hu K, O’Neil TR, Baharlou H, Austin PJ, Karrasch JF, Sarkawt L, Li Y, Bertram KM, Cunningham AL, Patrick E, Harman AN. The spatial biology of HIV infection. PLoS Pathog 2025; 21:e1012888. [PMID: 39854613 PMCID: PMC11760614 DOI: 10.1371/journal.ppat.1012888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025] Open
Abstract
HIV infection implicates a spectrum of tissues in the human body starting with viral transmission in the anogenital tract and subsequently persisting in lymphoid tissues and brain. Though studies using isolated cells have contributed significantly towards our understanding of HIV infection, the tissue microenvironment is characterised by a complex interplay of a range of factors, all of which can influence the course of infection but are otherwise missed in ex vivo studies. To address this knowledge gap, it is necessary to investigate the dynamics of infection and the host immune response in situ using imaging-based approaches. Over the last decade, emerging imaging techniques have continually redefined the limits of detection, both in terms of the scope and the scale of the targets. In doing so, this has opened up new questions that can be answered by in situ studies. This review discusses the high-dimensional imaging modalities that are now available and their application towards understanding the spatial biology of HIV infection.
Collapse
Affiliation(s)
- Kevin Hu
- The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Thomas R. O’Neil
- The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Heeva Baharlou
- The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Paul J. Austin
- The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Brain and Mind Centre, School of Medical of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Jackson F. Karrasch
- The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Brain and Mind Centre, School of Medical of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Lara Sarkawt
- The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Yuchen Li
- The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Kirstie M. Bertram
- The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Anthony L. Cunningham
- The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Ellis Patrick
- The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- School of Mathematics and Statistics, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Andrew N. Harman
- The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
3
|
Rader AG, Cloherty APM, Patel KS, Almandawi DDA, Pajkrt D, Wolthers KC, Sridhar A, van Piggelen S, Baaij LE, Schreurs RRCE, Ribeiro CMS. HIV-1 exploits LBPA-dependent intraepithelial trafficking for productive infection of human intestinal mucosa. PLoS Pathog 2024; 20:e1012714. [PMID: 39729509 DOI: 10.1371/journal.ppat.1012714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 11/01/2024] [Indexed: 12/29/2024] Open
Abstract
The gastrointestinal tract is a prominent portal of entry for HIV-1 during sexual or perinatal transmission, as well as a major site of HIV-1 persistence and replication. Elucidation of underlying mechanisms of intestinal HIV-1 infection are thus needed for the advancement of HIV-1 curative therapies. Here, we present a human 2D intestinal immuno-organoid system to model HIV-1 disease that recapitulates tissue compartmentalization and epithelial-immune cellular interactions. Our data demonstrate that apical exposure of intestinal epithelium to HIV-1 results in viral internalization, with subsequent basolateral shedding of replication-competent viruses, in a manner that is impervious to antiretroviral treatment. Incorporation of subepithelial dendritic cells resulted in HIV-1 luminal sampling and amplification of residual viral replication of lab-adapted and transmitted-founder (T/F) HIV-1 variants. Markedly, intraepithelial viral capture ensued an altered distribution of specialized endosomal pathways alongside durable sequestration of infectious HIV-1 within lysobisphosphatidic acid (LPBA)-rich vesicles. Therapeutic neutralization of LBPA-dependent trafficking limited productive HIV-1 infection, and thereby demonstrated the pivotal role of intraepithelial multivesicular endosomes as niches for virulent HIV-1 within the intestinal mucosa. Our study showcases the application of primary human 2D immune-competent organoid cultures in uncovering mechanisms of intestinal HIV-1 disease as well as a platform for preclinical antiviral drug discovery.
Collapse
Affiliation(s)
- Anusca G Rader
- Amsterdam UMC, location University of Amsterdam, Experimental Immunology, Amsterdam, The Netherlands
- Amsterdam institute for Immunology & Infectious Diseases, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology & Metabolism, Amsterdam, The Netherlands
| | - Alexandra P M Cloherty
- Amsterdam UMC, location University of Amsterdam, Experimental Immunology, Amsterdam, The Netherlands
- Amsterdam institute for Immunology & Infectious Diseases, Amsterdam, The Netherlands
| | - Kharishma S Patel
- Amsterdam UMC, location University of Amsterdam, Experimental Immunology, Amsterdam, The Netherlands
- Amsterdam institute for Immunology & Infectious Diseases, Amsterdam, The Netherlands
| | - Dima D A Almandawi
- Amsterdam UMC, location University of Amsterdam, Experimental Immunology, Amsterdam, The Netherlands
- Amsterdam institute for Immunology & Infectious Diseases, Amsterdam, The Netherlands
| | - Dasja Pajkrt
- Amsterdam UMC, location University of Amsterdam, Pediatric Infectious Diseases, Emma Children's Hospital, Amsterdam, The Netherlands
| | - Katja C Wolthers
- Amsterdam UMC, location University of Amsterdam, Medical Microbiology, Amsterdam, The Netherlands
| | - Adithya Sridhar
- Amsterdam UMC, location University of Amsterdam, Pediatric Infectious Diseases, Emma Children's Hospital, Amsterdam, The Netherlands
- Amsterdam UMC, location University of Amsterdam, Medical Microbiology, Amsterdam, The Netherlands
| | - Sterre van Piggelen
- Amsterdam UMC, location University of Amsterdam, Experimental Immunology, Amsterdam, The Netherlands
- Amsterdam institute for Immunology & Infectious Diseases, Amsterdam, The Netherlands
| | - Liselotte E Baaij
- Amsterdam UMC, location University of Amsterdam, Experimental Immunology, Amsterdam, The Netherlands
- Amsterdam institute for Immunology & Infectious Diseases, Amsterdam, The Netherlands
| | - Renée R C E Schreurs
- Amsterdam UMC, location University of Amsterdam, Experimental Immunology, Amsterdam, The Netherlands
- Amsterdam institute for Immunology & Infectious Diseases, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology & Metabolism, Amsterdam, The Netherlands
| | - Carla M S Ribeiro
- Amsterdam UMC, location University of Amsterdam, Experimental Immunology, Amsterdam, The Netherlands
- Amsterdam institute for Immunology & Infectious Diseases, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology & Metabolism, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Gordhan BG, Liebenberg D, Scarlatti G, Herrera C, Chiodi F, Martinson N, Fox J, Kana BD. Ex vivo challenge models for infectious diseases. Crit Rev Microbiol 2024; 50:785-804. [PMID: 37909097 DOI: 10.1080/1040841x.2023.2274855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 11/02/2023]
Abstract
Traditionally, molecular mechanisms of pathogenesis for infectious agents were studied in cell culture or animal models but have limitations on the extent to which the resulting data reflect natural infection in humans. The COVID-19 pandemic has highlighted the urgent need to rapidly develop laboratory models that enable the study of host-pathogen interactions, particularly the relative efficacy of preventive measures. Recently, human and animal ex vivo tissue challenge models have emerged as a promising avenue to study immune responses, screen potential therapies and triage vaccine candidates. This approach offers the opportunity to closely approximate human disease from the perspective of pathology and immune response. It has advantages compared to animal models which are expensive, lengthy and often require containment facilities. Herein, we summarize some recent advances in the development of ex vivo tissue challenge models for COVID-19, HIV-1 and other pathogens. We focus on the contribution of these models to enhancing knowledge of host-pathogen interactions, immune modulation, and their value in testing therapeutic agents. We further highlight the advantages and limitations of using ex vivo challenge models and briefly summarize how the use of organoids provides a useful advancement over current approaches. Collectively, these developments have enormous potential for the study of infectious diseases.
Collapse
Affiliation(s)
- Bhavna Gowan Gordhan
- Department of Science and Innovation/National Research Foundation Centre of Excellence for Biomedical TB Research, Faculty of Health Sciences, University of the Witwatersrand, National Health Laboratory Service, Johannesburg, South Africa
| | - Dale Liebenberg
- Department of Science and Innovation/National Research Foundation Centre of Excellence for Biomedical TB Research, Faculty of Health Sciences, University of the Witwatersrand, National Health Laboratory Service, Johannesburg, South Africa
| | - Gabriella Scarlatti
- Viral Evolution and Transmission Unit, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Carolina Herrera
- Department of Infectious Disease, Imperial College London, London, UK
| | - Francesca Chiodi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Neil Martinson
- Perinatal HIV Research Unit (PHRU), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Julie Fox
- Guys and St. Thomas' NHS Foundation Trust and King's College London, London, UK
| | - Bavesh Davandra Kana
- Department of Science and Innovation/National Research Foundation Centre of Excellence for Biomedical TB Research, Faculty of Health Sciences, University of the Witwatersrand, National Health Laboratory Service, Johannesburg, South Africa
| |
Collapse
|
5
|
Jiang J, Wang L, Li Q, Wang Y, Wang Z. HIV-1 gp120 amplifies astrocyte elevated gene-1 activity to compromise the integrity of the outer blood-retinal barrier. AIDS 2024; 38:779-789. [PMID: 38578957 DOI: 10.1097/qad.0000000000003844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
OBJECTIVE This study aims to investigate the functions and mechanistic pathways of Astrocyte Elevated Gene-1 (AEG-1) in the disruption of the blood-retinal barrier (BRB) caused by the HIV-1 envelope glycoprotein gp120. DESIGN We utilized ARPE-19 cells challenged with gp120 as our model system. METHODS Several analytical techniques were employed to decipher the intricate interactions at play. These included PCR, Western blot, and immunofluorescence assays for the molecular characterization, and transendothelial electrical resistance (TEER) measurements to evaluate barrier integrity. RESULTS We observed that AEG-1 expression was elevated, whereas the expression levels of tight junction proteins ZO-1, Occludin, and Claudin5 were downregulated in gp120-challenged cells. TEER measurements corroborated these findings, indicating barrier dysfunction. Additional mechanistic studies revealed that the activation of NFκB and MMP2/9 pathways mediated the AEG-1-induced barrier destabilization. Through the use of lentiviral vectors, we engineered cell lines with modulated AEG-1 expression levels. Silencing AEG-1 alleviated gp120-induced downregulation of tight junction proteins and barrier impairment while concurrently inhibiting the NFκB and MMP2/9 pathways. Conversely, overexpression of AEG-1 exacerbated these pathological changes, further compromising the integrity of the BRB. CONCLUSION Gp120 upregulates the expression of AEG-1 and activates the NFκB and MMP2/9 pathways. This in turn leads to the downregulation of tight junction proteins, resulting in the disruption of barrier function.
Collapse
Affiliation(s)
- Jing Jiang
- Department of Ophthalmology, Huashan Hospital, Fudan University, Shanghai, China
| | | | | | | | | |
Collapse
|
6
|
Harms M, Smith N, Han M, Groß R, von Maltitz P, Stürzel C, Ruiz-Blanco YB, Almeida-Hernández Y, Rodriguez-Alfonso A, Cathelin D, Caspar B, Tahar B, Sayettat S, Bekaddour N, Vanshylla K, Kleipass F, Wiese S, Ständker L, Klein F, Lagane B, Boonen A, Schols D, Benichou S, Sanchez-Garcia E, Herbeuval JP, Münch J. Spermine and spermidine bind CXCR4 and inhibit CXCR4- but not CCR5-tropic HIV-1 infection. SCIENCE ADVANCES 2023; 9:eadf8251. [PMID: 37406129 DOI: 10.1126/sciadv.adf8251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 06/01/2023] [Indexed: 07/07/2023]
Abstract
Semen is an important vector for sexual HIV-1 transmission. Although CXCR4-tropic (X4) HIV-1 may be present in semen, almost exclusively CCR5-tropic (R5) HIV-1 causes systemic infection after sexual intercourse. To identify factors that may limit sexual X4-HIV-1 transmission, we generated a seminal fluid-derived compound library and screened it for antiviral agents. We identified four adjacent fractions that blocked X4-HIV-1 but not R5-HIV-1 and found that they all contained spermine and spermidine, abundant polyamines in semen. We showed that spermine, which is present in semen at concentrations up to 14 mM, binds CXCR4 and selectively inhibits cell-free and cell-associated X4-HIV-1 infection of cell lines and primary target cells at micromolar concentrations. Our findings suggest that seminal spermine restricts sexual X4-HIV-1 transmission.
Collapse
Affiliation(s)
- Mirja Harms
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Nikaïa Smith
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
- CNRS UMR-8601, Université Paris Cité, 75006 Paris, France
- Institut Cochin, Inserm U1016, CNRS UMR8104, Université Paris-Cité, 75014 Paris, France
| | - Mingyu Han
- Institut Cochin, Inserm U1016, CNRS UMR8104, Université Paris-Cité, 75014 Paris, France
| | - Rüdiger Groß
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Pascal von Maltitz
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Christina Stürzel
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Yasser B Ruiz-Blanco
- Computational Biochemistry, Center of Medical Biotechnology, University of Duisburg-Essen, Universitätsstr. 2, 45141 Essen, Germany
| | - Yasser Almeida-Hernández
- Computational Bioengineering, Department of Biochemical and Chemical Engineering, Emil-Figge Str. 66., 44227 Dortmund, Germany
| | - Armando Rodriguez-Alfonso
- Core Facility Functional Peptidomics, Ulm University Medical Center, 89081 Ulm, Germany
- Core Unit Mass Spectrometry and Proteomics, Ulm University, 89081 Ulm, Germany
| | - Dominique Cathelin
- CNRS UMR-8601, Université Paris Cité, 75006 Paris, France
- Chemistry and Biology, Modeling and Immunology for Therapy (CBMIT), Paris, France
| | - Birgit Caspar
- CNRS UMR-8601, Université Paris Cité, 75006 Paris, France
- Chemistry and Biology, Modeling and Immunology for Therapy (CBMIT), Paris, France
| | - Bouceba Tahar
- Sorbonne University, CNRS, Institut de Biologie Paris-Seine (IBPS), Protein Engineering Platform, Molecular Interaction Service, F-75252 Paris, France
| | - Sophie Sayettat
- Institut Cochin, Inserm U1016, CNRS UMR8104, Université Paris-Cité, 75014 Paris, France
| | - Nassima Bekaddour
- CNRS UMR-8601, Université Paris Cité, 75006 Paris, France
- Chemistry and Biology, Modeling and Immunology for Therapy (CBMIT), Paris, France
| | - Kanika Vanshylla
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Franziska Kleipass
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Sebastian Wiese
- Core Unit Mass Spectrometry and Proteomics, Ulm University, 89081 Ulm, Germany
| | - Ludger Ständker
- Core Facility Functional Peptidomics, Ulm University Medical Center, 89081 Ulm, Germany
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
- German Center for Infection Research (DZIF), Partner site Bonn-Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Bernard Lagane
- Infinity, Université de Toulouse, CNRS, INSERM, Toulouse, France
| | - Arnaud Boonen
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Herestraat 49, P.O. Box 1030, 3000 Leuven, Belgium
| | - Dominique Schols
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Herestraat 49, P.O. Box 1030, 3000 Leuven, Belgium
| | - Serge Benichou
- Institut Cochin, Inserm U1016, CNRS UMR8104, Université Paris-Cité, 75014 Paris, France
| | - Elsa Sanchez-Garcia
- Computational Biochemistry, Center of Medical Biotechnology, University of Duisburg-Essen, Universitätsstr. 2, 45141 Essen, Germany
- Computational Bioengineering, Department of Biochemical and Chemical Engineering, Emil-Figge Str. 66., 44227 Dortmund, Germany
| | - Jean-Philippe Herbeuval
- CNRS UMR-8601, Université Paris Cité, 75006 Paris, France
- Chemistry and Biology, Modeling and Immunology for Therapy (CBMIT), Paris, France
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| |
Collapse
|
7
|
Baratella M, Iannone V, Cavarelli M, Foglieni C, Viganò P, Moog C, Elmore U, Nozza S, Alfano M, Salonia A, Dispinseri S, Scarlatti G. Human seminal plasma stimulates the migration of CD11c+ mononuclear phagocytes to the apical side of the colonic epithelium without altering the junctional complexes in an ex vivo human intestinal model. Front Immunol 2023; 14:1133886. [PMID: 37033941 PMCID: PMC10073423 DOI: 10.3389/fimmu.2023.1133886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/02/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction Human immunodeficiency virus type 1 (HIV) transmission mostly occurs through the genital and intestinal mucosae. Although HIV-1 transmission has been extensively investigated, gaps remain in understanding the initial steps of HIV entry through the colonic mucosa. We previously showed that HIV can selectively trigger mononuclear phagocytes (MNP) to migrate within colonic epithelial cells to sample virions. Mucosal exposure to human seminal plasma (HSP), rich in pro- and anti-inflammatory cytokines, chemokines and growth factors, may as well induce alterations of the colonic mucosa and recruit immune cells, hence, affecting pathogen sampling and transmission. Methods Here, we studied the role of HSP on the paracellular intestinal permeability by analyzing the distribution of two proteins known to play a key role in controlling the intestinal barrier integrity, namely the tight junctions-associated junctional adhesion molecule (JAM-A) and the adherents junction associated protein E-cadherin (E-CAD), by immunofluorescence and confocal microscopy. Also, we evaluated if HSP promotes the recruitment of MNP cells, specifically, the CD11c and CD64 positive MNPs, to the apical side of the human colonic mucosa. At this scope, HSP of HIV-infected and uninfected individuals with known fertility status was tested for cytokines, chemokines and growth factors concentration and used in an ex vivo polarized colonic tissue culture system to mimic as closely as possible the physiological process. Results HSP showed statistically significant differences in cytokines and chemokines concentrations between the three groups of donors, i.e. HIV infected, or uninfected fertile or randomly identified. Nevertheless, we showed that in the ex vivo tissue culture HSP in general, neither affected the morphological structure of the colonic mucosa nor modulated the paracellular intestinal permeability. Interestingly, CD11c+ MNP cells migrated to the apical surface of the colonic epithelium regardless, if incubated with HIV-infected or -uninfected HSPs, while CD64+ MNP cells, did not change their distribution within the colonic mucosa. Discussion In conclusion, even if HSP did not perturb the integrity of the human colonic mucosa, it affected the migration of a specific subset of MNPs that express CD11c towards the apical side of the colonic mucosa, which in turn may be involved in pathogen sampling.
Collapse
Affiliation(s)
- Marco Baratella
- Viral Evolution and Transmission Group, Division of Immunology, Transplantation, and Infectious Diseases, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
- *Correspondence: Marco Baratella,
| | - Valeria Iannone
- Viral Evolution and Transmission Group, Division of Immunology, Transplantation, and Infectious Diseases, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - Mariangela Cavarelli
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases, Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Université Paris-Saclay, Inserm, Paris, France
| | - Chiara Foglieni
- Cardiovascular Research Center, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - Paola Viganò
- Reproductive Sciences Laboratory, Gynecology/Obstetrics Unit, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - Christiane Moog
- INSERM U1109, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Ugo Elmore
- Department of Gastrointestinal Surgery, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
- University Vita-Salute San Raffaele, Milan, Italy
| | - Silvia Nozza
- Division of Infectious Diseases, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - Massimo Alfano
- Division of Experimental Oncology, Unit of Urology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - Andrea Salonia
- University Vita-Salute San Raffaele, Milan, Italy
- Division of Experimental Oncology, Unit of Urology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - Stefania Dispinseri
- Viral Evolution and Transmission Group, Division of Immunology, Transplantation, and Infectious Diseases, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - Gabriella Scarlatti
- Viral Evolution and Transmission Group, Division of Immunology, Transplantation, and Infectious Diseases, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
8
|
Karim QA, Archary D, Barré-Sinoussi F, Broliden K, Cabrera C, Chiodi F, Fidler SJ, Gengiah TN, Herrera C, Kharsany ABM, Liebenberg LJP, Mahomed S, Menu E, Moog C, Scarlatti G, Seddiki N, Sivro A, Cavarelli M. Women for science and science for women: Gaps, challenges and opportunities towards optimizing pre-exposure prophylaxis for HIV-1 prevention. Front Immunol 2022; 13:1055042. [PMID: 36561760 PMCID: PMC9763292 DOI: 10.3389/fimmu.2022.1055042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
Preventing new HIV infections remains a global challenge. Young women continue to bear a disproportionate burden of infection. Oral pre-exposure prophylaxis (PrEP), offers a novel women-initiated prevention technology and PrEP trials completed to date underscore the importance of their inclusion early in trials evaluating new HIV PrEP technologies. Data from completed topical and systemic PrEP trials highlight the role of gender specific physiological and social factors that impact PrEP uptake, adherence and efficacy. Here we review the past and current developments of HIV-1 prevention options for women with special focus on PrEP considering the diverse factors that can impact PrEP efficacy. Furthermore, we highlight the importance of inclusion of female scientists, clinicians, and community advocates in scientific efforts to further improve HIV prevention strategies.
Collapse
Affiliation(s)
- Quarraisha Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Doris Duke Medical Research Institute (2Floor), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Derseree Archary
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Doris Duke Medical Research Institute (2Floor), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | | | - Kristina Broliden
- Department of Medicine Solna, Division of Infectious Diseases, Karolinska Institutet, Department of Infectious Diseases, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Cecilia Cabrera
- AIDS Research Institute IrsiCaixa, Institut de Recerca en Ciències de la Salut Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Francesca Chiodi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Sarah J. Fidler
- Department of Infectious Disease, Faculty of Medicine, Imperial College London UK and Imperial College NIHR BRC, London, United Kingdom
| | - Tanuja N. Gengiah
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Doris Duke Medical Research Institute (2Floor), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Carolina Herrera
- Department of Infectious Disease, Section of Virology, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Ayesha B. M. Kharsany
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Doris Duke Medical Research Institute (2Floor), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Lenine J. P. Liebenberg
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Doris Duke Medical Research Institute (2Floor), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Sharana Mahomed
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Doris Duke Medical Research Institute (2Floor), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Elisabeth Menu
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
- MISTIC Group, Department of Virology, Institut Pasteur, Paris, France
| | - Christiane Moog
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Gabriella Scarlatti
- Viral Evolution and Transmission Unit, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Nabila Seddiki
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Aida Sivro
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Doris Duke Medical Research Institute (2Floor), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
- JC Wilt Infectious Disease Research Centre, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Mariangela Cavarelli
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| |
Collapse
|
9
|
Baharlou H, Canete N, Vine EE, Hu K, Yuan D, Sandgren KJ, Bertram KM, Nasr N, Rhodes JW, Gosselink MP, Di Re A, Reza F, Ctercteko G, Pathma-Nathan N, Collins G, Toh J, Patrick E, Haniffa MA, Estes JD, Byrne SN, Cunningham AL, Harman AN. An in situ analysis pipeline for initial host-pathogen interactions reveals signatures of human colorectal HIV transmission. Cell Rep 2022; 40:111385. [PMID: 36130503 DOI: 10.1016/j.celrep.2022.111385] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/07/2022] [Accepted: 08/29/2022] [Indexed: 12/01/2022] Open
Abstract
The initial immune response to HIV determines transmission. However, due to technical limitations we still do not have a comparative map of early mucosal transmission events. By combining RNAscope, cyclic immunofluorescence, and image analysis tools, we quantify HIV transmission signatures in intact human colorectal explants within 2 h of topical exposure. We map HIV enrichment to mucosal dendritic cells (DCs) and submucosal macrophages, but not CD4+ T cells, the primary targets of downstream infection. HIV+ DCs accumulate near and within lymphoid aggregates, which act as early sanctuaries of high viral titers while facilitating HIV passage to the submucosa. Finally, HIV entry induces recruitment and clustering of target cells, facilitating DC- and macrophage-mediated HIV transfer and enhanced infection of CD4+ T cells. These data demonstrate a rapid response to HIV structured to maximize the likelihood of mucosal infection and provide a framework for in situ studies of host-pathogen interactions and immune-mediated pathologies.
Collapse
Affiliation(s)
- Heeva Baharlou
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health Sydney, Sydney, NSW, Australia.
| | - Nicolas Canete
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health Sydney, Sydney, NSW, Australia
| | - Erica E Vine
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health Sydney, Sydney, NSW, Australia
| | - Kevin Hu
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health Sydney, Sydney, NSW, Australia
| | - Di Yuan
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health Sydney, Sydney, NSW, Australia
| | - Kerrie J Sandgren
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health Sydney, Sydney, NSW, Australia
| | - Kirstie M Bertram
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health Sydney, Sydney, NSW, Australia
| | - Najla Nasr
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health Sydney, Sydney, NSW, Australia
| | - Jake W Rhodes
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health Sydney, Sydney, NSW, Australia
| | - Martijn P Gosselink
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; Department of Colorectal Surgery, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Angelina Di Re
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; Department of Colorectal Surgery, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Faizur Reza
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; Department of Colorectal Surgery, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Grahame Ctercteko
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; Department of Colorectal Surgery, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Nimalan Pathma-Nathan
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; Department of Colorectal Surgery, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Geoff Collins
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; Department of Colorectal Surgery, Westmead Hospital, Westmead, NSW 2145, Australia
| | - James Toh
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; Department of Colorectal Surgery, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Ellis Patrick
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; The University of Sydney, School of Maths and Statistics, Faculty of Science, Sydney, NSW, Australia
| | - Muzlifah A Haniffa
- Biosciences Institute, The University of Newcastle, Newcastle upon Tyne, UK; Wellcome Sanger Institute, Hinxton, UK; Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Jacob D Estes
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, OR, USA; Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Scott N Byrne
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health Sydney, Sydney, NSW, Australia
| | - Anthony L Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health Sydney, Sydney, NSW, Australia
| | - Andrew N Harman
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health Sydney, Sydney, NSW, Australia.
| |
Collapse
|
10
|
Cavarelli M, Foglieni C, Hantour N, Schorn T, Ferrazzano A, Dispinseri S, Desjardins D, Elmore U, Dereuddre-Bosquet N, Scarlatti G, Le Grand R. Identification of CX3CR1+ mononuclear phagocyte subsets involved in HIV-1 and SIV colorectal transmission. iScience 2022; 25:104346. [PMID: 35601921 PMCID: PMC9117554 DOI: 10.1016/j.isci.2022.104346] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/17/2022] [Accepted: 04/28/2022] [Indexed: 11/24/2022] Open
Abstract
The difficulty to unambiguously identify the various subsets of mononuclear phagocytes (MNPs) of the intestinal lamina propria has hindered our understanding of the initial events occurring after mucosal exposure to HIV-1. Here, we compared the composition and function of MNP subsets at steady-state and following ex vivo and in vivo viral exposure in human and macaque colorectal tissues. Combined evaluation of CD11c, CD64, CD103, and CX3CR1 expression allowed to differentiate lamina propria MNPs subsets common to both species. Among them, CD11c+ CX3CR1+ cells expressing CCR5 migrated inside the epithelium following ex vivo and in vivo exposure of colonic tissue to HIV-1 or SIV. In addition, the predominant population of CX3CR1high macrophages present at steady-state partially shifted to CX3CR1low macrophages as early as three days following in vivo SIV rectal challenge of macaques. Our analysis identifies CX3CR1+ MNPs as novel players in the early events of HIV-1 and SIV colorectal transmission. Human and macaque intestinal MNPs show similar phenotype, localization, and function CX3CR1+ MNPs migrate inside the intestinal epithelium to sample HIV/SIV SIV infection alters the balance between CX3CR1high and CX3CR1low Mφs CX3CR1+ Mφs contribute to the breakdown of the intestinal barrier in HIV/SIV infection
Collapse
|
11
|
Impact of Caveolin-Mediated Endocytosis on the Trafficking of HIV within the Colonic Barrier. J Virol 2022; 96:e0020222. [PMID: 35297667 PMCID: PMC9006927 DOI: 10.1128/jvi.00202-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the United States, most new cases of human immunodeficiency virus (HIV) belong to the at-risk group of gay and bisexual men. Developing therapies to reverse viral latency and prevent spread is paramount for the HIV cure agenda. In gay and bisexual men, a major, yet poorly characterized, route of HIV entry is via transport across the colonic epithelial barrier. While colonic tears and paracellular transport contribute to infection, we hypothesize that HIV entry through the colonic mucosa proceeds via a process known as transcytosis, involving (i) virion binding to the apical surface of the colonic epithelium, (ii) viral endocytosis, (iii) transport of virions across the cell, and (iv) HIV release from the basolateral membrane. Using Caco-2 colonic epithelial cells plated as a polarized monolayer in transwells, we characterized the mechanism of HIV transport. After exposing the monolayer to HIV apically, reverse transcription quantitative PCR (RT-qPCR) of the viral genome present in the basolateral chamber revealed that transport is dose dependent, cooperative, and inefficient, with released virus first detectable at 12 h. Inefficiency may be associated with >50% decline in detectable intracellular virus that correlates temporally with increased association of the virion with lysosomal-associated membrane protein 1 (LAMP-1+) endosomes. Microscopy revealed green fluorescent protein (GFP)-labeled HIV within the confines of the epithelial monolayer, with no virus detectable between cells, suggesting that viral transport is transcellular. Treatment of the monolayer with endocytosis inhibitors, cholesterol reducing agents, and small interfering RNA (siRNA) to caveolin showed that viral endocytosis is mediated by caveolin-coated endosomes contained in lipid rafts. These results indicate that HIV transport across the intestinal epithelial barrier via transcytosis is a viable mechanism for viral spread and a potential therapeutic target. IMPORTANCE Despite the success of combination antiretroviral therapy in suppressing HIV replication and the emergence and effectiveness of PrEP-based prevention strategies, in 2018, 37,968 people in the United States received a new HIV diagnosis, accompanied by 15,820 deaths. While the annual number of new diagnoses decreased 7% from 2014 to 2018, 14% of people with HIV did not know they were infected. Gay and bisexual men accounted for 69% of all HIV diagnoses and 83% of diagnoses among males. Due to the scope of the HIV epidemic, determining and understanding precise routes of infection and the mechanisms of viral spread are paramount to ending the epidemic. Since transcellular transport of HIV across an intact colonic epithelial barrier is poorly understood, our overall goal is to characterize the molecular events involved in HIV transcytosis across the intestinal epithelial cell.
Collapse
|
12
|
Detecting Selection in the HIV-1 Genome during Sexual Transmission Events. Viruses 2022; 14:v14020406. [PMID: 35215999 PMCID: PMC8876189 DOI: 10.3390/v14020406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/04/2022] [Accepted: 02/11/2022] [Indexed: 01/27/2023] Open
Abstract
Little is known about whether and how variation in the HIV-1 genome affects its transmissibility. Assessing which genomic features of HIV-1 are under positive or negative selection during transmission is challenging, because very few virus particles are typically transmitted, and random genetic drift can dilute genetic signals in the recipient virus population. We analyzed 30 transmitter–recipient pairs from the Zurich Primary HIV Infection Study and the Swiss HIV Cohort Study using near full-length HIV-1 genomes. We developed a new statistical test to detect selection during transmission, called Selection Test in Transmission (SeTesT), based on comparing the transmitter and recipient virus population and accounting for the transmission bottleneck. We performed extensive simulations and found that sensitivity of detecting selection during transmission is limited by the strong population bottleneck of few transmitted virions. When pooling individual test results across patients, we found two candidate HIV-1 genomic features for affecting transmission, namely amino acid positions 3 and 18 of Vpu, which were significant before but not after correction for multiple testing. In summary, SeTesT provides a general framework for detecting selection based on genomic sequencing data of transmitted viruses. Our study shows that a higher number of transmitter–recipient pairs is required to improve sensitivity of detecting selection.
Collapse
|
13
|
HIV transmitting mononuclear phagocytes; integrating the old and new. Mucosal Immunol 2022; 15:542-550. [PMID: 35173293 PMCID: PMC9259493 DOI: 10.1038/s41385-022-00492-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023]
Abstract
In tissue, mononuclear phagocytes (MNP) are comprised of Langerhans cells, dendritic cells, macrophages and monocyte-derived cells. They are the first immune cells to encounter HIV during transmission and transmit the virus to CD4 T cells as a consequence of their antigen presenting cell function. To understand the role these cells play in transmission, their phenotypic and functional characterisation is important. With advancements in high parameter single cell technologies, new MNPs subsets are continuously being discovered and their definition and classification is in a state of flux. This has important implications for our knowledge of HIV transmission, which requires a deeper understanding to design effective vaccines and better blocking strategies. Here we review the historical research of the role MNPs play in HIV transmission up to the present day and revaluate these studies in the context of our most recent understandings of the MNP system.
Collapse
|
14
|
Leukocytospermia induces intraepithelial recruitment of dendritic cells and increases SIV replication in colorectal tissue explants. Commun Biol 2021; 4:861. [PMID: 34253821 PMCID: PMC8275775 DOI: 10.1038/s42003-021-02383-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 06/21/2021] [Indexed: 02/06/2023] Open
Abstract
Mucosal exposure to infected semen accounts for the majority of HIV-1 transmission events, with rectal intercourse being the route with the highest estimated risk of transmission. Yet, the impact of semen inflammation on colorectal HIV-1 transmission has never been addressed. Here we use cynomolgus macaques colorectal tissue explants to explore the effect of leukocytospermia, indicative of male genital tract inflammation, on SIVmac251 infection. We show that leukocytospermic seminal plasma (LSP) has significantly higher concentration of a number of pro-inflammatory molecules compared to normal seminal plasma (NSP). In virus-exposed explants, LSP enhance SIV infection more efficiently than NSP, being the increased viral replication linked to the level of inflammatory and immunomodulatory cytokines. Moreover, LSP induce leukocyte accumulation on the apical side of the colorectal lamina propria and the recruitment of a higher number of intraepithelial dendritic cells than with NSP. These results suggest that the outcome of mucosal HIV-1 infection is influenced by the inflammatory state of the semen donor, and provide further insights into mucosal SIV/HIV-1 pathogenesis.
Collapse
|
15
|
Rhodes JW, Botting RA, Bertram KM, Vine EE, Rana H, Baharlou H, Vegh P, O'Neil TR, Ashhurst AS, Fletcher J, Parnell GP, Graham JD, Nasr N, Lim JJK, Barnouti L, Haertsch P, Gosselink MP, Di Re A, Reza F, Ctercteko G, Jenkins GJ, Brooks AJ, Patrick E, Byrne SN, Hunter E, Haniffa MA, Cunningham AL, Harman AN. Human anogenital monocyte-derived dendritic cells and langerin+cDC2 are major HIV target cells. Nat Commun 2021; 12:2147. [PMID: 33846309 PMCID: PMC8042121 DOI: 10.1038/s41467-021-22375-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 03/12/2021] [Indexed: 02/06/2023] Open
Abstract
Tissue mononuclear phagocytes (MNP) are specialised in pathogen detection and antigen presentation. As such they deliver HIV to its primary target cells; CD4 T cells. Most MNP HIV transmission studies have focused on epithelial MNPs. However, as mucosal trauma and inflammation are now known to be strongly associated with HIV transmission, here we examine the role of sub-epithelial MNPs which are present in a diverse array of subsets. We show that HIV can penetrate the epithelial surface to interact with sub-epithelial resident MNPs in anogenital explants and define the full array of subsets that are present in the human anogenital and colorectal tissues that HIV may encounter during sexual transmission. In doing so we identify two subsets that preferentially take up HIV, become infected and transmit the virus to CD4 T cells; CD14+CD1c+ monocyte-derived dendritic cells and langerin-expressing conventional dendritic cells 2 (cDC2).
Collapse
Affiliation(s)
- Jake W Rhodes
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Westmead Clinical School, Faculty of Medicine and Health Sydney, The University of Sydney, Westmead, NSW, Australia
| | - Rachel A Botting
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Westmead Clinical School, Faculty of Medicine and Health Sydney, The University of Sydney, Westmead, NSW, Australia.,Biosciences Institute, The University of Newcastle, Newcastle upon Tyne, UK
| | - Kirstie M Bertram
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Westmead Clinical School, Faculty of Medicine and Health Sydney, The University of Sydney, Westmead, NSW, Australia
| | - Erica E Vine
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Westmead Clinical School, Faculty of Medicine and Health Sydney, The University of Sydney, Westmead, NSW, Australia
| | - Hafsa Rana
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Westmead Clinical School, Faculty of Medicine and Health Sydney, The University of Sydney, Westmead, NSW, Australia
| | - Heeva Baharlou
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Westmead Clinical School, Faculty of Medicine and Health Sydney, The University of Sydney, Westmead, NSW, Australia
| | - Peter Vegh
- Biosciences Institute, The University of Newcastle, Newcastle upon Tyne, UK
| | - Thomas R O'Neil
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Westmead Clinical School, Faculty of Medicine and Health Sydney, The University of Sydney, Westmead, NSW, Australia
| | - Anneliese S Ashhurst
- School of Medical Sciences, Faculty of Medicine and Health Sydney, The University of Sydney, Westmead, NSW, Australia
| | - James Fletcher
- Biosciences Institute, The University of Newcastle, Newcastle upon Tyne, UK
| | - Grant P Parnell
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Westmead Clinical School, Faculty of Medicine and Health Sydney, The University of Sydney, Westmead, NSW, Australia
| | - J Dinny Graham
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Westmead Clinical School, Faculty of Medicine and Health Sydney, The University of Sydney, Westmead, NSW, Australia
| | - Najla Nasr
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,School of Medical Sciences, Faculty of Medicine and Health Sydney, The University of Sydney, Westmead, NSW, Australia
| | | | | | - Peter Haertsch
- Burns Unit, Concord Repatriation General Hospital, Sydney, Australia
| | - Martijn P Gosselink
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Department of Colorectal Surgery, Westmead Hospital, Westmead, NSW, Australia
| | - Angelina Di Re
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Department of Colorectal Surgery, Westmead Hospital, Westmead, NSW, Australia
| | - Faizur Reza
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Department of Colorectal Surgery, Westmead Hospital, Westmead, NSW, Australia
| | - Grahame Ctercteko
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Department of Colorectal Surgery, Westmead Hospital, Westmead, NSW, Australia
| | - Gregory J Jenkins
- Department of Obstetrics and Gynaecology, Westmead Hospital, Westmead, NSW, Australia
| | - Andrew J Brooks
- Department of Urology, Westmead Hospital, Westmead, NSW, Australia
| | - Ellis Patrick
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,School of Maths and Statistics, Faculty of Science, The University of Sydney, Camperdown, NSW, Australia
| | - Scott N Byrne
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,School of Medical Sciences, Faculty of Medicine and Health Sydney, The University of Sydney, Westmead, NSW, Australia
| | | | - Muzlifah A Haniffa
- Biosciences Institute, The University of Newcastle, Newcastle upon Tyne, UK.,Wellcome Sanger Institute, Hinxton, UK.,Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Anthony L Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Westmead Clinical School, Faculty of Medicine and Health Sydney, The University of Sydney, Westmead, NSW, Australia
| | - Andrew N Harman
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia. .,School of Medical Sciences, Faculty of Medicine and Health Sydney, The University of Sydney, Westmead, NSW, Australia.
| |
Collapse
|
16
|
Su B, Dispinseri S, Iannone V, Zhang T, Wu H, Carapito R, Bahram S, Scarlatti G, Moog C. Update on Fc-Mediated Antibody Functions Against HIV-1 Beyond Neutralization. Front Immunol 2019; 10:2968. [PMID: 31921207 PMCID: PMC6930241 DOI: 10.3389/fimmu.2019.02968] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 12/03/2019] [Indexed: 12/31/2022] Open
Abstract
Antibodies (Abs) are the major component of the humoral immune response and a key player in vaccination. The precise Ab-mediated inhibitory mechanisms leading to in vivo protection against HIV have not been elucidated. In addition to the desired viral capture and neutralizing Ab functions, complex Ab-dependent mechanisms that involve engaging immune effector cells to clear infected host cells, immune complexes, and opsonized virus have been proposed as being relevant. These inhibitory mechanisms involve Fc-mediated effector functions leading to Ab-dependent cellular cytotoxicity, phagocytosis, cell-mediated virus inhibition, aggregation, and complement inhibition. Indeed, the decreased risk of infection observed in the RV144 HIV-1 vaccine trial was correlated with the production of non-neutralizing inhibitory Abs, highlighting the role of Ab inhibitory functions besides neutralization. Moreover, Ab isotypes and subclasses recognizing specific HIV envelope epitopes as well as pecular Fc-receptor polymorphisms have been associated with disease progression. These findings further support the need to define which Fc-mediated Ab inhibitory functions leading to protection are critical for HIV vaccine design. Herein, based on our previous review Su & Moog Front Immunol 2014, we update the different inhibitory properties of HIV-specific Abs that may potentially contribute to HIV protection.
Collapse
Affiliation(s)
- Bin Su
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Stefania Dispinseri
- Viral Evolution and Transmission Unit, Division of Immunology, Transplantation, and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Valeria Iannone
- Viral Evolution and Transmission Unit, Division of Immunology, Transplantation, and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Tong Zhang
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Hao Wu
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Raphael Carapito
- INSERM U1109, LabEx TRANSPLANTEX, Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Seiamak Bahram
- INSERM U1109, LabEx TRANSPLANTEX, Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Gabriella Scarlatti
- Viral Evolution and Transmission Unit, Division of Immunology, Transplantation, and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Christiane Moog
- INSERM U1109, LabEx TRANSPLANTEX, Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,Vaccine Research Institute (VRI), Créteil, France
| |
Collapse
|
17
|
Wirden M, De Oliveira F, Bouvier-Alias M, Lambert-Niclot S, Chaix ML, Raymond S, Si-Mohammed A, Alloui C, André-Garnier E, Bellecave P, Malve B, Mirand A, Pallier C, Poveda JD, Rabenja T, Schneider V, Signori-Schmuck A, Stefic K, Calvez V, Descamps D, Plantier JC, Marcelin AG, Visseaux B, on behalf of the French National Agency for Research on AIDS and Viral Hepatitis (ANRS) AC43 Study Group. New HIV-1 circulating recombinant form 94: from phylogenetic detection of a large transmission cluster to prevention in the age of geosocial-networking apps in France, 2013 to 2017. Euro Surveill 2019; 24:1800658. [PMID: 31576801 PMCID: PMC6774227 DOI: 10.2807/1560-7917.es.2019.24.39.1800658] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BackgroundEnding the HIV pandemic must involve new tools to rapidly identify and control local outbreaks and prevent the emergence of recombinant strains with epidemiological advantages.AimThis observational study aimed to investigate in France a cluster of HIV-1 cases related to a new circulating recombinant form (CRF). The confirmation this CRF's novelty as well as measures to control its spread are presented.MethodsPhylogenetic analyses of HIV sequences routinely generated for drug resistance genotyping before 2018 in French laboratories were employed to detect the transmission chain. The CRF involved was characterised by almost full-length viral sequencing for six cases. Cases' clinical data were reviewed. Where possible, epidemiological information was collected with a questionnaire.ResultsThe transmission cluster comprised 49 cases, mostly diagnosed in 2016-2017 (n = 37). All were infected with a new CRF, CRF94_cpx. The molecular proximity of this CRF to X4 strains and the high median viraemia, exceeding 5.0 log10 copies/mL, at diagnosis, even in chronic infection, raise concerns of enhanced virulence. Overall, 41 cases were diagnosed in the Ile-de-France region and 45 were men who have sex with men. Among 24 cases with available information, 20 reported finding partners through a geosocial networking app. Prevention activities in the area and population affected were undertaken.ConclusionWe advocate the systematic use of routinely generated HIV molecular data by a dedicated reactive network, to improve and accelerate targeted prevention interventions. Geosocial networking apps can play a role in the spread of outbreaks, but could also deliver local targeted preventive alerts.
Collapse
Affiliation(s)
- Marc Wirden
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique IPLESP, AP-HP, Hôpital Pitié Salpêtrière, Laboratoire de virologie, Paris, France
| | - Fabienne De Oliveira
- Normandie Université, UNIROUEN, EA2656 GRAM, CHU de Rouen, Laboratoire de virologie associé au CNR VIH, Rouen, France
| | | | | | - Marie-Laure Chaix
- AP-HP, Hôpital Saint-Louis, Laboratoire de virologie, INSERM U944, Paris, France
| | | | | | - Chakib Alloui
- Laboratoire de virologie, Hôpital Avicenne, Bobigny, France
| | | | | | - Brice Malve
- Laboratoire de virologie CHU de Nancy, Nancy, France
| | - Audrey Mirand
- Laboratoire de virologie CHU de Clermont-Ferrand, Clermont-Ferrand, France
| | - Coralie Pallier
- Laboratoire de virologie, Hôpital P. Brousse, Villejuif, France
| | | | - Theresa Rabenja
- Laboratoire du Grand Hôpital de l’Est Francilien, Jossigny, France
| | | | | | - Karl Stefic
- Laboratoire de virologie CHU de Tours, Tours, France
| | - Vincent Calvez
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique IPLESP, AP-HP, Hôpital Pitié Salpêtrière, Laboratoire de virologie, Paris, France
| | - Diane Descamps
- Laboratoire de virologie, AP-HP, Hopital Bichat Claude Bernard, Univ Paris-Diderot, INSERM, IAME, CNR VIH, Paris, France
| | - Jean-Christophe Plantier
- Normandie Université, UNIROUEN, EA2656 GRAM, CHU de Rouen, Laboratoire de virologie associé au CNR VIH, Rouen, France
| | - Anne-Genevieve Marcelin
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique IPLESP, AP-HP, Hôpital Pitié Salpêtrière, Laboratoire de virologie, Paris, France
| | - Benoit Visseaux
- Laboratoire de virologie, AP-HP, Hopital Bichat Claude Bernard, Univ Paris-Diderot, INSERM, IAME, CNR VIH, Paris, France
| | | |
Collapse
|
18
|
Bertram KM, Tong O, Royle C, Turville SG, Nasr N, Cunningham AL, Harman AN. Manipulation of Mononuclear Phagocytes by HIV: Implications for Early Transmission Events. Front Immunol 2019; 10:2263. [PMID: 31616434 PMCID: PMC6768965 DOI: 10.3389/fimmu.2019.02263] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/09/2019] [Indexed: 12/11/2022] Open
Abstract
Mononuclear phagocytes are antigen presenting cells that play a key role in linking the innate and adaptive immune systems. In tissue, these consist of Langerhans cells, dendritic cells and macrophages, all of which express the key HIV entry receptors CD4 and CCR5 making them directly infectible with HIV. Mononuclear phagocytes are the first cells of the immune system to interact with invading pathogens such as HIV. Each cell type expresses a specific repertoire of pathogen binding receptors which triggers pathogen uptake and the release of innate immune cytokines. Langerhans cells and dendritic cells migrate to lymph nodes and present antigens to CD4 T cells, whereas macrophages remain tissue resident. Here we review how HIV-1 manipulates these cells by blocking their ability to produce innate immune cytokines and taking advantage of their antigen presenting cell function in order to gain transport to its primary target cells, CD4 T cells.
Collapse
Affiliation(s)
- Kirstie Melissa Bertram
- School of Medical Sciences, University of Sydney, Sydney, NSW, Australia.,Center for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Orion Tong
- School of Medical Sciences, University of Sydney, Sydney, NSW, Australia.,Center for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Caroline Royle
- School of Medical Sciences, University of Sydney, Sydney, NSW, Australia.,Center for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Stuart Grant Turville
- HIV Biology, Kirby Institute, Kensington, NSW, Australia.,The University of New South Whales, Sydney, NSW, Australia
| | - Najla Nasr
- School of Medical Sciences, University of Sydney, Sydney, NSW, Australia.,Center for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Anthony Lawrence Cunningham
- School of Medical Sciences, University of Sydney, Sydney, NSW, Australia.,Center for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Andrew Nicholas Harman
- School of Medical Sciences, University of Sydney, Sydney, NSW, Australia.,Center for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia
| |
Collapse
|
19
|
Rhodes JW, Tong O, Harman AN, Turville SG. Human Dendritic Cell Subsets, Ontogeny, and Impact on HIV Infection. Front Immunol 2019; 10:1088. [PMID: 31156637 PMCID: PMC6532592 DOI: 10.3389/fimmu.2019.01088] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 04/29/2019] [Indexed: 12/18/2022] Open
Abstract
Dendritic cells (DCs) play important roles in orchestrating host immunity against invading pathogens, representing one of the first responders to infection by mucosal invaders. From their discovery by Ralph Steinman in the 1970s followed shortly after with descriptions of their in vivo diversity and distribution by Derek Hart, we are still continuing to progressively elucidate the spectrum of DCs present in various anatomical compartments. With the power of high-dimensional approaches such as single-cell sequencing and multiparameter cytometry, recent studies have shed new light on the identities and functions of DC subtypes. Notable examples include the reclassification of plasmacytoid DCs as purely interferon-producing cells and re-evaluation of intestinal conventional DCs and macrophages as derived from monocyte precursors. Collectively, these observations have changed how we view these cells not only in steady-state immunity but also during disease and infection. In this review, we will discuss the current landscape of DCs and their ontogeny, and how this influences our understanding of their roles during HIV infection.
Collapse
Affiliation(s)
- Jake William Rhodes
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Orion Tong
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Andrew Nicholas Harman
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia.,Discipline of Applied Medical Sciences, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Stuart Grant Turville
- University of New South Wales, Sydney, NSW, Australia.,Kirby Institute, Kensington, NSW, Australia
| |
Collapse
|
20
|
Sebrell TA, Hashimi M, Sidar B, Wilkinson RA, Kirpotina L, Quinn MT, Malkoç Z, Taylor PJ, Wilking JN, Bimczok D. A Novel Gastric Spheroid Co-culture Model Reveals Chemokine-Dependent Recruitment of Human Dendritic Cells to the Gastric Epithelium. Cell Mol Gastroenterol Hepatol 2019; 8:157-171.e3. [PMID: 30878664 PMCID: PMC6599165 DOI: 10.1016/j.jcmgh.2019.02.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 02/13/2019] [Accepted: 02/20/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND & AIMS Gastric dendritic cells (DCs) control the adaptive response to infection with Helicobacter pylori, a major risk factor for peptic ulcer disease and gastric cancer. We hypothesize that DC interactions with the gastric epithelium position gastric DCs for uptake of luminal H pylori and promote DC responses to epithelial-derived mediators. The aim of this study was to determine whether the gastric epithelium actively recruits DCs using a novel co-culture model of human gastric epithelial spheroids and monocyte-derived DCs. METHODS Spheroid cultures of primary gastric epithelial cells were infected with H pylori by microinjection. Co-cultures were established by adding human monocyte-derived DCs to the spheroid cultures and were analyzed for DC recruitment and antigen uptake by confocal microscopy. Protein array, gene expression polymerase chain reaction array, and chemotaxis assays were used to identify epithelial-derived chemotactic factors that attract DCs. Data from the co-culture model were confirmed using human gastric tissue samples. RESULTS Human monocyte-derived DCs co-cultured with gastric spheroids spontaneously migrated to the gastric epithelium, established tight interactions with the epithelial cells, and phagocytosed luminally applied H pylori. DC recruitment was increased upon H pylori infection of the spheroids and involved the activity of multiple chemokines including CXCL1, CXCL16, CXCL17, and CCL20. Enhanced chemokine expression and DC recruitment to the gastric epithelium also was observed in H pylori-infected human gastric tissue samples. CONCLUSIONS Our results indicate that the gastric epithelium actively recruits DCs for immunosurveillance and pathogen sampling through chemokine-dependent mechanisms, with increased recruitment upon active H pylori infection.
Collapse
Affiliation(s)
- Thomas A Sebrell
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| | - Marziah Hashimi
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| | - Barkan Sidar
- Department of Chemical and Biological Engineering and Center for Biofilm Engineering, Montana State University, Bozeman, Montana
| | - Royce A Wilkinson
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| | - Liliya Kirpotina
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| | - Mark T Quinn
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| | - Zeynep Malkoç
- Department of Chemical and Biological Engineering and Center for Biofilm Engineering, Montana State University, Bozeman, Montana
| | | | - James N Wilking
- Department of Chemical and Biological Engineering and Center for Biofilm Engineering, Montana State University, Bozeman, Montana
| | - Diane Bimczok
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana.
| |
Collapse
|
21
|
Swain S, Roe MM, Sebrell TA, Sidar B, Dankoff J, VanAusdol R, Smythies LE, Smith PD, Bimczok D. CD103 (αE Integrin) Undergoes Endosomal Trafficking in Human Dendritic Cells, but Does Not Mediate Epithelial Adhesion. Front Immunol 2018; 9:2989. [PMID: 30622531 PMCID: PMC6308147 DOI: 10.3389/fimmu.2018.02989] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 12/04/2018] [Indexed: 12/20/2022] Open
Abstract
Dendritic cell (DC) expression of CD103, the α subunit of αEβ7 integrin, is thought to enable DC interactions with E-cadherin-expressing gastrointestinal epithelia for improved mucosal immunosurveillance. In the stomach, efficient DC surveillance of the epithelial barrier is crucial for the induction of immune responses to H. pylori, the causative agent of peptic ulcers and gastric cancer. However, gastric DCs express only low levels of surface CD103, as we previously showed. We here tested the hypothesis that intracellular pools of CD103 in human gastric DCs can be redistributed to the cell surface for engagement of epithelial cell-expressed E-cadherin to promote DC-epithelial cell adhesion. In support of our hypothesis, immunofluorescence analysis of tissue sections showed that CD103+ gastric DCs were preferentially localized within the gastric epithelial layer. Flow cytometry and imaging cytometry revealed that human gastric DCs expressed intracellular CD103, corroborating our previous findings in monocyte-derived DCs (MoDCs). Using confocal microscopy, we show that CD103 was present in endosomal compartments, where CD103 partially co-localized with clathrin, early endosome antigen-1 and Rab11, suggesting that CD103 undergoes endosomal trafficking similar to β1 integrins. Dynamic expression of CD103 on human MoDCs was confirmed by internalization assay. To analyze whether DC-expressed CD103 promotes adhesion to E-cadherin, we performed adhesion and spreading assays on E-cadherin-coated glass slides. In MoDCs generated in the presence of retinoic acid, which express increased CD103, intracellular CD103 significantly redistributed toward the E-cadherin-coated glass surface. However, DCs spreading and adhesion did not differ between E-cadherin-coated slides and slides coated with serum alone. In adhesion assays using E-cadherin-positive HT-29 cells, DC binding was significantly improved by addition of Mn2+ and decreased in the presence of EGTA, consistent with the dependence of integrin-based interactions on divalent cations. However, retinoic acid failed to increase DC adhesion, and a CD103 neutralizing antibody was unable to inhibit DC binding to the E-cadherin positive cells. In contrast, a blocking antibody to DC-expressed E-cadherin significantly reduced DC binding to the epithelium. Overall, these data indicate that CD103 engages in DC-epithelial cell interactions upon contact with epithelial E-cadherin, but is not a major driver of DC adhesion to gastrointestinal epithelia.
Collapse
Affiliation(s)
- Steve Swain
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| | - Mandi M. Roe
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| | - Thomas A. Sebrell
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| | - Barkan Sidar
- Chemical and Biological Engineering Department, Montana State University, Bozeman, MT, United States
| | - Jennifer Dankoff
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| | - Rachel VanAusdol
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| | - Lesley E. Smythies
- Division of Gastroenterology and Hepatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Phillip D. Smith
- Division of Gastroenterology and Hepatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Diane Bimczok
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| |
Collapse
|
22
|
Trifonova RT, Bollman B, Barteneva NS, Lieberman J. Myeloid Cells in Intact Human Cervical Explants Capture HIV and Can Transmit It to CD4 T Cells. Front Immunol 2018; 9:2719. [PMID: 30532754 PMCID: PMC6265349 DOI: 10.3389/fimmu.2018.02719] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/05/2018] [Indexed: 12/20/2022] Open
Abstract
The importance of myeloid cells in HIV transmission in the female genital tract is uncertain. Because it is difficult to study the early events in HIV transmission in humans, most of our knowledge is based on animal models of SIV infection in Rhesus macaques and more recently HIV infection in humanized mice. However, these models may not accurately recapitulate transmission in the human genital tract. CD14+ myeloid cells are the most abundant hematopoietic cells in the human cervical mucosa, comprising 40-50% of CD45+ mononuclear cells. Most CD14+ cells are CD14+CD11c- macrophages and about a third are CD14+CD11c+ tissue dendritic cells, which express the HIV-binding receptors, DC-SIGN and CX3CR1. To examine the role of mucosal myeloid cells in HIV transmission, we infected intact healthy human cervical explants with CCR5-tropic HIV-1 ex vivo and then sorted populations of cervical immune cells 20 h later to determine whether they took up virus and could transmit it to activated CD4 T cells. Viral RNA was detected in CD14+ myeloid cells in all but one of 10 donor tissue samples, even when HIV RNA was not detected in CD4+ T cells. HIV RNA was detected predominantly in CD14+CD11c+ dendritic cells rather than in CD14+CD11c- macrophages. The reverse transcriptase inhibitor, nevirapine, reduced HIV RNA in CD4+ T cells, but not in CD14+ cells. Moreover, integrated HIV DNA were not detected above background in myeloid cells but was detected in T cells. These data suggest that although HIV replicates in T cells, myeloid cells in the female genital mucosa capture viral particles, but do not replicate the virus at early timepoints. However, sorted CD14+ myeloid cells isolated 20 h post-infection from 5 HIV-infected cervical explants tested all transmitted HIV to activated CD4+ T cells, while only 1 sample of sorted CD4+ T cells did. Thus, myeloid cells in human cervical tissue capture HIV and are an important early cellular storage site of infectious virus.
Collapse
Affiliation(s)
- Radiana T Trifonova
- Program in Cellular and Molecular Medicine, Department of Pediatrics, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Brooke Bollman
- Program in Cellular and Molecular Medicine, Department of Pediatrics, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Natasha S Barteneva
- Program in Cellular and Molecular Medicine, Department of Pediatrics, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Judy Lieberman
- Program in Cellular and Molecular Medicine, Department of Pediatrics, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| |
Collapse
|
23
|
Introini A, Vanpouille C, Fitzgerald W, Broliden K, Margolis L. Ex Vivo Infection of Human Lymphoid Tissue and Female Genital Mucosa with Human Immunodeficiency Virus 1 and Histoculture. J Vis Exp 2018. [PMID: 30371673 DOI: 10.3791/57013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Histocultures allow studying intercellular interactions within human tissues, and they can be employed to model host-pathogen interactions under controlled laboratory conditions. Ex vivo infection of human tissues with human immunodeficiency virus (HIV), among other viruses, has been successfully used to investigate early disease pathogenesis, as well as a platform to test the efficacy and toxicity of antiviral drugs. In the present protocol, we explain how to process and infect with HIV-1 tissue explants from human tonsils and cervical mucosae, and maintain them in culture on top of gelatin sponges at the liquid-air interface for about two weeks. This non-polarized culture setting maximizes access to nutrients in culture medium and oxygen, although progressive loss of tissue integrity and functional architectures remains its main limitation. This method allows monitoring HIV-1 replication and pathogenesis using several techniques, including immunoassays, qPCR, and flow cytometry. Of importance, the physiologic variability between tissue donors, as well as between explants from different areas of the same specimen, may significantly affect experimental results. To ensure result reproducibility, it is critical to use an adequate number of explants, technical replicates, and donor-matched control conditions to normalize the results of the experimental treatments when compiling data from multiple experiments (i.e., conducted using tissue from different donors) for statistical analysis.
Collapse
Affiliation(s)
- Andrea Introini
- Department of Medicine Solna, Center for Molecular Medicine, Karolinska University Hospital, Karolinska Institutet; Section of Intercellular Interactions, Eunice Shriver National Institute of Child Health and Human Development, National Institutes of Health;
| | - Christophe Vanpouille
- Section of Intercellular Interactions, Eunice Shriver National Institute of Child Health and Human Development, National Institutes of Health
| | - Wendy Fitzgerald
- Section of Intercellular Interactions, Eunice Shriver National Institute of Child Health and Human Development, National Institutes of Health
| | - Kristina Broliden
- Department of Medicine Solna, Center for Molecular Medicine, Karolinska University Hospital, Karolinska Institutet
| | - Leonid Margolis
- Section of Intercellular Interactions, Eunice Shriver National Institute of Child Health and Human Development, National Institutes of Health
| |
Collapse
|
24
|
Phenotypic properties of envelope glycoproteins of transmitted HIV-1 variants from patients belonging to transmission chains. AIDS 2018; 32:1917-1926. [PMID: 29927786 DOI: 10.1097/qad.0000000000001906] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Transmission of HIV-1 involves a bottleneck in which generally a single HIV-1 variant from a diverse viral population in the transmitting partner establishes infection in the new host. It is still unclear to what extent this event is driven by specific properties of the transmitted viruses or the result of a stochastic process. Our study aimed to better characterize this phenomenon and define properties shared by transmitted viruses. DESIGN We compared antigenic and functional properties of envelope glycoproteins of viral variants found during primary infection in 27 patients belonging to eight transmission chains. METHODS We generated pseudotyped viruses expressing Env variants of the viral quasispecies infecting each patient and compared their sensitivity to neutralization by eight human monoclonal broadly neutralizing antibodies (HuMoNAbs). We also compared their infectious properties by measuring their infectivity and sensitivity to various entry inhibitors. RESULTS Transmitted viruses from the same transmission chain shared many properties, including similar neutralization profiles, sensitivity to inhibitors, and infectivity, providing evidence that the transmission bottleneck is mainly nonstochastic. Transmitted viruses were CCR5-tropic, sensitive to MVC, and resistant to soluble forms of CD4, irrespective of the cluster to which they belonged. They were also sensitive to HuMoNAbs that target V3, the CD4-binding site, and the MPER region, suggesting that the loss of these epitopes may compromise their capacity to be transmitted. CONCLUSION Our data suggest that the transmission bottleneck is governed by selective forces. How these forces confer an advantage to the transmitted virus has yet to be determined.
Collapse
|
25
|
HIV transmission from infected CD4+ T cells to allogenic T and dendritic cells is inhibited by broadly neutralizing antibodies. AIDS 2018; 32:1239-1245. [PMID: 29683853 DOI: 10.1097/qad.0000000000001834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE In the semen, both free virus and infected cells are able to establish HIV infection during sexual intercourse. An efficient vaccine should therefore inhibit both infectious states. The aim of this study was to analyze the capacity of broadly neutralizing antibodies (bNAbs) to inhibit HIV transmission by the infected cells. DESIGN/METHODS We developed an in-vitro model aiming to mimic mucosal HIV transmission via infected cells. PHA-activated CD4+ T cells stained with PKH26 from donor A were infected and co-cultured with CD4+ T cells and dendritic cells from donor B in the presence of bNAbs. RESULTS We showed that dendritic cells were the preferential HIV target cells at early time points in this co-culture model. In the context of this co-culture model where infection and transmission occurred simultaneously, bNAbs efficiently inhibited HIV replication as well as HIV transmission from infected cells to allogenic dendritic cells and CD4+ T cells. CONCLUSION Overall, our results indicate that dendritic cells, in addition to CD4+ T cells, are key cells that are efficiently infected by HIV and bNAbs are potent inhibitors of infection of both target cells. Future HIV prophylactic vaccine design should develop immune strategies able to prevent the infection of dendritic cells, in addition to the inhibition of CD4+ T-cell infection.
Collapse
|
26
|
CCR5 Revisited: How Mechanisms of HIV Entry Govern AIDS Pathogenesis. J Mol Biol 2018; 430:2557-2589. [PMID: 29932942 DOI: 10.1016/j.jmb.2018.06.027] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/10/2018] [Accepted: 06/13/2018] [Indexed: 01/01/2023]
Abstract
The chemokine receptor CCR5 has been the focus of intensive studies since its role as a coreceptor for HIV entry was discovered in 1996. These studies lead to the development of small molecular drugs targeting CCR5, with maraviroc becoming in 2007 the first clinically approved chemokine receptor inhibitor. More recently, the apparent HIV cure in a patient transplanted with hematopoietic stem cells devoid of functional CCR5 rekindled the interest for inactivating CCR5 through gene therapy and pharmacological approaches. Fundamental research on CCR5 has also been boosted by key advances in the field of G-protein coupled receptor research, with the realization that CCR5 adopts a variety of conformations, and that only a subset of these conformations may be targeted by chemokine ligands. In addition, recent genetic and pathogenesis studies have emphasized the central role of CCR5 expression levels in determining the risk of HIV and SIV acquisition and disease progression. In this article, we propose to review the key properties of CCR5 that account for its central role in HIV pathogenesis, with a focus on mechanisms that regulate CCR5 expression, conformation, and interaction with HIV envelope glycoproteins.
Collapse
|
27
|
Tiberio L, Del Prete A, Schioppa T, Sozio F, Bosisio D, Sozzani S. Chemokine and chemotactic signals in dendritic cell migration. Cell Mol Immunol 2018; 15:346-352. [PMID: 29563613 DOI: 10.1038/s41423-018-0005-3] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 01/10/2018] [Accepted: 01/11/2018] [Indexed: 12/21/2022] Open
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells responsible for the activation of specific T-cell responses and for the development of immune tolerance. Immature DCs reside in peripheral tissues and specialize in antigen capture, whereas mature DCs reside mostly in the secondary lymphoid organs where they act as antigen-presenting cells. The correct localization of DCs is strictly regulated by a large variety of chemotactic and nonchemotactic signals that include bacterial products, DAMPs (danger-associated molecular patterns), complement proteins, lipids, and chemokines. These signals function both individually and in concert, generating a complex regulatory network. This network is regulated at multiple levels through different strategies, such as synergistic interactions, proteolytic processing, and the actions of atypical chemokine receptors. Understanding this complex scenario will help to clarify the role of DCs in different pathological conditions, such as autoimmune diseases and cancers and will uncover new molecular targets for therapeutic interventions.
Collapse
Affiliation(s)
- Laura Tiberio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Annalisa Del Prete
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,Humanitas Clinical and Research Institute, Rozzano-Milano, Italy
| | - Tiziana Schioppa
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,Humanitas Clinical and Research Institute, Rozzano-Milano, Italy
| | - Francesca Sozio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,Humanitas Clinical and Research Institute, Rozzano-Milano, Italy
| | - Daniela Bosisio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Silvano Sozzani
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy. .,Humanitas Clinical and Research Institute, Rozzano-Milano, Italy.
| |
Collapse
|
28
|
In vitro models for deciphering the mechanisms underlying the sexual transmission of viruses at the mucosal level. Virology 2017; 515:1-10. [PMID: 29220713 DOI: 10.1016/j.virol.2017.11.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/13/2017] [Accepted: 11/28/2017] [Indexed: 01/31/2023]
Abstract
Sexually transmitted viruses infect the genital and colorectal mucosa of the partner exposed to contaminated genital secretions through a wide range of mechanisms, dictated in part by the organization of the mucosa. Because understanding the modes of entry into the organism of viruses transmitted through sexual intercourse is a necessary prerequisite to the design of treatments to block those infections, in vitro modeling of the transmission is essential. The aim of this review is to present the models and methodologies available for the in vitro study of the interactions between viruses and mucosal tissue and for the preclinical evaluation of antiviral compounds, and to point out their advantages and limitations according to the question being studied.
Collapse
|
29
|
Rodriguez-Garcia M, Shen Z, Barr FD, Boesch AW, Ackerman ME, Kappes JC, Ochsenbauer C, Wira CR. Dendritic cells from the human female reproductive tract rapidly capture and respond to HIV. Mucosal Immunol 2017; 10:531-544. [PMID: 27579858 PMCID: PMC5332537 DOI: 10.1038/mi.2016.72] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 07/07/2016] [Indexed: 02/04/2023]
Abstract
Dendritic cells (DCs) throughout the female reproductive tract (FRT) were examined for phenotype, HIV capture ability and innate anti-HIV responses. Two main CD11c+ DC subsets were identified: CD11b+ and CD11blow DCs. CD11b+CD14+ DCs were the most abundant throughout the tract. A majority of CD11c+CD14+ cells corresponded to CD1c+ myeloid DCs, whereas the rest lacked CD1c and CD163 expression (macrophage marker) and may represent monocyte-derived cells. In addition, we identified CD103+ DCs, located exclusively in the endometrium, whereas DC-SIGN+ DCs were broadly distributed throughout the FRT. Following exposure to GFP-labeled HIV particles, CD14+ DC-SIGN+ as well as CD14+ DC-SIGN- cells captured virus, with ∼30% of these cells representing CD1c+ myeloid DCs. CD103+ DCs lacked HIV capture ability. Exposure of FRT DCs to HIV induced secretion of CCL2, CCR5 ligands, interleukin (IL)-8, elafin, and secretory leukocyte peptidase inhibitor (SLPI) within 3 h of exposure, whereas classical pro-inflammatory molecules did not change and interferon-α2 and IL-10 were undetectable. Furthermore, elafin and SLPI upregulation, but not CCL5, were suppressed by estradiol pre-treatment. Our results suggest that specific DC subsets in the FRT have the potential for capture and dissemination of HIV, exert antiviral responses and likely contribute to the recruitment of HIV-target cells through the secretion of innate immune molecules.
Collapse
Affiliation(s)
- M Rodriguez-Garcia
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA,Corresponding author. Address correspondence to Dr. Marta Rodriguez-Garcia, Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, NH 03756. Fax number: 603-6507717. Telephone number: 603-6502583.
| | - Zheng Shen
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Fiona D. Barr
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | | | | | - John C. Kappes
- Department of Medicine and UAB Center for AIDS Research, University of Alabama at Birmingham, AL,Birmingham Veterans Affairs Medical Center, Research Service Birmingham, AL
| | - Christina Ochsenbauer
- Department of Medicine and UAB Center for AIDS Research, University of Alabama at Birmingham, AL
| | - Charles R. Wira
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| |
Collapse
|
30
|
Mayr L, Su B, Moog C. Langerhans Cells: the 'Yin and Yang' of HIV Restriction and Transmission. Trends Microbiol 2017; 25:170-172. [PMID: 28190635 DOI: 10.1016/j.tim.2017.01.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 01/30/2017] [Indexed: 11/17/2022]
Abstract
Langerhans cells are specialized sentinels present in the epidermis expressing Langerin, a specific C-type lectin receptor involved in HIV capture and destruction. Recently, the specific mechanism leading to this HIV restriction was discovered. Nevertheless, Langerhans cells can be infected and the way HIV escapes this restriction needs to be unraveled.
Collapse
Affiliation(s)
- Luzia Mayr
- INSERM U1109, FMTS, University of Strasbourg, 3 rue Koeberlé, Strasbourg 67000, France
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Center for Infectious Diseases, Beijing You'an Hospital, Capital Medical University, Beijing 100069, China
| | - Christiane Moog
- INSERM U1109, FMTS, University of Strasbourg, 3 rue Koeberlé, Strasbourg 67000, France.
| |
Collapse
|
31
|
Yasen A, Herrera R, Rosbe K, Lien K, Tugizov SM. Release of HIV-1 sequestered in the vesicles of oral and genital mucosal epithelial cells by epithelial-lymphocyte interaction. PLoS Pathog 2017; 13:e1006247. [PMID: 28241053 PMCID: PMC5344537 DOI: 10.1371/journal.ppat.1006247] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 03/09/2017] [Accepted: 02/16/2017] [Indexed: 01/16/2023] Open
Abstract
Oropharyngeal mucosal epithelia of fetuses/neonates/infants and the genital epithelia of adults play a critical role in HIV-1 mother-to-child transmission and sexual transmission of virus, respectively. To study the mechanisms of HIV-1 transmission through mucosal epithelium, we established polarized tonsil, cervical and foreskin epithelial cells. Analysis of HIV-1 transmission through epithelial cells showed that approximately 0.05% of initially inoculated virions transmigrated via epithelium. More than 90% of internalized virions were sequestered in the endosomes of epithelial cells, including multivesicular bodies (MVBs) and vacuoles. Intraepithelial HIV-1 remained infectious for 9 days without viral release. Release of sequestered intraepithelial HIV-1 was induced by the calcium ionophore ionomycin and by cytochalasin D, which increase intracellular calcium and disrupt the cortical actin of epithelial cells, respectively. Cocultivation of epithelial cells containing HIV-1 with activated peripheral blood mononuclear cells and CD4+ T lymphocytes led to the disruption of epithelial cortical actin and spread of virus from epithelial cells to lymphocytes. Treatment of epithelial cells with proinflammatory cytokines tumor necrosis factor-alpha and interferon gamma also induced reorganization of cortical actin and release of virus. Inhibition of MVB formation by small interfering RNA (siRNA)-mediated silencing of its critical protein hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs) expression reduced viral sequestration in epithelial cells and its transmission from epithelial cells to lymphocytes by ~60-70%. Furthermore, inhibition of vacuole formation of epithelial cells by siRNA-inactivated rabankyrin-5 expression also significantly reduced HIV-1 sequestration in epithelial cells and spread of virus from epithelial cells to lymphocytes. Interaction of the intercellular adhesion molecule-1 of epithelial cells with the function-associated antigen-1 of lymphocytes was important for inducing the release of sequestered HIV-1 from epithelial cells and facilitating cell-to-cell spread of virus from epithelial cells to lymphocytes. This mechanism may serve as a pathway of HIV-1 mucosal transmission.
Collapse
Affiliation(s)
- Aizezi Yasen
- Department of Medicine, University of California–San Francisco, San Francisco, California, United States of America
| | - Rossana Herrera
- Department of Medicine, University of California–San Francisco, San Francisco, California, United States of America
| | - Kristina Rosbe
- Department of Otolaryngology, University of California–San Francisco, San Francisco, California, United States of America
| | - Kathy Lien
- Department of Medicine, University of California–San Francisco, San Francisco, California, United States of America
| | - Sharof M. Tugizov
- Department of Medicine, University of California–San Francisco, San Francisco, California, United States of America
| |
Collapse
|
32
|
Botting RA, Rana H, Bertram KM, Rhodes JW, Baharlou H, Nasr N, Cunningham AL, Harman AN. Langerhans cells and sexual transmission of HIV and HSV. Rev Med Virol 2017; 27. [PMID: 28044388 DOI: 10.1002/rmv.1923] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/01/2016] [Accepted: 12/02/2016] [Indexed: 12/14/2022]
Abstract
Langerhans cells (LCs) situated in stratified squamous epithelium of the skin and mucosal tissue are amongst the first cells that sexually transmitted pathogens encounter during transmission. They are potent antigen presenting cells and play a key role in the host mounting an appropriate immune response. As such, viruses have evolved complex strategies to manipulate these cells to facilitate successful transmission. One of best studied examples is HIV, which manipulates the natural function of these cells to interact with CD4 T cells, which are the main target cell for HIV in which rapid replication occurs. However, there is controversy in the literature as to the role that LCs play in this process. Langerhans cells also play a key role in the way the body mounts an immune response to HSV, and there is also a complex interplay between the transmission of HSV and HIV that involves LCs. In this article, we review both past and present literatures with a particular focus on a few very recent studies that shed new light on the role that LCs play in the transmission and immune response to these 2 pathogens.
Collapse
Affiliation(s)
- Rachel A Botting
- The Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia
| | - Hafsa Rana
- The Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia
| | - Kirstie M Bertram
- The Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia
| | - Jake W Rhodes
- The Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia
| | - Heeva Baharlou
- The Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia
| | - Najla Nasr
- The Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia
| | - Anthony L Cunningham
- The Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia
| | - Andrew N Harman
- The Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia
| |
Collapse
|
33
|
Abstract
The female reproductive tract (FRT) is a major site for human immunodeficiency virus (HIV) infection. There currently exists a poor understanding of how the innate immune system is activated upon HIV transmission and how this activation may affect systemic spread of HIV from the FRT. However, multiple mechanisms for how HIV is sensed have been deciphered using model systems with cell lines and peripheral blood-derived cells. The aim of this review is to summarize recent progress in the field of HIV innate immune sensing and place this in the context of the FRT. Because HIV is somewhat unique as an STD that thrives under inflammatory conditions, the response of cells upon sensing HIV gene products can either promote or limit HIV infection depending on the context. Future studies should include investigations into how FRT-derived primary cells sense and respond to HIV to confirm conclusions drawn from non-mucosal cells. Understanding how cells of the FRT participate in and effect innate immune sensing of HIV will provide a clearer picture of what parameters during the early stages of HIV exposure determine transmission success. Such knowledge could pave the way for novel approaches for preventing HIV acquisition in women.
Collapse
|
34
|
Girard MP, Le-Grand R, Picot V, Longuet C, Nabel GJ. Report of the Cent Gardes HIV Vaccines Conference, Part 2: The cellular immune response. Fondation Mérieux Conference Center, Veyrier-du-Lac, France, 25–27 October 2015. Vaccine 2016; 34:5470-5473. [DOI: 10.1016/j.vaccine.2016.09.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 08/29/2016] [Accepted: 09/15/2016] [Indexed: 11/28/2022]
|
35
|
Composition and Function of the Interstitial Fluid. Protein Sci 2016. [DOI: 10.1201/9781315374307-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
36
|
Buckner LR, Amedee AM, Albritton HL, Kozlowski PA, Lacour N, McGowin CL, Schust DJ, Quayle AJ. Chlamydia trachomatis Infection of Endocervical Epithelial Cells Enhances Early HIV Transmission Events. PLoS One 2016; 11:e0146663. [PMID: 26730599 PMCID: PMC4701475 DOI: 10.1371/journal.pone.0146663] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 12/21/2015] [Indexed: 01/20/2023] Open
Abstract
Chlamydia trachomatis causes a predominantly asymptomatic, but generally inflammatory, genital infection that is associated with an increased risk for HIV acquisition. Endocervical epithelial cells provide the major niche for this obligate intracellular bacterium in women, and the endocervix is also a tissue in which HIV transmission can occur. The mechanism by which CT infection enhances HIV susceptibility at this site, however, is not well understood. Utilizing the A2EN immortalized endocervical epithelial cell line grown on cell culture inserts, we evaluated the direct role that CT-infected epithelial cells play in facilitating HIV transmission events. We determined that CT infection significantly enhanced the apical-to-basolateral migration of cell-associated, but not cell-free, HIVBaL, a CCR5-tropic strain of virus, across the endocervical epithelial barrier. We also established that basolateral supernatants from CT-infected A2EN cells significantly enhanced HIV replication in peripheral mononuclear cells and a CCR5+ T cell line. These results suggest that CT infection of endocervical epithelial cells could facilitate both HIV crossing the mucosal barrier and subsequent infection or replication in underlying target cells. Our studies provide a mechanism by which this common STI could potentially promote the establishment of founder virus populations and the maintenance of local HIV reservoirs in the endocervix. Development of an HIV/STI co-infection model also provides a tool to further explore the role of other sexually transmitted infections in enhancing HIV acquisition.
Collapse
Affiliation(s)
- Lyndsey R. Buckner
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, United States of America
| | - Angela M. Amedee
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, United States of America
| | - Hannah L. Albritton
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, United States of America
| | - Pamela A. Kozlowski
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, United States of America
| | - Nedra Lacour
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, United States of America
| | - Chris L. McGowin
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, United States of America
- Department of Medicine, Section of Infectious Diseases, Louisiana State University Health Sciences Center, New Orleans, Louisiana, 70112, United States of America
| | - Danny J. Schust
- Department of Obstetrics, Gynecology and Women’s Health, University of Missouri, Columbia, MO 65201, United States of America
| | - Alison J. Quayle
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, United States of America
| |
Collapse
|
37
|
Shen R, Achenbach J, Shen Y, Palaia J, Rahkola JT, Nick HJ, Smythies LE, McConnell M, Fowler MG, Smith PD, Janoff EN. Mother-to-Child HIV-1 Transmission Events Are Differentially Impacted by Breast Milk and Its Components from HIV-1-Infected Women. PLoS One 2015; 10:e0145150. [PMID: 26680219 PMCID: PMC4683070 DOI: 10.1371/journal.pone.0145150] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 12/01/2015] [Indexed: 11/21/2022] Open
Abstract
Breast milk is a vehicle of infection and source of protection in post-natal mother-to-child HIV-1 transmission (MTCT). Understanding the mechanism by which breast milk limits vertical transmission will provide critical insight into the design of preventive and therapeutic approaches to interrupt HIV-1 mucosal transmission. However, characterization of the inhibitory activity of breast milk in human intestinal mucosa, the portal of entry in postnatal MTCT, has been constrained by the limited availability of primary mucosal target cells and tissues to recapitulate mucosal transmission ex vivo. Here, we characterized the impact of skimmed breast milk, breast milk antibodies (Igs) and non-Ig components from HIV-1-infected Ugandan women on the major events of HIV-1 mucosal transmission using primary human intestinal cells and tissues. HIV-1-specific IgG antibodies and non-Ig components in breast milk inhibited the uptake of Ugandan HIV-1 isolates by primary human intestinal epithelial cells, viral replication in and transport of HIV-1- bearing dendritic cells through the human intestinal mucosa. Breast milk HIV-1-specific IgG and IgA, as well as innate factors, blocked the uptake and transport of HIV-1 through intestinal mucosa. Thus, breast milk components have distinct and complementary effects in reducing HIV-1 uptake, transport through and replication in the intestinal mucosa and, therefore, likely contribute to preventing postnatal HIV-1 transmission. Our data suggests that a successful preventive or therapeutic approach would require multiple immune factors acting at multiple steps in the HIV-1 mucosal transmission process.
Collapse
Affiliation(s)
- Ruizhong Shen
- Department of Medicine (Division of Gastroenterology), University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail: (ENJ); (RS)
| | - Jenna Achenbach
- Mucosal and Vaccine Research Program Colorado (MAVRC), University of Colorado Denver, Aurora, Colorado, United States of America
| | - Yue Shen
- Department of Biological Sciences, Auburn University, Auburn, Alabama United States of America
| | - Jana Palaia
- Mucosal and Vaccine Research Program Colorado (MAVRC), University of Colorado Denver, Aurora, Colorado, United States of America
| | - Jeremy T. Rahkola
- Mucosal and Vaccine Research Program Colorado (MAVRC), University of Colorado Denver, Aurora, Colorado, United States of America
- Denver Veterans Affairs Medical Center, Denver, Colorado, United States of America
| | - Heidi J. Nick
- Department of Medicine (Division of Gastroenterology), University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Lesley E. Smythies
- Department of Medicine (Division of Gastroenterology), University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Michelle McConnell
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Mary G. Fowler
- The Makerere University-Johns Hopkins University Research Collaboration, Kampala, Uganda
| | - Phillip D. Smith
- Department of Medicine (Division of Gastroenterology), University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Veterans Affairs Medical Center, Birmingham, Alabama, United States of America
| | - Edward N. Janoff
- Mucosal and Vaccine Research Program Colorado (MAVRC), University of Colorado Denver, Aurora, Colorado, United States of America
- Denver Veterans Affairs Medical Center, Denver, Colorado, United States of America
- * E-mail: (ENJ); (RS)
| |
Collapse
|
38
|
Burgener A, McGowan I, Klatt NR. HIV and mucosal barrier interactions: consequences for transmission and pathogenesis. Curr Opin Immunol 2015; 36:22-30. [DOI: 10.1016/j.coi.2015.06.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 06/16/2015] [Indexed: 02/07/2023]
|
39
|
Patyka M, Malamud D, Weissman D, Abrams WR, Kurago Z. Periluminal Distribution of HIV-Binding Target Cells and Gp340 in the Oral, Cervical and Sigmoid/Rectal Mucosae: A Mapping Study. PLoS One 2015; 10:e0132942. [PMID: 26172445 PMCID: PMC4501766 DOI: 10.1371/journal.pone.0132942] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 06/21/2015] [Indexed: 12/01/2022] Open
Abstract
Studies have shown that the transmission of HIV is most likely to occur via rectal or vaginal routes, and rarely through oral exposure. However, the mechanisms of virus entry at mucosal surfaces remain incompletely understood. Prophylactic strategies against HIV infection may be attainable once gaps in current knowledge are filled. To address these gaps, we evaluated essentially normal epithelial surfaces and mapped the periluminal distribution of CD4+ HIV target cells, including T cells and antigen-presenting cells, and an HIV-binding molecule gp340 that can be expressed by epithelial cells in secreted and cell-associated forms. Immunohistochemistry for CD4, CD16, CD3, CD1a and gp340 in human oral, rectal/sigmoid and cervical mucosal samples from HIV-negative subjects demonstrated that periluminal HIV target cells were more prevalent at rectal/sigmoid and endocervical surfaces lined by simple columnar epithelium, than at oral and ectocervical surfaces covered by multilayered stratified squamous epithelium (p<0.001). gp340 expression patterns at these sites were also distinct and strong in oral minor salivary gland acini and ducts, including ductal saliva, in individual rectum/sigmoid and endocervix periluminar columnar cells, and in ectocervix squamous cells. Only weak expression was noted in the oral non-ductal squamous epithelium. We conclude that periluminal HIV target cells, together with periluminal epithelial cell-associated gp340 appear to be most accessible for HIV transmission at rectal/sigmoid and endocervical surfaces. Our data help define vulnerable structural features of mucosal sites exposed to HIV.
Collapse
Affiliation(s)
- Mariia Patyka
- Faculty of Medicine, Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Daniel Malamud
- NYU College of Dentistry, Department of Basic Sciences, HIV/AIDS Research Program (HARP), New York, New York, United States of America
- NYU School of Medicine, Infectious Disease, New York, New York, United States of America
| | - Drew Weissman
- Medicine (Infectious Disease), Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - William R. Abrams
- NYU College of Dentistry, Department of Basic Sciences, HIV/AIDS Research Program (HARP), New York, New York, United States of America
| | - Zoya Kurago
- Oral Health and Diagnostic Sciences, College of Dental Medicine, Georgia Regents University, Augusta, Georgia, United States of America
| |
Collapse
|
40
|
Yin Y, Qin T, Wang X, Lin J, Yu Q, Yang Q. CpG DNA assists the whole inactivated H9N2 influenza virus in crossing the intestinal epithelial barriers via transepithelial uptake of dendritic cell dendrites. Mucosal Immunol 2015; 8:799-814. [PMID: 25492476 DOI: 10.1038/mi.2014.110] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 10/09/2014] [Indexed: 02/04/2023]
Abstract
Intestinal mucosa remains a pivotal barrier for the oral vaccine absorption of H9N2 whole inactivated influenza virus (WIV). However, CpG DNA, as an adjuvant, can effectively improve relevant mucosal and systemic immunity. The downstream mechanism is well confirmed, yet the evidence of CpG DNA assisting H9N2 WIV in transepithelial delivery is lacking. Here, we reported both in vitro and in vivo that CpG DNA combined with H9N2 WIV was capable of recruiting additional dendritic cells (DCs) to the intestinal epithelial cells (ECs) to form transepithelial dendrites (TEDs) for luminal viral uptake. Both CD103(+) and CD103(-) DCs participated in this process. The engagement of the chemokine CCL20 from the apical ECs and the DCs drove DC recruitment and TED formation. Virus-loaded CD103(+) but not CD103(-) DCs also quickly migrated into mesenteric lymph nodes within 2 h. Moreover, the mechanism of CpG DNA was independent of epithelial transcytosis and disruption of the epithelial barriers. Finally, the subsequent phenotypic and functional maturation of DCs was also enhanced. Our findings indicated that CpG DNA improved the delivery of H9N2 WIV via TEDs of intestinal DCs, and this may be an important mechanism for downstream effective antigen-specific immune responses.
Collapse
Affiliation(s)
- Y Yin
- Key Lab of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - T Qin
- Key Lab of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - X Wang
- Key Lab of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - J Lin
- Key Lab of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Q Yu
- Key Lab of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Q Yang
- Key Lab of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
41
|
HIV Blocks Interferon Induction in Human Dendritic Cells and Macrophages by Dysregulation of TBK1. J Virol 2015; 89:6575-84. [PMID: 25855743 DOI: 10.1128/jvi.00889-15] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 04/03/2015] [Indexed: 12/25/2022] Open
Abstract
UNLABELLED Dendritic cells (DCs) and macrophages are present in the tissues of the anogenital tract, where HIV-1 transmission occurs in almost all cases. These cells are both target cells for HIV-1 and represent the first opportunity for the virus to interfere with innate recognition. Previously we have shown that both cell types fail to produce type I interferons (IFNs) in response to HIV-1 but that, unlike T cells, the virus does not block IFN induction by targeting IFN regulatory factor 3 (IRF3) for cellular degradation. Thus, either HIV-1 inhibits IFN induction by an alternate mechanism or, less likely, these cells fail to sense HIV-1. Here we show that HIV-1 (but not herpes simplex virus 2 [HSV-2] or Sendai virus)-exposed DCs and macrophages fail to induce the expression of all known type I and III IFN genes. These cells do sense the virus, and pattern recognition receptor (PRR)-induced signaling pathways are triggered. The precise stage in the IFN-inducing signaling pathway that HIV-1 targets to block IFN induction was identified; phosphorylation but not K63 polyubiquitination of TANK-binding kinase 1 (TBK1) was completely inhibited. Two HIV-1 accessory proteins, Vpr and Vif, were shown to bind to TBK1, and their individual deletion partly restored IFN-β expression. Thus, the inhibition of TBK1 autophosphorylation by binding of these proteins appears to be the principal mechanism by which HIV-1 blocks type I and III IFN induction in myeloid cells. IMPORTANCE Dendritic cells (DCs) and macrophages are key HIV target cells. Therefore, definition of how HIV impairs innate immune responses to initially establish infection is essential to design preventative interventions, especially by restoring initial interferon production. Here we demonstrate how HIV-1 blocks interferon induction by inhibiting the function of a key kinase in the interferon signaling pathway, TBK1, via two different viral accessory proteins. Other viral proteins have been shown to target the general effects of TBK1, but this precise targeting between ubiquitination and phosphorylation of TBK1 is novel.
Collapse
|
42
|
Marsden V, Donaghy H, Bertram KM, Harman AN, Nasr N, Keoshkerian E, Merten S, Lloyd AR, Cunningham AL. Herpes simplex virus type 2-infected dendritic cells produce TNF-α, which enhances CCR5 expression and stimulates HIV production from adjacent infected cells. THE JOURNAL OF IMMUNOLOGY 2015; 194:4438-45. [PMID: 25840914 DOI: 10.4049/jimmunol.1401706] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 03/01/2015] [Indexed: 12/25/2022]
Abstract
Prior HSV-2 infection enhances the acquisition of HIV-1 >3-fold. In genital herpes lesions, the superficial layers of stratified squamous epithelium are disrupted, allowing easier access of HIV-1 to Langerhans cells (LC) in the epidermis and perhaps even dendritic cells (DCs) in the outer dermis, as well as to lesion infiltrating activated T lymphocytes and macrophages. Therefore, we examined the effects of coinfection with HIV-1 and HSV-2 on monocyte-derived DCs (MDDC). With simultaneous coinfection, HSV-2 significantly stimulated HIV-1 DNA production 5-fold compared with HIV-1 infection alone. Because <1% of cells were dually infected, this was a field effect. Virus-stripped supernatants from HSV-2-infected MDDCs were shown to enhance HIV-1 infection, as measured by HIV-1-DNA and p24 Ag in MDDCs. Furthermore these supernatants markedly stimulated CCR5 expression on both MDDCs and LCs. TNF-α was by far the most prominent cytokine in the supernatant and also within HSV-2-infected MDDCs. HSV-2 infection of isolated immature epidermal LCs, but not keratinocytes, also produced TNF-α (and low levels of IFN-β). Neutralizing Ab to TNF-α and its receptor, TNF-R1, on MDDCs markedly inhibited the CCR5-stimulating effect of the supernatant. Therefore, these results suggest that HSV-2 infection of DCs in the skin during primary or recurrent genital herpes may enhance HIV-1 infection of adjacent DCs, thus contributing to acquisition of HIV-1 through herpetic lesions.
Collapse
Affiliation(s)
- Valerie Marsden
- Centre for Virus Research, Westmead Millennium Institute, Westmead, New South Wales, Australia 2145; Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia 2006
| | - Heather Donaghy
- Centre for Virus Research, Westmead Millennium Institute, Westmead, New South Wales, Australia 2145
| | - Kirstie M Bertram
- Centre for Virus Research, Westmead Millennium Institute, Westmead, New South Wales, Australia 2145; Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia 2006
| | - Andrew N Harman
- Centre for Virus Research, Westmead Millennium Institute, Westmead, New South Wales, Australia 2145
| | - Najla Nasr
- Centre for Virus Research, Westmead Millennium Institute, Westmead, New South Wales, Australia 2145
| | - Elizabeth Keoshkerian
- Inflammation and Infection Research Centre, Faculty of Medicine, The University of New South Wales, Kensington, New South Wales, Australia 2052; and
| | - Steven Merten
- Pure Aesthetics Plastic Surgery, Sydney, New South Wales, Australia 2000
| | - Andrew R Lloyd
- Inflammation and Infection Research Centre, Faculty of Medicine, The University of New South Wales, Kensington, New South Wales, Australia 2052; and
| | - Anthony L Cunningham
- Centre for Virus Research, Westmead Millennium Institute, Westmead, New South Wales, Australia 2145; Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia 2006;
| |
Collapse
|
43
|
Rescigno M. Dendritic cell functions: Learning from microbial evasion strategies. Semin Immunol 2015; 27:119-24. [PMID: 25843245 DOI: 10.1016/j.smim.2015.03.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 03/17/2015] [Indexed: 01/16/2023]
Abstract
Dendritic cells (DCs) are specialized antigen presenting cells (APC) that are fundamental to initiate both immunity and tolerance. DCs play a 'sentinel' role to protect our body from potential pathogens and induce tolerogenic responses toward harmless antigens. The flexibility of DCs or macrophages to adapt to the environment and to respond accordingly can be hijacked by pathogens for their own interest to transform a potentially immunogenic APC into a tolerogenic cell with clear consequences in pathogen clearance. While these immune evasion mechanisms can be detrimental for the host, they can highlight important molecular pathways in DCs necessary for their function. In this review we will mention several mechanisms employed by pathogens to evade DC patrolling function.
Collapse
Affiliation(s)
- Maria Rescigno
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy; Department of Health Sciences, School of Medicine, University of Milan, Milan, Italy.
| |
Collapse
|
44
|
Lahaye X, Manel N. Viral and cellular mechanisms of the innate immune sensing of HIV. Curr Opin Virol 2015; 11:55-62. [PMID: 25697108 DOI: 10.1016/j.coviro.2015.01.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 01/26/2015] [Accepted: 01/26/2015] [Indexed: 01/08/2023]
Abstract
HIV-1 replicates in immune cells that normally respond to incoming viruses and induce antiviral immune responses. Under this constant surveillance, how HIV-1 interacts with the host to escape immune control and causes immunopathology is still being untangled. Recently, a series of HIV-1 interactions with innate sensors of viruses expressed by immune target cells have been identified. Here, we review the HIV-1 factors that escape, engage and regulate these innate immune sensors. We discuss the general principles of these interactions as well as the remarkable cell-type specificity of the regulatory mechanisms and their resulting immune responses. Innate sensors directly intersect viral replication with immunity, and understanding their triggering, or lack thereof, improves our ability to design immune interventions.
Collapse
Affiliation(s)
- Xavier Lahaye
- Institut Curie, 12 rue Lhomond, 75005 Paris, France; INSERM U932, 12 rue Lhomond, 75005 Paris, France
| | - Nicolas Manel
- Institut Curie, 12 rue Lhomond, 75005 Paris, France; INSERM U932, 12 rue Lhomond, 75005 Paris, France.
| |
Collapse
|
45
|
Gummuluru S, Pina Ramirez NG, Akiyama H. CD169-dependent cell-associated HIV-1 transmission: a driver of virus dissemination. J Infect Dis 2015; 210 Suppl 3:S641-7. [PMID: 25414418 DOI: 10.1093/infdis/jiu442] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Sexual transmission of human immunodeficiency virus type 1 (HIV-1) occurs across mucosal surfaces of the genital and gastrointestinal tracts and accounts for the vast majority of newly acquired infections worldwide. In the absence of an effective vaccine, interventional strategies such as microbicides that target viral attachment and entry into mucosa-resident target cells are particularly attractive and might have the greatest impact on reducing the HIV-1 pandemic. Rational development of microbicides would be greatly aided with a better understanding of several key questions of mucosal HIV-1 transmission, including the molecular mechanism(s) of how HIV-1 traverses mucosal barriers, the type of cells that it initially infects to gain a foothold in the naive host, and how it is disseminated from local sites of infection to draining lymph nodes. In this review, we discuss the role of myeloid dendritic cells (DCs) in cell-associated HIV-1 transmission and in facilitating systemic HIV-1 dissemination. We will evaluate the role of CD169 as a DC-associated HIV-1 attachment factor, investigate the molecular mechanisms by which HIV-1 particles are transferred from DCs to CD4(+) T cells across virological synapses, and provide arguments for inclusion of molecules in microbicides that can effectively target HIV-1 attachment to DCs and DC-mediated virus transfer.
Collapse
Affiliation(s)
- Suryaram Gummuluru
- Department of Microbiology, Boston University School of Medicine, Massachusetts
| | | | - Hisashi Akiyama
- Department of Microbiology, Boston University School of Medicine, Massachusetts
| |
Collapse
|
46
|
Whole inactivated avian Influenza H9N2 viruses induce nasal submucosal dendritic cells to sample luminal viruses via transepithelial dendrites and trigger subsequent DC maturation. Vaccine 2015; 33:1382-92. [PMID: 25613720 DOI: 10.1016/j.vaccine.2015.01.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 12/23/2014] [Accepted: 01/08/2015] [Indexed: 12/13/2022]
Abstract
Nasal mucosal barrier is a key impediment for the absorption of influenza whole inactivated virus (WIV) intranasal vaccine. Yet it is still unclear how WIV cross the epithelial cells (ECs) in nasal cavity. Here, in vitro, a coculture system was well established, consisting of surrogate nasal ECs (Calu-3) and dendritic cells (DCs). After adding H9N2 WIV on the apical side of ECs, we found that submucosal DCs extended their transepithelial dendrites (TEDs) and sampled luminal viruses. However, ECs were not involved in the transepithelial transport of viruses. Subsequently, the phenotypic and functional maturation of DCs were also enhanced, whereas they were attenuated after blocking of TED formation by anti-JAM1 antibody. In vivo, we confirmed that H9N2 WIV were capable of inducing nasal submucosal DCs to sample luminal viruses via TEDs in the nasal passage but not nasal-associated lymphoid tissue (NALT). CD103(+) and CD103(-) DC subsets participated in this process. Of note, chemokine CCL20, released from the H9N2 WIV-induced ECs, played a vital role in DC recruitment and TED formation. Taken together, our findings indicated that TEDs played a critical role in facilitating viral transport across the epithelial barrier, which may guide the design of novel nasal mucosal vaccine strategies.
Collapse
|
47
|
The evolution of HIV-1 interactions with coreceptors and mannose C-type lectin receptors. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 129:109-40. [PMID: 25595802 DOI: 10.1016/bs.pmbts.2014.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The phenotype of human immunodeficiency virus type 1 (HIV-1) commonly evolves between and within infected individuals, at virus transmission, and during disease progression. This evolution includes altered interactions between the virus and its coreceptors, i.e., chemokine receptors, as well as mannose C-type lectin receptors (CLRs). Transmitted/founder viruses are predominantly restricted to CCR5, whereas the subsequent intrapatient evolution of HIV-1 coreceptor use during progressive disease can be subdivided into two distinct pathways. Accordingly, the CCR5-restricted virus population is either gradually replaced by virus variants able to use CXCR4 or evolves toward an altered, more flexible use of CCR5. Despite a strong dependency on these coreceptors for host cell entry, HIV-1 also interacts with other cell surface molecules during target cell attachment, including the CLRs. The virus interaction with the CLRs may result either in the efficient transfer of virus to CD4(+) T cells or in the degradation of the virus in endosomal compartments. The determinants of the diverse outcomes depend on which CLR is engaged and also on the glycan makeup of the envelope glycoproteins, which may evolve with the strength of the immune pressure during the disease course. With the current clinical introduction of CCR5 antagonists and the development of additional entry inhibitors, knowledge on the evolution and baseline characteristics of HIV-1 interactions with coreceptor and CLR interactions may play important roles for individualized and optimized treatment strategies. This review summarizes our current understanding of the evolution of HIV-1 interactions with these receptors.
Collapse
|
48
|
Tang Y, George A, Nouvet F, Sweet S, Emeagwali N, Taylor HE, Simmons G, Hildreth JEK. Infection of female primary lower genital tract epithelial cells after natural pseudotyping of HIV-1: possible implications for sexual transmission of HIV-1. PLoS One 2014; 9:e101367. [PMID: 25010677 PMCID: PMC4092063 DOI: 10.1371/journal.pone.0101367] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 06/05/2014] [Indexed: 11/19/2022] Open
Abstract
The global AIDS pandemic continues to expand and in some regions of the world, such as southern Africa, the prevalence of HIV-1 infection exceeds 20%. The devastating spread of the virus in young women in these countries appears disproportional to overall risk of infection. Regions with high prevalence of HIV-1 are often also highly endemic for other pathogenic viruses including HSV, CMV and HTLV. We propose that acquisition by HIV-1 of the envelope glycoproteins of other viruses, in a process we call “natural pseudotyping,” expands the cellular tropism of HIV-1, enabling it to infect female genital epithelial cells directly and thereby dramatically increasing risk of infection during sexual intercourse. In this proof-of-concept study, we demonstrate that when HIV-1 co-infects T cells along with the gammaretrovirus xenotropic murine leukemia virus-related virus (XMRV), progeny HIV-1 particles are produced capable of infecting primary vaginal, ectocervical and endocervical epithelial cells. These cell types are normally resistant to HIV-1 infection. Infection of primary genital cells was neutralized by antisera against the XMRV glycoprotein, confirming that infection was mediated by the XMRV glycoprotein acquired through pseudotyping of HIV. Inhibition by AZT showed that active replication of HIV-1 occurred in these cells and ruled out non-specific endocytic uptake of the virus. These results demonstrate that natural pseudotyping can expand the tropism of HIV-1 to include genital epithelial cells and have potential implications for sexual transmission of the virus.
Collapse
Affiliation(s)
- Yuyang Tang
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California Davis, Davis, California, United States of America
| | - Alvin George
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California Davis, Davis, California, United States of America
| | - Franklin Nouvet
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California Davis, Davis, California, United States of America
| | - Stephanie Sweet
- Department of Obstetrics and Gynecology, University of California Davis, Davis, California, United States of America
| | - Nkiruka Emeagwali
- Department of Microbiology and Immunology, Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Harry E. Taylor
- Department of Microbiology and Immunology, Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Glenn Simmons
- Department of Microbiology and Immunology, Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, United States of America
| | - James E. K. Hildreth
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
49
|
Su B, Moog C. Which Antibody Functions are Important for an HIV Vaccine? Front Immunol 2014; 5:289. [PMID: 24995008 PMCID: PMC4062070 DOI: 10.3389/fimmu.2014.00289] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 06/03/2014] [Indexed: 01/18/2023] Open
Abstract
HIV antibody (Ab) functions capable of preventing mucosal cell-free or cell-to-cell HIV transmission are critical for the development of effective prophylactic and therapeutic vaccines. In addition to CD4(+) T cells, other potential HIV-target cell types including antigen-presenting cells (APCs) (dendritic cells, macrophages) residing at mucosal sites are infected. Moreover, the interactions between APCs and HIV lead to HIV cell-to-cell transmission. Recently discovered broadly neutralizing antibodies (NAbs) are able to neutralize a broad spectrum of HIV strains, inhibit cell-to-cell transfer, and efficiently protect from infection in the experimentally challenged macaque model. However, the 31% protection observed in the RV144 vaccine trial in the absence of detectable NAbs in blood samples pointed to the possible role of additional Ab inhibitory functions. Increasing evidence suggests that IgG Fcγ receptor (FcγR)-mediated inhibition of Abs present at the mucosal site may play a role in protection against HIV mucosal transmission. Moreover, mucosal IgA Abs may be determinant in protection against HIV sexual transmission. Therefore, defining Ab inhibitory functions that could lead to protection is critical for further HIV vaccine design. Here, we review different inhibitory properties of HIV-specific Abs and discuss their potential role in protection against HIV sexual transmission.
Collapse
Affiliation(s)
- Bin Su
- INSERM U1109, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg , Strasbourg , France
| | - Christiane Moog
- INSERM U1109, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg , Strasbourg , France
| |
Collapse
|
50
|
Shen R, Richter HE, Smith PD. Interactions between HIV-1 and mucosal cells in the female reproductive tract. Am J Reprod Immunol 2014; 71:608-17. [PMID: 24689653 PMCID: PMC4073589 DOI: 10.1111/aji.12244] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 02/26/2014] [Indexed: 12/13/2022] Open
Abstract
Worldwide, the heterosexual route is the prevalent mode of HIV-1 transmission, and the female reproductive tract accounts for approximately 40% of all HIV-1 transmissions. HIV-1 infection in the female reproductive tract involves three major events: entry through the mucosal epithelium, productive infection in subepithelial mononuclear cells, and delivery to lymph nodes to initiate systemic infection. Here, we provide a focused review of the interaction between HIV-1 and mucosal epithelial cells, lymphocytes, macrophages, and dendritic cells in female genital mucosa. Increased understanding of these interactions could illuminate new approaches for interdicting HIV-1 heterosexual transmission.
Collapse
Affiliation(s)
- Ruizhong Shen
- Department of Medicine (Gastroenterology), University of Alabama at Birmingham, Birmingham, AL, USA
| | - Holly E. Richter
- Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Phillip D. Smith
- Department of Medicine (Gastroenterology), University of Alabama at Birmingham, Birmingham, AL, USA
- VA Medical Center, Birmingham, AL, USA
| |
Collapse
|