1
|
Dias IA, Perina F, Figueiredo J, Silva ARR, N Cardoso D, Martins R. Sub-lethal effects of innovative anti-corrosion nanoadditives on the marine bivalve Ruditapes philippinarum. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125662. [PMID: 39800151 DOI: 10.1016/j.envpol.2025.125662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
Corrosion significantly affects the maritime industry. To address this issue, corrosion inhibitors are incorporated into polymeric coatings. However, some state-of-the-art inhibitors are toxic, prone to spontaneous leaching, and interact with coating components. Accordingly, benzotriazole (BTA) and gluconate (GCN) have recently emerged as promising alternatives. Their immobilization into layered double hydroxides (LDHs) prevents direct contact with the polymeric matrix. It also allows a controlled release of BTA or GCN in response to specific stimuli (e.g., seawater, pH changes), thus providing long-lasting protection with hypothetical environmental benefits. The present study tests this hypothesis by assessing and comparing the sub-lethal effects of two novel anti-corrosion nanomaterials (Zn-Al LDH-BTA and Zn-Al LDH-GCN) and their soluble counterparts (BTA and GCN) in the edible bivalve Ruditapes philippinarum. Marine clams were exposed to sub-lethal concentrations (1.23, 11.11, and 100 mg BTA or GCN/L) of soluble and nanostructured BTA and GCN for 96 h. Subsequently, effects on health condition status, oxidative stress, neurotoxicity, and genotoxicity were assessed. Both nanoadditives (Zn-Al LDH-BTA and Zn-Al LDH-GCN) and soluble GCN caused no significant sub-lethal effects. However, exposure to soluble BTA induced GPx activity at 1.23 mg/L and DNA damage at 1.23 and 100 mg/L. This suggests that both nanoadditives are promising alternatives with high anti-corrosion performance and low ecotoxicity. GCN forms may be safer, as the biomolecule caused no sub-lethal effects in the tested species. This study presents a step forward in the development of an holistic assessment of eco-friendly anti-corrosion nanoadditives with enhanced performance.
Collapse
Affiliation(s)
- Inês A Dias
- Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Fernando Perina
- CESAM, Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Joana Figueiredo
- Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Ana Rita R Silva
- CESAM, Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Diogo N Cardoso
- CESAM, Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Roberto Martins
- CESAM, Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
2
|
Santos J, Barreto A, Fernandes C, Silva ARR, Cardoso DN, Pinto E, Daniel-da-Silva AL, Maria VL. A Comprehensive Ecotoxicity Study of Molybdenum Disulfide Nanosheets versus Bulk form in Soil Organisms. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:3163. [PMID: 38133059 PMCID: PMC10745638 DOI: 10.3390/nano13243163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
The increasing use of molybdenum disulfide (MoS2) nanoparticles (NPs) raises concerns regarding their accumulation in soil ecosystems, with limited studies on their impact on soil organisms. Study aim: To unravel the effects of MoS2 nanosheets (two-dimensional (2D) MoS2 NPs) and bulk MoS2 (156, 313, 625, 1250, 2500 mg/kg) on Enchytraeus crypticus and Folsomia candida. The organisms' survival and avoidance behavior remained unaffected by both forms, while reproduction and DNA integrity were impacted. For E. crypticus, the individual endpoint reproduction was more sensitive, increasing at lower concentrations of bulk MoS2 and decreasing at higher ones and at 625 mg/kg of 2D MoS2 NPs. For F. candida, the molecular endpoint DNA integrity was more impacted: 2500 mg/kg of bulk MoS2 induced DNA damage after 2 days, with all concentrations inducing damage by day 7. 2D MoS2 NPs induced DNA damage at 156 and 2500 mg/kg after 2 days, and at 1250 and 2500 mg/kg after 7 days. Despite affecting the same endpoints, bulk MoS2 induced more effects than 2D MoS2 NPs. Indeed, 2D MoS2 NPs only inhibited E. crypticus reproduction at 625 mg/kg and induced fewer (F. candida) or no effects (E. crypticus) on DNA integrity. This study highlights the different responses of terrestrial organisms to 2D MoS2 NPs versus bulk MoS2, reinforcing the importance of risk assessment when considering both forms.
Collapse
Affiliation(s)
- Joana Santos
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Angela Barreto
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Cristiana Fernandes
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana Rita R. Silva
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Diogo N. Cardoso
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Edgar Pinto
- Department of Environmental Health, ESS, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto (FFUP), Rua de Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal
| | - Ana L. Daniel-da-Silva
- Department of Chemistry & Aveiro Institute of Materials (CICECO), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Vera L. Maria
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
3
|
Morgado RG, Pereira A, Cardoso DN, Prodana M, Malheiro C, Silva ARR, Vinhas A, Soares AMVM, Loureiro S. The effects of different temperatures in mercury toxicity to the terrestrial isopod Porcellionides pruinosus. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120209. [PMID: 36155220 DOI: 10.1016/j.envpol.2022.120209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/31/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Climate changes and metal contamination are pervasive stressors for soil ecosystems. Mercury (Hg), one of the most toxic metals, has been reported to interact with temperature. However, compared to aquatic biota, little is known about how temperature affects Hg toxicity and bioaccumulation to soil organisms. Here, toxicity and bioaccumulation experiments were replicated at 15 °C, 20 °C, and 25 °C to understand how sub-optimal temperatures affect the toxicokinetics and toxicodynamics of Hg via soil. Genotoxicity and energy reserves were also assessed to disclose potential trade-offs in life-history traits. Results underpin the complexity of temperature-Hg interactions. Survival was determined mainly by toxicokinetics, but toxicodynamics also played a significant role in defining survival probability during early stages. The processes determining survival probability were faster at 25 °C: General Unified Threshold of Survival (GUTS) model identified an earlier/steeper decline in survival, compared to 20 °C or 15 °C, but it also approached the threshold faster. Despite potentiation of Hg genotoxicity, temperature promoted faster detoxification, either increasing toxicokinetics rates or damage repair mechanisms. This metabolism-driven increase in detoxification led to higher depletion of energy reserves and likely triggered stress response pathways. This work emphasized the need for comprehensive experimental approaches that can integrate the multiple processes involved in temperature-metal interactions.
Collapse
Affiliation(s)
- Rui G Morgado
- CESAM - Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Andreia Pereira
- CESAM - Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Diogo N Cardoso
- CESAM - Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Marija Prodana
- CESAM - Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Catarina Malheiro
- CESAM - Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Ana Rita R Silva
- CESAM - Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - André Vinhas
- CESAM - Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Amadeu M V M Soares
- CESAM - Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Susana Loureiro
- CESAM - Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
4
|
Zheng Y, Zhou K, Tang J, Liu C, Bai J. Impacts of di-(2-ethylhexyl) phthalate on Folsomia candida (Collembola) assessed with a multi-biomarker approach. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113251. [PMID: 35121260 DOI: 10.1016/j.ecoenv.2022.113251] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/17/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is extensively used as an additive to produce plastics, but it may damage non-target organisms in soil. In this study, the effects of DEHP on Folsomia candida in terms of survival, reproduction, enzyme activities, and DNA damage were investigated in spiked artificial soil using a multi-biomarker strategy. The 7-day LC50 (median lethal concentration) and 28-day EC50 (median effect concentration) values of DEHP were 1256.25 and 19.72 mg a.i. (active ingredient) kg-1 dry soil, respectively. Biomarkers involved in antioxidant defense including catalase (CAT-catalase), glutathione S-transferases (GST), detoxifying enzymes including acetylcholinesterase (AChE), Cytochrome P450 (CYP450), and peroxidative damage (LPO-lipid peroxide) were also measured (EC10, EC20, and EC50) after exposure for 2, 4, 7, and 14 days. The Comet assay was also applied to assess the level of genetic damage. The activity of CAT and LPO was drastically enhanced by the highest dose (EC50) of DEHP on day two. The activities of GST and AChE in DEHP treatment groups were found to be blocked. In contrast, the activity of CYP450 was significantly enhanced compared to the respective control groups during the first four days of incubation. The Comet assay in F.candida demonstrated that DEHP (EC50) could induce DNA damage. The obtained multi-biomarker data were analyzed using an integrated biomarker response (IBR) index, indicating that limited-time exposure triggered higher stress than long-term exposure at low concentrations of DEHP. These results demonstrate that DEHP may cause biochemical and genetic toxicity to F. candida, which illustrated the potential risks of DEHP in the soil environment and might affect soil ecosystem processes. Further studies are necessary to elucidate the toxic mechanisms of DEHP on other non-target organisms in soil.
Collapse
Affiliation(s)
- Yu Zheng
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China; Hunan Provincial Collaborative Innovation Center for Field Weeds Control, Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China.
| | - Kedong Zhou
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China
| | - Jianquan Tang
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China
| | - Can Liu
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China
| | - Jing Bai
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China; Hunan Provincial Collaborative Innovation Center for Field Weeds Control, Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China
| |
Collapse
|
5
|
Cardoso DN, Oliveira M, Soares AMVM, Loureiro S. Susceptibility of Folsomia candida to Agrochemicals after Multigenerational Exposure to Human Pharmaceuticals. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:592-600. [PMID: 33590911 DOI: 10.1002/etc.5013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/28/2020] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
In realistic environmental scenarios, soil organisms can be exposed to a combination of pharmaceuticals and agriproducts or within different time frames. Therefore, it is necessary to increase knowledge on soil organism susceptibility under a complex mixture exposure scenario. The present study aimed to assess the susceptibility of the collembolan Folsomia candida to copper and dimethoate on a pre-exposure for 3 generations to human pharmaceuticals (fluoxetine and carbamazepine). Carryover effects on reproductive output and survival were observed after a multigenerational pre-exposure to carbamazepine or fluoxetine, considerably increasing the sensitivity of collembolans to both copper and dimethoate. This was more evident for collembolans pre-exposed to the highest concentrations of both pharmaceuticals (40 mg/kg soil), as demonstrated by a significant reduction in the number of juveniles and increased mortality. In addition, pre-exposure to carbamazepine and fluoxetine induced varying effects on subsequent exposure to the same chemical. Although pre-exposure to carbamazepine led to a decrease in collembolan reproduction, even when transferred to a clean medium, fluoxetine induced severe effects but only when collembolans were exposed to other contaminants (i.e., not when transferred to clean soil). The present study highlighted the need to consider carryover effects and possible interactions between pharmaceuticals and other contaminants under simultaneous exposure. Environ Toxicol Chem 2022;41:592-600. © 2021 SETAC.
Collapse
Affiliation(s)
- Diogo N Cardoso
- Department of Biology and Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| | - Miguel Oliveira
- Department of Biology and Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| | - Amadeu M V M Soares
- Department of Biology and Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| | - Susana Loureiro
- Department of Biology and Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
6
|
Silva MS, De Souza DV, Alpire MES, Malinverni ACDM, Da Silva RCB, Viana MDB, Oshima CTF, Ribeiro DA. Dimethoate induces genotoxicity as a result of oxidative stress: in vivo and in vitro studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:43274-43286. [PMID: 34189686 DOI: 10.1007/s11356-021-15090-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
Dimethoate ([O,O-dimethyl S-(N-methylcarbamoylmethyl) phosphorodithioate]) is an organophosphate insecticide and acaricide widely used for agricultural purposes. Genotoxicity refers to the ability of a chemical agent interact directly to DNA or act indirectly leading to DNA damage by affecting spindle apparatus or enzymes involved in DNA replication, thereby causing mutations. Taking into consideration the importance of genotoxicity induced by dimethoate, the purpose of this manuscript was to provide a mini review regarding genotoxicity induced by dimethoate as a result of oxidative stress. The present study was conducted on studies available in MEDLINE, PUBMED, EMBASE, and Google scholar for all kind of articles (all publications published until May, 2020) using the following key words: dimethoate, omethoate, DNA damage, genetic damage, oxidative stress, genotoxicity, mutation, and mutagenicity. The results showed that many studies were published in the scientific literature; the approach was clearly demonstrated in multiple tissues and organs, but few papers were designed in humans. In summary, new studies within the field are important for better understanding the pathobiological events of genotoxicity on human cells, particularly to explain what cells and/or tissues are more sensitive to genotoxic insult induced by dimethoate.
Collapse
Affiliation(s)
- Marcelo Souza Silva
- Institute of Heath and Society, Department of Biosciences, Federal University of São Paulo, UNIFESP, Rua Silva Jardim, 136, Room 332, Vila Mathias, Santos, SP, 11050-020, Brazil
| | - Daniel Vitor De Souza
- Institute of Heath and Society, Department of Biosciences, Federal University of São Paulo, UNIFESP, Rua Silva Jardim, 136, Room 332, Vila Mathias, Santos, SP, 11050-020, Brazil
| | - Maria Esther Suarez Alpire
- Institute of Heath and Society, Department of Biosciences, Federal University of São Paulo, UNIFESP, Rua Silva Jardim, 136, Room 332, Vila Mathias, Santos, SP, 11050-020, Brazil
| | - Andrea Cristina De Moraes Malinverni
- Institute of Heath and Society, Department of Biosciences, Federal University of São Paulo, UNIFESP, Rua Silva Jardim, 136, Room 332, Vila Mathias, Santos, SP, 11050-020, Brazil
| | - Regina Claudia Barbosa Da Silva
- Institute of Heath and Society, Department of Biosciences, Federal University of São Paulo, UNIFESP, Rua Silva Jardim, 136, Room 332, Vila Mathias, Santos, SP, 11050-020, Brazil
| | - Milena De Barros Viana
- Institute of Heath and Society, Department of Biosciences, Federal University of São Paulo, UNIFESP, Rua Silva Jardim, 136, Room 332, Vila Mathias, Santos, SP, 11050-020, Brazil
| | - Celina Tizuko Fujiyama Oshima
- Institute of Heath and Society, Department of Biosciences, Federal University of São Paulo, UNIFESP, Rua Silva Jardim, 136, Room 332, Vila Mathias, Santos, SP, 11050-020, Brazil
| | - Daniel Araki Ribeiro
- Institute of Heath and Society, Department of Biosciences, Federal University of São Paulo, UNIFESP, Rua Silva Jardim, 136, Room 332, Vila Mathias, Santos, SP, 11050-020, Brazil.
| |
Collapse
|
7
|
Malheiro C, Cardoso DN, Neves J, Lima DLD, Esteves VI, Soares AMVM, Loureiro S. Biochar in soil mitigates dimethoate hazard to soil pore water exposed biota. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123304. [PMID: 32947708 DOI: 10.1016/j.jhazmat.2020.123304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/06/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Soil contamination is a worldwide problem urging for mitigation. Biochar is a carbonaceous material used as soil amendment that can immobilize chemical compounds, potentially turning them unavailable for soil biota. The aim of our study was to evaluate biochar's capacity to immobilize dimethoate in soil and, therefore, decreasing the toxicity to soil organisms. Two biochar application rates (2.5% and 5% w/w) were chosen to assess dimethoate potential immobilization, looking at changes in its toxicity to the collembolan Folsomia candida and the plant Brassica rapa upon soil amendment. Complementarily, chemical analyses were performed on soil pore water. Results showed that biochar may sorb and decrease dimethoate concentrations in soil pore water, influencing dimethoate bioavailability and consequent toxicity. Contrary to dimethoate solo impact on collembolans (LC50 0.69 mg kg-1, EC50 0.46 mg kg-1), their survival rate and offspring production were not affected by dimethoate when biochar was applied, regardless of application rate (LC50 and EC50 > 1.6 mg kg-1). Shoot length, fresh and dry weights of B. rapa were less affected by dimethoate upon biochar addition (EC50 values increase for all endpoints). Our study shows that biochar may contribute to decrease dimethoate bioavailability and toxicity to soil porewater exposed organisms.
Collapse
Affiliation(s)
- Catarina Malheiro
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Diogo N Cardoso
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Joana Neves
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Diana L D Lima
- CESAM - Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Valdemar Inocêncio Esteves
- CESAM - Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Amadeu M V M Soares
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Susana Loureiro
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
8
|
Kayumov AR, Solovyev DA, Bobrov DE, Rizvanov AA. Current Approaches to the Evaluation of Soil Genotoxicity. BIONANOSCIENCE 2019. [DOI: 10.1007/s12668-019-00652-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
9
|
Pitombeira de Figueirêdo L, Daam MA, Mainardi G, Mariën J, Espíndola ELG, van Gestel CAM, Roelofs D. The use of gene expression to unravel the single and mixture toxicity of abamectin and difenoconazole on survival and reproduction of the springtail Folsomia candida. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 244:342-350. [PMID: 30352348 DOI: 10.1016/j.envpol.2018.10.077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/09/2018] [Accepted: 10/16/2018] [Indexed: 06/08/2023]
Abstract
Pesticides risk assessments have traditionally focused on the effects on standard parameters, such as mortality, reproduction and development. However, one of the first signs of adverse effects that occur in organisms exposed to stress conditions is an alteration in their genomic expression, which is specific to the type of stress, sensitive to very low contaminant concentrations and responsive in a few hours. The aim of the present study was to evaluate the single and binary mixture toxicity of commercial products of abamectin (Kraft® 36 EC) and difenoconazole (Score® 250 EC) to Folsomia candida. Laboratory toxicity tests were conducted to access the effects of these pesticides on springtail survival, reproduction and gene expression. The reproduction assays gave EC50 and EC10 values, respectively, of 6.3 and 1.4 mg a.s./kg dry soil for abamectin; 1.0 and 0.12 mg a.s./kg dry soil for Kraft® 36 EC; and 54 and 23 mg a.s./kg dry soil for Score® 250 EC. Technical difenoconazole did not have any effect at the concentrations tested. No significant differences in gene expression were found between the abamectin concentrations tested (EC10 and EC50) and the solvent control. Exposure to Kraft® 36 EC, however, significantly induced Cyp6 expression at the EC50 level, while VgR was significantly downregulated at both the EC10 and EC50. Exposure to the simple pesticide mixture of Kraft® 36 EC + Score® 250 EC caused significant up regulation of ABC transporter, and significant down regulation of VgR relative to the controls. GABA receptor also showed significant down-regulation between the EC10 and EC50 mixture treatments. Results of the present study demonstrate that pesticide-induced gene expression effects precede and occur at lower concentrations than organism-level responses. Integrating "omic" endpoints in traditional bioassays may thus be a promising way forward in pesticide toxicity evaluations.
Collapse
Affiliation(s)
- Livia Pitombeira de Figueirêdo
- NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, 13.560-970, São Carlos, Brazil; Department of Ecological Science, Faculty of Science, Vrije Universiteit, De Boelelaan 1085, 1081, HV Amsterdam, the Netherlands.
| | - Michiel A Daam
- CENSE, Department of Environmental Sciences and Engineering, Faculty of Sciences and Technology, New University of Lisbon, Quinta da Torre, 2829-516, Caparica, Portugal
| | - Giulia Mainardi
- Department of Ecological Science, Faculty of Science, Vrije Universiteit, De Boelelaan 1085, 1081, HV Amsterdam, the Netherlands
| | - Janine Mariën
- Department of Ecological Science, Faculty of Science, Vrije Universiteit, De Boelelaan 1085, 1081, HV Amsterdam, the Netherlands
| | - Evaldo L G Espíndola
- NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, 13.560-970, São Carlos, Brazil
| | - Cornelis A M van Gestel
- Department of Ecological Science, Faculty of Science, Vrije Universiteit, De Boelelaan 1085, 1081, HV Amsterdam, the Netherlands
| | - Dick Roelofs
- Department of Ecological Science, Faculty of Science, Vrije Universiteit, De Boelelaan 1085, 1081, HV Amsterdam, the Netherlands
| |
Collapse
|
10
|
Gajski G, Žegura B, Ladeira C, Pourrut B, Del Bo’ C, Novak M, Sramkova M, Milić M, Gutzkow KB, Costa S, Dusinska M, Brunborg G, Collins A. The comet assay in animal models: From bugs to whales – (Part 1 Invertebrates). MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2019; 779:82-113. [DOI: 10.1016/j.mrrev.2019.02.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 02/07/2019] [Accepted: 02/09/2019] [Indexed: 01/09/2023]
|