1
|
Chicón‐Bosch M, Sánchez‐Serra S, Rosàs‐Lapeña M, Costa‐Fraga N, Besalú‐Velázquez J, Illa‐Bernadí J, Mateo‐Lozano S, Cidre‐Aranaz F, Grünewald TG, Díaz‐Lagares Á, Lopez‐Alemany R, Tirado ÒM. Multi-omics profiling reveals key factors involved in Ewing sarcoma metastasis. Mol Oncol 2025; 19:1002-1028. [PMID: 39757762 PMCID: PMC11977646 DOI: 10.1002/1878-0261.13788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/28/2024] [Accepted: 11/14/2024] [Indexed: 01/07/2025] Open
Abstract
Ewing sarcoma (EWS) is the second most common bone tumor affecting children and young adults, with dismal outcomes for patients with metastasis at diagnosis. Mechanisms leading to metastasis remain poorly understood. To deepen our knowledge on EWS progression, we have profiled tumors and metastases from a spontaneous metastasis mouse model using a multi-omics approach. Combining transcriptomics, proteomics, and methylomics analyses, we identified signaling cascades and candidate genes enriched in metastases that could be modulating aggressiveness in EWS. Phenotypical validation of two of these candidates, cyclic AMP-responsive element-binding protein 1 (CREB1) and lipoxygenase homology domain-containing protein 1 (LOXHD1), showed an association with migration and clonogenic abilities. Moreover, previously described CREB1 downstream targets were present amongst the metastatic-enriched results. Combining the different omics datasets, we identified FYVE, RhoGEF, and PH domain-containing protein 4 (FGD4) as a CREB1 target interconnecting the different EWS biological layers (RNA, protein and methylation status) and whose high expression is associated with worse clinical outcome. Further studies will provide insight into EWS metastasis mechanisms and ultimately improve survival rates for EWS patients.
Collapse
Affiliation(s)
- Mariona Chicón‐Bosch
- Sarcoma Research GroupInstitut d'Investigació Biomèdica de Bellvitge (IDIBELL), Oncobell, L'Hospitalet de LlobregatBarcelonaSpain
| | - Sara Sánchez‐Serra
- Sarcoma Research GroupInstitut d'Investigació Biomèdica de Bellvitge (IDIBELL), Oncobell, L'Hospitalet de LlobregatBarcelonaSpain
- Universitat de Barcelona (UB)BarcelonaSpain
| | - Marta Rosàs‐Lapeña
- Sarcoma Research GroupInstitut d'Investigació Biomèdica de Bellvitge (IDIBELL), Oncobell, L'Hospitalet de LlobregatBarcelonaSpain
| | - Nicolás Costa‐Fraga
- Epigenomics Unit, Cancer Epigenomics, Translational Medical Oncology (ONCOMET), Health Research Institute of Santiago (IDIS)University Clinical Hospital of Santiago (CHUS/SERGAS)Santiago de CompostelaSpain
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry SchoolUniversidade de Santiago de Compostela (USC)Spain
- Universidad de Santiago de Compostela (USC)Spain
- Department of Clinical AnalysisUniversity Hospital Complex of Santiago de Compostela (CHUS)Spain
| | - Judit Besalú‐Velázquez
- Sarcoma Research GroupInstitut d'Investigació Biomèdica de Bellvitge (IDIBELL), Oncobell, L'Hospitalet de LlobregatBarcelonaSpain
| | - Janet Illa‐Bernadí
- Sarcoma Research GroupInstitut d'Investigació Biomèdica de Bellvitge (IDIBELL), Oncobell, L'Hospitalet de LlobregatBarcelonaSpain
| | - Silvia Mateo‐Lozano
- Developmental Tumor Biology LaboratoryInstitut de Recerca Sant Joan de Déu, Hospital Sant Joan de DéuBarcelonaSpain
- Pediatric Cancer Center BarcelonaHospital Sant Joan de DéuBarcelonaSpain
| | - Florencia Cidre‐Aranaz
- Division of Translational Paediatric Sarcoma ResearchGerman Cancer Research Center (DKFZ), German Cancer Consortium (DKTK)HeidelbergGermany
- Hopp‐Children's Cancer Center (KiTZ)HeidelbergGermany
- National Center for Tumor Diseases (NCT)NCT Heidelberg, a partnership between DKFZ and Heidelberg University HospitalGermany
| | - Thomas G.P. Grünewald
- Division of Translational Paediatric Sarcoma ResearchGerman Cancer Research Center (DKFZ), German Cancer Consortium (DKTK)HeidelbergGermany
- Hopp‐Children's Cancer Center (KiTZ)HeidelbergGermany
- National Center for Tumor Diseases (NCT)NCT Heidelberg, a partnership between DKFZ and Heidelberg University HospitalGermany
- Institute of PathologyHeidelberg University HospitalHeidelbergGermany
| | - Ángel Díaz‐Lagares
- Epigenomics Unit, Cancer Epigenomics, Translational Medical Oncology (ONCOMET), Health Research Institute of Santiago (IDIS)University Clinical Hospital of Santiago (CHUS/SERGAS)Santiago de CompostelaSpain
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry SchoolUniversidade de Santiago de Compostela (USC)Spain
- Universidad de Santiago de Compostela (USC)Spain
- Department of Clinical AnalysisUniversity Hospital Complex of Santiago de Compostela (CHUS)Spain
- CIBERONCCarlos III Institute of Health (ISCIII)MadridSpain
| | - Roser Lopez‐Alemany
- Sarcoma Research GroupInstitut d'Investigació Biomèdica de Bellvitge (IDIBELL), Oncobell, L'Hospitalet de LlobregatBarcelonaSpain
| | - Òscar M. Tirado
- Sarcoma Research GroupInstitut d'Investigació Biomèdica de Bellvitge (IDIBELL), Oncobell, L'Hospitalet de LlobregatBarcelonaSpain
- CIBERONCCarlos III Institute of Health (ISCIII)MadridSpain
- Institut Català d'Oncologia (ICO)L'Hospitalet de LlobregatBarcelonaSpain
| |
Collapse
|
2
|
Luo P, Hong H, Zhang B, Li J, Zhang S, Yue C, Cao J, Wang J, Dai Y, Liao Q, Xu P, Yang B, Liu X, Lin X, Yu Y, Feng XH. ERBB4 selectively amplifies TGF-β pro-metastatic responses. Cell Rep 2025; 44:115210. [PMID: 39854208 DOI: 10.1016/j.celrep.2024.115210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/19/2024] [Accepted: 12/24/2024] [Indexed: 01/26/2025] Open
Abstract
Transforming growth factor β (TGF-β) is well known to play paradoxical roles in tumorigenesis as it has both growth-inhibitory and pro-metastatic effects. However, the underlying mechanisms of how TGF-β drives the opposing responses remain largely unknown. Here, we report that ERBB4, a member of the ERBB receptor tyrosine kinase family, specifically promotes TGF-β's metastatic response but not its anti-growth response. ERBB4 directly phosphorylates Tyr162 in the linker region of SMAD4, which enables SMAD4 to achieve a higher DNA-binding ability and potentiates TGF-β-induced gene transcription associated with epithelial-to-mesenchymal transition (EMT), cell migration, and invasion without affecting the genes involved in growth inhibition. These selective effects facilitate lung cancer metastasis in mouse models. This discovery sheds light on the previously unrecognized role of SMAD4 as a substrate of ERBB4 and highlights the selective involvement of the ERBB4-SMAD4 regulatory axis in tumor metastasis.
Collapse
Affiliation(s)
- Peihong Luo
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang 321000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Huanyu Hong
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang 321000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Baoling Zhang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang 321000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jie Li
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang 321000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shuyi Zhang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang 321000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Chaomin Yue
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jin Cao
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang 321000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jia Wang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang 321000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yuhan Dai
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang 321000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Qingqing Liao
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Pinglong Xu
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Bing Yang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xia Liu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang 311215, China
| | - Xia Lin
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Yi Yu
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang 321000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Xin-Hua Feng
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang 321000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China; The Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310009, China.
| |
Collapse
|
3
|
Jia K, Cao L, Yu Y, Jing D, Wu W, Van Tine BA, Shao Z. Signaling pathways and targeted therapies in Ewing sarcoma. Pharmacol Ther 2025; 266:108765. [PMID: 39622389 DOI: 10.1016/j.pharmthera.2024.108765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/08/2024]
Abstract
Ewing sarcoma, the second most prevalent malignant bone tumor with potential occurrence in soft tissues, exhibits a high level of aggressiveness, primarily afflicting children and adolescents. It is characterized by fusion proteins arising from chromosomal translocations. The fusion proteins induce aberrations in multiple signaling pathways and molecules, constituting a key event in oncogenic transformation. While diagnostic and therapeutic modalities have advanced in recent decades and multimodal treatments, including surgery, radiotherapy, and chemotherapy, have significantly improved survival of patients with localized tumors, patients with metastatic tumors continue to face poor prognoses. There persists a pressing need for novel alternative treatments, yet the translation of our understanding of Ewing sarcoma pathogenesis into improved clinical outcomes remains a critical challenge. Here, we provide a comprehensive review of Ewing sarcoma, including fusion proteins, various signaling pathways, pivotal pathogenetic molecules implicated in its development, and associated targeted therapies and immunotherapies. We summarize past endeavors, current advancements, and deliberate on limitations and future research directions. It is envisaged that this review will furnish novel insights into prospective treatment avenues for Ewing sarcoma.
Collapse
Affiliation(s)
- Ke Jia
- Department of Orthopaedics, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Li Cao
- Department of Orthopaedics, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Washington University School of Medicine, St Louis, MO, USA.
| | - Yihan Yu
- Department of Orthopaedics, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Doudou Jing
- Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan 030001, China.
| | - Wei Wu
- Department of Orthopaedics, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | | | - Zengwu Shao
- Department of Orthopaedics, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
4
|
Rebhun RB, York D, De Graaf FMD, Yoon P, Batcher KL, Luker ME, Ryan S, Peyton J, Kent MS, Stern JA, Bannasch DL. A variant in the 5'UTR of ERBB4 is associated with lifespan in Golden Retrievers. GeroScience 2024; 46:2849-2862. [PMID: 37855863 PMCID: PMC11009206 DOI: 10.1007/s11357-023-00968-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/29/2023] [Indexed: 10/20/2023] Open
Abstract
Genome-wide association studies (GWAS) in long-lived human populations have led to identification of variants associated with Alzheimer's disease and cardiovascular disease, the latter being the most common cause of mortality in people worldwide. In contrast, naturally occurring cancer represents the leading cause of death in pet dogs, and specific breeds like the Golden Retriever (GR) carry up to a 65% cancer-related death rate. We hypothesized that GWAS of long-lived GRs might lead to the identification of genetic variants capable of modifying longevity within this cancer-predisposed breed. A GWAS was performed comparing GR dogs ≥ 14 years to dogs dying prior to age 12 which revealed a significant association to ERBB4, the only member of the epidermal growth factor receptor family capable of serving as both a tumor suppressor gene and an oncogene. No coding variants were identified, however, distinct haplotypes in the 5'UTR were associated with reduced lifespan in two separate populations of GR dogs. When all GR dogs were analyzed together (n = 304), the presence of haplotype 3 was associated with shorter survival (11.8 years vs. 12.8 years, p = 0.024). GRs homozygous for haplotype 3 had the shortest survival, and GRs homozygous for haplotype 1 had the longest survival (11.6 years vs. 13.5 years, p = 0.0008). Sub-analyses revealed that the difference in lifespan for GRs carrying at least 1 copy of haplotype 3 was specific to female dogs (p = 0.009), whereas survival remained significantly different in both male and female GRs homozygous for haplotype 1 or haplotype 3 (p = 0.026 and p = 0.009, respectively). Taken together, these findings implicate a potential role for ERBB4 in GR longevity and provide evidence that within-breed canine lifespan studies could serve as a mechanism to identify favorable or disease-modifying variants important to the axis of aging and cancer.
Collapse
Affiliation(s)
- Robert B Rebhun
- Department of Surgical and Radiological Sciences, University of California, Davis, CA, USA.
| | - Daniel York
- Department of Surgical and Radiological Sciences, University of California, Davis, CA, USA
| | - Flora M D De Graaf
- Department of Population Health and Reproduction, University of California, Davis, CA, USA
| | - Paula Yoon
- Veterinary Medical Teaching Hospital, University of California, Davis, CA, USA
| | - Kevin L Batcher
- Department of Population Health and Reproduction, University of California, Davis, CA, USA
| | - Madison E Luker
- Department of Surgical and Radiological Sciences, University of California, Davis, CA, USA
| | - Stephanie Ryan
- Department of Population Health and Reproduction, University of California, Davis, CA, USA
| | - Jamie Peyton
- Veterinary Medical Teaching Hospital, University of California, Davis, CA, USA
| | - Michael S Kent
- Department of Surgical and Radiological Sciences, University of California, Davis, CA, USA
| | - Joshua A Stern
- Department of Medicine and Epidemiology, University of California, Davis, CA, USA
| | - Danika L Bannasch
- Department of Population Health and Reproduction, University of California, Davis, CA, USA.
| |
Collapse
|
5
|
Li Y, Li Q, Mu L, Hu Y, Yan C, Zhao H, Mi Y, Li X, Tao D, Qin J. Nuclear Softness Promotes the Metastatic Potential of Large-Nucleated Colorectal Cancer Cells via the ErbB4-Akt1-Lamin A/C Signaling Pathway. Int J Biol Sci 2024; 20:2748-2762. [PMID: 38725859 PMCID: PMC11077370 DOI: 10.7150/ijbs.89481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
Abnormal nuclear enlargement is a diagnostic and physical hallmark of malignant tumors. Large nuclei are positively associated with an increased risk of developing metastasis; however, a large nucleus is inevitably more resistant to cell migration due to its size. The present study demonstrated that the nuclear size of primary colorectal cancer (CRC) cells at an advanced stage was larger than cells at an early stage. In addition, the nuclei of CRC liver metastases were larger than those of the corresponding primary CRC tissues. CRC cells were sorted into large-nucleated cells (LNCs) and small-nucleated cells (SNCs). Purified LNCs exhibited greater constricted migratory and metastatic capacity than SNCs in vitro and in vivo. Mechanistically, ErbB4 was highly expressed in LNCs, which phosphorylated lamin A/C at serine 22 via the ErbB4-Akt1 signaling pathway. Furthermore, the level of phosphorylated lamin A/C was a negative determinant of nuclear stiffness. Taken together, CRC LNCs possessed greater constricted migratory and metastatic potential than SNCs due to ErbB4-Akt1-mediated lamin A/C phosphorylation and nuclear softening. These results may provide a potential treatment strategy for tumor metastasis by targeting nuclear stiffness in patients with cancer, particularly CRC.
Collapse
Affiliation(s)
- Yangkun Li
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qilin Li
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lei Mu
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yibing Hu
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, 518000, China
| | - Chang Yan
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, Shenzhen, 518000, China
| | - Hui Zhao
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yulong Mi
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Surgical Oncology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350013, China
| | - Xiaolan Li
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Deding Tao
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jichao Qin
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Gastrointestinal Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| |
Collapse
|
6
|
Zarezadeh Mehrabadi A, Shahba F, Khorramdelazad H, Aghamohammadi N, Karimi M, Bagherzadeh K, Khoshmirsafa M, Massoumi R, Falak R. Interleukin-1 receptor accessory protein (IL-1RAP): A magic bullet candidate for immunotherapy of human malignancies. Crit Rev Oncol Hematol 2024; 193:104200. [PMID: 37981104 DOI: 10.1016/j.critrevonc.2023.104200] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 11/02/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023] Open
Abstract
IL-1, plays a role in some pathological inflammatory conditions. This pro-inflammatory cytokine also has a crucial role in tumorigenesis and immune responses in the tumor microenvironment (TME). IL-1 receptor accessory protein (IL-1RAP), combined with IL-1 receptor-1, provides a functional complex for binding and signaling. In addition to the direct role of IL-1, some studies demonstrated that IL1-RAP has essential roles in the progression, angiogenesis, and metastasis of solid tumors such as gastrointestinal tumors, lung carcinoma, glioma, breast and cervical cancers. This molecule also interacts with FLT-3 and c-Kit tyrosine kinases and is involved in the pathogenesis of hematological malignancies such as acute myeloid lymphoma. Additionally, IL-1RAP interacts with solute carrier family 3 member 2 (SLC3A2) and thereby increasing the resistance to anoikis and metastasis in Ewing sarcoma. This review summarizes the role of IL-1RAP in different types of cancers and discusses its targeting as a novel therapeutic approach for malignancies.
Collapse
Affiliation(s)
- Ali Zarezadeh Mehrabadi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Faezeh Shahba
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Nazanin Aghamohammadi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Milad Karimi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Kowsar Bagherzadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Khoshmirsafa
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ramin Massoumi
- Department of Laboratory Medicine, Translational Cancer Research, Faculty of Medicine, Lund University, 22381, Lund, Sweden.
| | - Reza Falak
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Yue Z, Wang D, Li X. A promising anoikis-related prognostic signature predicts prognosis of skin cutaneous melanoma. J Cancer Res Clin Oncol 2023; 149:17757-17770. [PMID: 37930439 DOI: 10.1007/s00432-023-05468-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Skin cutaneous melanoma (SKCM) is a highly aggressive disease with a poor prognosis for advanced tumors. Anoikis is a caspase-dependent cell death process triggered by extracellular matrix (ECM) detachment, rectifies detachment-induced metabolic defects that compromise cell survival, recent study revealed the crucial role of anoikis for cancer cells to survive during metastasis. However, limited research focused on the role of anoikis in SKCM. METHODS Our study utilized the 27 anoikis-related genes (ARGs) to divide SKCM patients into two clusters, and obtain differentially expressed genes (DEGs) for each cluster. These DEGs were used in stepwise Cox regression analysis to develop a prediction model for SKCM patients consisting of nine ARGs, called the anoikis-related signature (ARS). Subsequently, we used the risk scores calculated from the ARS to divide SKCM patients into two groups and explored differences in immune microenvironment, immune checkpoint reactivity, and drug sensitivity between the groups. RESULTS Nine ARGs were identified to stratify SKCM patients into two risk groups, patients in the high-risk group had a poor prognosis and suppressed immune cell infiltration. Moreover, higher expression of immune checkpoint molecules and a greater sensitivity to immunotherapy and chemotherapy drugs were observed in the low-risk group. Finally, all of the ARS hub genes were found to be upregulated in SKCM tissues and cell lines. CONCLUSION A novel ARGs signature was identified for predicting the prognosis of SKCM. Based on the immune landscape associated with ARS discovered in our study, targeting ARS hub genes may be a promising treatment for SKCM.
Collapse
Affiliation(s)
- Zhanghui Yue
- Department of Dermatology, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Yuelu District, Changsha, 410000, Hunan Province, People's Republic of China
| | - Dan Wang
- Department of Dermatology, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Yuelu District, Changsha, 410000, Hunan Province, People's Republic of China.
| | - Xuemei Li
- Department of Dermatology, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Yuelu District, Changsha, 410000, Hunan Province, People's Republic of China
| |
Collapse
|
8
|
Huang Y, Liao J, Vlashi R, Chen G. Focal adhesion kinase (FAK): its structure, characteristics, and signaling in skeletal system. Cell Signal 2023; 111:110852. [PMID: 37586468 DOI: 10.1016/j.cellsig.2023.110852] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/29/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase and distributes important regulatory functions in skeletal system. Mesenchymal stem cell (MSC) possesses significant migration and differentiation capacity, is an important source of distinctive bone cells production and a prominent bone development pathway. MSC has a wide range of applications in tissue bioengineering and regenerative medicine, and is frequently employed for hematopoietic support, immunological regulation, and defect repair, although current research is insufficient. FAK has been identified to cross-link with many other keys signaling pathways in bone biology and is considered as a fundamental "crossroad" on the signal transduction pathway and a "node" in the signal network to mediate MSC lineage development in skeletal system. In this review, we summarized the structure, characteristics, cellular signaling, and the interactions of FAK with other signaling pathways in the skeletal system. The discovery of FAK and its mediated molecules will lead to a new knowledge of bone development and bone construction as well as considerable potential for therapeutic use in the treatment of bone-related disorders such as osteoporosis, osteoarthritis, and osteosarcoma.
Collapse
Affiliation(s)
- Yuping Huang
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Junguang Liao
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Rexhina Vlashi
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Guiqian Chen
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
9
|
Song C, Zhang J, Xu C, Gao M, Li N, Geng Q. The critical role of γ-secretase and its inhibitors in cancer and cancer therapeutics. Int J Biol Sci 2023; 19:5089-5103. [PMID: 37928268 PMCID: PMC10620818 DOI: 10.7150/ijbs.87334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/22/2023] [Indexed: 11/07/2023] Open
Abstract
As a multi-substrate transmembrane protease, γ-secretase exists widely in various cells. It controls multiple important cellular activities through substrate cleavage. γ-secretase inhibitors (GSIs) play a role in cancer inhibition by blocking Notch cleavage, and are considered as potential therapeutic strategies for cancer. Currently, GSIs have encouraging performance in preclinical models, yet this success does not translate well in clinical trials. In recent years, a number of breakthrough discoveries have shown us the promise of targeting γ-secretase for the treatment of cancer. Here, we integrate a large amount of data from γ-secretase and its inhibitors and cancer in nearly 30 years, comb and discuss the close connection between γ-secretase and cancer, as well as the potential and problems of current GSIs in cancer treatment. We analyze the possible reasons for the failure performance of current GSIs in clinical trials, and make recommendations for future research areas.
Collapse
Affiliation(s)
- Congkuan Song
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jinjin Zhang
- Department of Emergency, Taihe Hospital, Shiyan, China
| | - Chenzhen Xu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Minglang Gao
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
10
|
Hassan M, Shahzadi S, Malik A, Din SU, Yasir M, Chun W, Kloczkowski A. Oncomeric Profiles of microRNAs as New Therapeutic Targets for Treatment of Ewing's Sarcoma: A Composite Review. Genes (Basel) 2023; 14:1849. [PMID: 37895198 PMCID: PMC10606885 DOI: 10.3390/genes14101849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/07/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Ewing's sarcoma is a rare type of cancer that forms in bones and soft tissues in the body, affecting mostly children and young adults. Current treatments for ES are limited to chemotherapy and/or radiation, followed by surgery. Recently, microRNAs have shown favourable results as latent diagnostic and prognostic biomarkers in various cancers. Furthermore, microRNAs have shown to be a good therapeutic agent due to their involvement in the dysregulation of various molecular pathways linked to tumour progression, invasion, angiogenesis, and metastasis. In this review, comprehensive data mining was employed to explore various microRNAs that might have therapeutic potential as target molecules in the treatment of ES.
Collapse
Affiliation(s)
- Mubashir Hassan
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children Hospital, Columbus, OH 43205, USA;
| | - Saba Shahzadi
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children Hospital, Columbus, OH 43205, USA;
| | - Amal Malik
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54590, Pakistan;
| | - Salah ud Din
- Department of Bioinformatics, University of Okara, Okara 56130, Pakistan;
| | - Muhammad Yasir
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea; (M.Y.); (W.C.)
| | - Wanjoo Chun
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea; (M.Y.); (W.C.)
| | - Andrzej Kloczkowski
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children Hospital, Columbus, OH 43205, USA;
- Department of Pediatrics, The Ohio State University, Columbus, OH 43205, USA
| |
Collapse
|
11
|
Daher M, Zalaquett Z, Chalhoub R, Abi Farraj S, Abdo M, Sebaaly A, Kourie HR, Ghanem I. Molecular and biologic biomarkers of Ewing sarcoma: A systematic review. J Bone Oncol 2023; 40:100482. [PMID: 37180735 PMCID: PMC10173001 DOI: 10.1016/j.jbo.2023.100482] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/23/2023] [Accepted: 04/23/2023] [Indexed: 05/16/2023] Open
Abstract
With an annual incidence of less than 1%, Ewing sarcoma mainly occurs in children and young adults. It is not a frequent tumor but is the second most common bone malignancy in children. It has a 5-year survival rate of 65-75%; however, it has a poor prognosis when it relapses in patients. A genomic profile of this tumor can potentially help identify poor prognosis patients earlier and guide their treatment. A systematic review of the articles concerning genetic biomarkers in Ewing sarcoma was conducted using the Google Scholar, Cochrane, and PubMed database. There were 71 articles discovered. Numerous diagnostic, prognostic, and predictive biomarkers were found. However, more research is necessary to confirm the role of some of the mentioned biomarkers. .
Collapse
Affiliation(s)
- Mohammad Daher
- Orthopedic Department, Faculty of Medicine, Saint Joseph University of Beirut, Lebanon
- Corresponding author at: Hotel Dieu de France, Beirut, Lebanon.
| | - Ziad Zalaquett
- Hematology-Oncology Department, Faculty of Medicine, Saint Joseph University of Beirut, Lebanon
| | - Ralph Chalhoub
- Hematology-Oncology Department, Faculty of Medicine, Saint Joseph University of Beirut, Lebanon
| | - Sami Abi Farraj
- Orthopedic Department, Faculty of Medicine, Saint Joseph University of Beirut, Lebanon
| | - Majd Abdo
- Hematology-Oncology Department, Faculty of Medicine, Saint Joseph University of Beirut, Lebanon
| | - Amer Sebaaly
- Orthopedic Department, Faculty of Medicine, Saint Joseph University of Beirut, Lebanon
| | - Hampig-Raphaël Kourie
- Hematology-Oncology Department, Faculty of Medicine, Saint Joseph University of Beirut, Lebanon
| | - Ismat Ghanem
- Orthopedic Department, Faculty of Medicine, Saint Joseph University of Beirut, Lebanon
| |
Collapse
|
12
|
Zajec Ž, Dernovšek J, Distel M, Gobec M, Tomašič T. Optimisation of pyrazolo[1,5-a]pyrimidin-7(4H)-one derivatives as novel Hsp90 C-terminal domain inhibitors against Ewing sarcoma. Bioorg Chem 2023; 131:106311. [PMID: 36495678 DOI: 10.1016/j.bioorg.2022.106311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/16/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Ewing sarcoma is the second most prevalent paediatric malignant bone tumour. In most cases, it is driven by the fusion oncoprotein EWS::FLI1, which acts as an aberrant transcription factor and dysregulates gene expression. EWS::FLI1 and a large number of downstream dysregulated proteins are Hsp90 client proteins, making Hsp90 an attractive target for the treatment of Ewing sarcoma. In this article, we report a new structural class of allosteric Hsp90 C-terminal domain (CTD) inhibitors based on the virtual screening hit TVS24, which showed antiproliferative activity in the SK-N-MC Ewing sarcoma cell line with an IC50 value of 15.9 ± 0.7 µM. The optimised compounds showed enhanced anticancer activity in the SK-N-MC cell line. Exposure of Ewing sarcoma cells to the most potent analogue 11c resulted in depletion of critical Hsp90 client proteins involved in cancer pathways such as EWS::FLI1, CDK4, RAF-1 and IGF1R, without inducing a heat shock response. The results of this study highlight Hsp90 CTD inhibitors as promising new agents for the treatment of Ewing sarcoma.
Collapse
Affiliation(s)
- Živa Zajec
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Jaka Dernovšek
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Martin Distel
- St. Anna Children's Cancer Research Institute, Zimmermannplatz 10, 1090 Vienna, Austria
| | - Martina Gobec
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Tihomir Tomašič
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| |
Collapse
|
13
|
Chen Y, Lin QX, Xu YT, Qian FJ, Lin CJ, Zhao WY, Huang JR, Tian L, Gu DN. An anoikis-related gene signature predicts prognosis and reveals immune infiltration in hepatocellular carcinoma. Front Oncol 2023; 13:1158605. [PMID: 37182175 PMCID: PMC10172511 DOI: 10.3389/fonc.2023.1158605] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/11/2023] [Indexed: 05/16/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a global health burden with poor prognosis. Anoikis, a novel programmed cell death, has a close interaction with metastasis and progression of cancer. In this study, we aimed to construct a novel bioinformatics model for evaluating the prognosis of HCC based on anoikis-related gene signatures as well as exploring the potential mechanisms. Materials and methods We downloaded the RNA expression profiles and clinical data of liver hepatocellular carcinoma from TCGA database, ICGC database and GEO database. DEG analysis was performed using TCGA and verified in the GEO database. The anoikis-related risk score was developed via univariate Cox regression, LASSO Cox regression and multivariate Cox regression, which was then used to categorize patients into high- and low-risk groups. Then GO and KEGG enrichment analyses were performed to investigate the function between the two groups. CIBERSORT was used for determining the fractions of 22 immune cell types, while the ssGSEA analyses was used to estimate the differential immune cell infiltrations and related pathways. The "pRRophetic" R package was applied to predict the sensitivity of administering chemotherapeutic and targeted drugs. Results A total of 49 anoikis-related DEGs in HCC were detected and 3 genes (EZH2, KIF18A and NQO1) were selected out to build a prognostic model. Furthermore, GO and KEGG functional enrichment analyses indicated that the difference in overall survival between risk groups was closely related to cell cycle pathway. Notably, further analyses found the frequency of tumor mutations, immune infiltration level and expression of immune checkpoints were significantly different between the two risk groups, and the results of the immunotherapy cohort showed that patients in the high-risk group have a better immune response. Additionally, the high-risk group was found to have higher sensitivity to 5-fluorouracil, doxorubicin and gemcitabine. Conclusion The novel signature of 3 anoikis-related genes (EZH2, KIF18A and NQO1) can predict the prognosis of patients with HCC, and provide a revealing insight into personalized treatments in HCC.
Collapse
Affiliation(s)
- Yang Chen
- Department of Clinical Medicine, Wenzhou Medical University, Wenzhou, China
| | - Qiao-xin Lin
- Department of Clinical Medicine, Wenzhou Medical University, Wenzhou, China
- Department of Medical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yi-ting Xu
- Department of Clinical Medicine, Wenzhou Medical University, Wenzhou, China
| | - Fang-jing Qian
- Department of Clinical Medicine, Wenzhou Medical University, Wenzhou, China
| | - Chen-jing Lin
- Department of Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen-ya Zhao
- Department of Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing-ren Huang
- Department of Clinical Medicine, Wenzhou Medical University, Wenzhou, China
| | - Ling Tian
- Department of Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Ling Tian, ; Dian-na Gu,
| | - Dian-na Gu
- Department of Medical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Ling Tian, ; Dian-na Gu,
| |
Collapse
|
14
|
NDRG1 in Cancer: A Suppressor, Promoter, or Both? Cancers (Basel) 2022; 14:cancers14235739. [PMID: 36497221 PMCID: PMC9737586 DOI: 10.3390/cancers14235739] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
N-myc downregulated gene-1 (NDRG1) has been variably reported as a metastasis suppressor, a biomarker of poor outcome, and a facilitator of disease progression in a range of different cancers. NDRG1 is poorly understood in cancer due to its context-dependent and pleiotropic functions. Within breast cancer, NDRG1 is reported to be either a facilitator of, or an inhibitor of tumour progression and metastasis. The wide array of roles played by NDRG1 are dependent on post-translational modifications and subcellular localization, as well as the cellular context, for example, cancer type. We present an update on NDRG1, and its association with hallmarks of cancer such as hypoxia, its interaction with oncogenic proteins such as p53 as well its role in oncogenic and metastasis pathways in breast and other cancers. We further comment on its functional implications as a metastasis suppressor and promoter, its clinical relevance, and discuss its therapeutic targetability in different cancers.
Collapse
|
15
|
Regulation of Metastasis in Ewing Sarcoma. Cancers (Basel) 2022; 14:cancers14194902. [PMID: 36230825 PMCID: PMC9563756 DOI: 10.3390/cancers14194902] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022] Open
Abstract
Ewing sarcoma (EwS) is a type of bone and soft tissue tumor in children and adolescents. Over 85% of cases are caused by the expression of fusion protein EWSR1-FLI1 generated by chromosome translocation. Acting as a potent chimeric oncoprotein, EWSR1-FLI1 binds to chromatin, changes the epigenetic states, and thus alters the expression of a large set of genes. Several studies have revealed that the expression level of EWSR1-FLI1 is variable and dynamic within and across different EwS cell lines and primary tumors, leading to tumoral heterogeneity. Cells with high EWSR1-FLI1 expression (EWSR1-FLI1-high) proliferate in an exponential manner, whereas cells with low EWSR1-FLI1 expression (EWSR1-FLI1-low) tend to have a strong propensity to migrate, invade, and metastasize. Metastasis is the leading cause of cancer-related deaths. The continuous evolution of EwS research has revealed some of the molecular underpinnings of this dissemination process. In this review, we discuss the molecular signatures that contribute to metastasis.
Collapse
|
16
|
Zhang HF, Hughes CS, Li W, He JZ, Surdez D, El-Naggar AM, Cheng H, Prudova A, Delaidelli A, Negri GL, Li X, Ørum-Madsen MS, Lizardo MM, Oo HZ, Colborne S, Shyp T, Scopim-Ribeiro R, Hammond CA, Dhez AC, Langman S, Lim JKM, Kung SHY, Li A, Steino A, Daugaard M, Parker SJ, Geltink RIK, Orentas RJ, Xu LY, Morin GB, Delattre O, Dimitrov DS, Sorensen PH. Proteomic Screens for Suppressors of Anoikis Identify IL1RAP as a Promising Surface Target in Ewing Sarcoma. Cancer Discov 2021; 11:2884-2903. [PMID: 34021002 PMCID: PMC8563374 DOI: 10.1158/2159-8290.cd-20-1690] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 04/03/2021] [Accepted: 05/13/2021] [Indexed: 02/05/2023]
Abstract
Cancer cells must overcome anoikis (detachment-induced death) to successfully metastasize. Using proteomic screens, we found that distinct oncoproteins upregulate IL1 receptor accessory protein (IL1RAP) to suppress anoikis. IL1RAP is directly induced by oncogenic fusions of Ewing sarcoma, a highly metastatic childhood sarcoma. IL1RAP inactivation triggers anoikis and impedes metastatic dissemination of Ewing sarcoma cells. Mechanistically, IL1RAP binds the cell-surface system Xc - transporter to enhance exogenous cystine uptake, thereby replenishing cysteine and the glutathione antioxidant. Under cystine depletion, IL1RAP induces cystathionine gamma lyase (CTH) to activate the transsulfuration pathway for de novo cysteine synthesis. Therefore, IL1RAP maintains cyst(e)ine and glutathione pools, which are vital for redox homeostasis and anoikis resistance. IL1RAP is minimally expressed in pediatric and adult normal tissues, and human anti-IL1RAP antibodies induce potent antibody-dependent cellular cytotoxicity of Ewing sarcoma cells. Therefore, we define IL1RAP as a new cell-surface target in Ewing sarcoma, which is potentially exploitable for immunotherapy. SIGNIFICANCE: Here, we identify cell-surface protein IL1RAP as a key driver of metastasis in Ewing sarcoma, a highly aggressive childhood sarcoma. Minimal expression in pediatric and adult normal tissues nominates IL1RAP as a promising target for immunotherapy.See related commentary by Yoon and DeNicola, p. 2679.This article is highlighted in the In This Issue feature, p. 2659.
Collapse
Affiliation(s)
- Hai-Feng Zhang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Christopher S Hughes
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Wei Li
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania
| | - Jian-Zhong He
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Didier Surdez
- INSERM U830, Equipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Centre, Institut Curie Research Centre, 75005 Paris, France
- Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Amal M El-Naggar
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Hongwei Cheng
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, British Columbia, Canada
- Modelling and translation Laboratory, Xinxiang Medical University, Xinxiang, Henan, China
| | - Anna Prudova
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, British Columbia, Canada
- Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia, Canada
| | - Alberto Delaidelli
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Gian Luca Negri
- Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia, Canada
| | - Xiaojun Li
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, British Columbia, Canada
| | | | - Michael M Lizardo
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Htoo Zarni Oo
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Shane Colborne
- Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia, Canada
| | - Taras Shyp
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Renata Scopim-Ribeiro
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Colin A Hammond
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Anne-Chloe Dhez
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Sofya Langman
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Jonathan K M Lim
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Sonia H Y Kung
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Amy Li
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Anne Steino
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Mads Daugaard
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Seth J Parker
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Ramon I Klein Geltink
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Rimas J Orentas
- Seattle Children's Research Institute, Seattle, Washington
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Li-Yan Xu
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Gregg B Morin
- Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Olivier Delattre
- INSERM U830, Equipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Centre, Institut Curie Research Centre, 75005 Paris, France
| | - Dimiter S Dimitrov
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania
| | - Poul H Sorensen
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, British Columbia, Canada
| |
Collapse
|
17
|
Bioinformatics Analysis of ZBTB16 as a Prognostic Marker for Ewing's Sarcoma. BIOMED RESEARCH INTERNATIONAL 2021; 2021:1989917. [PMID: 34660783 PMCID: PMC8514890 DOI: 10.1155/2021/1989917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/03/2021] [Accepted: 09/04/2021] [Indexed: 11/19/2022]
Abstract
Objective The purpose of this study is to identify novel biomarkers for the prognosis of Ewing's sarcoma based on bioinformatics analysis. Methods The GSE63157 and GSE17679 datasets contain patient and healthy control microarray data that were downloaded from the Gene Expression Omnibus (GEO) database and analyzed through R language software to obtain differentially expressed genes (DEGs). Firstly, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment, protein-protein interaction (PPI) networks, and Cytoscape Molecular Complex Detection (MCODE) plug-in were then used to compute the highest scores of the module. After survival analysis, the hub genes were lastly obtained from the two module genes. Results A total of 1181 DEGs were identified from the two GSEs. Through MCODE and survival analysis, we obtain 53 DEGs from the module and 29 overall survival- (OS-) related genes. ZBTB16 was the only downregulated gene after Venn diagrams. Survival analysis indicates that there was a significant correlation between the high expression of ZBTB16 and the OS of Ewing's sarcoma (ES), and the low expression group had an unfavorable OS when compared to the high expression group. Conclusions High expression of ZBTB16 may serve as a predictor biomarker of poor prognosis in ES patients.
Collapse
|
18
|
Intermediate between Idiopathic Hypereosinophilia and Chronic Eosinophilic Leukemia: A Report of Two Hypereosinophilic Cases with Possible Novel Molecular Mutations. Case Rep Hematol 2021; 2021:1142124. [PMID: 34513100 PMCID: PMC8426067 DOI: 10.1155/2021/1142124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/08/2021] [Accepted: 08/14/2021] [Indexed: 11/17/2022] Open
Abstract
To distinguish a reactive eosinophilia from its malignant counterpart is challenging. Establishing clonality of the eosinophils is crucial and considered the determining factor for establishing a diagnosis. Cases of hypereosinophilia without clear reactive etiologies, no evidence of end-organ damage, normal cytogenetics, and no molecular mutations are termed as “Idiopathic Hypereosinophilia (IHE).” For cases which lie between the spectrum of chronic eosinophilic leukemia (CEL) and IHE, identification of underlying molecular abnormalities might be helpful in better understanding the disease process and prognosis. Here, we report two cases of hypereosinophilia in which five possible novel molecular mutations were identified by targeted next-generation sequencing (NGS) analysis. They were FBXW7, KM2A, TCF3, ERBB4, and MET. With multiple genetic mutations, these cases could be classified as chronic eosinophilic leukemia. Both these young patients responded well to steroid therapy. While targeted NGS is a useful tool in identifying new molecular mutation associated with hypereosinophilia, our cases raise the question of further investigating this entity and if there is a possibility of an intermediate category lying between the spectrum of CEL and IHE. Defining hypereosinophilia with clonal molecular abnormality as a malignant process may need to be revisited. Even though attempts are being made to identify mutations in IHE, it might be more significant clinically to differentiate them based on response to steroid therapy and prognosis.
Collapse
|
19
|
Palmini G, Brandi ML. microRNAs and bone tumours: Role of tiny molecules in the development and progression of chondrosarcoma, of giant cell tumour of bone and of Ewing's sarcoma. Bone 2021; 149:115968. [PMID: 33892177 DOI: 10.1016/j.bone.2021.115968] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 03/26/2021] [Accepted: 04/15/2021] [Indexed: 12/15/2022]
Abstract
The increasing interest on microRNAs (miRNAs), small non-coding RNA molecules containing about 22 nucleotides, about their biological functions led researchers to discover that they are actively involved in several biological processes. In the last decades, miRNAs become one of the most topic of cancer research. miRNAs, thanks to their function, are the perfect molecules to modulate multiple signaling pathways and gene expression in cancer, with the consequent capacity to modulate cancerous processes, such as cellular proliferation, invasion, metastasis and chemoresistance in various tumours. In the last years, several studies have demonstrated the role of miRNAs in their pathophysiology, but little we know about the underlying mechanism that lead to bone tumours like chondrosarcoma (COS), giant cell tumour of bone (GCTB) and Ewing sarcoma (EWS) to still be highly aggressive and resistant tumours. An exploration of the role of miRNAs in the biology of them will permit to researchers to find new molecular mechanisms that can be used to develop new and more effective therapies against these bone tumours. Here we present a comprehensive study of the latest discoveries which have been performed in relation to the role of miRNAs in the neoplastic processes which characterize COS, EWS and GCTB, demonstrating how these tiny molecules can act as tumour promoters or as tumour suppressors and how they can be used for improving therapeutic approaches.
Collapse
Affiliation(s)
- Gaia Palmini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy.
| | - Maria Luisa Brandi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy; Fondazione Italiana Ricerca sulle Malattie dell'Osso, F.I.R.M.O Onlus, Florence, Italy.
| |
Collapse
|
20
|
Augmented Antitumor Activity for Novel Dual PI3K/BDR4 Inhibitors, SF2523 and SF1126 in Ewing Sarcoma. J Pediatr Hematol Oncol 2021; 43:e304-e311. [PMID: 33480647 DOI: 10.1097/mph.0000000000002054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 12/03/2020] [Indexed: 01/15/2023]
Abstract
Ewing sarcoma (ES) is the second most common pediatric bone cancer. Despite recent advances in the treatment, patients with metastatic tumors have dismal prognosis and hence novel therapies are urgently needed to combat this cancer. A recent study has shown that phosphoinositide-3 kinase (PI3K) inhibitors can synergistically increase sensitivity to bromodomain and extraterminal domain inhibitors in ES cells and therefore combined inhibition of PI3K and bromodomain and extraterminal domain bromodomain proteins might provide benefit in this cancer. Herein, we have investigated the efficacy of dual PI3K/BRD4 inhibitors, SF2523 and SF1126, for their antitumor activity in ES cell lines. The effect of SF1126 and SF2523 on cell viability and PI3K signaling was assessed on a panel of human ES cell lines. To evaluate the antitumor activity of SF1126, A673 cells were injected intrafemorally into RAG-2-/- mice and treated with 50 mg/kg SF1126 6 days per week, for 30 days. Both SF1126 and SF2523 decreased cell survival and inhibited phosphorylation of AKT in human ES cell lines. In vivo, SF1126 showed a significant reduction in tumor volume. These results suggest that dual PI3K/BRD4 inhibitor, SF1126, has antitumor activity in ES models.
Collapse
|
21
|
Scopim-Ribeiro R, Lizardo MM, Zhang HF, Dhez AC, Hughes CS, Sorensen PH. NSG Mice Facilitate ex vivo Characterization of Ewing Sarcoma Lung Metastasis Using the PuMA Model. Front Oncol 2021; 11:645757. [PMID: 33828989 PMCID: PMC8019912 DOI: 10.3389/fonc.2021.645757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/22/2021] [Indexed: 11/13/2022] Open
Abstract
Ewing sarcoma (EwS) is a highly malignant bone and soft tissue tumor primarily affecting children and young adults. While most patients initially respond well to conventional front-line therapy, frequent metastasis results in poor 5-year overall survival rates for this disease. Accordingly, there is a critical need to develop better models to understand EwS metastasis. We and others previously used the ex vivo pulmonary metastasis assay (PuMA) to study lung metastasis in solid tumors including osteosarcoma (OS), but this technique has to date not been achievable for EwS. PuMA involves tail vein injection of fluorescent tumor cells into NOD-SCID mice, followed by their visualization in long-term cultures of tumor-bearing lung explants. Here we demonstrate successful implementation of PuMA for EwS cells using NOD-SCID-IL2 receptor gamma null (NSG) immunocompromised mice, which demonstrated high engraftment of EwS cell lines compared to NOD-SCID mice. This may be linked to immune permissiveness required by EwS cells, as increased basal cytotoxicity of EwS cells was observed in NOD-SCID compared to NSG lung sections, possibly due to the absence of natural killer (NK) cell activity in the latter. Together, our data demonstrate the utility of NSG mice for PuMA modeling of EwS lung metastasis.
Collapse
Affiliation(s)
| | | | - Hai-Feng Zhang
- Department of Molecular Oncology, BC Cancer, Vancouver, BC, Canada
| | - Anne-Chloé Dhez
- Department of Molecular Oncology, BC Cancer, Vancouver, BC, Canada
| | | | - Poul H Sorensen
- Department of Molecular Oncology, BC Cancer, Vancouver, BC, Canada.,Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
22
|
Yang Y, Ma Y, Gao H, Peng T, Shi H, Tang Y, Li H, Chen L, Hu K, Han A. A novel HDGF-ALCAM axis promotes the metastasis of Ewing sarcoma via regulating the GTPases signaling pathway. Oncogene 2020; 40:731-745. [PMID: 33239755 DOI: 10.1038/s41388-020-01485-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 09/12/2020] [Accepted: 09/21/2020] [Indexed: 12/24/2022]
Abstract
Ewing sarcoma (ES) is a type of highly aggressive pediatric tumor in bones and soft tissues and its metastatic spread remains the most powerful predictor of poor outcome. We previously identified that the transcription factor hepatoma-derived growth factor (HDGF) promotes ES tumorigenesis. However, the mechanisms underlying ES metastasis remain unclear. Here, we show that HDGF drives ES metastasis in vitro and in vivo, and HDGF reduces metastasis-free survival (MFS) in two independent large cohorts of human ES patients. Integrative analyses of HDGF ChIP-seq and gene expression profiling in ES cells reveal that HDGF regulates multiple metastasis-associated genes, among which activated leukocyte cell adhesion molecule (ALCAM) emerges as a major HDGF target and a novel metastasis-suppressor in ES. HDGF down-regulates ALCAM, induces expression and activation of the downstream effectors Rho-GTPase Rac1 and Cdc42, and promotes actin cytoskeleton remodeling and cell-matrix adhesion. In addition, repression of ALCAM and activation of Rac1 and Cdc42 are required for the pro-metastatic functions of HDGF in vitro. Moreover, analyses in murine models with ES tumor orthotopic implantation and experimental metastasis, as well as in human ES samples, demonstrate the associations among HDGF, ALCAM, and GTPases expression levels. Furthermore, high HDGF/low ALCAM expression define a subgroup of patients harboring the worst MFS. These findings suggest that the HDGF/ALCAM/GTPases axis represents a promising therapeutic target for limiting ES metastasis.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, P.R. China
| | - Yuedong Ma
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, P.R. China
| | - Huabin Gao
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, P.R. China
| | - Tingsheng Peng
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, P.R. China
| | - Huijuan Shi
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, P.R. China
| | - Yunxiang Tang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, P.R. China
| | - Hui Li
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, P.R. China
| | - Lin Chen
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, P.R. China
| | - Kaishun Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P.R. China.
| | - Anjia Han
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, P.R. China.
| |
Collapse
|
23
|
Srivastava S, Nataraj NB, Sekar A, Ghosh S, Bornstein C, Drago-Garcia D, Roth L, Romaniello D, Marrocco I, David E, Gilad Y, Lauriola M, Rotkopf R, Kimchi A, Haga Y, Tsutsumi Y, Mirabeau O, Surdez D, Zinovyev A, Delattre O, Kovar H, Amit I, Yarden Y. ETS Proteins Bind with Glucocorticoid Receptors: Relevance for Treatment of Ewing Sarcoma. Cell Rep 2020; 29:104-117.e4. [PMID: 31577941 PMCID: PMC6899513 DOI: 10.1016/j.celrep.2019.08.088] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 02/06/2019] [Accepted: 08/27/2019] [Indexed: 11/26/2022] Open
Abstract
The glucocorticoid receptor (GR) acts as a ubiquitous cortisol-dependent transcription factor (TF). To identify co-factors, we used protein-fragment complementation assays and found that GR recognizes FLI1 and additional ETS family proteins, TFs relaying proliferation and/or migration signals. Following steroid-dependent translocation of FLI1 and GR to the nucleus, the FLI1-specific domain (FLS) binds with GR and strongly enhances GR's transcriptional activity. This interaction has functional consequences in Ewing sarcoma (ES), childhood and adolescence bone malignancies driven by fusions between EWSR1 and FLI1. In vitro, GR knockdown inhibited the migration and proliferation of ES cells, and in animal models, antagonizing GR (or lowering cortisol) retarded both tumor growth and metastasis from bone to lung. Taken together, our findings offer mechanistic rationale for repurposing GR-targeting drugs for the treatment of patients with ES.
Collapse
Affiliation(s)
- Swati Srivastava
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | - Arunachalam Sekar
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Soma Ghosh
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Chamutal Bornstein
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Diana Drago-Garcia
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Lee Roth
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Donatella Romaniello
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ilaria Marrocco
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Eyal David
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yuval Gilad
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Mattia Lauriola
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Ron Rotkopf
- Department of Biological Services, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Adi Kimchi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yuya Haga
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel; Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Yasuo Tsutsumi
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan; Global Center for Medical Engineering and Informatics, Osaka University, Japan
| | - Olivier Mirabeau
- PSL Research University, "Genetics and Biology of Cancers" Unit, INSERM U830 and Unité Génétique Somatique (UGS), Institut Curie Centre Hospitalier, Paris, France
| | - Didier Surdez
- PSL Research University, "Genetics and Biology of Cancers" Unit, INSERM U830 and Unité Génétique Somatique (UGS), Institut Curie Centre Hospitalier, Paris, France
| | - Andrei Zinovyev
- Institut Curie, PSL Research University, INSERM U900, Mines ParisTech, Paris, France
| | - Olivier Delattre
- PSL Research University, "Genetics and Biology of Cancers" Unit, INSERM U830 and Unité Génétique Somatique (UGS), Institut Curie Centre Hospitalier, Paris, France
| | - Heinrich Kovar
- Children's Cancer Research Institute Vienna, St. Anna Kinderkrebsforschung and Department of Pediatrics, Medical University Vienna, Vienna, Austria
| | - Ido Amit
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yosef Yarden
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
24
|
Jin W. The Role of Tyrosine Kinases as a Critical Prognostic Parameter and Its Targeted Therapies in Ewing Sarcoma. Front Cell Dev Biol 2020; 8:613. [PMID: 32754598 PMCID: PMC7381324 DOI: 10.3389/fcell.2020.00613] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022] Open
Abstract
Ewing sarcoma (ES) is a rare, highly aggressive, bone, or soft tissue-associated tumor. Although this sarcoma often responds well to initial chemotherapy, 40% of the patients develop a lethal recurrence of the disease, with death recorded in 75-80% of patients with metastatic ES within 5 years, despite receiving high-dose chemotherapy. ES is genetically well-characterized, as indicated by the EWS-FLI1 fusion protein encoded as a result of chromosomal translocation in 80-90% of patients with ES, as well as in ES-related cancer cell lines. Recently, tyrosine kinases have been identified in the pathogenesis of ES. These tyrosine kinases, acting as oncoproteins, are associated with the clinical pathogenesis, metastasis, acquisition of self-renewal traits, and chemoresistance of ES, through the activation of various intracellular signaling pathways. This review describes the recent progress related to cellular and molecular functional roles of tyrosine kinases in the progression of ES.
Collapse
Affiliation(s)
- Wook Jin
- Laboratory of Molecular Disease and Cell Regulation, Department of Biochemistry, School of Medicine, Gachon University, Incheon, South Korea
| |
Collapse
|
25
|
Pushpam D, Garg V, Ganguly S, Biswas B. Management of Refractory Pediatric Sarcoma: Current Challenges and Future Prospects. Onco Targets Ther 2020; 13:5093-5112. [PMID: 32606731 PMCID: PMC7293381 DOI: 10.2147/ott.s193363] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/12/2020] [Indexed: 12/11/2022] Open
Abstract
Paediatric sarcomas are a heterogeneous group of disorders constituting bone sarcoma and various soft tissue sarcomas. Almost one-third of these presents with metastasis at baseline and another one-third recur after initial curative treatment. There is a huge unmet need in this cohort in terms of curative options and/or prolongation of survival. In this review, we have discussed the current treatment options, challenges and future strategies of managing relapsed/refractory paediatric sarcomas. Upfront risk-adapted treatment with multidisciplinary management remains the main strategy to prevent future recurrence or relapse of the disease. In the case of limited local and/or systemic relapse or late relapse, initial multimodality management can be administered. In treatment-refractory cases or where cure is not feasible, the treatment options are limited to novel therapeutics, immunotherapeutic approach, targeted therapies, and metronomic therapies. A better understanding of disease biology, mechanism of treatment refractoriness, identifications of driver mutation, the discovery of novel targeted therapies, cellular vaccine and adapted therapies should be explored in relapsed/refractory cases. Close national and international collaboration for translation research is needed to fulfil the unmet need.
Collapse
Affiliation(s)
| | - Vikas Garg
- Department of Medical Oncology, AIIMS, New Delhi, India
| | - Sandip Ganguly
- Department of Medical Oncology, Tata Medical Center, Kolkata, India
| | - Bivas Biswas
- Department of Medical Oncology, Tata Medical Center, Kolkata, India
| |
Collapse
|
26
|
Chicón-Bosch M, Tirado OM. Exosomes in Bone Sarcomas: Key Players in Metastasis. Cells 2020; 9:cells9010241. [PMID: 31963599 PMCID: PMC7016778 DOI: 10.3390/cells9010241] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/11/2020] [Accepted: 01/15/2020] [Indexed: 12/12/2022] Open
Abstract
Bone sarcomas are rare cancers which often present with metastatic disease and are still associated with poor survival rates. Studies in the last decade have identified that exosomes, a type of extracellular vesicle released by cells, play an important role in tumour progression and dissemination. Through the transfer of their cargo (RNAs, proteins, and lipids) across cells, they are involved in cellular cross-talk and can induce changes in cellular behaviour. Exosomes have been shown to be important in metastasis organotropism, induction of angiogenesis and vascular permeability, the education of cells towards a pro-metastatic phenotype or the interaction between stromal and tumour cells. Due to the importance exosomes have in disease progression and the high incidence of metastasis in bone sarcomas, recent studies have evaluated the implications of these extracellular vesicles in bone sarcomas. In this review, we discuss the studies that evaluate the role of exosomes in osteosarcoma, Ewing sarcoma, and preliminary data on chondrosarcoma.
Collapse
Affiliation(s)
- Mariona Chicón-Bosch
- Sarcoma Research Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain
- Correspondence: (M.C.-B.); (O.M.T.); Tel.: +34-9326-0742 (M.C.-B.); +34-932-603-823 (O.M.T.)
| | - Oscar M. Tirado
- Sarcoma Research Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain
- CIBERONC, Carlos III Institute of Health (ISCIII), 28029 Madrid, Spain
- Institut Català d’Oncologia (ICO), L’Hospitalet de Llobregat, 08908 Barcelona, Spain
- Correspondence: (M.C.-B.); (O.M.T.); Tel.: +34-9326-0742 (M.C.-B.); +34-932-603-823 (O.M.T.)
| |
Collapse
|
27
|
Deng Y, Xie Q, Zhang G, Li S, Wu Z, Ma Z, He X, Gao Y, Wang Y, Kang X, Wang J. Slow skeletal muscle troponin T, titin and myosin light chain 3 are candidate prognostic biomarkers for Ewing's sarcoma. Oncol Lett 2019; 18:6431-6442. [PMID: 31807166 PMCID: PMC6876326 DOI: 10.3892/ol.2019.11044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 09/17/2019] [Indexed: 11/29/2022] Open
Abstract
Ewing's sarcoma (ES) is a common malignant bone tumor in children and adolescents. Although great efforts have been made to understand the pathogenesis and development of ES, the underlying molecular mechanism remains unclear. The present study aimed to identify new key genes as potential biomarkers for the diagnosis, targeted therapy or prognosis of ES. mRNA expression profile chip data sets GSE17674, GSE17679 and GSE45544 were downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were screened using the R software limma package, and functional and pathway enrichment analyses were performed using the enrichplot package and GSEA software. The NetworkAnalyst online tool, as well as Cytoscape and its plug-ins cytoHubba and NetworkAnalyzer, were used to construct a protein-protein interaction network (PPI) and conduct module analysis to screen key (hub) genes. LABSO COX regression and overall survival (OS) analysis of the Hub genes were performed. A total of 211 DEGs were obtained by integrating and analyzing the three data sets. The functions and pathways of the DEGs were mainly associated with the regulation of small-molecule metabolic processes, cofactor-binding, amino acid, proteasome and ribosome biosynthesis in eukaryotes, as well as the Rac1, cell cycle and P53 signaling pathways. A total of one important module and 20 hub genes were screened from the PPI network using the Maximum Correlation Criteria algorithm of cytoHubba. LASSO COX regression results revealed that titin (TTN), fast skeletal muscle troponin T, skeletal muscle actin α-actin, nebulin, troponin C type 2 (fast), myosin light-chain 3 (MYL3), slow skeletal muscle troponin T (TNNT1), myosin-binding protein C1 slow-type, tropomyosin 3 and myosin heavy-chain 7 were associated with prognosis in patients with ES. The Kaplan-Meier curves demonstrated that high mRNA expression levels of TNNT1 (P<0.001), TTN (P=0.049), titin-cap (P=0.04), tropomodulin 1 (P=0.011), troponin I2 fast skeletal type (P=0.021) and MYL3 (P=0.017) were associated with poor OS in patients with ES. In conclusion, the DEGs identified in the present study may be key genes in the pathogenesis of ES, three of which, namely TNNT1, TTN and MYL3, may be potential prognostic biomarkers for ES.
Collapse
Affiliation(s)
- Yajun Deng
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Orthopedic Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Qiqi Xie
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Orthopedic Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Guangzhi Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Orthopedic Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Shaoping Li
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Orthopedic Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Zuolong Wu
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Orthopedic Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Zhanjun Ma
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Orthopedic Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Xuegang He
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Orthopedic Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Yicheng Gao
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Orthopedic Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Yonggang Wang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Xuewen Kang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Orthopedic Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Jing Wang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Orthopedic Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| |
Collapse
|
28
|
El‐Naggar AM, Somasekharan SP, Wang Y, Cheng H, Negri GL, Pan M, Wang XQ, Delaidelli A, Rafn B, Cran J, Zhang F, Zhang H, Colborne S, Gleave M, Mandinova A, Kedersha N, Hughes CS, Surdez D, Delattre O, Wang Y, Huntsman DG, Morin GB, Sorensen PH. Class I HDAC inhibitors enhance YB-1 acetylation and oxidative stress to block sarcoma metastasis. EMBO Rep 2019; 20:e48375. [PMID: 31668005 PMCID: PMC6893361 DOI: 10.15252/embr.201948375] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/29/2019] [Accepted: 10/06/2019] [Indexed: 12/13/2022] Open
Abstract
Outcomes for metastatic Ewing sarcoma and osteosarcoma are dismal and have not changed for decades. Oxidative stress attenuates melanoma metastasis, and melanoma cells must reduce oxidative stress to metastasize. We explored this in sarcomas by screening for oxidative stress sensitizers, which identified the class I HDAC inhibitor MS-275 as enhancing vulnerability to reactive oxygen species (ROS) in sarcoma cells. Mechanistically, MS-275 inhibits YB-1 deacetylation, decreasing its binding to 5'-UTRs of NFE2L2 encoding the antioxidant factor NRF2, thereby reducing NFE2L2 translation and synthesis of NRF2 to increase cellular ROS. By global acetylomics, MS-275 promotes rapid acetylation of the YB-1 RNA-binding protein at lysine-81, blocking binding and translational activation of NFE2L2, as well as known YB-1 mRNA targets, HIF1A, and the stress granule nucleator, G3BP1. MS-275 dramatically reduces sarcoma metastasis in vivo, but an MS-275-resistant YB-1K81-to-alanine mutant restores metastatic capacity and NRF2, HIF1α, and G3BP1 synthesis in MS-275-treated mice. These studies describe a novel function for MS-275 through enhanced YB-1 acetylation, thus inhibiting YB-1 translational control of key cytoprotective factors and its pro-metastatic activity.
Collapse
Affiliation(s)
- Amal M El‐Naggar
- Department of Pathology & Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
- Department of Molecular Oncology, BC Cancerpart of the Provincial Health Services AuthorityVancouverBCCanada
- Department of PathologyFaculty of MedicineMenoufia UniversityShibin El KomEgypt
| | | | - Yemin Wang
- Department of Molecular Oncology, BC Cancerpart of the Provincial Health Services AuthorityVancouverBCCanada
| | | | | | - Melvin Pan
- Department of Molecular Oncology, BC Cancerpart of the Provincial Health Services AuthorityVancouverBCCanada
| | - Xue Qi Wang
- Department of Molecular Oncology, BC Cancerpart of the Provincial Health Services AuthorityVancouverBCCanada
| | - Alberto Delaidelli
- Department of Pathology & Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
- Department of Molecular Oncology, BC Cancerpart of the Provincial Health Services AuthorityVancouverBCCanada
| | - Bo Rafn
- Department of Molecular Oncology, BC Cancerpart of the Provincial Health Services AuthorityVancouverBCCanada
| | - Jordan Cran
- Department of Molecular Oncology, BC Cancerpart of the Provincial Health Services AuthorityVancouverBCCanada
| | - Fan Zhang
- Vancouver Prostate CentreVancouverBCCanada
| | - Haifeng Zhang
- Department of Pathology & Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
- Department of Molecular Oncology, BC Cancerpart of the Provincial Health Services AuthorityVancouverBCCanada
| | | | | | - Anna Mandinova
- Brigham and Women's HospitalHarvard UniversityBostonMAUSA
| | - Nancy Kedersha
- Massachusetts General HospitalHarvard UniversityBostonMAUSA
| | - Christopher S Hughes
- Department of Molecular Oncology, BC Cancerpart of the Provincial Health Services AuthorityVancouverBCCanada
| | | | | | | | - David G Huntsman
- Department of Pathology & Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
- Department of Molecular Oncology, BC Cancerpart of the Provincial Health Services AuthorityVancouverBCCanada
| | - Gregg B Morin
- Michael Smith Genome Sciences CentreVancouverBCCanada
| | - Poul H Sorensen
- Department of Pathology & Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
- Department of Molecular Oncology, BC Cancerpart of the Provincial Health Services AuthorityVancouverBCCanada
| |
Collapse
|
29
|
Romswinkel A, Infanger M, Dietz C, Strube F, Kraus A. The Role of C-X-C Chemokine Receptor Type 4 (CXCR4) in Cell Adherence and Spheroid Formation of Human Ewing's Sarcoma Cells under Simulated Microgravity. Int J Mol Sci 2019; 20:ijms20236073. [PMID: 31810195 PMCID: PMC6929163 DOI: 10.3390/ijms20236073] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 12/17/2022] Open
Abstract
We studied the behavior of Ewing's Sarcoma cells of the line A673 under simulated microgravity (s-µg). These cells express two prominent markers-the oncogene EWS/FLI1 and the chemokine receptor CXCR4, which is used as a target of treatment in several types of cancer. The cells were exposed to s-µg in a random-positioning machine (RPM) for 24 h in the absence and presence of the CXCR4 inhibitor AMD3100. Then, their morphology and cytoskeleton were examined. The expression of selected mutually interacting genes was measured by qRT-PCR and protein accumulation was determined by western blotting. After 24 h incubation on the RPM, a splitting of the A673 cell population in adherent and spheroid cells was observed. Compared to 1 g control cells, EWS/FLI1 was significantly upregulated in the adherent cells and in the spheroids, while CXCR4 and CD44 expression were significantly enhanced in spheroids only. Transcription of CAV-1 was upregulated and DKK2 and VEGF-A were down-regulated in both, adherent in spheroid cells, respectively. Regarding, protein accumulation EWS/FLI1 was enhanced in adherent cells only, but CD44 decreased in spheroids and adherent cells. Inhibition of CXCR4 did not change spheroid count, or structure. Under s-µg, the tumor marker EWS/FLI1 is intensified, while targeting CXCR4, which influences adhesion proteins, did not affect spheroid formation.
Collapse
Affiliation(s)
| | | | | | | | - Armin Kraus
- Correspondence: ; Tel.: +49-391-67-15599; Fax: +49-391-67-15588
| |
Collapse
|
30
|
Huang Z, Wang SL, Chen H, Shen RK, Li XD, Huang QS, Wu CY, Weng DF, Lin JH. Clinicopathological and prognostic values of ErbB receptor family amplification in primary osteosarcoma. Scandinavian Journal of Clinical and Laboratory Investigation 2019; 79:601-612. [PMID: 31663373 DOI: 10.1080/00365513.2019.1683764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Osteosarcoma is a malignant bone tumor with extremely high invasion, metastasis and mortality. The prognosis of patients with osteosarcoma remains poor. The ErbB receptor family was found to be overexpressed in human cancers and associated with poor prognosis. However, the role of ErbB receptor family in osteosarcoma has not been fully understood. The present study aimed to investigate the clinicopathological and prognostic significances of ErbB receptors in primary osteosarcoma. Western blot (WB), reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and fluorescence in situ hybridization (FISH) were used to detect the protein and gene expression of ErbB receptors in 60 primary osteosarcoma specimens and 30 non-neoplastic bone tissues. WB and RT-qPCR analyses showed that the protein and mRNA expression levels of EGFR, ErbB3 and ErbB4 in osteosarcoma specimens were significantly higher than those in non-neoplastic bone tissues. Seventeen (28.33%), 15 (25.00%) and 15 (25.00%) osteosarcoma specimens presented with amplification of EGFR, ErbB3 and ErbB4 gene, respectively, which were significantly higher compared with non-neoplastic bone tissues. The amplification of ErbB3 and ErbB4 in osteosarcoma was associated with advanced surgical stage. The amplification of EGFR, ErbB3, ErbB4 and the co-amplification of EGFR-ErbB3, EGFR-ErbB4, ErbB3-ErbB4 was linked with poor response to chemotherapy and distant metastasis. The amplification of EGFR, ErbB3 and ErbB4, as well as their co-amplification demonstrated independent prognostic values for reduced survival time of osteosarcoma patients and may serve as potential therapeutic targets for osteosarcoma patients in the future.
Collapse
Affiliation(s)
- Zhen Huang
- Department of Orthopedics, the First Affiliated Hospital of Fujian Medical University, Fuzhou, P.R. China
| | - Sheng-Lin Wang
- Department of Orthopedics, the First Affiliated Hospital of Fujian Medical University, Fuzhou, P.R. China
| | - Hui Chen
- Department of Nephrology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, P.R. China
| | - Rong-Kai Shen
- Department of Orthopedics, the First Affiliated Hospital of Fujian Medical University, Fuzhou, P.R. China
| | - Xiao-Dong Li
- Department of Orthopedics, the First Affiliated Hospital of Fujian Medical University, Fuzhou, P.R. China
| | - Qing-Shan Huang
- Department of Orthopedics, the First Affiliated Hospital of Fujian Medical University, Fuzhou, P.R. China
| | - Chao-Yang Wu
- Department of Orthopedics, the First Affiliated Hospital of Fujian Medical University, Fuzhou, P.R. China
| | - Dan-Feng Weng
- Department of Pathology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, P.R. China
| | - Jian-Hua Lin
- Department of Orthopedics, the First Affiliated Hospital of Fujian Medical University, Fuzhou, P.R. China.,Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital of Fujian Medical University, Fuzhou, P.R. China
| |
Collapse
|
31
|
Li G, Zhang P, Zhang W, Lei Z, He J, Meng J, Di T, Yan W. Identification of key genes and pathways in Ewing's sarcoma patients associated with metastasis and poor prognosis. Onco Targets Ther 2019; 12:4153-4165. [PMID: 31213834 PMCID: PMC6549663 DOI: 10.2147/ott.s195675] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/27/2019] [Indexed: 12/22/2022] Open
Abstract
Background: Ewing sarcoma (ES) is the second commonest primary malignant bone neoplasm. Metastatic status at diagnosis strongly predicted poor prognosis of Ewing sarcoma patients. Yet little was known about the underlying mechanism of ES metastasis. Purpose:This study intended to identify the relationship between key genes/pathways and metastasis/poor prognosis in Ewing's sarcoma patients by using bioinformatic method. Methods: In this study, multi-center sequencing data were obtained from the GEO database, including gene and miRNA expression profile and prognosis information of ES patients. Differentially expressed genes (DEGs) were identified between primary and metastasis ES samples by the GEO2R online tool. Gene ontology (Go) and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analyses of DEGs were performed. And PPI network analyses were conducted. The ES patient’s prognostic information was employed for survival analysis, and the potential relationship between miRNAs and key genes was analyzed. Results: The results showed that a total of 298 and 428 DEGs were screened out in metastasis samples based on GSE17618 and GSE12102 dataset compared to primary samples respectively. The most significantly enriched KEGG pathway was the mismatch repair (MMR) pathway. MSH2, MSH6, RPA2, and RFC2 that belong to the MMR pathway were identified as key genes. Moreover, the expression of key genes was increased in metastasis samples compared with primary ones and was associated with poor event-free and overall survival of ES patients. The negative correlation of the expression level of the key genes with patients prognosis also supported by TCGA sarcoma database. Furthermore, knockdown of EWSR/FLI1 fusion in ES cell line A673 down-regulates the expression of the 4 key genes was revealed by GDS4962. Conclusion: In conclusion, the present study indicated that the key genes promote our understanding of the molecular mechanisms underlying the development of ES metastasis, and might be used as molecular targets and diagnostic biomarkers for the treatment of ES.
Collapse
Affiliation(s)
- Guoqi Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, People's Republic of China
| | - Piao Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, People's Republic of China
| | - Wenkan Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, People's Republic of China
| | - Zhong Lei
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, People's Republic of China
| | - Jiaming He
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, People's Republic of China
| | - Jiahong Meng
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, People's Republic of China
| | - Tuoyu Di
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, People's Republic of China
| | - Weiqi Yan
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, People's Republic of China
| |
Collapse
|
32
|
Heisey DAR, Lochmann TL, Floros KV, Coon CM, Powell KM, Jacob S, Calbert ML, Ghotra MS, Stein GT, Maves YK, Smith SC, Benes CH, Leverson JD, Souers AJ, Boikos SA, Faber AC. The Ewing Family of Tumors Relies on BCL-2 and BCL-X L to Escape PARP Inhibitor Toxicity. Clin Cancer Res 2018; 25:1664-1675. [PMID: 30348635 DOI: 10.1158/1078-0432.ccr-18-0277] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 07/11/2018] [Accepted: 10/17/2018] [Indexed: 11/16/2022]
Abstract
PURPOSE It was recently demonstrated that the EWSR1-FLI1 t(11;22)(q24;12) translocation contributes to the hypersensitivity of Ewing sarcoma to PARP inhibitors, prompting clinical evaluation of olaparib in a cohort of heavily pretreated Ewing sarcoma tumors. Unfortunately, olaparib activity was disappointing, suggesting an underappreciated resistance mechanism to PARP inhibition in patients with Ewing sarcoma. We sought to elucidate the resistance factors to PARP inhibitor therapy in Ewing sarcoma and identify a rational drug combination capable of rescuing PARP inhibitor activity. EXPERIMENTAL DESIGN We employed a pair of cell lines derived from the same patient with Ewing sarcoma prior to and following chemotherapy, a panel of Ewing sarcoma cell lines, and several patient-derived xenograft (PDX) and cell line xenograft models. RESULTS We found olaparib sensitivity was diminished following chemotherapy. The matched cell line pair revealed increased expression of the antiapoptotic protein BCL-2 in the chemotherapy-resistant cells, conferring apoptotic resistance to olaparib. Resistance to olaparib was maintained in this chemotherapy-resistant model in vivo, whereas the addition of the BCL-2/XL inhibitor navitoclax led to tumor growth inhibition. In 2 PDXs, olaparib and navitoclax were minimally effective as monotherapy, yet induced dramatic tumor growth inhibition when dosed in combination. We found that EWS-FLI1 increases BCL-2 expression; however, inhibition of BCL-2 alone by venetoclax is insufficient to sensitize Ewing sarcoma cells to olaparib, revealing a dual necessity for BCL-2 and BCL-XL in Ewing sarcoma survival. CONCLUSIONS These data reveal BCL-2 and BCL-XL act together to drive olaparib resistance in Ewing sarcoma and reveal a novel, rational combination therapy that may be put forward for clinical trial testing.
Collapse
Affiliation(s)
- Daniel A R Heisey
- VCU Philips Institute, School of Dentistry and Massey Cancer Center; Richmond, Virginia
| | - Timothy L Lochmann
- VCU Philips Institute, School of Dentistry and Massey Cancer Center; Richmond, Virginia
| | - Konstantinos V Floros
- VCU Philips Institute, School of Dentistry and Massey Cancer Center; Richmond, Virginia
| | - Colin M Coon
- VCU Philips Institute, School of Dentistry and Massey Cancer Center; Richmond, Virginia
| | - Krista M Powell
- VCU Philips Institute, School of Dentistry and Massey Cancer Center; Richmond, Virginia
| | - Sheeba Jacob
- VCU Philips Institute, School of Dentistry and Massey Cancer Center; Richmond, Virginia
| | - Marissa L Calbert
- VCU Philips Institute, School of Dentistry and Massey Cancer Center; Richmond, Virginia
| | - Maninderjit S Ghotra
- VCU Philips Institute, School of Dentistry and Massey Cancer Center; Richmond, Virginia
| | - Giovanna T Stein
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts; Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | | | - Steven C Smith
- Division of Anatomic Pathology, Virginia Commonwealth University, Richmond, Virginia
| | - Cyril H Benes
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts; Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | | | | | - Sosipatros A Boikos
- Hematology, Oncology and Palliative Care, School of Medicine and Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Anthony C Faber
- VCU Philips Institute, School of Dentistry and Massey Cancer Center; Richmond, Virginia.
| |
Collapse
|
33
|
Patwardhan PP, Musi E, Schwartz GK. Preclinical Evaluation of Nintedanib, a Triple Angiokinase Inhibitor, in Soft-tissue Sarcoma: Potential Therapeutic Implication for Synovial Sarcoma. Mol Cancer Ther 2018; 17:2329-2340. [PMID: 30166401 DOI: 10.1158/1535-7163.mct-18-0319] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/25/2018] [Accepted: 08/21/2018] [Indexed: 11/16/2022]
Abstract
Sarcomas are rare cancers that make up about 1% of all cancers in adults; however, they occur more commonly among children and young adolescents. Sarcomas are genetically complex and are often difficult to treat given the lack of clinical efficacy of any of the currently available therapies. Receptor tyrosine kinases (RTK) such as c-Kit, c-Met, PDGFR, IGF-1R, as well as FGFR have all been reported to be involved in driving tumor development and progression in adult and pediatric soft-tissue sarcoma. These driver kinases often act as critical determinants of tumor cell proliferation and targeting these signal transduction pathways remains an attractive therapeutic approach. Nintedanib, a potent triple angiokinase inhibitor, targets PDGFR, VEGFR, and FGFR pathways critical for tumor angiogenesis and vasculature. In this study, we evaluated the preclinical efficacy of nintedanib in soft-tissue sarcoma cell lines. Nintedanib treatment resulted in significant antiproliferative effect in vitro in cell lines with high expression of RTK drug targets. Furthermore, treatment with nintedanib showed significant downregulation of downstream phosphorylated AKT and ERK1/2. Finally, treatment with nintedanib resulted in significant tumor growth suppression in mouse xenograft model of synovial sarcoma. Notably, both the in vitro and in vivo efficacy of nintedanib was superior to that of imatinib, another multikinase inhibitor, previously tested with minimal success in clinical trials in sarcoma. Overall, the data from this study provide a strong rationale to warrant further clinical exploration of this drug in patients with synovial sarcoma. Mol Cancer Ther; 17(11); 2329-40. ©2018 AACR.
Collapse
Affiliation(s)
- Parag P Patwardhan
- Department of Medicine, Columbia University Medical Center, New York, New York.
| | - Elgilda Musi
- Department of Medicine, Columbia University Medical Center, New York, New York
| | - Gary K Schwartz
- Department of Medicine, Columbia University Medical Center, New York, New York.,Herbert Irving Comprehensive Cancer Center, Columbia University College of Medicine, New York, New York
| |
Collapse
|
34
|
Furusawa Y, Yunoki T, Hirano T, Minagawa S, Izumi H, Mori H, Hayashi A, Tabuchi Y. Identification of genes and genetic networks associated with BAG3‑dependent cell proliferation and cell survival in human cervical cancer HeLa cells. Mol Med Rep 2018; 18:4138-4146. [PMID: 30106105 DOI: 10.3892/mmr.2018.9383] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/17/2018] [Indexed: 11/05/2022] Open
Abstract
Bcl‑2‑associated athanogene (BAG) 3, is a member of the BAG protein family and a known co‑chaperone of heat shock protein (HSP) 70. BAG3 serves a role in regulating a variety of cellular functions, including cell growth, proliferation and cell death including apoptosis. BAG3 is a stress‑inducible protein, however the constitutive expression level of BAG3 is increased in cancer cells compared with healthy cells. Recent proteomics technology combined with bioinformatics has revealed that BAG3 participates in an interactome with a number of proteins other than its typical partner HSP70. The functional types represented in the interactome included nucleic acid binding proteins and transcription factors, as well as chaperones, which indicated that overexpression of BAG3 may contribute to proliferation and cell survival through the alteration of gene transcription. While an increasing number of studies have addressed the function of BAG3 as a co‑chaperone protein, BAG3‑dependent alteration of gene transcription has not been studied extensively. The present study established two BAG3 knockout human cervical cancer HeLa cell clones and addressed the role of BAG3 in cell proliferation and survival through gene transcription, using DNA microarray‑based transcriptome analysis and bioinformatics. The present study also identified two genetic networks associated with 'cellular growth and proliferation' and 'cell death and survival', which are dysregulated in the absence of BAG3, and may therefore be linked to BAG3 overexpression in cancer. These findings provide a molecular basis for understanding of BAG3‑dependent cell proliferation and survival from the aspect of alteration of gene expression.
Collapse
Affiliation(s)
- Yukihiro Furusawa
- Department of Liberal Arts and Sciences, Toyama Prefectural University, Toyama 939‑0398, Japan
| | - Tatsuya Yunoki
- Department of Ophthalmology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930‑0194, Japan
| | - Tetsushi Hirano
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, Toyama 930‑0194, Japan
| | - Satsuki Minagawa
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, Toyama 930‑0194, Japan
| | - Hironori Izumi
- Department of Molecular Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930‑0194, Japan
| | - Hisashi Mori
- Department of Molecular Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930‑0194, Japan
| | - Atsushi Hayashi
- Department of Ophthalmology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930‑0194, Japan
| | - Yoshiaki Tabuchi
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, Toyama 930‑0194, Japan
| |
Collapse
|
35
|
Grünewald TGP, Cidre-Aranaz F, Surdez D, Tomazou EM, de Álava E, Kovar H, Sorensen PH, Delattre O, Dirksen U. Ewing sarcoma. Nat Rev Dis Primers 2018; 4:5. [PMID: 29977059 DOI: 10.1038/s41572-018-0003-x] [Citation(s) in RCA: 500] [Impact Index Per Article: 71.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ewing sarcoma is the second most frequent bone tumour of childhood and adolescence that can also arise in soft tissue. Ewing sarcoma is a highly aggressive cancer, with a survival of 70-80% for patients with standard-risk and localized disease and ~30% for those with metastatic disease. Treatment comprises local surgery, radiotherapy and polychemotherapy, which are associated with acute and chronic adverse effects that may compromise quality of life in survivors. Histologically, Ewing sarcomas are composed of small round cells expressing high levels of CD99. Genetically, they are characterized by balanced chromosomal translocations in which a member of the FET gene family is fused with an ETS transcription factor, with the most common fusion being EWSR1-FLI1 (85% of cases). Ewing sarcoma breakpoint region 1 protein (EWSR1)-Friend leukaemia integration 1 transcription factor (FLI1) is a tumour-specific chimeric transcription factor (EWSR1-FLI1) with neomorphic effects that massively rewires the transcriptome. Additionally, EWSR1-FLI1 reprogrammes the epigenome by inducing de novo enhancers at GGAA microsatellites and by altering the state of gene regulatory elements, creating a unique epigenetic signature. Additional mutations at diagnosis are rare and mainly involve STAG2, TP53 and CDKN2A deletions. Emerging studies on the molecular mechanisms of Ewing sarcoma hold promise for improvements in early detection, disease monitoring, lower treatment-related toxicity, overall survival and quality of life.
Collapse
Affiliation(s)
- Thomas G P Grünewald
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany. .,Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany. .,German Cancer Consortium, partner site Munich, Munich, Germany. .,German Cancer Research Center, Heidelberg, Germany.
| | - Florencia Cidre-Aranaz
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany. .,Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany. .,German Cancer Consortium, partner site Munich, Munich, Germany. .,German Cancer Research Center, Heidelberg, Germany.
| | - Didier Surdez
- INSERM U830, Équipe Labellisé LNCC, PSL Université, SIREDO Oncology Centre, Institut Curie, Paris, France
| | - Eleni M Tomazou
- Children's Cancer Research Institute, St Anna Kinderkrebsforschung, Vienna, Austria
| | - Enrique de Álava
- Institute of Biomedicine of Seville, Virgen del Rocío University Hospital/CSIC/University of Seville/CIBERONC, Seville, Spain
| | - Heinrich Kovar
- Children's Cancer Research Institute, St Anna Kinderkrebsforschung, Vienna, Austria.,Department of Pediatrics, Medical University Vienna, Vienna, Austria
| | - Poul H Sorensen
- British Columbia Cancer Research Centre and University of British Columbia, Vancouver, Canada
| | - Olivier Delattre
- INSERM U830, Équipe Labellisé LNCC, PSL Université, SIREDO Oncology Centre, Institut Curie, Paris, France
| | - Uta Dirksen
- German Cancer Research Center, Heidelberg, Germany.,Cooperative Ewing Sarcoma Study group, Essen University Hospital, Essen, Germany.,German Cancer Consortium, partner site Essen, Essen, Germany
| |
Collapse
|
36
|
Hawkins AG, Basrur V, da Veiga Leprevost F, Pedersen E, Sperring C, Nesvizhskii AI, Lawlor ER. The Ewing Sarcoma Secretome and Its Response to Activation of Wnt/beta-catenin Signaling. Mol Cell Proteomics 2018; 17:901-912. [PMID: 29386236 PMCID: PMC5930412 DOI: 10.1074/mcp.ra118.000596] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Indexed: 12/11/2022] Open
Abstract
Tumor: tumor microenvironment (TME) interactions are critical for tumor progression and the composition and structure of the local extracellular matrix (ECM) are key determinants of tumor metastasis. We recently reported that activation of Wnt/beta-catenin signaling in Ewing sarcoma cells induces widespread transcriptional changes that are associated with acquisition of a metastatic tumor phenotype. Significantly, ECM protein-encoding genes were found to be enriched among Wnt/beta-catenin induced transcripts, leading us to hypothesize that activation of canonical Wnt signaling might induce changes in the Ewing sarcoma secretome. To address this hypothesis, conditioned media from Ewing sarcoma cell lines cultured in the presence or absence of Wnt3a was collected for proteomic analysis. Label-free mass spectrometry was used to identify and quantify differentially secreted proteins. We then used in silico databases to identify only proteins annotated as secreted. Comparison of the secretomes of two Ewing sarcoma cell lines revealed numerous shared proteins, as well as a degree of heterogeneity, in both basal and Wnt-stimulated conditions. Gene set enrichment analysis of secreted proteins revealed that Wnt stimulation reproducibly resulted in increased secretion of proteins involved in ECM organization, ECM receptor interactions, and collagen formation. In particular, Wnt-stimulated Ewing sarcoma cells up-regulated secretion of structural collagens, as well as matricellular proteins, such as the metastasis-associated protein, tenascin C (TNC). Interrogation of published databases confirmed reproducible correlations between Wnt/beta-catenin activation and TNC and COL1A1 expression in patient tumors. In summary, this first study of the Ewing sarcoma secretome reveals that Wnt/beta-catenin activated tumor cells upregulate secretion of ECM proteins. Such Wnt/beta-catenin mediated changes are likely to impact on tumor: TME interactions that contribute to metastatic progression.
Collapse
Affiliation(s)
| | | | | | | | | | - Alexey I Nesvizhskii
- §Pathology, and
- ¶Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | | |
Collapse
|
37
|
Yu W, Yang X, Chu L, Zhao K, Chen H, Xiang J, Zhang Y, Li H, Zhao W, Sun M, Wei Q, Fu X, Xie C, Zhu Z. Prognostic value of EGFR family expression in lymph node-negative esophageal squamous cell carcinoma patients. Pathol Res Pract 2018; 214:1017-1023. [PMID: 29729836 DOI: 10.1016/j.prp.2018.04.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 04/08/2018] [Accepted: 04/26/2018] [Indexed: 11/25/2022]
Abstract
The human epidermal growth factor receptor (EGFR) family has been widely studied in cancer, however, the prognostic role of EGFR family expression in lymph node-negative esophageal squamous cell carcinoma (ESCC) patients have not been invalidated. This study was designed to determine the prognostic value of EGFR family expression in a population of lymph node-negative ESCC patients treated with curative resection. EGFR family protein expression was examined by immunohistochemical analysis of tissue microarrays of 94 patients with lymph node-negative ESCC after radical esophagectomy with three-field lymphadenectomy. Survival differences were compared using Kaplan-Meier analysis. Cox regression analyses were performed to determine the prognostic factors for overall survival and disease-free survival (DFS). ErbB4 expression was found to be an independent prognostic factor for DFS in patients without lymph node metastasis; increased ErbB4 expression was associated with decreased DFS. Additionally, patients with high ErbB4 expression tended to have worse overall survival. EGFR, ErbB2 and ErbB3 expression were not significantly associated with survival in lymph node-negative ESCC patients. Increased ErbB4 immunohistochemical expression was associated with poor prognosis in lymph node-negative ESCC patients.
Collapse
Affiliation(s)
- Weiwei Yu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Radiation Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xi Yang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Li Chu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Kuaile Zhao
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Haiquan Chen
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jiaqing Xiang
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yawei Zhang
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Hecheng Li
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Weixin Zhao
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Menghong Sun
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Qiao Wei
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiaolong Fu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Congying Xie
- Radiotherapy and Chemotherapy Department, the 1 st Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhengfei Zhu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
38
|
Garcia-Monclús S, López-Alemany R, Almacellas-Rabaiget O, Herrero-Martín D, Huertas-Martinez J, Lagares-Tena L, Alba-Pavón P, Hontecillas-Prieto L, Mora J, de Álava E, Rello-Varona S, Giangrande PH, Tirado OM. EphA2 receptor is a key player in the metastatic onset of Ewing sarcoma. Int J Cancer 2018; 143:1188-1201. [PMID: 29582409 DOI: 10.1002/ijc.31405] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 03/05/2018] [Accepted: 03/15/2018] [Indexed: 02/06/2023]
Abstract
Ewing sarcoma (ES) is the second most common bone malignancy affecting children and young adults with poor prognosis due to high metastasis incidence. Our group previously described that EphA2, a tyrosine kinase receptor, promotes angiogenesis in Ewing sarcoma (ES) cells via ligand-dependent signaling. Now we wanted to explore EphA2 ligand-independent activity, controlled upon phosphorylation at S897 (p-EphA2S897 ), as it has been linked to metastasis in several malignancies. By reverse genetic engineering we explored the phenotypic changes after EphA2 removal or reintroduction. Gene expression microarray was used to identify key players in EphA2 signaling. Mice were employed to reproduce metastatic processes from orthotopically implanted engineered cells. We established a correlation between ES cells aggressiveness and p-EphA2S897 . Moreover, stable overexpression of EphA2 in low EphA2 expression ES cells enhanced proliferation and migration, but not a non-phosphorylable mutant (S987A). Consistently, silencing of EphA2 reduced tumorigenicity, migration and invasion in vitro, and lung metastasis incidence in experimental and spontaneous metastasis assays in vivo. A gene expression microarray revealed the implication of EphA2 in cell signaling, cellular movement and survival. ADAM19 knockdown by siRNA technology strongly reproduced the negative effects on cell migration observed after EphA2 silencing. Altogether, our results suggest that p-EphA2S897 correlates with aggressiveness in ES, so blocking its function may be a promising treatment.
Collapse
Affiliation(s)
- Silvia Garcia-Monclús
- Sarcoma Research Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Roser López-Alemany
- Sarcoma Research Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Olga Almacellas-Rabaiget
- Sarcoma Research Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - David Herrero-Martín
- Sarcoma Research Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.,CIBERONC, Carlos III Institute of Health (ISCIII), Madrid, Spain
| | - Juan Huertas-Martinez
- Sarcoma Research Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Laura Lagares-Tena
- Sarcoma Research Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Piedad Alba-Pavón
- Sarcoma Research Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Lourdes Hontecillas-Prieto
- CIBERONC, Carlos III Institute of Health (ISCIII), Madrid, Spain.,Laboratory of Molecular Pathology, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Jaume Mora
- Developmental Tumor Biology Laboratory, Hospital Sant Joan de Deu, Barcelona, Spain
| | - Enrique de Álava
- CIBERONC, Carlos III Institute of Health (ISCIII), Madrid, Spain.,Laboratory of Molecular Pathology, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Santi Rello-Varona
- Sarcoma Research Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | | | - Oscar M Tirado
- Sarcoma Research Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.,CIBERONC, Carlos III Institute of Health (ISCIII), Madrid, Spain.,Institut Català d'Oncologia (ICO), L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
39
|
Wang H, Sun W, Sun M, Fu Z, Zhou C, Wang C, Zuo D, Zhou Z, Wang G, Zhang T, Xu J, Chen J, Wang Z, Yin F, Duan Z, Hornicek FJ, Cai Z, Hua Y. HER4 promotes cell survival and chemoresistance in osteosarcoma via interaction with NDRG1. Biochim Biophys Acta Mol Basis Dis 2018. [PMID: 29524631 DOI: 10.1016/j.bbadis.2018.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Osteosarcoma (OS) is the most common primary malignant bone tumor in children and adolescents. The abilities of chemotherapy resistance are major roadblock in the successful treatment of OS. The clarification of mechanism regarding cell survival during OS chemotherapy are important. Here, we examined HER4 expression by immunohistochemistry in a large series of OS tissues, and found HER4 expression correlated with tumor characteristics and patient survival rates. HER4 knockdown by shRNA inhibited OS cell growth and tumorigenesis, and induced cell senescence and apoptosis in vitro and in vivo. We demonstrated that HER4 expression upregulated in the adverse conditions, such as serum starvation and sphere culture. Moreover, HER4 knockdown cells became more sensitive in stressful conditions such as loss of attachment, cytotoxic agents or nutrition insufficiency. Mechanism studies revealed that HER4 interacted with NDRG1, and NDRG1 overexpression could antagonize HER4 knockdown-mediated cell growth and apoptosis in stressed conditions. There was a positive correlation between HER4 and NDRG1 immunoreactivity in OS patients. Together, our present study shows that HER4 and/or NDRG1 might play a critical role for the cell survival and chemo-resistance of OS, and could be used as potential therapeutic targets in OS.
Collapse
Affiliation(s)
- Hongsheng Wang
- Department of Orthopedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China; Department of Orthopedics, Yangpu Hospital, Tongji University, Shanghai, China
| | - Wei Sun
- Department of Orthopedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China
| | - Mengxiong Sun
- Department of Orthopedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China
| | - Zeze Fu
- Department of Orthopedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China
| | - Chenghao Zhou
- Department of Orthopedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China
| | - Chongren Wang
- Department of Orthopedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China
| | - Dongqing Zuo
- Department of Orthopedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China
| | - Zifei Zhou
- Department of Orthopedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China
| | - Gangyang Wang
- Department of Orthopedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China
| | - Tao Zhang
- Department of Orthopedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China
| | - Jing Xu
- Department of Orthopedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China
| | - Jian Chen
- Department of Orthopedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China
| | - Zhuoying Wang
- Department of Orthopedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China
| | - Fei Yin
- Department of Orthopedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China
| | - Zhenfeng Duan
- Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, USA
| | - Francis J Hornicek
- Department of Orthopedic Surgery David Geffen School of Medicine at UCLA Los Angeles, USA
| | - Zhengdong Cai
- Department of Orthopedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China.
| | - Yingqi Hua
- Department of Orthopedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China.
| |
Collapse
|
40
|
Cassinelli G, Favini E, Dal Bo L, Tortoreto M, De Maglie M, Dagrada G, Pilotti S, Zunino F, Zaffaroni N, Lanzi C. Antitumor efficacy of the heparan sulfate mimic roneparstat (SST0001) against sarcoma models involves multi-target inhibition of receptor tyrosine kinases. Oncotarget 2018; 7:47848-47863. [PMID: 27374103 PMCID: PMC5216983 DOI: 10.18632/oncotarget.10292] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/08/2016] [Indexed: 12/20/2022] Open
Abstract
The heparan sulfate (HS) mimic/heparanase inhibitor roneparstat (SST0001) shows antitumor activity in preclinical sarcoma models. We hypothesized that this 100% N-acetylated and glycol-split heparin could interfere with the functions of several receptor tyrosine kinases (RTK) coexpressed in sarcomas and activated by heparin-binding growth factors. Using a phospho-proteomic approach, we investigated the drug effects on RTK activation in human cell lines representative of different sarcoma subtypes. Inhibition of FGF, IGF, ERBB and PDGF receptors by the drug was biochemically and functionally validated. Roneparstat counteracted the autocrine loop induced by the COL1A1/PDGFB fusion oncogene, expressed in a human dermatofibrosarcoma protuberans primary culture and in NIH3T3COL1A1/PDGFB transfectants, inhibiting cell anchorage-independent growth and invasion. In addition, roneparstat inhibited the activation of cell surface PDGFR and PDGFR-associated FAK, likely contributing to the reversion of NIH3T3COL1A1/PDGFB cell transformed and pro-invasive phenotype. Biochemical and histological/immunohistochemical ex vivo analyses confirmed a reduced activation of ERBB4, EGFR, INSR, IGF1R, associated with apoptosis induction and angiogenesis inhibition in a drug-treated Ewing's sarcoma family tumor xenograft. The combination of roneparstat with irinotecan significantly improved the antitumor effect against A204 rhabdoid xenografts resulting in a high rate of complete responses and cures. These findings reveal that roneparstat exerts a multi-target inhibition of RTKs relevant in the pathobiology of different sarcoma subtypes. These effects, likely cooperating with heparanase inhibition, contribute to the antitumor efficacy of the drug. The study supports heparanase/HS axis targeting as a valuable approach in combination therapies of different sarcoma subtypes providing a preclinical rationale for clinical investigation.
Collapse
Affiliation(s)
- Giuliana Cassinelli
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Enrica Favini
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Laura Dal Bo
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Monica Tortoreto
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Marcella De Maglie
- Department of Veterinary Sciences and Public Health, Università Degli Studi di Milano, Milan, Italy.,Mouse and Animal Pathology Laboratory, Fondazione Filarete, Milan, Italy
| | - Gianpaolo Dagrada
- Laboratory of Experimental Molecular Pathology, Department of Diagnostic Pathology and Laboratory, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Silvana Pilotti
- Laboratory of Experimental Molecular Pathology, Department of Diagnostic Pathology and Laboratory, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Franco Zunino
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Nadia Zaffaroni
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Cinzia Lanzi
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
41
|
Manara MC, Terracciano M, Mancarella C, Sciandra M, Guerzoni C, Pasello M, Grilli A, Zini N, Picci P, Colombo MP, Morrione A, Scotlandi K. CD99 triggering induces methuosis of Ewing sarcoma cells through IGF-1R/RAS/Rac1 signaling. Oncotarget 2018; 7:79925-79942. [PMID: 27835596 PMCID: PMC5346761 DOI: 10.18632/oncotarget.13160] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/14/2016] [Indexed: 12/27/2022] Open
Abstract
CD99 is a cell surface molecule that has emerged as a novel target for Ewing sarcoma (EWS), an aggressive pediatric bone cancer. This report provides the first evidence of methuosis in EWS, a non-apoptotic form of cell death induced by an antibody directed against the CD99 molecule. Upon mAb triggering, CD99 induces an IGF-1R/RAS/Rac1 complex, which is internalized into RAB5-positive endocytic vacuoles. This complex is then dissociated, with the IGF-1R recycling to the cell membrane while CD99 and RAS/Rac1 are sorted into immature LAMP-1-positive vacuoles, whose excessive accumulation provokes methuosis. This process, which is not detected in CD99-expressing normal mesenchymal cells, is inhibited by disruption of the IGF-1R signaling, whereas enhanced by IGF-1 stimulation. Induction of IGF-1R/RAS/Rac1 was also observed in the EWS xenografts that respond to anti-CD99 mAb, further supporting the role of the IGF/RAS/Rac1 axis in the hyperstimulation of macropinocytosis and selective death of EWS cells. Thus, we describe a vulnerability of EWS cells, including those resistant to standard chemotherapy, to a treatment with anti-CD99 mAb, which requires IGF-1R/RAS signaling but bypasses the need for their direct targeting. Overall, we propose CD99 targeting as new opportunity to treat EWS patients resistant to canonical apoptosis-inducing agents.
Collapse
Affiliation(s)
- Maria Cristina Manara
- CRS Development of Biomolecular Therapies, Experimental Oncology Laboratory, Istituto Ortopedico Rizzoli, Bologna 40136, Italy
| | - Mario Terracciano
- CRS Development of Biomolecular Therapies, Experimental Oncology Laboratory, Istituto Ortopedico Rizzoli, Bologna 40136, Italy.,Department of Urology and Biology of Prostate Cancer Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Caterina Mancarella
- CRS Development of Biomolecular Therapies, Experimental Oncology Laboratory, Istituto Ortopedico Rizzoli, Bologna 40136, Italy
| | - Marika Sciandra
- CRS Development of Biomolecular Therapies, Experimental Oncology Laboratory, Istituto Ortopedico Rizzoli, Bologna 40136, Italy.,PROMETEO Laboratory, STB, RIT Department, Istituto Ortopedico Rizzoli, Bologna 40136, Italy
| | - Clara Guerzoni
- CRS Development of Biomolecular Therapies, Experimental Oncology Laboratory, Istituto Ortopedico Rizzoli, Bologna 40136, Italy.,PROMETEO Laboratory, STB, RIT Department, Istituto Ortopedico Rizzoli, Bologna 40136, Italy
| | - Michela Pasello
- CRS Development of Biomolecular Therapies, Experimental Oncology Laboratory, Istituto Ortopedico Rizzoli, Bologna 40136, Italy.,PROMETEO Laboratory, STB, RIT Department, Istituto Ortopedico Rizzoli, Bologna 40136, Italy
| | - Andrea Grilli
- CRS Development of Biomolecular Therapies, Experimental Oncology Laboratory, Istituto Ortopedico Rizzoli, Bologna 40136, Italy
| | - Nicoletta Zini
- CNR, National Research Council of Italy, Institute of Molecular Genetics, Bologna 40136, Italy.,SC Laboratory of Musculoskeletal Cell Biology, Istituto Ortopedico Rizzoli, Bologna 40136, Italy
| | - Piero Picci
- CRS Development of Biomolecular Therapies, Experimental Oncology Laboratory, Istituto Ortopedico Rizzoli, Bologna 40136, Italy.,PROMETEO Laboratory, STB, RIT Department, Istituto Ortopedico Rizzoli, Bologna 40136, Italy
| | - Mario P Colombo
- Molecular Immunology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS "Istituto Nazionale dei Tumori," Milan 20133, Italy
| | - Andrea Morrione
- Department of Urology and Biology of Prostate Cancer Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Katia Scotlandi
- CRS Development of Biomolecular Therapies, Experimental Oncology Laboratory, Istituto Ortopedico Rizzoli, Bologna 40136, Italy.,PROMETEO Laboratory, STB, RIT Department, Istituto Ortopedico Rizzoli, Bologna 40136, Italy
| |
Collapse
|
42
|
Rauf F, Festa F, Park JG, Magee M, Eaton S, Rinaldi C, Betanzos CM, Gonzalez-Malerva L, LaBaer J. Ibrutinib inhibition of ERBB4 reduces cell growth in a WNT5A-dependent manner. Oncogene 2018; 37:2237-2250. [PMID: 29398709 PMCID: PMC5916919 DOI: 10.1038/s41388-017-0079-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 10/25/2017] [Accepted: 11/03/2017] [Indexed: 12/25/2022]
Abstract
Alterations in ERBB family members have been associated with many tumor malignancies. EGFR and ERBB2 have been extensively explored in clinical oncology and several drugs currently target them therapeutically. However, the significance of ERBB4 as a potential therapeutic target remains mostly unexplored, even though ERBB4 is overexpressed or mutated in many solid tumors. Using a unique functional protein microarray platform, we found that ibrutinib inhibits ERBB4 activity in the same nM range as its canonical target, BTK. Cell-based assays revealed that ibrutinib treatment inhibited cell growth and decreased phosphorylation of ERBB4 and downstream targets MEK and ERK in cancer cell lines with high levels of endogenous ERBB4. In vivo, ibrutinib-responsive mouse xenograft tumors showed decreased tumor volumes with ibrutinib treatment. Interestingly, global gene expression comparisons between responsive and non-responsive cells identified a signature featuring the WNT pathway that predicts growth responsiveness to ibrutinib. Non-responsive ERBB4-expressing cell lines featured elevated activity of the WNT pathway, through the overexpression of WNT5A. Moreover, inhibition of WNT5A expression led to an ibrutinib response in non-responsive cell lines. Our data show that inhibiting ERBB4 reduces cell growth in cells that have low WNT5A expression and reveal a link between the ERBB4 and WNT pathways.
Collapse
Affiliation(s)
- Femina Rauf
- Virginia G. Piper Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Fernanda Festa
- Virginia G. Piper Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Jin G Park
- Virginia G. Piper Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Mitchell Magee
- Virginia G. Piper Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Seron Eaton
- Virginia G. Piper Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Capria Rinaldi
- Virginia G. Piper Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Carlos Morales Betanzos
- Virginia G. Piper Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Laura Gonzalez-Malerva
- Virginia G. Piper Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Joshua LaBaer
- Virginia G. Piper Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
43
|
Chen S, Du Z, Wu B, Shen H, Liu C, Qiu X, Zhang Y, Xu L, Li E, Zhong Z. STAT1, IGF1, RAC1, and MDM2 Are Associated with Recurrence of Giant Cell Tumor of Bone. J Immunol Res 2018; 2018:4564328. [PMID: 29651441 PMCID: PMC5831922 DOI: 10.1155/2018/4564328] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/08/2017] [Accepted: 11/28/2017] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND In our previous study, mouse double minute 2 homolog (MDM2), insulin-like growth factor 1 (IGF1), signal transducer and activator of transcription 1 (STAT1), and Rac family small GTPase 1 (RAC1) were correlated with the recurrence of giant cell tumor of bone (GCT). The aim of this study is to use a large cohort study to confirm the involvement of these four genes in GCT recurrence. METHODS The expression of these four genes was detected and compared between GCT patients with or without recurrence. The correlation between the expression of these four genes and clinical characteristics was evaluated. Protein-protein interaction (PPI) network was constructed for functional enrichment analysis. RESULTS It showed that the expression levels of MDM2, IGF1, STAT1, and RAC1 in GCT patients with recurrence were significantly higher than those in GCT patients without recurrence (P < 0.05). Multivariate logistic regression analysis suggested that several clinical characteristics may influence prognosis. A PPI network was constructed using the four genes as hub genes. Functional enrichment analysis showed that this network involves many important biological progress mediated by these four genes, including immune response. CONCLUSION MDM2, IGF1, STAT1, and RAC1 are associated with GCT recurrence, which might serve as biomarkers for GCT recurrence.
Collapse
Affiliation(s)
- Shuxin Chen
- Department of Orthopedic Surgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou 515041, China
| | - Zepeng Du
- Department of Pathology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou 515041, China
| | - Bingli Wu
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
| | - Huiyang Shen
- Department of Orthopedic Surgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou 515041, China
| | - Chunpeng Liu
- Department of Orthopedic Surgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou 515041, China
| | - Xueli Qiu
- Department of Orthopedic Surgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou 515041, China
| | - Yufeng Zhang
- Department of Orthopedic Surgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou 515041, China
| | - Liyan Xu
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, China
| | - Enmin Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
| | - Zhigang Zhong
- Department of Orthopedic Surgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou 515041, China
| |
Collapse
|
44
|
Chiappetta C, Mancini M, Lessi F, Aretini P, De Gregorio V, Puggioni C, Carletti R, Petrozza V, Civita P, Franceschi S, Naccarato AG, Rocca CD, Mazzanti CM, Di Cristofano C. Whole-exome analysis in osteosarcoma to identify a personalized therapy. Oncotarget 2017; 8:80416-80428. [PMID: 29113313 PMCID: PMC5655208 DOI: 10.18632/oncotarget.19010] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/20/2017] [Indexed: 11/25/2022] Open
Abstract
Osteosarcoma is the most common pediatric primary non-hematopoietic bone tumor. Survival of these young patients is related to the response to chemotherapy and development of metastases. Despite many advances in cancer research, chemotherapy regimens for osteosarcoma are still based on non-selective cytotoxic drugs. It is essential to investigate new specific molecular therapies for osteosarcoma to increase the survival rate of these patients. We performed exomic sequence analyses of 8 diagnostic biopsies of patients with conventional high grade osteosarcoma to advance our understanding of their genetic underpinnings and to correlate the genetic alteration with the clinical and pathological features of each patient to identify a personalized therapy. We identified 18,275 somatic variations in 8,247 genes and we found three mutated genes in 7/8 (87%) samples (KIF1B, NEB and KMT2C). KMT2C showed the highest number of variations; it is an important component of a histone H3 lysine 4 methyltransferase complex and it is one of the histone modifiers previously implicated in carcinogenesis, never studied in osteosarcoma. Moreover, we found a group of 15 genes that showed variations only in patients that did not respond to therapy and developed metastasis and some of these genes are involved in carcinogenesis and tumor progression in other tumors. These data could offer the opportunity to get a key molecular target to identify possible new strategies for early diagnosis and new therapeutic approaches for osteosarcoma and to provide a tailored treatment for each patient based on their genetic profile.
Collapse
Affiliation(s)
- Caterina Chiappetta
- UOC of Pathology, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Latina, Italy
| | - Massimiliano Mancini
- UOC of Pathology, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Latina, Italy
| | | | | | | | - Chiara Puggioni
- UOC of Pathology, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Latina, Italy
| | - Raffaella Carletti
- UOC of Pathology, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Latina, Italy
| | - Vincenzo Petrozza
- UOC of Pathology, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Latina, Italy
| | | | | | | | - Carlo Della Rocca
- UOC of Pathology, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Latina, Italy
| | | | - Claudio Di Cristofano
- UOC of Pathology, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Latina, Italy
| |
Collapse
|
45
|
VAN Noord RA, Thomas T, Krook M, Chukkapalli S, Hoenerhoff MJ, Dillman JR, Lawlor ER, Opipari VP, Newman EA. Tissue-directed Implantation Using Ultrasound Visualization for Development of Biologically Relevant Metastatic Tumor Xenografts. ACTA ACUST UNITED AC 2017; 31:779-791. [PMID: 28882943 DOI: 10.21873/invivo.11131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 07/14/2017] [Accepted: 07/17/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Advances in cancer therapeutics depend on reliable in vivo model systems. To develop biologically relevant xenografts, ultrasound was utilized for tissue-directed implantation of neuroblastoma (NB) cell line and patient-derived tumors in the adrenal gland, and for renal subcapsular engraftment of Ewing's sarcoma (ES). MATERIALS AND METHODS NB xenografts were established by direct adrenal injection of luciferase-transfected NB cell lines (IMR32, SH-SY5Y, SK-N-BE2) or NB patient-derived tumor cells (UMNBL001, UMNBL002). ES xenografts were established by renal subcapsular injection of TC32, A673, CHLA-25, or A4573 cells. Progression was monitored by in vivo imaging. RESULTS Tumors progressed to local disease with metastasis evident by 5 weeks. Metastatic sites included cortical bone, lung, liver, and lymph nodes. Xenografted tumors retained immunochemical features of the original cancer. CONCLUSION Human NB adrenal xenografts, including two patient-derived orthotopic, and ES renal subcapsular xenografts were established by ultrasound without open surgery. Tissue-directed implantation is an effective technique for developing metastatic preclinical models.
Collapse
Affiliation(s)
- Raelene A VAN Noord
- Department of Surgery, C.S Mott Children's and Women's Hospital, Mott Solid Tumor Oncology Program, The University of Michigan Medical School, Ann Arbor, MI, U.S.A
| | - Tina Thomas
- Department of Surgery, C.S Mott Children's and Women's Hospital, Mott Solid Tumor Oncology Program, The University of Michigan Medical School, Ann Arbor, MI, U.S.A
| | - Melanie Krook
- Department of Pathology, C.S Mott Children's and Women's Hospital, Mott Solid Tumor Oncology Program, The University of Michigan Medical School, Ann Arbor, MI, U.S.A
| | - Sahiti Chukkapalli
- Department of Surgery, C.S Mott Children's and Women's Hospital, Mott Solid Tumor Oncology Program, The University of Michigan Medical School, Ann Arbor, MI, U.S.A
| | - Mark J Hoenerhoff
- Unit for Laboratory Animal Medicine, The University of Michigan Medical School, Ann Arbor, MI, U.S.A
| | - Jonathan R Dillman
- Department of Radiology, C.S Mott Children's and Women's Hospital, Mott Solid Tumor Oncology Program, The University of Michigan Medical School, Ann Arbor, MI, U.S.A
| | - Elizabeth R Lawlor
- Department of Pathology, C.S Mott Children's and Women's Hospital, Mott Solid Tumor Oncology Program, The University of Michigan Medical School, Ann Arbor, MI, U.S.A.,Department of Pediatrics, C.S Mott Children's and Women's Hospital, Mott Solid Tumor Oncology Program, The University of Michigan Medical School, Ann Arbor, MI, U.S.A
| | - Valerie P Opipari
- Department of Pediatrics, C.S Mott Children's and Women's Hospital, Mott Solid Tumor Oncology Program, The University of Michigan Medical School, Ann Arbor, MI, U.S.A
| | - Erika A Newman
- Department of Surgery, C.S Mott Children's and Women's Hospital, Mott Solid Tumor Oncology Program, The University of Michigan Medical School, Ann Arbor, MI, U.S.A.
| |
Collapse
|
46
|
Satterfield L, Shuck R, Kurenbekova L, Allen-Rhoades W, Edwards D, Huang S, Rajapakshe K, Coarfa C, Donehower LA, Yustein JT. miR-130b directly targets ARHGAP1 to drive activation of a metastatic CDC42-PAK1-AP1 positive feedback loop in Ewing sarcoma. Int J Cancer 2017; 141:2062-2075. [PMID: 28748534 DOI: 10.1002/ijc.30909] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 06/30/2017] [Accepted: 07/17/2017] [Indexed: 01/08/2023]
Abstract
Ewing Sarcoma (ES) is a highly aggressive bone tumor with peak incidence in the adolescent population. It has a high propensity to metastasize, which is associated with dismal survival rates of approximately 25%. To further understand mechanisms of metastasis we investigated microRNA regulatory networks in ES. Our studies focused on miR-130b due to our analysis that enhanced expression of this microRNA has clinical relevance in multiple sarcomas, including ES. Our studies provide insights into a novel positive feedback network involving the direct regulation of miR-130b and activation of downstream signaling events contributing toward sarcoma metastasis. Specifically, we demonstrated miR-130b induces proliferation, invasion, and migration in vitro and increased metastatic potential in vivo. Using microarray analysis of ES cells with differential miR-130b expression we identified alterations in downstream signaling cascades including activation of the CDC42 pathway. We identified ARHGAP1, which is a negative regulator of CDC42, as a novel, direct target of miR-130b. In turn, downstream activation of PAK1 activated the JNK and AP-1 cascades and downstream transcriptional targets including IL-8, MMP1 and CCND1. Furthermore, chromatin immunoprecipitation of endogenous AP-1 in ES cells demonstrated direct binding to an upstream consensus binding site within the miR-130b promoter. Finally, small molecule inhibition of PAK1 blocked miR-130b activation of JNK and downstream AP-1 target genes, including primary miR-130b transcripts, and miR-130b oncogenic properties, thus identifying PAK1 as a novel therapeutic target for ES. Taken together, our findings identify and characterize a novel, targetable miR-130b regulatory network that promotes ES metastasis.
Collapse
Affiliation(s)
- Laura Satterfield
- Texas Children's Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center, Baylor College of Medicine, Houston, TX.,Integrative Molecular and Biological Sciences Program, Baylor College of Medicine, Houston, TX
| | - Ryan Shuck
- Texas Children's Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center, Baylor College of Medicine, Houston, TX
| | - Lyazat Kurenbekova
- Texas Children's Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center, Baylor College of Medicine, Houston, TX
| | - Wendy Allen-Rhoades
- Texas Children's Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center, Baylor College of Medicine, Houston, TX
| | - Dean Edwards
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX
| | - Shixia Huang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX
| | - Kimal Rajapakshe
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX
| | - Lawrence A Donehower
- Texas Children's Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center, Baylor College of Medicine, Houston, TX.,Integrative Molecular and Biological Sciences Program, Baylor College of Medicine, Houston, TX.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX.,Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX
| | - Jason T Yustein
- Texas Children's Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center, Baylor College of Medicine, Houston, TX.,Integrative Molecular and Biological Sciences Program, Baylor College of Medicine, Houston, TX.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX
| |
Collapse
|
47
|
Sahu A, Patra PK, Yadav MK, Varma M. Identification and characterization of ErbB4 kinase inhibitors for effective breast cancer therapy. J Recept Signal Transduct Res 2017; 37:470-480. [DOI: 10.1080/10799893.2017.1342129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ankita Sahu
- Department of Biochemistry, Pt. J.N.M. Medical College, Raipur, India
- Department of Biochemistry, Sri Aurobindo Institute of Medical Sciences, Indore, India
| | - P. K. Patra
- Department of Biochemistry, Pt. J.N.M. Medical College, Raipur, India
| | - Manoj Kumar Yadav
- Department of Biochemistry, Pt. J.N.M. Medical College, Raipur, India
| | - Meena Varma
- Department of Biochemistry, Sri Aurobindo Institute of Medical Sciences, Indore, India
| |
Collapse
|
48
|
Moore C, Parrish JK, Jedlicka P. MiR-193b, downregulated in Ewing Sarcoma, targets the ErbB4 oncogene to inhibit anchorage-independent growth. PLoS One 2017; 12:e0178028. [PMID: 28542597 PMCID: PMC5436853 DOI: 10.1371/journal.pone.0178028] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 04/10/2017] [Indexed: 12/25/2022] Open
Abstract
Ewing Sarcoma is an aggressive, oncofusion-driven, malignant neoplasm of bone and soft tissue affecting predominantly children and young adults. Seeking to identify potential novel therapeutic targets/agents for this disease, our previous studies uncovered microRNAs regulated by EWS/Fli1, the most common oncofusion, with growth modulatory properties. In the present study, we sought to identify EWS/Fli1-repressed, growth suppressive, microRNAs potentially amenable to replacement in Ewing Sarcoma cells. Eight microRNAs (143, 153, 184, 193b, 195, 203, 206 and 223) were selected for evaluation as EWS/Fli1-repressed and underexpressed in Ewing Sarcoma cells, and reported to be growth suppressive in other pediatric or/and adult cancers. The selected miRs, and appropriate non-targeting controls, were introduced into two different Ewing Sarcoma cell lines (A673 and SK-ES-1), and effects on growth were examined using a high and low-density growth assay. MiR-193b was growth inhibitory in both assays and cell lines. In subsequent analyses, we found that stable overexpression of miR-193b also inhibits anchorage-independent growth in both A673 and SK-ES-1 cells. We further show that miR-193b negatively regulates expression of the ErbB4 oncogene in A673 and SK-ES-1 cells, and that depletion of ErbB4 is itself inhibitory to anchorage-independent growth in the same cell lines. Together, our studies show that the EWS/Fli1-repressed miR-193b is growth suppressive in Ewing Sarcoma, and identify ErbB4 as a target gene and candidate mediator of this growth suppression.
Collapse
Affiliation(s)
- Colin Moore
- Center for Cancer and Blood Disorders, Children’s Hospital Colorado, Aurora, Colorado, United States of America
| | - Janet K. Parrish
- Department of Pathology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Paul Jedlicka
- Department of Pathology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
49
|
Sun H, Lin DC, Cao Q, Pang B, Gae DD, Lee VKM, Lim HJ, Doan N, Said JW, Gery S, Chow M, Mayakonda A, Forscher C, Tyner JW, Koeffler HP. Identification of a Novel SYK/c-MYC/MALAT1 Signaling Pathway and Its Potential Therapeutic Value in Ewing Sarcoma. Clin Cancer Res 2017; 23:4376-4387. [DOI: 10.1158/1078-0432.ccr-16-2185] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/05/2016] [Accepted: 03/21/2017] [Indexed: 11/16/2022]
|
50
|
Liu Y, Zhou Q, He XS, Song LM, Chen L, Jiao WJ, Shen T, Yao S, Wu H, Hu ZB, Gao TM, Li JM. Genetic variants in ERBB4 is associated with chronic hepatitis B virus infection. Oncotarget 2016; 7:4981-92. [PMID: 26701850 PMCID: PMC4826259 DOI: 10.18632/oncotarget.6650] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 12/05/2015] [Indexed: 12/22/2022] Open
Abstract
Background The role of ERBB4 in liver disease has seldom been reported. This study aims to find genetic markers at ERBB4 for chronic hepatitis B virus (HBV) infection and determine the role of ERBB4 in liver injury. Methods We selected and genotyped three single nucleotide polymorphisms and one insertion/deletion (Ins/Del) at the 5′ and 3′ untranslated region (UTR) of ERBB4 in a case-control study including 1344 pairs of HBV carriers and HBV natural clearance subjects. The luciferase reporter system was applied to study the regulative role of Ins/Del on ERBB4. Further, ERBB4 knockout mice were used to study the role of ERBB4 in liver injury. Proteomic quantification was performed by HPLC-MS/MS analysis to identify liver protein profile change between liver-specific ERBB4 knockout and control mice. Results rs6147150 Ins/Del and rs1836724 T>C at the 3′ UTR of ERBB4 were associated with reduced risk of chronic HBV infection (P = 0.002 and 0.004, respectively). Besides, the 12bp deletion at the 3′ UTR increased ERBB4 expression due to lacking let-7c binding site. In addition, loss of ERBB4 led to more severe acute or chronic inflammation in mouse liver injury models. Further, quantitative proteomic analysis and data from the cancer genome atlas revealed that ACLY, an enzyme key for de novo lipogenesis, was negatively correlated with ERBB4. Conclusions ERBB4 plays protective role from liver injury and its 3′UTR genetic variants could be genetic markers for chronic HBV infection.
Collapse
Affiliation(s)
- Yao Liu
- Department of Pathology, Medical College of Soochow University, Suzhou 215123, People's Republic of China.,Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Qun Zhou
- Department of Pathology, Medical College of Soochow University, Suzhou 215123, People's Republic of China
| | - Xiao-Shun He
- Department of Pathology, Medical College of Soochow University, Suzhou 215123, People's Republic of China
| | - Li-Ming Song
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Lin Chen
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Wei-Juan Jiao
- Department of Pathology, Medical College of Soochow University, Suzhou 215123, People's Republic of China
| | - Tong Shen
- Department of Pathology, Medical College of Soochow University, Suzhou 215123, People's Republic of China
| | - Su Yao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Hua Wu
- Department of Pathology, Medical College of Soochow University, Suzhou 215123, People's Republic of China
| | - Zhi-Bin Hu
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Tian-Ming Gao
- Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Jian-Ming Li
- Department of Pathology, Medical College of Soochow University, Suzhou 215123, People's Republic of China.,Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, People's Republic of China
| |
Collapse
|