1
|
Betz-Koch S, Oehlmann J, Oetken M. Extremely low repeated pyrethroid pulses increase harmful effects on caddisfly larvae (Chaetopteryx villosa) and influence species interactions. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 279:107212. [PMID: 39706135 DOI: 10.1016/j.aquatox.2024.107212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Based on effect data, regulatory acceptable concentrations (RACs) are derived for surface waters to avoid unacceptable effects on the environment. RACs often relay on acute tests with single species, which may underestimate the effects under field conditions. Therefore, we applied a higher tier approach with artificial indoor streams (AIS). We exposed representatives of the benthic community in lotic surface waters to varying numbers (one to four times) of 12-hour deltamethrin pulses over a 35-day period with intervening recovery phases, to simulate multiple pesticide peak exposures caused by rain events or spray drift. The deltamethrin concentration of each pulse was equivalent to its RAC value of 0.64 ng/L and consequently should have no unacceptable effects on the tested species. In contrast, we observed that the mortality of caddisfly larvae increased significantly with the number of pulses at the RAC. In addition, larval development was significantly delayed after four deltamethrin pulses, while the gammarids apparently benefited from the toxicity-induced mortality of the larvae. This study underlines the importance of considering higher tier approaches that include species interactions and additional stressors in order to obtain more realistic effect data and optimise regulatory risk assessment. These are not considered in acute tests with single species, which usually leads to an underestimation of the effects. Based on the results of this study, we propose to lower the RAC value for aquatic environments due to the uncertainties mentioned above.
Collapse
Affiliation(s)
- Sarah Betz-Koch
- Department Aquatic Ecotoxicology, Goethe University Frankfurt, Max-von-Laue Straße 13, 60438 Frankfurt am Main, Germany.
| | - Jörg Oehlmann
- Department Aquatic Ecotoxicology, Goethe University Frankfurt, Max-von-Laue Straße 13, 60438 Frankfurt am Main, Germany; Kompetenzzentrum Wasser Hessen, Max-von-Laue Straße 13, 60438 Frankfurt am Main, Germany
| | - Matthias Oetken
- Department Aquatic Ecotoxicology, Goethe University Frankfurt, Max-von-Laue Straße 13, 60438 Frankfurt am Main, Germany; Kompetenzzentrum Wasser Hessen, Max-von-Laue Straße 13, 60438 Frankfurt am Main, Germany
| |
Collapse
|
2
|
Cojoc L, de Castro-Català N, de Guzmán I, González J, Arroita M, Besolí-Mestres N, Cadena I, Freixa A, Gutiérrez O, Larrañaga A, Muñoz I, Elosegi A, Petrovic M, Sabater S. Pollutants in urban runoff: Scientific evidence on toxicity and impacts on freshwater ecosystems. CHEMOSPHERE 2024; 369:143806. [PMID: 39603359 DOI: 10.1016/j.chemosphere.2024.143806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/10/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
Urban runoff effluents transport multiple pollutants collected from urban surfaces. which ultimately reach freshwater ecosystems. We here collect the existing scientific evidence on the urban runoff impacts on aquatic organisms and ecosystem functions, assessed the potential toxicity of the most common pollutants present in urban runoff, and characterized the ecotoxicological risk for freshwaters. We used the Toxic Units models to estimate the toxicity of individual chemicals to freshwater biota and observed that the highest ecotoxicological risk of urban runoff was associated to metals, polycyclic aromatic hydrocarbons (PAHs) and pesticides and, in a few cases, to phthalates. The potential risk was highest for copper and zinc, as well as for anthracene, fluoranthene, Di(2-ethylhexyl) phthlate (DEHP), imidacloprid, cadmium, mercury, and chromium. These pollutants had contrasting effects on freshwater biological groups, though the risk overall decreased from basal to upper trophic levels. Our analysis evidenced a lack of data on ecotoxicological effects of several pollutants present in urban runoff effluents, caused by lack of toxicity data and by the inadequate representation of biological groups in the ecotoxicological databases. Nevertheless, evidence indicates that urban runoff presents ecotoxicological risk for freshwater biota, which might increase if hydrological patterns become extreme, such as long dry periods and floods. Our study highlights the importance of considering both the acute and chronic toxicity of urban effluent pollutants, as well as recognizing the interplay with other environmental stressors, to design adequate environmental management strategies on urban freshwater ecosystems receiving urban runoff.
Collapse
Affiliation(s)
- Lorena Cojoc
- Catalan Institute for Water Research (ICRA- CERCA), Carrer Emili Grahit 101, Parc Científic I Tecnològic de la Universitat de Girona, 17003, Girona, Spain.
| | - Núria de Castro-Català
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Universitat de Barcelona, Av. Diagonal, 643, 08028, Barcelona, Spain.
| | - Ioar de Guzmán
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Spain.
| | - Julene González
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Spain.
| | - Maite Arroita
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Spain.
| | - Neus Besolí-Mestres
- Catalan Institute for Water Research (ICRA- CERCA), Carrer Emili Grahit 101, Parc Científic I Tecnològic de la Universitat de Girona, 17003, Girona, Spain.
| | - Isabel Cadena
- Catalan Institute for Water Research (ICRA- CERCA), Carrer Emili Grahit 101, Parc Científic I Tecnològic de la Universitat de Girona, 17003, Girona, Spain.
| | - Anna Freixa
- Catalan Institute for Water Research (ICRA- CERCA), Carrer Emili Grahit 101, Parc Científic I Tecnològic de la Universitat de Girona, 17003, Girona, Spain.
| | - Oriol Gutiérrez
- Catalan Institute for Water Research (ICRA- CERCA), Carrer Emili Grahit 101, Parc Científic I Tecnològic de la Universitat de Girona, 17003, Girona, Spain.
| | - Aitor Larrañaga
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Spain.
| | - Isabel Muñoz
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Universitat de Barcelona, Av. Diagonal, 643, 08028, Barcelona, Spain.
| | - Arturo Elosegi
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Spain.
| | - Mira Petrovic
- Catalan Institute for Water Research (ICRA- CERCA), Carrer Emili Grahit 101, Parc Científic I Tecnològic de la Universitat de Girona, 17003, Girona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| | - Sergi Sabater
- Catalan Institute for Water Research (ICRA- CERCA), Carrer Emili Grahit 101, Parc Científic I Tecnològic de la Universitat de Girona, 17003, Girona, Spain; Institut d'Ecologia Aquàtica (IEA), Universitat de Girona, Campus de Montilivi, 17003, Girona, Spain.
| |
Collapse
|
3
|
Magnuson JT, Sy ND, Tanabe P, Ji C, Gan J, Schlenk D. Dopaminergic and anti-estrogenic responses in juvenile steelhead (Oncorhynchus mykiss) exposed to bifenthrin. Comp Biochem Physiol C Toxicol Pharmacol 2024; 285:109995. [PMID: 39111515 DOI: 10.1016/j.cbpc.2024.109995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/18/2024] [Accepted: 08/01/2024] [Indexed: 08/11/2024]
Abstract
The frequency of detection and concentrations of bifenthrin, a pyrethroid insecticide, in the waterways inhabited by the endangered species, steelhead trout (Oncorhynchus mykiss), has become a significant concern for regulatory agencies. Endocrine disruption has been observed with estrogenic and anti-estrogenic responses in fish species at different life stages. Since several studies have indicated alterations in dopaminergic signaling associated with endocrine responses, juvenile steelhead were exposed to environmentally relevant concentrations of 60 or 120 ng/L bifenthrin for two weeks. Fish brains were assessed for dopamine levels and the expression of genes involved in dopaminergic and estrogenic processes, such as catechol-o-methyltransferase (comt) and monoamine oxidase (mao). Vitellogenin (vtg) and estrogenic receptors (ERα1, ERβ1, and ERβ2) were also evaluated in livers of the animals. Dopamine concentrations were significantly higher in fish brains following bifenthrin exposure. Consistent with a reduction in dopamine clearance, there was a significant decrease in the mRNA expression of comt with increased bifenthrin concentration. Hepatic expression of ERα1 and ERβ2 mRNA was significantly decreased with increased bifenthrin concentration. These data support the possible mechanism of bifenthrin altering the dopaminergic pathway at low ng/L concentrations, in juvenile steelhead, which could interfere with endocrine feedback loops. These findings support the need for and importance of identifying species and life stage differences in pesticide modes of action to reduce uncertainties in risk assessments.
Collapse
Affiliation(s)
- Jason T Magnuson
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO, USA; Department of Environmental Sciences, University of California, Riverside, Riverside, CA, USA.
| | - Nathan D Sy
- Department of Environmental Sciences, University of California, Riverside, Riverside, CA, USA
| | - Philip Tanabe
- Department of Environmental Sciences, University of California, Riverside, Riverside, CA, USA; National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Charleston, SC, USA
| | - Chenyang Ji
- Department of Environmental Sciences, University of California, Riverside, Riverside, CA, USA
| | - Jay Gan
- Department of Environmental Sciences, University of California, Riverside, Riverside, CA, USA
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, Riverside, CA, USA
| |
Collapse
|
4
|
La CGB, Huff Hartz KE, Arkles M, Grim ME, Acuña S, Sadro S, Lydy MJ. A baseline assessment of contamination in the Sacramento deep water ship channel. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124606. [PMID: 39053801 DOI: 10.1016/j.envpol.2024.124606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/02/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
The Sacramento Deep Water Ship Channel (SDWSC) in the San Francisco Estuary, which is an active commercial port, is critical habitat for pelagic fish species including delta smelt (Hypomesus transpacificus), longfin smelt (Spirinchus thaleichthys), and Sacramento perch (Archoplites interruptus). Pelagic organism decline has been attributed to covarying factors such as manipulation of habitat, introduction of invasive species, decrease in food production, and contaminant exposure. Quantification of bioavailable toxicant loads in the SDWSC is limited despite previous surveys that have detected elevated contaminant concentrations in the sediments. Therefore, the focus of the present study was to characterize the bioavailability of the contaminants in the SDWSC from six sites along the channel. At each site, organochlorine pesticides (OCPs), pyrethroid insecticides, polyaromatic hydrocarbons (PAHs), and polychlorinated biphenyls (PCBs) were quantified in sediment, zooplankton, and suspended solids. In addition, Tenax extraction was used to measure the bioaccessible fraction of sediment-associated contaminants freely dissolved in the water. Bioaccessible contaminants in the sediment provided an uptake route for these stressors into invertebrates and fish with bioaccessible OCPs being found at all sites, particularly 4,4'-dichlorodiphenyldichloroethylene (DDE). Bifenthrin was the only pyrethroid detected in the chosen matrices and it was found at concentrations below levels of concern. Bioaccessible PAHs were found at all sites, with highest detections for phenanthrene and pyrene. No PCBs were detected in sediments, but were detected in both suspended solids and zooplankton. Contaminant concentrations overall were significantly higher in suspended solids, followed by zooplankton and sediments. The highest sediment concentrations of DDE, fluoranthene, pyrene, and dibenzo[a,h]anthracene exceeded sediment quality benchmarks indicating potential risk to sediment-dwelling species. Finally, elevated contaminant levels were found in both suspended solids and zooplankton, suggesting additional risk to pelagic species in the SDWSC.
Collapse
Affiliation(s)
- Cristina G B La
- Center for Fisheries, Aquaculture and Aquatic Sciences, School of Biological Sciences, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Kara E Huff Hartz
- Center for Fisheries, Aquaculture and Aquatic Sciences, School of Biological Sciences, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Mia Arkles
- Center for Fisheries, Aquaculture and Aquatic Sciences, School of Biological Sciences, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Melissa E Grim
- Department of Environmental Science and Policy, University of California Davis, Davis, CA, 95616, USA
| | - Shawn Acuña
- Metropolitan Water District of Southern California, Sacramento, CA, 95814, USA
| | - Steven Sadro
- Department of Environmental Science and Policy, University of California Davis, Davis, CA, 95616, USA
| | - Michael J Lydy
- Center for Fisheries, Aquaculture and Aquatic Sciences, School of Biological Sciences, Southern Illinois University, Carbondale, IL, 62901, USA.
| |
Collapse
|
5
|
Lu N, Liu F. Tempospatially Confined Catalytic Membranes for Advanced Water Remediation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311419. [PMID: 38345861 DOI: 10.1002/adma.202311419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/03/2024] [Indexed: 02/28/2024]
Abstract
The application of homogeneous catalysts in water remediation is limited by their excessive chemical and energy input, weak regenerability, and potential leaching. Heterogeneous catalytic membranes (CMs) offer a new approach to facilitate efficient, selective, and continuous pollutant degradation. Thus, integrating membranes and continuous filtration with heterogeneous advanced oxidation processes (AOPs) can promote thermodynamic and kinetic mass transfers in spatially confined intrapores and facilitate diffusion-reaction processes. Despite the remarkable advantages of heterogeneous CMs, their engineering application is practically restricted due to the fuzzy design criteria for specific applications. Herein, the recent advances in CMs for advanced water remediation are critically reviewed and the design flow for tempospatially confined CMs is proposed. Further, state-of-the-art CM materials and their catalytic mechanisms are reviewed, after which the tempospatial confinement mechanisms comprising the nanoconfinement effect, interface effect, and kinetic mass transfer are emphasized, thus clarifying their roles in the construction and performance optimization of CMs. Additionally, the fabrication methods for CMs based on their catalysts and pore sizes are summarized and an overview of their application and performance evaluations is presented. Finally, future directions for CMs in materials research and water treatment, are presented.
Collapse
Affiliation(s)
- Na Lu
- Zhejiang International Joint Laboratory of Advanced Membrane Materials & Processes, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, No. 1219 Zhongguan West Rd, Ningbo, 315201, China
- Ningbo College of Materials Technology & Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Fu Liu
- Zhejiang International Joint Laboratory of Advanced Membrane Materials & Processes, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, No. 1219 Zhongguan West Rd, Ningbo, 315201, China
- Ningbo College of Materials Technology & Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| |
Collapse
|
6
|
Han G, Bu D, Kong R, Huang K, Liu C. Toxic responses of environmental concentrations of bifenthrin in larval freshwater snail Bellamya aeruginosa. CHEMOSPHERE 2024; 355:141863. [PMID: 38579955 DOI: 10.1016/j.chemosphere.2024.141863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/04/2024] [Accepted: 03/29/2024] [Indexed: 04/07/2024]
Abstract
Bifenthrin (BF) is ubiquitous in aquatic environments, and studies have indicated that environmental concentrations of BF could cause neurotoxicity and oxidative damage in fish and decrease the abundance of aquatic insects. However, little information is available on the toxicity of BF in freshwater benthic mollusks. Bellamya aeruginosa (B. aeruginosa) is a key benthic fauna species in aquatic ecosystems, and has extremely high economic and ecological values. In this study, larval B. aeruginosa within 24 h of birth were exposed to 0, 30 or 300 ng/L of BF for 30 days, and then the toxic effects from molecular to individual levels were comprehensively evaluated in all the three treatment groups. It was found that BF at 300 ng/L caused the mortality of snails. Furthermore, BF affected snail behaviors, evidenced by reduced crawling distance and crawling speed. The hepatopancreas of snails in the two BF exposure groups showed significant pathological changes, including increase in the number of yellow granules and occurrence of hemocyte infiltration, epithelial cell thinning, and necrosis. The levels of ROS and MDA were significantly increased after exposure to 300 ng/L BF, and the activities of two antioxidant enzymes SOD and CAT were increased significantly. GSH content decreased significantly after BF exposure, indicating the occurrence of oxidative damage in snails. Transcriptomic results showed that differentially expressed genes (DEGs) were significantly enriched in pathways related to metabolism and neurotoxicity (e.g., oxidative phosphorylation and Parkinson disease), and these results were consistent with those in individual and biochemical levels above. The study indicates that environmental concentration of BF results in decreased survival rates, sluggish behavior, histopathological lesions, oxidative damage, and transcriptomic changes in the larvae of B. aeruginosa. Thus, exposure of larval snails to BF in the wild at concentrations similar to those used in this study might have adverse consequences at the population level. These findings provide a theoretical basis for further assessing the ecological risk of BF to aquatic gastropods.
Collapse
Affiliation(s)
- Guixin Han
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dianping Bu
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ren Kong
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Kai Huang
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Chunsheng Liu
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China.
| |
Collapse
|
7
|
Major KM, Weston DP, Wellborn GA, Lydy MJ, Poynton HC. Predicting Resistance: Quantifying the Relationship between Urban Development, Agricultural Pesticide Use, and Pesticide Resistance in a Nontarget Amphipod. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14649-14659. [PMID: 36201633 DOI: 10.1021/acs.est.2c04245] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Resistance alleles within the voltage-gated sodium channel (vgsc) have been correlated with pyrethroid resistance in wild populations of the nontarget amphipod, Hyalella azteca from California (CA), U.S.A. In the present study, we expand upon the relationship between land use and the evolution of pesticide resistance in H. azteca to develop a quantitative methodology to target and screen novel populations for resistance allele genotypes in a previously uninvestigated region of the U.S. (New England: NE). By incorporating urban land development and toxicity-normalized agricultural pesticide use indices into our site selection, we successfully identified three amino acid substitutions associated with pyrethroid resistance. One of the resistance mutations has been described in H. azteca from CA (L925I). We present the remaining two (vgsc I936F and I936V) as novel pyrethroid-resistance alleles in H. azteca based on previous work in insects and elevated cyfluthrin resistance in one NE population. Our results suggest that urban pesticide use is a strong driver in the evolution of resistance alleles in H. azteca. Furthermore, our method for resistance allele screening provides an applied framework for detecting ecosystem impairment on a nationwide scale that can be incorporated into ecological risk assessment decisions.
Collapse
Affiliation(s)
- Kaley M Major
- School for the Environment, University of Massachusetts Boston, Boston, Massachusetts 02125, United States
| | - Donald P Weston
- Department of Integrative Biology, University of California, Berkeley, Berkeley, California 94720, United States
| | - Gary A Wellborn
- Department of Biology, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Michael J Lydy
- Center for Fisheries, Aquaculture and Aquatic Sciences and Department of Zoology, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Helen C Poynton
- School for the Environment, University of Massachusetts Boston, Boston, Massachusetts 02125, United States
| |
Collapse
|
8
|
Magnuson JT, Caceres L, Sy N, Ji C, Tanabe P, Gan J, Lydy MJ, Schlenk D. The Use of Non-targeted Lipidomics and Histopathology to Characterize the Neurotoxicity of Bifenthrin to Juvenile Rainbow Trout ( Oncorhynchus mykiss). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11482-11492. [PMID: 35876619 PMCID: PMC9387103 DOI: 10.1021/acs.est.2c01542] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/14/2022] [Accepted: 07/14/2022] [Indexed: 05/25/2023]
Abstract
Due to the detection frequencies and measured concentrations in surface water, the type I pyrethroid insecticide, bifenthrin, has been of particular concern within the Sacramento-San Joaquin Delta in California. Concentrations have been detected above levels previously reported to impair neuroendocrine function and induce neurotoxicity to several species of salmonids. Metabolomic and transcriptomic studies indicated impairment of cellular signaling within the brain of exposed animals and potential alteration of lipid metabolism. To better understand the potential impacts of bifenthrin on brain lipids, juvenile rainbow trout (Oncorhynchus mykiss) were exposed to mean bifenthrin concentrations of 28 or 48 ng/L for 14 days, and non-targeted lipidomic profiling in the brain was conducted. Brain tissue sections were also assessed for histopathological insult following bifenthrin treatment. Bifenthrin-exposed trout had a concentration-dependent decrease in the relative abundance of triglycerides (TGs) with levels of phosphatidylcholines (PCs) and phosphatidylethanolamines (PEs) significantly altered following 48 ng/L bifenthrin exposure. An increased incidence of histopathological lesions, such as focal hemorrhages and congestion of blood vessels, was noted in the brains of bifenthrin-treated animals, suggesting an association between altered lipid metabolism and neuronal cell structure and integrity.
Collapse
Affiliation(s)
- Jason T. Magnuson
- Department
of Environmental Sciences, University of
California, Riverside, California 92521, United States
| | - Leslie Caceres
- Department
of Environmental Sciences, University of
California, Riverside, California 92521, United States
| | - Nathan Sy
- Department
of Environmental Sciences, University of
California, Riverside, California 92521, United States
| | - Chenyang Ji
- College
of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Philip Tanabe
- Department
of Environmental Sciences, University of
California, Riverside, California 92521, United States
| | - Jay Gan
- Department
of Environmental Sciences, University of
California, Riverside, California 92521, United States
| | - Michael J. Lydy
- Department
of Zoology, Center for Fisheries, Aquaculture and Aquatic Sciences, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Daniel Schlenk
- Department
of Environmental Sciences, University of
California, Riverside, California 92521, United States
- Institute
of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
9
|
Anzalone SE, Fuller NW, Huff Hartz KE, Fulton CA, Whitledge GW, Magnuson JT, Schlenk D, Acuña S, Lydy MJ. Pesticide residues in juvenile Chinook salmon and prey items of the Sacramento River watershed, California - A comparison of riverine and floodplain habitats. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 303:119102. [PMID: 35257807 DOI: 10.1016/j.envpol.2022.119102] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Juvenile Chinook salmon (Oncorhynchus tshawytscha) of the Sacramento River system encounter many anthropogenically-induced stressors while rearing and migrating to the Pacific Ocean. Located in a prominent agricultural region, the watershed serves as a source of notable contaminants including pesticides. Salmon rearing in riverine and floodplain areas are potentially exposed to these compounds via dietary exposure, which can vary based on selected food webs. Previous studies have suggested that juvenile Chinook salmon rearing in riverine and floodplain environments of the Sacramento River watershed are characterized by different dietary preferences, with potential for contrasting pesticide exposure between habitats. To examine the potential for pesticide exposure, juvenile Chinook salmon and known dietary items were collected in the mainstem Sacramento River and an adjacent floodplain, the Yolo Bypass, in 2019 and 2020, and analyzed for 33 pesticides, including degradates and isomers. Organochlorine pesticides including the DDX group (p,p'-DDT, p,p'-DDD and p,p'-DDE) were prevalent in all examined biota. There was a significantly greater number of total pesticide detections across all classes in zooplankton compared to macroinvertebrates, coupled with higher bifenthrin concentrations in zooplankton across regions and years, which may indicate different exposure potential depending on fish dietary preferences. Detection frequencies and concentrations of organochlorines were higher in prey items during flooding than in drought conditions, suggesting resuspension of legacy compounds. Significantly higher concentrations of organochlorines were recorded in floodplain rearing fish compared to the Sacramento River. These findings suggest that within these habitats, juvenile Chinook salmon feeding primarily on zooplankton within the water column may be exposed to a greater range of pesticides than those feeding on benthic macroinvertebrates, and that the benefits of floodplain rearing may come at a cost of increased organochlorine exposure.
Collapse
Affiliation(s)
- Sara E Anzalone
- Center for Fisheries, Aquaculture, and Aquatic Sciences, Department of Zoology, Southern Illinois University, Carbondale, Illinois, 62901, USA.
| | - Neil W Fuller
- Center for Fisheries, Aquaculture, and Aquatic Sciences, Department of Zoology, Southern Illinois University, Carbondale, Illinois, 62901, USA.
| | - Kara E Huff Hartz
- Center for Fisheries, Aquaculture, and Aquatic Sciences, Department of Zoology, Southern Illinois University, Carbondale, Illinois, 62901, USA.
| | - Corie A Fulton
- Center for Fisheries, Aquaculture, and Aquatic Sciences, Department of Zoology, Southern Illinois University, Carbondale, Illinois, 62901, USA.
| | - Gregory W Whitledge
- Center for Fisheries, Aquaculture, and Aquatic Sciences, Department of Zoology, Southern Illinois University, Carbondale, Illinois, 62901, USA.
| | - Jason T Magnuson
- Department of Environmental Sciences, University of California Riverside, Riverside, CA, 92521, USA.
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California Riverside, Riverside, CA, 92521, USA.
| | - Shawn Acuña
- Metropolitan Water District of Southern California, Sacramento, CA, 95814, USA.
| | - Michael J Lydy
- Center for Fisheries, Aquaculture, and Aquatic Sciences, Department of Zoology, Southern Illinois University, Carbondale, Illinois, 62901, USA.
| |
Collapse
|
10
|
Xie W, Zhao J, Zhu X, Chen S, Yang X. Pyrethroid bioaccumulation in wild fish linked to geographic distribution and feeding habit. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128470. [PMID: 35180516 DOI: 10.1016/j.jhazmat.2022.128470] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/27/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
The accumulation of pyrethroid insecticides in aquatic food webs has attracted increased research attention. Fish are key species in aquatic food webs, directly connecting invertebrates and human consumption. However, little is known about the bioaccumulation of pyrethroids in wild fish species. In this study, 19 species of wild fish were collected from 11 sites in the Pearl River, China, and the levels of seven pyrethroids in the fish were determined. Linear mixed-effects models were applied to estimate the means of pyrethroid concentrations, in which sample site and fish species were set as random effects. The concentrations of Σ7 pyrethroids in fish ranged from 4.99 to 50.82 ng/g. Permethrin and bifenthrin were present at the highest concentration (8.89 ± 1.47 ng/g) and frequency (100%) in fish muscle, respectively. The composition patterns of pyrethroids varied in fish organs. Fish species contributed a higher proportion of the variance than geographic distribution (28.6% vs. 26.4%). The pyrethroids in carnivorous fish (23.5 ± 2.9 ng/g) were significantly higher than in omnivorous (14.6 ± 1.9 ng/g) and phytophagous fish (16.0 ± 4.7 ng/g). To our knowledge, this is the first report examining the effect of feeding habits on pyrethroid bioaccumulation in wild fish. The results can provide evidence for the risk of pyrethroid pollution in aquatic ecosystems.
Collapse
Affiliation(s)
- Wenping Xie
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation of Ministry of Agriculture, Laboratory of Seafood Quality and Security Evaluation of Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Jiangang Zhao
- Research Center of Hydrobiology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, China
| | - Xinping Zhu
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation of Ministry of Agriculture, Laboratory of Seafood Quality and Security Evaluation of Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Shanshan Chen
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xunan Yang
- State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| |
Collapse
|
11
|
Wang C, Zhang H, Zhu L, Hu W, Lin Z. [Simultaneous determination of 11 volatile perfluorinated compound precursors in textiles using gas chromatography-triple quadrupole mass spectrometry]. Se Pu 2021; 39:1239-1246. [PMID: 34677019 PMCID: PMC9404008 DOI: 10.3724/sp.j.1123.2021.01043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
以甲醇为提取溶剂,超声辅助提取纺织品中的全氟化合物前体物,建立了一种气相色谱-三重四极杆质谱(GC-MS/MS)法同时测定纺织品中11种挥发性全氟化合物前体物:4种氟调聚物醇(FTOHs)、3种氟调聚丙烯酸酯(FTAs)、2种全氟辛基磺酰胺(FOSAs)和2种全氟辛基磺酰胺乙醇(FOSEs)。考察了超声提取溶剂、提取温度和提取时间对提取效率的影响,最终确定用甲醇为提取溶剂,70 ℃下超声提取60 min,目标物经VF-WAXms毛细管柱(30 m×0.25 mm×0.25 μm)程序升温分离,GC-MS/MS多反应监测(MRM)模式检测,外标法定量。实验结果表明:11种挥发性全氟化合物前体物在10~500 μg/L范围内线性关系良好,相关系数(r)均不低于0.9984;以信噪比为3计算,检出限(LOD)为0.002~0.04 mg/kg;以信噪比为10计算,定量限(LOQ)为0.006~0.1 mg/kg;不同材质纺织品中,11种挥发性全氟化合物前体物在高、中、低3个添加水平下的回收率为73.2%~117.2%,相对标准偏差(RSD)为0.1%~9.4%(n=6)。该方法前处理简单,定性、定量准确,灵敏度高,重现性好,可有效用于纺织品中11种挥发性全氟化合物前体物的同时检测。实际样品分析发现,当前全氟化合物前体物已被应用于纺织品整理当中。该方法的建立对我国纺织品中全氟化合物前体物风险物质的管控和检测标准的制定具有一定的理论和现实意义。
Collapse
Affiliation(s)
- Chunlan Wang
- Shenzhen Academy of Metrology and Quality Inspection, Shenzhen 518109, China
| | - Haixuan Zhang
- Shenzhen Academy of Metrology and Quality Inspection, Shenzhen 518109, China
| | - Li Zhu
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Wangxia Hu
- Shenzhen Academy of Metrology and Quality Inspection, Shenzhen 518109, China
| | - Ziwei Lin
- Shenzhen Academy of Metrology and Quality Inspection, Shenzhen 518109, China
| |
Collapse
|
12
|
Transcriptomic and Histopathological Effects of Bifenthrin to the Brain of Juvenile Rainbow Trout ( Oncorhynchus mykiss). TOXICS 2021; 9:toxics9030048. [PMID: 33807887 PMCID: PMC8000926 DOI: 10.3390/toxics9030048] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 01/07/2023]
Abstract
The increased global use of pyrethroids raises concern for non-target aquatic species. Bifenthrin, among the most predominantly detected pyrethroids in the environment, is frequently measured in water samples above concentrations reported to induce neuroendocrine and neurotoxic effects to several threatened and endangered fish species, such as the Chinook salmon and steelhead trout. To better characterize the neurotoxic effect of bifenthrin to salmonids, rainbow trout were treated with environmentally relevant concentrations of bifenthrin (15 and 30 ng/L) for two weeks and assessed for changes in transcriptomic profiles and histopathological alterations. The top bioinformatic pathways predicted to be impaired in bifenthrin-exposed trout were involved in gonadotropin releasing hormone signaling, the dysregulation of iron homeostasis, reduced extracellular matrix stability and adhesion, and cell death. Subsequent histopathological analysis showed a significant increase in TUNEL positive cells in the cerebellum and optic tectum of bifenthrin-treated trout, relative to controls (p < 0.05). These findings suggest that low, ng/L concentrations of bifenthrin are capable of dysregulating proper neuroendocrine function, impair the structural integrity of the extracellular matrix and cell signaling pathways in the brain, and induce apoptosis in neurons of juvenile salmonids following bifenthrin treatment, which is consistent with metabolomic profiles demonstrating a common target and mechanism.
Collapse
|
13
|
Fuller N, Magnuson JT, Huff Hartz KE, Fulton CA, Whitledge GW, Acuña S, Schlenk D, Lydy MJ. Effects of dietary cypermethrin exposure on swimming performance and expression of lipid homeostatic genes in livers of juvenile Chinook salmon, Oncorhynchus tshawytscha. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:257-267. [PMID: 33534069 DOI: 10.1007/s10646-021-02352-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
The increased use of pyrethroid insecticides raises concern for exposure to non-target aquatic species, such as Chinook salmon (Oncorhynchus tshawytscha). Cypermethrin, a type II pyrethroid, is frequently detected in surface waters and sediments at concentrations that exceed levels that induce toxicity to several invertebrate and salmonid species. To better understand the effects of cypermethrin to salmonids following dietary exposure, juvenile Chinook salmon were dietarily exposed to a 0, 200, or 2000 ng/g cypermethrin diet for a duration of 7, 14, or 21 days and assessed for body burden residues, swimming performance, lipid content, and lipid homeostatic gene expression. The average cypermethrin concentrations in fish dietarily exposed to cypermethrin for 21 days were 155.4 and 952.1 ng cypermethrin/g lipid for the 200 and 2000 ng/g pellet treatments, respectively. Increased trends of fatty acid synthase (fasn, r2 = 0.10, p < 0.05) and ATP citrate lyase (acly, r2 = 0.21, p < 0.001) mRNA expression were found in the fish livers relative to increasing cypermethrin body burden residues, though no significant changes in the mRNA expression of farnesoid X receptor or liver X receptor were observed. Furthermore, Chinook salmon dietarily exposed to cypermethrin did not have a significantly altered burst swimming performance (Umax). These results support studies that have suggested Umax may not be a sensitive endpoint when assessing the effects of certain pesticide classes, such as pyrethroids, but that dysregulation of fasn and acly expression may alter lipid homeostasis and energy metabolism in the liver of fish dietarily exposed to cypermethrin.
Collapse
Affiliation(s)
- Neil Fuller
- Center for Fisheries, Aquaculture and Aquatic Sciences and Department of Zoology, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Jason T Magnuson
- Department of Environmental Sciences, University of California, Riverside, Riverside, CA, USA
| | - Kara E Huff Hartz
- Center for Fisheries, Aquaculture and Aquatic Sciences and Department of Zoology, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Corie A Fulton
- Center for Fisheries, Aquaculture and Aquatic Sciences and Department of Zoology, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Gregory W Whitledge
- Center for Fisheries, Aquaculture and Aquatic Sciences and Department of Zoology, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Shawn Acuña
- Metropolitan Water District of Southern California, 1121L Street, Suite 900, Sacramento, CA, USA
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, Riverside, CA, USA
- Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Michael J Lydy
- Center for Fisheries, Aquaculture and Aquatic Sciences and Department of Zoology, Southern Illinois University, Carbondale, IL, 62901, USA.
| |
Collapse
|
14
|
Segarra A, Mauduit F, Amer NR, Biefel F, Hladik ML, Connon RE, Brander SM. Salinity Changes the Dynamics of Pyrethroid Toxicity in Terms of Behavioral Effects on Newly Hatched Delta Smelt Larvae. TOXICS 2021; 9:40. [PMID: 33672739 PMCID: PMC7924609 DOI: 10.3390/toxics9020040] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 12/13/2022]
Abstract
Salinity can interact with organic compounds and modulate their toxicity. Studies have shown that the fraction of pyrethroid insecticides in the aqueous phase increases with increasing salinity, potentially increasing the risk of exposure for aquatic organisms at higher salinities. In the San Francisco Bay Delta (SFBD) estuary, pyrethroid concentrations increase during the rainy season, coinciding with the spawning season of Delta Smelt (Hypomesus transpacificus), an endangered, endemic fish. Furthermore, salinity intrusion in the SFBD is exacerbated by global climate change, which may change the dynamics of pyrethroid toxicity on aquatic animals. Therefore, examining the effect of salinity on the sublethal toxicity of pyrethroids is essential for risk assessments, especially during the early life stages of estuarine fishes. To address this, we investigated behavioral effects of permethrin and bifenthrin at three environmentally relevant concentrations across a salinity gradient (0.5, 2 and 6 PSU) on Delta Smelt yolk-sac larvae. Our results suggest that environmentally relevant concentrations of pyrethroids can perturb Delta Smelt larvae behavior even at the lowest concentrations (<1 ng/L) and that salinity can change the dynamic of pyrethroid toxicity in terms of behavioral effects, especially for bifenthrin, where salinity was positively correlated with anti-thigmotaxis at each concentration.
Collapse
Affiliation(s)
- Amelie Segarra
- Anatomy, Physiology & Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (F.M.); (N.R.A.); (F.B.); (R.E.C.)
| | - Florian Mauduit
- Anatomy, Physiology & Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (F.M.); (N.R.A.); (F.B.); (R.E.C.)
| | - Nermeen R. Amer
- Anatomy, Physiology & Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (F.M.); (N.R.A.); (F.B.); (R.E.C.)
- Department of Entomology, Faculty of Science, Cairo University, Giza 11311, Egypt
| | - Felix Biefel
- Anatomy, Physiology & Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (F.M.); (N.R.A.); (F.B.); (R.E.C.)
- Aquatic Systems Biology Unit, Department of Ecology and Ecosystem Management, Technical University of Munich, Mühlenweg 22, D-85350 Freising, Germany
| | - Michelle L. Hladik
- US Geological Survey, California Water Science Center Sacramento, Sacramento, CA 95819, USA;
| | - Richard E. Connon
- Anatomy, Physiology & Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (F.M.); (N.R.A.); (F.B.); (R.E.C.)
| | - Susanne M. Brander
- Department Fisheries and Wildlife, Coastal Oregon Marine Experiment Station, Oregon State University, Corvallis, OR 97331, USA;
| |
Collapse
|
15
|
Mundy PC, Huff Hartz KE, Fulton CA, Lydy MJ, Brander SM, Hung TC, Fangue NA, Connon RE. Exposure to permethrin or chlorpyrifos causes differential dose- and time-dependent behavioral effects at early larval stages of an endangered teleost species. ENDANGER SPECIES RES 2021; 44:89-103. [PMID: 34354772 PMCID: PMC8336651 DOI: 10.3354/esr01091] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Pyrethroid and organophosphate pesticides are two of the most commonly used classes of insecticide worldwide. At sublethal concentrations, permethrin (a pyrethroid) and chlorpyrifos (an organophosphate) impact behavior in model fish species. We investigated behavioral effects of environmentally relevant concentrations of permethrin or chlorpyrifos on early larval delta smelt Hypomesus transpacificus, a Critically Endangered teleost species endemic to the San Francisco Bay Delta, California, USA. Using a photomotor behavioral assay of oscillating light and dark periods, we measured distance moved, turn angle, meander, angular velocity, rotations, thigmotaxis (time spent in the border versus center), and swim speed duration and frequency. The lowest concentrations of permethrin used in the tests (0.05 and 0.5 μg l−1) caused significant increases in distance moved at 72 and 96 h, respectively. At 48, 72, and 96 h of exposure, 5 μg l−1 of permethrin caused a hyperactive state in which the larvae significantly decreased thigmotaxis, quickly turning in short bouts of activity, characterized by significant increases in rotations and freezing events. Larvae exposed to 0.05 μg l−1 chlorpyrifos significantly increased thigmotaxis at 72 and 96 h. In response to 5 μg l−1 chlorpyrifos, larvae significantly increased velocity at 72 h exposure, and significantly increased freezing events at 96 h. Behavioral data on larval delta smelt exposed to contaminants present in their limited habitat have the potential to aid evaluations of the suitability of spawning and rearing habitats for this endangered species, thus improving conservation management strategies focused on this sensitive life stage.
Collapse
Affiliation(s)
- Paige C Mundy
- Anatomy, Physiology & Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Kara E Huff Hartz
- Center for Fisheries, Aquaculture and Aquatic Sciences and Department of Zoology, Southern Illinois University, Carbondale, IL 62901, USA
| | - Corie A Fulton
- Center for Fisheries, Aquaculture and Aquatic Sciences and Department of Zoology, Southern Illinois University, Carbondale, IL 62901, USA
| | - Michael J Lydy
- Center for Fisheries, Aquaculture and Aquatic Sciences and Department of Zoology, Southern Illinois University, Carbondale, IL 62901, USA
| | - Susanne M Brander
- Department of Fisheries and Wildlife, Coastal Oregon Marine Experiment Station, Oregon State University, Corvallis, OR 97331, USA
| | - Tien-Chieh Hung
- Fish Conservation and Culture Laboratory, Department of Biological and Agricultural Engineering, University of California, Davis, Davis, CA 95616, USA
| | - Nann A Fangue
- Department of Wildlife, Fish & Conservation Biology, University of California, Davis, Davis, CA 95616, USA
| | - Richard E Connon
- Anatomy, Physiology & Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
16
|
Hinz FO, van Santen E, Fisher PR, Wilson PC. Losses of selected pesticides in drainage water from containerized ornamental plants. JOURNAL OF ENVIRONMENTAL QUALITY 2020; 49:1334-1346. [PMID: 33016454 DOI: 10.1002/jeq2.20115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/20/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
Limited research has focused on factors affecting pesticide losses from ornamental plant production nurseries. This project evaluated the effects of overhead irrigation or simulated rainfall intensity and formulation and application methods on the losses of acephate, bifenthrin, and imidacloprid in drainage water. The liquid formulation of each respective pesticide was applied to individual replicates (potted Ilex cornuta Lindl. & Paxton plant on a drainage collection saucer) as substrate-applied drenches or foliar sprays (acephate and bifenthrin only). Granular formulations of acephate and imidacloprid were spread across the tops of media in pots. After application of treatments, irrigation or simulated rainfall was applied daily for 19 consecutive days at rates of 42.3 ± 4.57, 56.7 ± 7.92, and 95.4 ± 19.47 ml min-1 , and drainage water from individual replicates was collected for analysis. Irrigation or simulated rainfall intensity had no effects on losses of the pesticides under the conditions tested. Concentrations in drainage of all three pesticides were highest from the drench applications, whereas respective foliar spray applications resulted in the lowest active ingredient concentrations in drainage. The percentage of active ingredient lost in drainage water ranged from a minimum of 0.2 ± 0.05% (mean ± SE) for granular acephate to a maximum of 19.5 ± 3.14% (mean ± SE) for the imidacloprid drench. Most pesticide losses occurred within the first 2 d after application of drenches or sprays. Granular formulations had a longer period of release, indicating a risk of loss from overirrigation during an extended period. Results emphasize the need for careful water management after applications.
Collapse
Affiliation(s)
- Francisca Ordonez Hinz
- Soil and Water Science Dep., Univ. of Florida/IFAS, PO Box 110290, Gainesville, FL, 32611-0290, USA
| | - Edzard van Santen
- Agronomy Dep. and IFAS Statistical Consulting Unit, Univ. of Florida/IFAS, 404 McCarty Hall C, Gainesville, FL, 32611-0500, USA
| | - Paul R Fisher
- Environmental Horticulture Dep., Univ. of Florida/IFAS, PO Box 110670, Gainesville, FL, 32611-0670, USA
| | - P Chris Wilson
- Soil and Water Science Dep., Univ. of Florida/IFAS, PO Box 110290, Gainesville, FL, 32611-0290, USA
| |
Collapse
|
17
|
Magnuson JT, Giroux M, Cryder Z, Gan J, Schlenk D. The use of non-targeted metabolomics to assess the toxicity of bifenthrin to juvenile Chinook salmon (Oncorhynchus tshawytscha). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 224:105518. [PMID: 32474292 DOI: 10.1016/j.aquatox.2020.105518] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/08/2020] [Accepted: 05/10/2020] [Indexed: 06/11/2023]
Abstract
An increase in urban and agricultural application of pyrethroid insecticides in the San Francisco Bay Estuary and Sacramento San Joaquin Delta has raised concern for the populations of several salmonids, including Chinook salmon (Oncorhynchus tshawytscha). Bifenthrin, a type I pyrethroid, is among the most frequently detected pyrethroids in the Bay-Delta watershed, with surface water concentrations often exceeding chronic toxicity thresholds for several invertebrate and fish species. To better understand the mechanisms of bifenthrin-induced neurotoxicity, juvenile Chinook salmon were exposed to concentrations of bifenthrin previously measured in the Delta. Non-targeted metabolomic profiles were used to identify transcriptomic changes in the brains of bifenthrin-exposed fish. Pathway analysis software predicted increased apoptotic, inflammatory, and reactive oxygen species (ROS) responses in Chinook following exposure to 0.15 and 1.50 μg/L bifenthrin for 96 h. These responses were largely driven by reduced levels of inosine, hypoxanthine, and guanosine. Subsequently, in the brain, the expression of caspase 3, a predominant effector for apoptosis, was significantly upregulated following exposure to 1.50 μg/L bifenthrin. This data suggests that metabolites involved in inflammatory and apoptotic responses, as well as those involved in maintaining proper neuronal function may be disrupted following sublethal exposure to bifenthrin and further suggests that additional population studies should focus on behavioral responses associated with impaired brain function.
Collapse
Affiliation(s)
- Jason T Magnuson
- Department of Environmental Sciences, University of California Riverside, Riverside, CA, USA.
| | - Marissa Giroux
- Department of Environmental Sciences, University of California Riverside, Riverside, CA, USA
| | - Zachary Cryder
- Department of Environmental Sciences, University of California Riverside, Riverside, CA, USA
| | - Jay Gan
- Department of Environmental Sciences, University of California Riverside, Riverside, CA, USA
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California Riverside, Riverside, CA, USA; Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
18
|
Major KM, Brander SM. The Ecological and Evolutionary Implications of Pyrethroid Exposure: A New Perspective on Aquatic Ecotoxicity. THE HANDBOOK OF ENVIRONMENTAL CHEMISTRY 2020. [DOI: 10.1007/698_2019_432] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Lu Z, Gan J, Cui X, Delgado-Moreno L, Lin K. Understanding the bioavailability of pyrethroids in the aquatic environment using chemical approaches. ENVIRONMENT INTERNATIONAL 2019; 129:194-207. [PMID: 31129496 DOI: 10.1016/j.envint.2019.05.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 04/27/2019] [Accepted: 05/13/2019] [Indexed: 06/09/2023]
Abstract
Pyrethroids are a class of commonly used insecticides and are ubiquitous in the aquatic environment in various regions. Aquatic toxicity of pyrethroids was often overestimated when using conventional bulk chemical concentrations because of their strong hydrophobicity. Over the last two decades, bioavailability has been recognized and applied to refine the assessment of ecotoxicological effects of pyrethroids. This review focuses on recent advances in the bioavailability of pyrethroids, specifically in the aquatic environment. We summarize the development of passive sampling and Tenax extraction methods for assessing the bioavailability of pyrethroids. Factors affecting the bioavailability of pyrethroids, including physicochemical properties of pyrethroids, and quality and quantity of organic matter, were overviewed. Various applications of bioavailability on the assessment of bioaccumulation and acute toxicity of pyrethroids were also discussed. The final section of this review highlights future directions of research, including development of standardized protocols for measurement of bioavailability, establishment of bioavailability-based toxicity benchmarks and water/sediment quality criteria, and incorporation of bioavailability into future risk assessment and management actions.
Collapse
Affiliation(s)
- Zhijiang Lu
- College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China; Department of Environmental Sciences, University of California, Riverside, CA 92521, United States.
| | - Jay Gan
- Department of Environmental Sciences, University of California, Riverside, CA 92521, United States
| | - Xinyi Cui
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, China
| | - Laura Delgado-Moreno
- Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Granada, Spain
| | - Kunde Lin
- The Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| |
Collapse
|
20
|
Giroux M, Gan J, Schlenk D. The effects of bifenthrin and temperature on the endocrinology of juvenile Chinook salmon. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:852-861. [PMID: 30681194 DOI: 10.1002/etc.4372] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/20/2018] [Accepted: 01/19/2019] [Indexed: 06/09/2023]
Abstract
The San Francisco Bay delta (USA) is experiencing seasonally warmer waters attributable to climate change and receives rainstorm runoff containing pyrethroid pesticides. Chinook salmon (Oncorhynchus tshawytscha) inhabit the affected waterways from hatch through smoltification, and thus juvenile fish may experience both pyrethroid and warmer water exposures. The effects of higher temperatures and pesticide exposure on presmolt Chinook are unknown. To improve understanding of the potential interaction between temperature and pesticide exposure on salmonid development, juvenile alevin and fry were reared in 11, 16.4, and 19 °C freshwater for 11 d and 2 wk, respectively, and exposed to nominal concentrations of 0, 0.15, and 1.5 µg/L bifenthrin for the final 96 h of rearing. Estradiol-17β (E2), testosterone, triiodothyronine, and thyroxine levels were measured in whole-body homogenates using hormone-specific enzyme-linked immunosorbent assays. Brain gonadotropin-releasing hormone receptor (GnRH2), dopamine receptor 2A, and growth hormone 1 (GH1) mRNA levels were measured using quantitative PCR. Results showed significantly decreased survival and condition factors observed with increasing temperature in alevin. Alevin thyroid hormones increased significantly with temperature, but fry thyroid hormones trended toward a decrease at lower temperatures with increasing bifenthrin exposure. There were significant reductions in fry testosterone and E2 at 11 °C with increasing bifenthrin treatments and significant changes in GnRH2 and GH1 gene expression in both alevin and fry, indicating potential disruption of hormonal and signaling pathways. Environ Toxicol Chem 2019;38:852-861. © 2019 SETAC.
Collapse
Affiliation(s)
- Marissa Giroux
- Environmental Toxicology Graduate Program, University of California Riverside, Riverside, California, USA
| | - Jay Gan
- Department of Environmental Sciences, University of California Riverside, Riverside, California, USA
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California Riverside, Riverside, California, USA
| |
Collapse
|
21
|
Awoyemi OM, Kumar N, Schmitt C, Subbiah S, Crago J. Behavioral, molecular and physiological responses of embryo-larval zebrafish exposed to types I and II pyrethroids. CHEMOSPHERE 2019; 219:526-537. [PMID: 30553213 DOI: 10.1016/j.chemosphere.2018.12.026] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/01/2018] [Accepted: 12/04/2018] [Indexed: 06/09/2023]
Abstract
Pyrethroids are potent neurotoxicants that may elicit multiple pathways of toxicity in non-target organisms. Comparative studies on the mechanistic and developmental effects of types I and II pyrethroids against non-target aquatic species are limited. This study assessed the effects of the two pyrethroid types against embryo-larval zebrafish (Danio rerio) at environmentally relevant and laboratory concentrations. Zebrafish embryos were exposed to type-I (permethrin, bifenthrin) and type-II (deltamethrin, λ-cyhalothrin, fenvalerate, esfenvalerate) pyrethroids at 1000, 10, 0.1, 0.01, 0.0 μg/L, starting at 5-h post-fertilization (hpf) through 5-d post-fertilization (dpf) under static exposure conditions. Swimming behavior (distance traveled and velocity) was assessed at 5-dpf. The relative expression of Nrf2a, GST, Casp-9 and p53 mRNA transcripts, carboxyl esterase (CES) activity and total reactive oxygen species (ROS) were measured. The stability of the pyrethroids across 5 days was analyzed. Bifenthrin-(10 μg/L) and esfenvalerate-(1000 μg/L) significantly (p < 0.05) reduced total distance traveled by larvae while 1000 μg/L deltamethrin and λ-cyhalothrin were lethal causing body axis curvature and pericardial edema. At environmentally relevant concentrations-(μg/L) compared to control, permethrin-(0.122) upregulated Nrf2a and Casp-9 expressions while λ-cyhalothrin-(0.053) downregulated Nrf2a and fenvalerate-0.037 downregulated GST. At laboratory concentrations-(μg/L), permethrin-(1000) upregulated Nrf2a, Casp-9 and p53 expressions, bifenthrin-(10) upregulated Casp-9 while fenvalerate-(0.1) and esfenvalerate-(1000) downregulated GST. There was concentration dependent increase in CES activity which correlated positively with total ROS. Pyrethroid concentrations decreased significantly by day 5. This study showed disparity in the mechanistic effects across the pyrethroids types and their instability in aqueous media may underestimate toxicity against non-target aquatic species when exposed in their natural environment.
Collapse
Affiliation(s)
- Olushola M Awoyemi
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, TX 79416, USA.
| | - Naveen Kumar
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, TX 79416, USA
| | - Cassandra Schmitt
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, TX 79416, USA
| | - Seenivasan Subbiah
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, TX 79416, USA
| | - Jordan Crago
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, TX 79416, USA
| |
Collapse
|
22
|
Bownik A, Kowalczyk M, Bańczerowski J. Lambda-cyhalothrin affects swimming activity and physiological responses of Daphnia magna. CHEMOSPHERE 2019; 216:805-811. [PMID: 30396141 DOI: 10.1016/j.chemosphere.2018.10.192] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/26/2018] [Accepted: 10/27/2018] [Indexed: 05/07/2023]
Abstract
λ-cyhalotrin is a pyrethroid pesticide used for protection of crops against various insect pests. Knowledge on behavioural and physiological responses of non-target organisms such as cladocerans is very limited. Daphnia is a sensitive organism commonly used in determination of ecotoxicological risk for various substances introduced to aquatic environment, however the main experimental endpoints used such as mortality or immobilisation may not be sufficient to evaluate subtle alterations in zooplankton. The aim of the present study was to evaluate swimming behaviour and physiological parameters of Daphnia magna exposed to λ-cyhalothrin (Karate Zeon 050 CS) at concentrations of 0.05, 0.5, 5 and 50 μg L-1 for 2, 24 and 48 h. The results showed that λ-cyhalothrin affected D. magna swimming behaviour inducing a concentration-dependent inhibition of swimming track density, speed and turning ability. Depression of physiological parameters such as heart rate and thoracic limb activity was also noted. The results suggest that in natural conditions swimming behaviour and physiological endpoints of D. magna may be disturbed by environmental concentrations of λ-cyhalothrin leading to ecological consequences.
Collapse
Affiliation(s)
- Adam Bownik
- Institute of Biological Basis of Animal Production, University of Life Sciences in Lublin, Poland, 13 Akademicka Str, 20-950 Lublin, Poland.
| | - Michał Kowalczyk
- Institute of Biological Basis of Animal Production, University of Life Sciences in Lublin, Poland, 13 Akademicka Str, 20-950 Lublin, Poland
| | - Jan Bańczerowski
- Institute of Biological Basis of Animal Production, University of Life Sciences in Lublin, Poland, 13 Akademicka Str, 20-950 Lublin, Poland
| |
Collapse
|
23
|
Bartlett AJ, Hedges AM, Intini KD, Brown LR, Maisonneuve FJ, Robinson SA, Gillis PL, de Solla SR. Lethal and sublethal toxicity of neonicotinoid and butenolide insecticides to the mayfly, Hexagenia spp. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 238:63-75. [PMID: 29544197 DOI: 10.1016/j.envpol.2018.03.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 03/02/2018] [Accepted: 03/04/2018] [Indexed: 06/08/2023]
Abstract
Neonicotinoid insecticides are environmentally persistent and highly water-soluble, and thus are prone to leaching into surface waters where they may negatively affect non-target aquatic insects. Most of the research to date has focused on imidacloprid, and few data are available regarding the effects of other neonicotinoids or their proposed replacements (butenolide insecticides). The objective of this study was to assess the toxicity of six neonicotinoids (imidacloprid, thiamethoxam, acetamiprid, clothianidin, thiacloprid, and dinotefuran) and one butenolide (flupyradifurone) to Hexagenia spp. (mayfly larvae). Acute (96-h), water-only tests were conducted, and survival and behaviour (number of surviving mayflies inhabiting artificial burrows) were assessed. Acute sublethal tests were also conducted with imidacloprid, acetamiprid, and thiacloprid, and in addition to survival and behaviour, mobility (ability to burrow into sediment) and recovery (survival and growth following 21 d in clean sediment) were measured. Sublethal effects occurred at much lower concentrations than survival: 96-h LC50s ranged from 780 μg/L (acetamiprid) to >10,000 μg/L (dinotefuran), whereas 96-h EC50s ranged from 4.0 μg/L (acetamiprid) to 630 μg/L (thiamethoxam). Flupyradifurone was intermediate in toxicity, with a 96-h LC50 of 2000 μg/L and a 96-h EC50 of 81 μg/L. Behaviour and mobility were impaired significantly and to a similar degree in sublethal exposures to 10 μg/L imidacloprid, acetamiprid, and thiacloprid, and survival and growth following the recovery period were significantly lower in mayflies exposed to 10 μg/L acetamiprid and thiacloprid, respectively. A suite of effects on mayfly swimming behaviour/ability and respiration were also observed, but not quantified, following exposures to imidacloprid, acetamiprid, and thiacloprid at 1 μg/L and higher. Imidacloprid concentrations measured in North American surface waters have been found to meet or exceed those causing toxicity to Hexagenia, indicating that environmental concentrations may adversely affect Hexagenia and similarly sensitive non-target aquatic species.
Collapse
Affiliation(s)
- Adrienne J Bartlett
- Water Science and Technology Directorate, Environment and Climate Change, Burlington, ON, Canada.
| | - Amanda M Hedges
- Water Science and Technology Directorate, Environment and Climate Change, Burlington, ON, Canada
| | - Kyna D Intini
- Wildlife Landscape and Science Directorate, Environment and Climate Change, Burlington, ON, Canada
| | - Lisa R Brown
- Water Science and Technology Directorate, Environment and Climate Change, Burlington, ON, Canada
| | - France J Maisonneuve
- Wildlife Landscape and Science Directorate, Environment and Climate Change, Ottawa, ON, Canada
| | - Stacey A Robinson
- Wildlife Landscape and Science Directorate, Environment and Climate Change, Ottawa, ON, Canada
| | - Patricia L Gillis
- Water Science and Technology Directorate, Environment and Climate Change, Burlington, ON, Canada
| | - Shane R de Solla
- Wildlife Landscape and Science Directorate, Environment and Climate Change, Burlington, ON, Canada
| |
Collapse
|
24
|
Frank DF, Miller GW, Harvey DJ, Brander SM, Geist J, Connon RE, Lein PJ. Bifenthrin causes transcriptomic alterations in mTOR and ryanodine receptor-dependent signaling and delayed hyperactivity in developing zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 200:50-61. [PMID: 29727771 PMCID: PMC5992106 DOI: 10.1016/j.aquatox.2018.04.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/06/2018] [Accepted: 04/09/2018] [Indexed: 05/06/2023]
Abstract
Over the last few decades, the pyrethroid insecticide bifenthrin has been increasingly employed for pest control in urban and agricultural areas, putting humans and wildlife at increased risk of exposure. Exposures to nanomolar (nM) concentrations of bifenthrin have recently been reported to alter calcium oscillations in rodent neurons. Neuronal calcium oscillations are influenced by ryanodine receptor (RyR) activity, which modulates calcium-dependent signaling cascades, including the mechanistic target of rapamycin (mTOR) signaling pathway. RyR activity and mTOR signaling play critical roles in regulating neurodevelopmental processes. However, whether environmentally relevant levels of bifenthrin alter RyR or mTOR signaling pathways to influence neurodevelopment has not been addressed. Therefore, our main objectives in this study were to examine the transcriptomic responses of genes involved in RyR and mTOR signaling pathways in zebrafish (Danio rerio) exposed to low (ng/L) concentrations of bifenthrin, and to assess the potential functional consequences by measuring locomotor responses to external stimuli. Wildtype zebrafish were exposed for 1, 3 and 5 days to 1, 10 and 50 ng/L bifenthrin, followed by a 14 d recovery period. Bifenthrin elicited significant concentration-dependent transcriptional responses in the majority of genes examined in both signaling cascades, and at all time points examined during the acute exposure period (1, 3, and 5 days post fertilization; dpf), and at the post recovery assessment time point (19 dpf). Changes in locomotor behavior were not evident during the acute exposure period, but were observed at 19 dpf, with main effects (increased locomotor behavior) detected in fish exposed developmentally to bifenthrin at 1 or 10 ng/L, but not 50 ng/L. These findings illustrate significant influences of developmental exposures to low (ng/L) concentrations of bifenthrin on neurodevelopmental processes in zebrafish.
Collapse
Affiliation(s)
- Daniel F Frank
- Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; Aquatic Systems Biology, Department of Ecology and Ecosystem Management, Technical University of Munich, Mühlenweg 22, D-85354 Freising, Germany
| | - Galen W Miller
- Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Danielle J Harvey
- Department of Public Health Sciences, Division of Biostatistics, University of California, Davis, CA 95616, USA
| | - Susanne M Brander
- Biology & Marine Biology, University of North Carolina, Wilmington, NC 28403, USA
| | - Juergen Geist
- Aquatic Systems Biology, Department of Ecology and Ecosystem Management, Technical University of Munich, Mühlenweg 22, D-85354 Freising, Germany
| | - Richard E Connon
- Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Pamela J Lein
- Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| |
Collapse
|
25
|
Hook SE, Doan H, Gonzago D, Musson D, Du J, Kookana R, Sellars MJ, Kumar A. The impacts of modern-use pesticides on shrimp aquaculture: An assessment for north eastern Australia. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 148:770-780. [PMID: 29190596 DOI: 10.1016/j.ecoenv.2017.11.028] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/08/2017] [Accepted: 11/10/2017] [Indexed: 05/07/2023]
Abstract
The use of pyrethroid and neonicotinoid insecticides has increased in Australia over the last decade, and as a consequence, increased concentrations of the neonicotinoid insecticide imidacloprid have been measured in Australian rivers. Previous studies have shown that non-target crustaceans, including commercially important species, can be extremely sensitive to these pesticides. Most shrimp farms in Australia are predominantly located adjacent to estuaries so they can obtain their required saline water, which support multiple land uses upstream (e.g. sugar-cane farming, banana farming, beef cattle and urbanisation). Larval and post-larval shrimp may be most susceptible to the impacts of these pesticides because of their high surface area to volume ratio and rapid growth requirements. However, given the uncertainties in the levels of insecticides in farm intake water and regarding the impacts of insecticide exposure on shrimp larvae, the risks that the increased use of new classes of pesticide pose towards survival of post-larval phase shrimp cannot be adequately predicted. To assess the potential for risk, toxicity in 20day past hatch post-larval Black Tiger shrimp (Penaeus monodon) to modern use insecticides, imidacloprid, bifenthin, and fipronil was measured as decreased survival and feeding inhibition. Post-larval phase shrimp were sensitive to fipronil, bifenthrin, and imidacloprid, in that order, at concentrations that were comparable to those that cause mortality other crustaceans. Bifenthrin and imidacloprid exposure reduced the ability of post-larval shrimp to capture live prey at environmentally realistic concentrations. Concentrations of a broad suite of pesticides were also measured in shrimp farm intake waters. Some pesticides were detected in every sample. Most of the pesticides detected were measured below concentrations that are toxic to post-larval shrimp as used in this study, although pesticides exceed guideline values, suggesting the possibility of indirect or mixture-related impacts. However, at two study sites, the concentrations of insecticides were sufficient to cause toxicity in shrimp post larvae, based on the risk assessment undertaken in this study.
Collapse
Affiliation(s)
- Sharon E Hook
- CSIRO Oceans and Atmosphere, Lucas Heights, NSW 2234, Australia.
| | - Hai Doan
- CSIRO Land and Water, Urrbrae, SA 5064, Australia
| | | | - Dean Musson
- CSIRO Agriculture and Food, St. Lucia, QLD 4067, Australia
| | - Jun Du
- CSIRO Land and Water, Urrbrae, SA 5064, Australia
| | - Rai Kookana
- CSIRO Land and Water, Urrbrae, SA 5064, Australia
| | | | - Anu Kumar
- CSIRO Land and Water, Urrbrae, SA 5064, Australia
| |
Collapse
|
26
|
Varjani SJ, Chaithanya Sudha M. Treatment Technologies for Emerging Organic Contaminants Removal from Wastewater. ENERGY, ENVIRONMENT, AND SUSTAINABILITY 2018. [DOI: 10.1007/978-981-10-7551-3_6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
27
|
Hamadache M, Benkortbi O, Hanini S, Amrane A. Application of multilayer perceptron for prediction of the rat acute toxicity of insecticides. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.egypro.2017.11.169] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Rogers HA, Schmidt TS, Dabney BL, Hladik ML, Mahler BJ, Van Metre PC. Bifenthrin Causes Trophic Cascade and Altered Insect Emergence in Mesocosms: Implications for Small Streams. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:11974-11983. [PMID: 27731978 DOI: 10.1021/acs.est.6b02761] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Direct and indirect ecological effects of the widely used insecticide bifenthrin on stream ecosystems are largely unknown. To investigate such effects, a manipulative experiment was conducted in stream mesocosms that were colonized by aquatic insect communities and exposed to bifenthrin-contaminated sediment; implications for natural streams were interpreted through comparison of mesocosm results to a survey of 100 Midwestern streams, USA. In the mesocosm experiment, direct effects of bifenthrin exposure included reduced larval macroinvertebrate abundance, richness, and biomass at concentrations (EC50's ranged from 197.6 to 233.5 ng bifenthrin/g organic carbon) previously thought safe for aquatic life. Indirect effects included a trophic cascade in which periphyton abundance increased after macroinvertebrate scrapers decreased. Adult emergence dynamics and corresponding terrestrial subsidies were altered at all bifenthrin concentrations tested. Extrapolating these results to the Midwestern stream assessment suggests pervasive ecological effects, with altered emergence dynamics likely in 40% of streams and a trophic cascade in 7% of streams. This study provides new evidence that a common pyrethroid might alter aquatic and terrestrial ecosystem function at the regional scale.
Collapse
Affiliation(s)
- Holly A Rogers
- U.S. Geological Survey , Fort Collins Science Center, 2150 Centre Avenue, Bldg. C, Fort Collins, Colorado 80526, United States
| | - Travis S Schmidt
- U.S. Geological Survey , Fort Collins Science Center, 2150 Centre Avenue, Bldg. C, Fort Collins, Colorado 80526, United States
- U.S. Geological Survey , Colorado Water Science Center, Lakewood, Colorado 80225, United States
| | - Brittanie L Dabney
- U.S. Geological Survey , Fort Collins Science Center, 2150 Centre Avenue, Bldg. C, Fort Collins, Colorado 80526, United States
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University , Fort Collins, Colorado 80523, United States
| | - Michelle L Hladik
- U.S. Geological Survey , California Water Science Center, Sacramento, California 95819, United States
| | - Barbara J Mahler
- U.S. Geological Survey , Texas Water Science Center, Austin, Texas 78754, United States
| | - Peter C Van Metre
- U.S. Geological Survey , Texas Water Science Center, Austin, Texas 78754, United States
| |
Collapse
|
29
|
Biales AD, Denton DL, Riordan D, Breuer R, Batt AL, Crane DB, Schoenfuss HL. Complex watersheds, collaborative teams: Assessing pollutant presence and effects in the San Francisco Delta. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2015; 11:674-688. [PMID: 25779725 DOI: 10.1002/ieam.1633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 12/19/2014] [Accepted: 02/23/2015] [Indexed: 06/04/2023]
Abstract
There is a great diversity of sources of chemical contaminants and stressors over large geographic areas. Chemical contaminant inputs and magnitude can potentially exhibit wide seasonal variation over large geographic areas. Together, these factors make linking exposure to monitored chemical contaminants and effects difficult. In practice, this linkage typically relies on relatively limited chemical occurrence data loosely coupled with individual effects, and population- or community-level assessments. Increased discriminatory power may be gained by approaching watershed level assessment in a more holistic manner, drawing from a number of disciplines that target endpoints spanning levels of the biological hierarchy. Using the Sacramento River as a case study, the present study aimed to 1) evaluate the performance of new analytical and biomarker tools in a real world setting and their potential for linking occurrence and effect; 2) characterize the effects of geographic and temporal variability through the integration of suborganismal, tissue, and individual level endpoints, as well as extensive chemical analyses; 3) identify knowledge gaps and research needs that limit the implementation of this holistic approach; and 4) provide an experimental design workflow for these types of assessments. Sites were selected to target inputs into the Sacramento River as it transitions from an agricultural to a mixed but primarily urban landscape. Chemical analyses were conducted on surface water samples at each site in both the spring and fall for pesticides, hormones, and active pharmaceutical ingredients (APIs). Active pharmaceutical ingredients were more often detected across sampling events in the fall; however, at the most downstream site the number of analytes detected and their concentrations were greater in the spring, which may be due to seasonal differences in rainfall. Changes in gene and protein expression targeting endocrine and reproductive effects were observed within each sampling event; however, they were inconsistent across seasons. Larval mortality at the most downstream site was seen in both seasons; however, behavioral changes were only observed in the spring. No clear linkages of specific analyte exposure to biological response were observed, nor were linkages across biological levels of organization. This failure may have resulted from limitations of the scope of molecular endpoints used, inconsistent timing of exposure, or discordance of analytical chemistry through grab sampling and longer term, integrative exposure. Together, results indicate a complicated view of the watershed.
Collapse
Affiliation(s)
- Adam D Biales
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, Ohio
| | - Debra L Denton
- US Environmental Protection Agency, Region 9, Sacramento, California
| | - Dan Riordan
- California Department of Water Resources, West Sacramento, California, USA
| | - Richard Breuer
- State Water Resources Control Board, Sacramento, California, USA
| | - Angela L Batt
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, Ohio
| | - David B Crane
- California Department of Fish and Wildlife, Rancho Cordova, California, USA
| | - Heiko L Schoenfuss
- Aquatic Toxicology Laboratory, Saint Cloud State University, Saint Cloud, Minnesota, USA
| |
Collapse
|
30
|
Weston D, Poynton H, Lydy M, Wellborn G. Adaptation, not acclimation, is the likely mechanism for reduced sensitivity of some wild Hyalella populations to pyrethroid insecticides. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2015; 34:2188-2190. [PMID: 26414544 DOI: 10.1002/etc.3174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 06/01/2015] [Accepted: 06/17/2015] [Indexed: 06/05/2023]
Affiliation(s)
- Donald Weston
- University of California, Berkeley, Berkeley, California, USA
| | - Helen Poynton
- University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Michael Lydy
- Southern Illinois University, Carbondale, Illinois, USA
| | | |
Collapse
|
31
|
Weston DP, Chen D, Lydy MJ. Stormwater-related transport of the insecticides bifenthrin, fipronil, imidacloprid, and chlorpyrifos into a tidal wetland, San Francisco Bay, California. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 527-528:18-25. [PMID: 25956145 DOI: 10.1016/j.scitotenv.2015.04.095] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 04/24/2015] [Accepted: 04/25/2015] [Indexed: 06/04/2023]
Abstract
Suisun Marsh, in northern San Francisco Bay, is the largest brackish marsh in California, and provides critical habitat for many fish species. Storm runoff enters the marsh through many creeks that drain agricultural uplands and the urban areas of Fairfield and Suisun City. Five creeks were sampled throughout a major storm event in February 2014, and analyzed for representatives of several major insecticide classes. Concentrations were greatest in creeks with urban influence, though sampling was done outside of the primary season for agricultural pesticide use. Urban creek waters reached maximum concentrations of 9.9 ng/l bifenthrin, 27.4 ng/l fipronil, 11.9 ng/l fipronil sulfone, 1462 ng/l imidacloprid, and 4.0 ng/l chlorpyrifos. Water samples were tested for toxicity to Hyalella azteca and Chironomus dilutus, and while few samples caused mortality, 70% of the urban creek samples caused paralysis of either or both species. Toxic unit analysis indicated that bifenthrin was likely responsible for effects to H. azteca, and fipronil and its sulfone degradate were responsible for effects to C. dilutus. These results demonstrate the potential for co-occurrence of multiple insecticides in urban runoff, each with the potential for toxicity to particular species, and the value of toxicity monitoring using multiple species. In the channels of Suisun Marsh farther downstream, insecticide concentrations and toxicity diminished as creek waters mixed with brackish waters entering from San Francisco Bay. Only fipronil and its degradates remained measurable at 1-10 ng/l. These concentrations are not known to present a risk based on existing data, but toxicity data for estuarine and marine invertebrates, particularly for fipronil's degradates, are extremely limited.
Collapse
Affiliation(s)
- Donald P Weston
- Department of Integrative Biology, University of California, Berkeley, CA 94720, United States.
| | - Da Chen
- Cooperative Wildlife Research Laboratory and Department of Zoology, Southern Illinois University, Carbondale, IL 62901, United States.
| | - Michael J Lydy
- Center for Fisheries, Aquaculture and Aquatic Sciences and Department of Zoology, Southern Illinois University, Carbondale, IL 62901, United States.
| |
Collapse
|