1
|
Kwon EJ, Lee H, Shin U, Kim ES, Myung K, Kim J, Park JH, Kim K, Lee Y, Oh CK, Kim YH. Ionizing radiation inhibits zebrafish embryo hatching through induction of tissue inhibitors of metalloproteinases (TIMPs) expression. FEBS J 2024; 291:5470-5485. [PMID: 39547957 DOI: 10.1111/febs.17318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/26/2024] [Accepted: 10/28/2024] [Indexed: 11/17/2024]
Abstract
Ionizing radiation (IR) has garnered growing attention because of its biological effects on aquatic organisms and humans. Here, we identify the most impacted organs and uncover the molecular mechanisms causing the changes in the context of vertebrate development using single-cell RNA sequencing. Alterations in cellular composition and biological functions were explored using transcriptomic profiling of zebrafish embryos exposed to 5 Gy. Single-cell RNA sequencing analyses unveiled notable shifts in the proportions of brain/central nervous system and hatching gland clusters. Although IR exposure led to increased expression of hatching enzymes, a significant but mild delay in hatching was observed following 5 Gy IR exposure. Gene Ontology analysis showed an increased expression of tissue inhibitors of metalloproteinases (TIMPs), known as matrix metalloproteinase inhibitors, which was confirmed via whole-mount in situ hybridization. Correlation analysis linked TIMPs to transcription factors cebpb and cebpd, which were significantly correlated post-IR exposure. Although no morphological changes were observed in some organs, including the brain, the study reveals substantial alterations in developing vertebrates. Notably, despite increased hatching enzymes, elevated TIMPs in the hatching gland suggest a regulatory mechanism impacting hatching activity. This research contributes to comprehending the ecological repercussions of IR exposure, emphasizing the importance of safety measures for aquatic ecosystems and overall environmental health.
Collapse
Affiliation(s)
- Eun Jung Kwon
- Medical Research Institute, Pusan National University, Yangsan, Korea
| | - Hansong Lee
- Medical Research Institute, Pusan National University, Yangsan, Korea
| | - Unbum Shin
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Korea
| | - Eun-Sun Kim
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, Korea
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Korea
| | - Jeongmo Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Korea
| | - Jung-Hoon Park
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Korea
| | - Kihun Kim
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Korea
- Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, Korea
| | - Yoonsung Lee
- Research Institute of Clinical Medicine, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Chang-Kyu Oh
- Department of Biochemistry, School of Medicine, Pusan National University, Yangsan, Korea
- Institute for Future Earth, Pusan National University, Busan, Korea
| | - Yun Hak Kim
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Korea
- Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, Korea
| |
Collapse
|
2
|
Maremonti E, Brede DA, Kassaye YA, Zheng K, Lee Y, Salbu B, Teien HC. Dose rate dependent genotoxic and metabolic effects predict onset of impaired development and mortality in Atlantic salmon (S. salar) embryos exposed to chronic gamma radiation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176263. [PMID: 39278484 DOI: 10.1016/j.scitotenv.2024.176263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/04/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Release of radionuclides to the environment from either nuclear weapon and fuel cycles or from naturally occurring radionuclides (NORM) may cause long term contamination of aquatic ecosystems and chronic exposure of living organisms to ionizing radiation, which in turn could lead to adverse effects compromising the sustainability of populations. To address the effects of chronic ionizing radiation on the development of fish, Atlantic salmon embryos were exposed from fertilization until hatching (88 days, 550 day-degree) to dose rates from 1 to 30 mGy·h-1 gamma radiation (60Co). The lowest adopted dose rate was similar to the highest doses measured in some water bodies right after the Chernobyl accident (1 mGy·h-1), however, well above current environmentally realistic scenarios (20 μGy·h-1), or the threshold assumed for significant effects on fish population (40 μGy·h-1). Dose dependent effects were observed on survival, hatching, morbidity, DNA damage, antioxidant defenses, and metabolic status. Histopathological analysis showed dose rate dependent impairment of eye and brain tissues development and establishment of epidermal mucus cell layers accompanied by increased DNA damage at doses ≥1.3 Gy (dose rates ≥1 mGy·h-1). At ≥32.8 Gy (dose rates ≥20 mGy·h-1) deformities and developmental growth defects resulted in respective 46 and 95 % pre-hatch mortality. The 10 mGy·h-1 exposure (≥ 12 Gy total dose) caused significantly increased DNA damage, impaired eye development, and both premature and delayed hatching, while no deformities or effect on survival were observed. We observed a dose rate dependent reduction from dose rate ≥ 20 mGy·h-1 (≥ 27 Gy total dose) on antioxidant SOD, catalase and glutathione reductase enzyme activities. The reduction of antioxidant enzyme activities was in line with observed developmental delay and disturbance to time of hatching. Metabolomic profiles showed a clear shift at dose rates ≥10 mGy·h-1 (≥ 12 Gy total dose) in pathways related to oxidative stress, detoxification, DNA damage and repair. Due to gamma radiation exposure, a switch of central metabolism from glycolysis, citric acid cycle and lactate production towards pentose phosphate pathway indicated a rewiring mechanism for increased production of reductive equivalents to maintain redox homeostasis at the expense of energy output and thus embryonic development.
Collapse
Affiliation(s)
- Erica Maremonti
- Centre for Environmental Radioactivity (CERAD), Faculty of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences (NMBU), 1432 Ås, Norway.
| | - Dag Anders Brede
- Centre for Environmental Radioactivity (CERAD), Faculty of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences (NMBU), 1432 Ås, Norway
| | - Yetneberk A Kassaye
- Centre for Environmental Radioactivity (CERAD), Faculty of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences (NMBU), 1432 Ås, Norway
| | - Keke Zheng
- Centre for Environmental Radioactivity (CERAD), Faculty of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences (NMBU), 1432 Ås, Norway
| | - YeonKyeong Lee
- Korea University Graduate School, Department of Plant Biotechnology, 145, Anam-ro, Seongbuk-ku, Seoul, Republic of Korea
| | - Brit Salbu
- Centre for Environmental Radioactivity (CERAD), Faculty of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences (NMBU), 1432 Ås, Norway
| | - Hans-Christian Teien
- Centre for Environmental Radioactivity (CERAD), Faculty of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences (NMBU), 1432 Ås, Norway
| |
Collapse
|
3
|
Frelon S, Recoura-Massaquant R, Dubourg N, Garnero L, Bonzom JM, Degli-Esposti D. Reproductive Capacity, but not Food Consumption, is Reduced by Continuous Exposure to Typical Genotoxic Stressor γ-Rays in the sentinel species Gammarus fossarum. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:2071-2079. [PMID: 38980263 DOI: 10.1002/etc.5949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/25/2024] [Accepted: 06/11/2024] [Indexed: 07/10/2024]
Abstract
The long-term impacts of radiocontaminants (and the associated risks) for ecosystems are still subject to vast societal and scientific debate while wildlife is chronically exposed to various sources and levels of either environmental or anthropogenic ionizing radiation from the use of nuclear energy. The present study aimed to assess induced phenotypical responses in both male and female gammarids after short-term continuous γ-irradiation, acting as a typical well-characterized genotoxic stressor that can interact directly with living matter. In particular, we started characterizing the effects using standardized measurements for biological effects on few biological functions for this species, especially feeding inhibition tests, molting, and reproductive ability, which have already been proven for chemical substances and are likely to be disturbed by ionizing radiation. The results show no significant differences in terms of the survival of organisms (males and females), of their short-term food consumption which is linked to the general health status (males and females), and of the molting cycle (females). In contrast, exposure significantly affected fecundity (number of embryos produced) at the highest dose rates for irradiated females (51 mGy h-1) and males (5 and 51 mGy h-1). These results showed that, in gammarids, reproduction, which is a critical endpoint for population dynamics, is the most radiosensitive phenotypic endpoint, with significant effects recorded on male reproductive capacity, which is more sensitive than in females. Environ Toxicol Chem 2024;43:2071-2079. © 2024 SETAC.
Collapse
Affiliation(s)
- Sandrine Frelon
- IRSN/PSE-ENV/SERPEN Laboratoire d'écologie et d'écotoxicologie des radionucléides, Saint Paul lez Durance, France
| | - Rémi Recoura-Massaquant
- INRAE, UR RiverLy, Ecotoxicology Team, Centre de Lyon-Grenoble Auvergne Rhône-Alpes, Villeurbanne, France
| | - Nicolas Dubourg
- IRSN/PSE-ENV/SERPEN Laboratoire d'écologie et d'écotoxicologie des radionucléides, Saint Paul lez Durance, France
| | - Laura Garnero
- INRAE, UR RiverLy, Ecotoxicology Team, Centre de Lyon-Grenoble Auvergne Rhône-Alpes, Villeurbanne, France
| | - Jean-Marc Bonzom
- IRSN/PSE-ENV/SERPEN Laboratoire d'écologie et d'écotoxicologie des radionucléides, Saint Paul lez Durance, France
| | - Davide Degli-Esposti
- INRAE, UR RiverLy, Ecotoxicology Team, Centre de Lyon-Grenoble Auvergne Rhône-Alpes, Villeurbanne, France
| |
Collapse
|
4
|
Simon O, Guirandy N, Dasque L, Dubourg N, Camilleri V, Cavalié I, Turiès C, Bado-Nilles A, Espinat L, Réalis E, Gagnaire B. Common and inter-specific toxic effects in three wild fish species after chronic gamma irradiation of early stages. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2024; 277:107459. [PMID: 38833882 DOI: 10.1016/j.jenvrad.2024.107459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 06/06/2024]
Abstract
The objective of this study was to investigate the effects of gamma irradiation on the aquatic environment. We used three wild fish species to compare phenotypic responses with a fish model such as Danio rerio. We focused on embryonic development, a sensitive life stage to stressors like ionizing radiation, to evaluate the effects of exposure to 0.5 and 5 mGy h-1 on Arctic char, trout and stickleback embryos from fertilization to free-swimming larvae. Irradiation did not cause mortality but induced an acceleration of hatching in the three species. These new data on wild species, obtained under comparable irradiation conditions, did not go against the threshold values for the protection of freshwater aquatic ecosystems. Moreover, irradiation caused inter-specific sublethal effects, such as an increase in non-eyed egg proportion in Arctic char, an increase in the incubation period in trout and an acceleration of larval mortality in stickleback. The consequences of these early effects on the adult stage remain to be studied.
Collapse
Affiliation(s)
- O Simon
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SERPEN/LECO, Cadarache, France.
| | - N Guirandy
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SERPEN/LECO, Cadarache, France
| | - L Dasque
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SERPEN/LECO, Cadarache, France
| | - N Dubourg
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SERPEN/LECO, Cadarache, France
| | - V Camilleri
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SERPEN/LECO, Cadarache, France
| | - I Cavalié
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SERPEN/LECO, Cadarache, France
| | - C Turiès
- INERIS UMR-I 02 SEBIO, Unité ECOToxicologie in Vitro et in Vivo, Pôle Dangers sur le VIVAnt, Direction des Risques Chroniques, France
| | - A Bado-Nilles
- INERIS UMR-I 02 SEBIO, Unité ECOToxicologie in Vitro et in Vivo, Pôle Dangers sur le VIVAnt, Direction des Risques Chroniques, France
| | | | | | - B Gagnaire
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SERPEN/LECO, Cadarache, France
| |
Collapse
|
5
|
Woo SM, Yang SG, Kim YW, Koo DB, Park HJ. Ochratoxin A triggers endoplasmic reticulum stress through PERK/NRF2 signaling and DNA damage during early embryonic developmental competence in pigs. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115757. [PMID: 38064788 DOI: 10.1016/j.ecoenv.2023.115757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/20/2023] [Accepted: 11/26/2023] [Indexed: 01/12/2024]
Abstract
Ochratoxin A (OTA), a mycotoxin found in foods, has a deleterious effect on female reproduction owing to its endocrine-disrupting activity mediated through endoplasmic reticulum (ER) stress and reactive oxygen species (ROS) production. However, the mechanisms of OTA-induced ER stress in pig embryos during in vitro culture (IVC) are not yet fully understood. In the present study, porcine embryos were cultured for two days in an IVC medium supplemented with 0.5, 1.0, and 5.0 μM OTA, which led to an OTA-induced reduction in the developmental rate of blastocysts. The mRNA-seq transcriptome analysis revealed that the reduced blastocyst development ability of OTA-exposed porcine embryos was caused by ER stress, ultimately resulting in the accumulation of ROS and the occurrence of apoptosis. The expression levels of some UPR/PERK signaling-related genes (DDIT3, EIF2AK3, EIF2S1, NFE2L2, ATF4, EIF2A, and KEAP1) were found to differ in OTA-exposed pig embryos. OTA induces DNA damage by triggering an increase in RAD51/γ-H2AX levels and suppressing p-NRF2 activity. This effect is mediated through intracellular ROS and superoxide accumulation in the nuclei of porcine embryos. The cytotoxicity of OTA increased the activation of the PERK signal pathways (p-PERK, PERK, p-eIF2α, eIF2α, ATF4, and CHOP) in porcine embryos, with abnormal distribution of the ER observed around the nucleus. Collectively, our findings indicate that ER stress is a major cause of decline in the development of porcine embryos exposed to OTA. Therefore, OTA exposure induces ER stress and DNA damage via oxidative stress by disrupting PERK/NRF2 signaling activity in the developmental competence of porcine embryos during IVC.
Collapse
Affiliation(s)
- Seong-Min Woo
- Department of Biotechnology, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan, Gyeongbuk 38453, Republic of Korea; Institute of Infertility, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan, Gyeongbuk 38453, Republic of Korea
| | - Seul-Gi Yang
- Department of Biotechnology, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan, Gyeongbuk 38453, Republic of Korea; Institute of Infertility, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan, Gyeongbuk 38453, Republic of Korea
| | - Ye-Won Kim
- Department of Biotechnology, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan, Gyeongbuk 38453, Republic of Korea; Institute of Infertility, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan, Gyeongbuk 38453, Republic of Korea
| | - Deog-Bon Koo
- Department of Biotechnology, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan, Gyeongbuk 38453, Republic of Korea; Institute of Infertility, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan, Gyeongbuk 38453, Republic of Korea; Department of Companion Animal Industry, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan, Gyeongbuk 38453, Republic of Korea.
| | - Hyo-Jin Park
- Department of Biotechnology, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan, Gyeongbuk 38453, Republic of Korea; Institute of Infertility, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan, Gyeongbuk 38453, Republic of Korea.
| |
Collapse
|
6
|
Schiano Di Lombo M, Cavalié I, Camilleri V, Armant O, Perrot Y, Cachot J, Gagnaire B. Tritiated thymidine induces developmental delay, oxidative stress and gene overexpression in developing zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 265:106766. [PMID: 37980847 DOI: 10.1016/j.aquatox.2023.106766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/21/2023]
Abstract
Tritium is a betta emitter radionuclide. Being an isotope of hydrogen, it is easily transferred to different environmental compartments, and to human and non-human biota. Considering that tritium levels are expected to rise in the upcoming decades with the development of nuclear facilities producing tritium using fission processes, investigating the potential toxicity of tritium to human and non-human biota is necessary. Tritiated thymidine, an organic form of tritium, has been used in this study to assess its toxicity on fish embryo development. Zebrafish embryos (3.5 hpf; hours post fertilization) have been exposed to tritiated thymidine at three different activity concentrations (7.5; 40; 110 kBq/mL) for four days. These experiments highlighted that zebrafish development was affected by the exposure to organic tritium, with smaller larvae at 3 dpf after exposure to the two lowest dose rates (22 and 170 µGy/h), a delayed hatching after exposure to the two highest dose rates (170 and 470 µGy/h), an increase in the spontaneous tail movement (1 dpf) and a decrease in the heartbeat (3 dpf) after exposure to the highest dose rate. The results also highlighted an increase in ROS production in larvae exposed to the intermediate dose rate. A dysregulation of many genes, involved in apoptosis, DNA repair or oxidative stress, was also found after 1 day of exposure to the lowest tritium dose rate. Our results thus suggest that exposure to tritiated thymidine from a dose rate as low as 22 µGy/h can lead to sublethal effects, with an effect on the development, dysregulation of many genes and increase of the ROS production. This paper provides valuable information on toxic effects arising from the exposure of fish to an organic form of tritium, which was the main objective of this study.
Collapse
Affiliation(s)
- Magali Schiano Di Lombo
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SERPEN/LECO, Cadarache, 13115, Saint-Paul-lez-Durance, France.
| | - Isabelle Cavalié
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SERPEN/LECO, Cadarache, 13115, Saint-Paul-lez-Durance, France
| | - Virginie Camilleri
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SERPEN/LECO, Cadarache, 13115, Saint-Paul-lez-Durance, France
| | - Olivier Armant
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SERPEN/LECO, Cadarache, 13115, Saint-Paul-lez-Durance, France
| | - Yann Perrot
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SDOS/LDRI, 92262 Fontenay-aux-Roses CEDEX, France
| | - Jérôme Cachot
- Université de Bordeaux, Laboratoire EPOC UMR 5805, Univ. Bordeaux, CNRS, INP Bordeaux, F-33600 Pessac, France
| | - Béatrice Gagnaire
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SERPEN/LECO, Cadarache, 13115, Saint-Paul-lez-Durance, France.
| |
Collapse
|
7
|
Pradhoshini KP, Priyadharshini M, Santhanabharathi B, Ahmed MS, Parveen MHS, War MUD, Musthafa MS, Alam L, Falco F, Faggio C. Biological effects of ionizing radiation on aquatic biota - A critical review. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 99:104091. [PMID: 36870406 DOI: 10.1016/j.etap.2023.104091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/16/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Ionizing radiation from radionuclides impacts marine aquatic biota and the scope of investigation must be wider than just invertebrates. We intend to detail and illustrate numerous biological effects that occur in both aquatic vertebrates and invertebrates, at various dose rates from all three kinds of ionizing radiation. The characteristics of radiation sources and dosages that would most effectively generate the intended effects in the irradiated organism were assessed once the biological differentiation between vertebrates and invertebrates was determined through multiple lines of evidence. We contend that invertebrates are still more radiosensitive than vertebrates, due to their small genome size, rapid reproduction rates and lifestyle, which help them to compensate for the effects of radiation induced declines in fecundity, life span and individual health. We also identified various research gaps in this field and suggest future directions to be investigated to remedy the lack of data available in this area.
Collapse
Affiliation(s)
- Kumara Perumal Pradhoshini
- Unit of Research in Radiation Biology & Environmental Radioactivity (URRBER), P.G. & Research Department of Zoology, The New College (Autonomous), Affiliated to University of Madras, Chennai 600 014, Tamilnadu, India; Institute for Environment and Development (LESTARI), Research Centre for Sustainability Science and Governance (SGK), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Marckasagayam Priyadharshini
- Unit of Research in Radiation Biology & Environmental Radioactivity (URRBER), P.G. & Research Department of Zoology, The New College (Autonomous), Affiliated to University of Madras, Chennai 600 014, Tamilnadu, India
| | - Bharathi Santhanabharathi
- Unit of Research in Radiation Biology & Environmental Radioactivity (URRBER), P.G. & Research Department of Zoology, The New College (Autonomous), Affiliated to University of Madras, Chennai 600 014, Tamilnadu, India
| | - Munawar Suhail Ahmed
- Unit of Research in Radiation Biology & Environmental Radioactivity (URRBER), P.G. & Research Department of Zoology, The New College (Autonomous), Affiliated to University of Madras, Chennai 600 014, Tamilnadu, India
| | - Mohamat Hanifa Shafeeka Parveen
- Unit of Aquatic biology and Aquaculture (UABA), P.G. & Research Department of Zoology, The New College (Autonomous), Affiliated to University of Madras, Chennai 600 014, Tamilnadu, India
| | - Mehraj Ud Din War
- Unit of Aquatic biology and Aquaculture (UABA), P.G. & Research Department of Zoology, The New College (Autonomous), Affiliated to University of Madras, Chennai 600 014, Tamilnadu, India
| | - Mohamed Saiyad Musthafa
- Unit of Research in Radiation Biology & Environmental Radioactivity (URRBER), P.G. & Research Department of Zoology, The New College (Autonomous), Affiliated to University of Madras, Chennai 600 014, Tamilnadu, India; Institute for Environment and Development (LESTARI), Research Centre for Sustainability Science and Governance (SGK), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.
| | - Lubna Alam
- Institute for Environment and Development (LESTARI), Research Centre for Sustainability Science and Governance (SGK), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Franscesca Falco
- National Research Council, Institute for Biological Resources and Marine Biotechnology (IRBIM), Mazara del Vallo, Italy
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| |
Collapse
|
8
|
Di Paola D, Gugliandolo E, Capparucci F, Cordaro M, Iaria C, Siracusa R, D’Amico R, Fusco R, Impellizzeri D, Cuzzocrea S, Di Paola R, Crupi R, Peritore AF. Early Exposure to Environmental Pollutants: Imidacloprid Potentiates Cadmium Toxicity on Zebrafish Retinal Cells Death. Animals (Basel) 2022; 12:ani12243484. [PMID: 36552404 PMCID: PMC9774592 DOI: 10.3390/ani12243484] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
In the present study, we analyzed the combination of non-toxic concentrations per se, of Cd and a pesticide the imidacloprid (IMI) (10 and 50 μM for Cd and 195 μM for IMI), to highlight early developmental toxicity and possible damage to retinal cells. Co-exposure to Cd and IMI showed a toxic effect in zebrafish larval development, with lowered degrees of survival and hatching, and in some cases the induction of structural alterations and edema. In addition, co-exposure to 50 and 195 μM, respectively, for Cd and IMI, also showed increased apoptosis in eye cells, accompanied by up regulation of genes associated with antioxidant markers (cat, sod1, nrf2 and ho-1). Thus, the present study aims to highlight how the presence of multiple contaminants, even at low concentrations, can be a risk factor in a model of zebrafish (Danio rerio). The presence of other contaminants, such as IMI, can cause an enhancement of the toxic action of Cd on morphological changes in the early life stage of zebrafish, but more importantly disrupt the normal development of the retina, eventually triggering apoptosis.
Collapse
Affiliation(s)
- Davide Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy
| | - Enrico Gugliandolo
- Department of Veterinary Science, University of Messina, 98166 Messina, Italy
| | - Fabiano Capparucci
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy
| | - Marika Cordaro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98166 Messina, Italy
| | - Carmelo Iaria
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy
| | - Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy
- Department of Pharmacological and Physiological Science, School of Medicine, Saint Louis University, Saint Louis, MO 63103, USA
- Correspondence: ; Tel.: +39-90-6765208
| | - Rosanna Di Paola
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98166 Messina, Italy
| | - Rosalia Crupi
- Department of Veterinary Science, University of Messina, 98166 Messina, Italy
| | - Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy
| |
Collapse
|
9
|
Tollefsen KE, Alonzo F, Beresford NA, Brede DA, Dufourcq-Sekatcheff E, Gilbin R, Horemans N, Hurem S, Laloi P, Maremonti E, Oughton D, Simon O, Song Y, Wood MD, Xie L, Frelon S. Adverse outcome pathways (AOPs) for radiation-induced reproductive effects in environmental species: state of science and identification of a consensus AOP network. Int J Radiat Biol 2022; 98:1816-1831. [PMID: 35976054 DOI: 10.1080/09553002.2022.2110317] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Reproductive effects of ionizing radiation in organisms have been observed under laboratory and field conditions. Such assessments often rely on associations between exposure and effects, and thus lacking a detailed mechanistic understanding of causality between effects occurring at different levels of biological organization. The Adverse Outcome Pathway (AOP), a conceptual knowledge framework to capture, organize, evaluate and visualize the scientific knowledge of relevant toxicological effects, has the potential to evaluate the causal relationships between molecular, cellular, individual, and population effects. This paper presents the first development of a set of consensus AOPs for reproductive effects of ionizing radiation in wildlife. This work was performed by a group of experts formed during a workshop organized jointly by the Multidisciplinary European Low Dose Initiative (MELODI) and the European Radioecology Alliance (ALLIANCE) associations to present the AOP approach and tools. The work presents a series of taxon-specific case studies that were used to identify relevant empirical evidence, identify common AOP components and propose a set of consensus AOPs that could be organized into an AOP network with broader taxonomic applicability. CONCLUSION Expert consultation led to the identification of key biological events and description of causal linkages between ionizing radiation, reproductive impairment and reduction in population fitness. The study characterized the knowledge domain of taxon-specific AOPs, identified knowledge gaps pertinent to reproductive-relevant AOP development and reflected on how AOPs could assist applications in radiation (radioecological) research, environmental health assessment, and radiological protection. Future advancement and consolidation of the AOPs is planned to include structured weight of evidence considerations, formalized review and critical assessment of the empirical evidence prior to formal submission and review by the OECD sponsored AOP development program.
Collapse
Affiliation(s)
- Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Oslo, Norway.,Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), Ås, Norway.,Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Frédéric Alonzo
- Health and Environment Division, Institute for Radiological Protection and Nuclear Safety (IRSN), Saint-Paul-Lez-Durance, France
| | - Nicholas A Beresford
- UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Bailrigg, UK.,School of Science, Engineering & Environment, University of Salford, Salford, UK
| | - Dag Anders Brede
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), Ås, Norway.,Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Elizabeth Dufourcq-Sekatcheff
- Health and Environment Division, Institute for Radiological Protection and Nuclear Safety (IRSN), Saint-Paul-Lez-Durance, France
| | - Rodolphe Gilbin
- Health and Environment Division, Institute for Radiological Protection and Nuclear Safety (IRSN), Saint-Paul-Lez-Durance, France
| | | | - Selma Hurem
- Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Ås, Norway.,Faculty of Veterinary medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Patrick Laloi
- Health and Environment Division, Institute for Radiological Protection and Nuclear Safety (IRSN), Saint-Paul-Lez-Durance, France
| | - Erica Maremonti
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), Ås, Norway.,Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Deborah Oughton
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), Ås, Norway.,Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Olivier Simon
- Health and Environment Division, Institute for Radiological Protection and Nuclear Safety (IRSN), Saint-Paul-Lez-Durance, France
| | - You Song
- Norwegian Institute for Water Research (NIVA), Oslo, Norway.,Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Michael D Wood
- School of Science, Engineering & Environment, University of Salford, Salford, UK
| | - Li Xie
- Norwegian Institute for Water Research (NIVA), Oslo, Norway.,Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Sandrine Frelon
- Health and Environment Division, Institute for Radiological Protection and Nuclear Safety (IRSN), Saint-Paul-Lez-Durance, France
| |
Collapse
|
10
|
Noëmie G, Béatrice G, Virginie C, Isabelle C, Fabien P, Patrice G, Olivier S. Multigenerational exposure to gamma radiation affects offspring differently over generations in zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 244:106101. [PMID: 35123208 DOI: 10.1016/j.aquatox.2022.106101] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 01/16/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Mutigenerational studies are now of great interest in ecotoxicology and previous studies have shown the importance of conducting multigenerational studies when assessing radiation toxicity in fish. In our study, the first objective was to study the early life stages (embryo-larval stages) and critical functions such as reproduction (which are generally studied in the context of ecological risk assessment (ERA)), in order to assess the sensitivity of zebrafish to ionizing radiation. The second objective was to assess acquisition of phenotypic effects at select life stages over generations. To our knowledge, this was the first time that irradiation of zebrafish (0.05 and 5 mGy.h-1) up to generation F2 was maintained with the following two exposure conditions: (1) recovery, only F0 genitors were irradiated and the progeny were placed in control condition, (2) irradiated condition, all generations were exposed. Multigenerational irradiation affected F1 parental reproductive capacity (reproductive success) mainly over the first reproductive cycle (104d) and larval survival rate. Unexpected yet significant effects on sex ratio were observed in F1 progeny after parental irradiation (mainly at 5 mGy.h-1). These effects were observed for both conditions -irradiated and recovery- suggesting transmitted effects from F0 genitors to offspring. All studied life stages were affected by ionizing radiation (IR), suggesting an alteration of vital physiological functions (reproduction and sexual determination). Such results highlight the hypothesis that IR affects population dynamics. In addition, the clear evidence of transmitted effects suggests worsening of effects at the population scale over generations. This approach is closer to environmental conditions to assess wild population fate, and thus highlights the importance of multigenerational studies to support ERA of ionizing radiation in fish.
Collapse
Affiliation(s)
- Guirandy Noëmie
- IRSN/PSE-ENV/SRTE/LECO, Centre de Cadarache, B.P. 3 - Bat 183, St Paul Lez Durance 13115, France.
| | - Gagnaire Béatrice
- IRSN/PSE-ENV/SRTE/LECO, Centre de Cadarache, B.P. 3 - Bat 183, St Paul Lez Durance 13115, France
| | - Camilleri Virginie
- IRSN/PSE-ENV/SRTE/LECO, Centre de Cadarache, B.P. 3 - Bat 183, St Paul Lez Durance 13115, France
| | - Cavalié Isabelle
- IRSN/PSE-ENV/SRTE/LECO, Centre de Cadarache, B.P. 3 - Bat 183, St Paul Lez Durance 13115, France
| | - Pierron Fabien
- UMR EPOC CNRS 5805, Place du Docteur Bertrand Peyneau, Arcachon 33120, France
| | - Gonzalez Patrice
- UMR EPOC CNRS 5805, Place du Docteur Bertrand Peyneau, Arcachon 33120, France
| | - Simon Olivier
- IRSN/PSE-ENV/SRTE/LECO, Centre de Cadarache, B.P. 3 - Bat 183, St Paul Lez Durance 13115, France
| |
Collapse
|
11
|
Canedo A, de Jesus LWO, Bailão EFLC, Rocha TL. Micronucleus test and nuclear abnormality assay in zebrafish (Danio rerio): Past, present, and future trends. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118019. [PMID: 34670334 DOI: 10.1016/j.envpol.2021.118019] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/05/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Nuclear abnormality (NA) assay in fish has been widely applied for toxicity risk assessment under field and laboratory conditions. The zebrafish (Danio rerio) has become a suitable model system for assessing the NA induced by pollutants. Thus, the current study aimed to summarize and discuss the literature concerning micronucleus (MN) and other NA in zebrafish and its applications in toxicity screening and environmental risk assessment. The data concerning the publication year, pollutant type, experimental design, and type of NA induced by pollutants were summarized. Also, molecular mechanisms that cause NA in zebrafish were discussed. Revised data showed that the MN test in zebrafish has been applied since 1996. The MN was the most frequently NA, but 15 other nuclear alterations were reported in zebrafish, such as notched nuclei, blebbed nuclei, binucleated cell, buds, lobed nuclei, bridges, and kidney-shaped. Several pollutants can induce NA in zebrafish, mainly effluents (mixture of pollutants), agrochemicals, and microplastics. The pollutant-induced NA in zebrafish depends on experimental design (i.e., exposure time, concentration, and exposure condition), developmental stages, cell/tissue type, and the type of pollutant. Besides, research gaps and recommendations for future studies are indicated. Overall, the current study showed that zebrafish is a suitable model to assess pollutant-induced mutagenicity.
Collapse
Affiliation(s)
- Aryelle Canedo
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiania, Goiás, Brazil
| | - Lázaro Wender Oliveira de Jesus
- Laboratory of Applied Animal Morphophysiology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | | | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiania, Goiás, Brazil.
| |
Collapse
|
12
|
Deciphering Differential Life Stage Radioinduced Reproductive Decline in Caenorhabditis elegans through Lipid Analysis. Int J Mol Sci 2021; 22:ijms221910277. [PMID: 34638618 PMCID: PMC8508812 DOI: 10.3390/ijms221910277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 12/19/2022] Open
Abstract
Wildlife is chronically exposed to various sources of ionizing radiations, both environmental or anthropic, due to nuclear energy use, which can induce several defects in organisms. In invertebrates, reproduction, which directly impacts population dynamics, has been found to be the most radiosensitive endpoint. Understanding the underlying molecular pathways inducing this reproduction decrease can help in predicting the effects at larger scales (i.e., population). In this study, we used a life stage dependent approach in order to better understand the molecular determinants of reproduction decrease in the roundworm C. elegans. Worms were chronically exposed to 50 mGy·h−1 external gamma ionizing radiations throughout different developmental periods (namely embryogenesis, gametogenesis, and full development). Then, in addition to reproduction parameters, we performed a wide analysis of lipids (different class and fatty acid via FAMES), which are both important signaling molecules for reproduction and molecular targets of oxidative stress. Our results showed that reproductive defects are life stage dependent, that lipids are differently misregulated according to the considered exposure (e.g., upon embryogenesis and full development) and do not fully explain radiation induced reproductive defects. Finally, our results enable us to propose a conceptual model of lipid signaling after radiation stress in which both the soma and the germline participate.
Collapse
|
13
|
Gagnaire B, Arcanjo C, Cavalié I, Camilleri V, Simon O, Dubourg N, Floriani M, Adam-Guillermin C. Effects of gamma ionizing radiation exposure on Danio rerio embryo-larval stages - comparison with tritium exposure. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124866. [PMID: 33429147 DOI: 10.1016/j.jhazmat.2020.124866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/02/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
The objective was to investigate the effects of ionizing radiation induced in zebrafish early life stages by coupling responses obtained at the molecular (genotoxicity, ROS production, gene expression) and phenotypic (tissue alteration, embryo-larval development) levels. Here we present results obtained after exposure of 3 hpf larvae to 10 days of gamma irradiation at 3.3 × 101, 1.3 × 102 and 1.2 × 103 µGy/h, close to and higher than the benchmark for protection of ecosystems towards ionizing radiations of 101 µGy/h. Dose rates used in these studies were chosen to be in the 'derived consideration reference level' (DCRL) for gamma irradiation where deleterious effects can appear in freshwater fish. Also, these dose rates were similar to the ones already tested on tritium (beta ionizing radiation) in our previous work, in order to compare both types of ionizing radiation. Results showed that gamma irradiation did not induce any effect on survival and hatching. No effect was observed on DNA damages, but ROS production was increased. Muscle damages were observed for all tested dose rates, similarly to previous results obtained with tritium (beta ionizing radiation) at similar dose rates. Some molecular responses therefore appeared to be relevant for the study of gamma ionizing radiation effects in zebrafish.
Collapse
Affiliation(s)
- Beatrice Gagnaire
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, Saint-Paul-lez-Durance 13115, France.
| | - Caroline Arcanjo
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, Saint-Paul-lez-Durance 13115, France
| | - Isabelle Cavalié
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, Saint-Paul-lez-Durance 13115, France
| | - Virginie Camilleri
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, Saint-Paul-lez-Durance 13115, France
| | - Olivier Simon
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, Saint-Paul-lez-Durance 13115, France
| | - Nicolas Dubourg
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, Saint-Paul-lez-Durance 13115, France
| | - Magali Floriani
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, Saint-Paul-lez-Durance 13115, France
| | - Christelle Adam-Guillermin
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-SANTE/SDOS/LMDN, Cadarache, Saint-Paul-lez-Durance 13115, France
| |
Collapse
|
14
|
Canedo A, Rocha TL. Zebrafish (Danio rerio) using as model for genotoxicity and DNA repair assessments: Historical review, current status and trends. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:144084. [PMID: 33383303 DOI: 10.1016/j.scitotenv.2020.144084] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/18/2020] [Accepted: 11/21/2020] [Indexed: 06/12/2023]
Abstract
Genotoxic pollutants lead to both DNA damage and changes in cell repair mechanisms. Selecting suitable biomonitors is a fundamental step in genotoxicity studies. Thus, zebrafish have become a popular model used to assess the genotoxicity of different pollutants in recent years. They have orthologous genes with humans and hold almost all genes involved in different repair pathways. Therefore, the aim of the current study is to summarize the existing literature on zebrafish using as model system to assess the genotoxicity of different pollutants. Revised data have shown that comet assay is the main technique adopted in these studies. However, it is necessary standardizing the technique applied to zebrafish in order to enable better result interpretation and comparisons. Overall, pollutants lead to single-strand breaks (SSB), double-strand breaks (DSB), adduct formation, as well as to changes in the expression of genes involved in repair mechanisms. Although analyzing repair mechanisms is essential to better understand the genotoxic effects caused by pollutants, few studies have analyzed repair capacity. The current review reinforces the need of conducting further studies on the role played by repair pathways in zebrafish subjected to DNA damage. Revised data have shown that zebrafish are a suitable model to assess pollutant-induced genotoxicity.
Collapse
Affiliation(s)
- Aryelle Canedo
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiania, Goiás, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiania, Goiás, Brazil..
| |
Collapse
|
15
|
Vernon EL, Moore MN, Bean TP, Jha AN. Evaluation of interactive effects of phosphorus-32 and copper on marine and freshwater bivalve mollusks. Int J Radiat Biol 2020; 98:1106-1119. [PMID: 32970511 DOI: 10.1080/09553002.2020.1823032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE Contaminants seldom occur in isolation in the aquatic environment. While pollution of coastal and inland water bodies has received considerable attention to date, there is limited information on potential interactive effects between radionuclides and metals. Whether by accidental or controlled release, such contaminants co-exist in aquatic ecosystems and can pose an enhanced threat to biota. Using a range of biological responses, the study aimed to evaluate relative interactive effects on representative freshwater and marine bivalve species. METHODS An integrated, multi-biomarker approach was adopted to investigate response to copper (Cu, 18 μg L-1), a known environmentally relevant genotoxic metal and differing concentrations of phosphorus-32 (32P; 0.1 and 1 mGy d-1), alone and in combination in marine (Mytilus galloprovincialis) and freshwater (Dreissena polymorpha) mussels. Genetic and molecular biomarkers were determined post-exposure and included DNA damage (as measured by the comet assay), micronuclei (MN) formation, γ-H2AX foci induction and the expression of key stress-related genes (i.e. hsp70/90, sod, cat, gst). RESULTS Overall, using a tissue-specific (i.e. gill and digestive gland) approach, genotoxic response was reflective of exposures where Cu had a slight additive effect on 32P-induced damage across the species (but not all), cell types and dose rates. Multivariate analysis found significant correlations between comet and γ-H2AX assays, across both the tissues. Transcriptional expression of selected genes were generally unaltered in response to contaminant exposures, independent of species or tissues. CONCLUSIONS Our study is the first to explore the interactive effects of ionizing radiation (IR) and Cu on two bivalve species representing two ecological habitats. The complexity of IR-metal interactions demonstrate that extrapolation of findings obtained from single stressor studies into field conditions could be misrepresentative of real-world environments. In turn, environmental protective strategies deemed suitable in protecting biota from a single, isolated stressor may not be wholly adequate.
Collapse
Affiliation(s)
- Emily L Vernon
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | - Michael N Moore
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK.,European Centre for Environment and Human Health (ECEHH), University of Exeter Medical School, Truro, UK.,Plymouth Marine Laboratory, Plymouth, UK
| | | | - Awadhesh N Jha
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| |
Collapse
|
16
|
Vo NTK. The sine qua non of the fish invitrome today and tomorrow in environmental radiobiology. Int J Radiat Biol 2020; 98:1025-1033. [PMID: 32816609 DOI: 10.1080/09553002.2020.1812761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Fish cell lines, collectively referred to as the fish invitrome, are useful diagnostic tools to study radiation impacts on aquatic health and elucidate radiation mechanisms in fish. This paper will highlight the advantages, discuss the challenges, and propose possible future directions for uses of the fish invitrome in the field of environmental radiobiology. The fish invitrome contains at least 714 fish cell lines. However, only a few of these cell lines have been used to study radiation biology in fish and they represent only 10 fish species. The fish invitrome is clearly not yet explored for its full potential in radiation biology. Evidence suggests that they are useful and, in some cases, irreplaceable in making underlying theories and fundamental concepts in radiation responses in fish. The debate of whether environmental radiation is harmful, presents risks, has no effect on health, or is beneficial is on-going and is one that fish cell lines can help address in a time-effective fashion. Any information obtained with fish cell lines is useful in the framework of environment radiation risk assessments. Radiation threats to aquatic health will continue due to the very likely rise of nuclear energy and medicine in the future. The fish invitrome, in theory, lives forever and can meet new challenges at any given time to provide diagnostic risk analyses pertaining to aquatic health and environmental radiation protection.
Collapse
Affiliation(s)
- Nguyen T K Vo
- Department of Biology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
17
|
Lerebours A, Robson S, Sharpe C, Smith JT. Subtle effects of radiation on embryo development of the 3-spined stickleback. CHEMOSPHERE 2020; 248:126005. [PMID: 32032873 DOI: 10.1016/j.chemosphere.2020.126005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/20/2019] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
The Chernobyl and Fukushima nuclear power plant (NPP) accidents that occurred in 1986 and 2011 respectively have led to many years of chronic radiation exposure of wildlife. However, controversies remain on the dose threshold above which an impact on animal health occurs. Fish have been highly exposed immediately after both accidents in freshwater systems around Chernobyl and in freshwater and marine systems around Fukushima. The dose levels decreased during the years after the accidents, however, little is known about the effects of environmental low doses of radiation on fish health. The present laboratory study assesses the effects of an environmentally relevant dose range of radiation (0.1, 1 and 10 mGy/day) on early life stages of the 3-spined stickleback, Gasterosteus aculeatus. The cardiac physiology and developmental features (head width, diameter, area) of high exposed embryos (10 mGy/day) showed no significant change when compared to controls. Embryos exposed to the medium and high dose were slower to hatch than the controls (between 166 and 195 h post-fertilization). After 10 days of exposure (at 240 h post-fertilization), larvae exposed to the high dose displayed comparable growth to controls. High-throughput sequence analysis of transcriptional changes at this time point revealed no significant changes in gene regulation compared to controls regardless of exposure conditions. Our results suggest that exposure of fish embryos to environmental radiation elicits subtle delays in hatching times, but does not impair the overall growth and physiology, nor the gene expression patterns in the recently hatched larvae.
Collapse
Affiliation(s)
- Adélaïde Lerebours
- School of Earth and Environmental Sciences, University of Portsmouth, Portsmouth, PO1 3QL, United Kingdom; School of Biological Sciences, University of Portsmouth, Portsmouth, PO1 2DY, United Kingdom.
| | - Samuel Robson
- Centre for Enzyme Innovation, University of Portsmouth, Portsmouth, PO1 2DT, United Kingdom
| | - Colin Sharpe
- School of Biological Sciences, University of Portsmouth, Portsmouth, PO1 2DY, United Kingdom
| | - Jim T Smith
- School of Earth and Environmental Sciences, University of Portsmouth, Portsmouth, PO1 3QL, United Kingdom
| |
Collapse
|
18
|
Gagnaire B, Arcanjo C, Cavalié I, Camilleri V, Simon O, Floriani M, Orjollet D, Adam-Guillermin C. Tritiated Water Exposure in Zebrafish (Danio rerio): Effects on the Early-Life Stages. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:648-658. [PMID: 31858643 DOI: 10.1002/etc.4650] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/15/2019] [Accepted: 12/14/2019] [Indexed: 06/10/2023]
Abstract
Tritium, a radioactive isotope of hydrogen of natural and anthropogenic origin, is ubiquitously present in the environment. Effluents of nuclear centers of production are significant anthropogenic sources. With the upcoming project of thermonuclear fusion, tritium releases in the environment may increase. It is therefore important to characterize the ecological risk linked to tritium. The effects of tritiated water (HTO) were therefore studied in zebrafish larvae exposed for 10 d to different dose rates, 1.1 × 102 , 4.1 × 102 , and 3.8 × 103 µGy/h for larvae corresponding, respectively, to a water contamination of 104 , 105 , and 106 Bq/mL of HTO. Those dose rates were higher than 10 μGy/h, which is the threshold recommended to start monitoring ecosystems where radiological contaminants are present. Mortality, embryo-larval development, immune toxicity, genotoxicity, neurotoxicity, and alterations of tissues were investigated. The results showed that HTO exposure induced DNA damage and reactive oxygen species production and modulated the expression of genes involved in detoxification processes. Moreover, modifications of the muscular tissues (degradation of myofibrils at 4 d post fertilization and disorganization of mitochondria at later stages) were observed. The results differed with HTO dose rates and with developmental stages. These results will drive future research for the development of new HTO-sensitive biomarkers and will allow us to progress in the characterization of the modes of action of tritium in fish. Environ Toxicol Chem 2020;39:648-658. © 2019 SETAC.
Collapse
Affiliation(s)
- Béatrice Gagnaire
- PSE-ENV/SRTE/LECO, Institut de Radioprotection et de Sûreté Nucléaire, Cadarache, France
| | - Caroline Arcanjo
- PSE-ENV/SRTE/LECO, Institut de Radioprotection et de Sûreté Nucléaire, Cadarache, France
| | - Isabelle Cavalié
- PSE-ENV/SRTE/LECO, Institut de Radioprotection et de Sûreté Nucléaire, Cadarache, France
| | - Virginie Camilleri
- PSE-ENV/SRTE/LECO, Institut de Radioprotection et de Sûreté Nucléaire, Cadarache, France
| | - Olivier Simon
- PSE-ENV/SRTE/LECO, Institut de Radioprotection et de Sûreté Nucléaire, Cadarache, France
| | - Magali Floriani
- PSE-ENV/SRTE/LECO, Institut de Radioprotection et de Sûreté Nucléaire, Cadarache, France
| | - Daniel Orjollet
- PSE-ENV/SRTE/LR2T, Institut de Radioprotection et de Sûreté Nucléaire, Cadarache, France
| | | |
Collapse
|
19
|
Vernon EL, Bean TP, Jha AN. Assessing relative biomarker responses in marine and freshwater bivalve molluscs following exposure to phosphorus 32 ( 32P): Application of genotoxicological and molecular biomarkers. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2020; 213:106120. [PMID: 31783294 DOI: 10.1016/j.jenvrad.2019.106120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/12/2019] [Accepted: 11/19/2019] [Indexed: 06/10/2023]
Abstract
Anthropogenic radionuclides can enter water bodies through accidental or controlled discharges. In order to assess their potential impact, understanding the link between exposure, tissue specific bioaccumulation and radiation dose rate, to biological or biomarker responses in aquatic biota is required. Adopting an integrated, multi-biomarker, multi-species approach, we have investigated potential biological responses induced by short-lived radionuclide, phosphorus-32 (32P, radiophosphorus) in two ecologically important mussel species, the freshwater Dreissena polymorpha (DP) and marine Mytilus galloprovincialis (MG). Adult individuals were exposed to 32P for 10 days, to acquire nominal whole-body average dose rates of 0.10, 1 and 10 mGy d-1, which encompass a screening value of 10 μGy h-1 (0.24 mGy d-1), in accordance with the ERICA tool. Following exposure, a suite of genotoxic biomarkers (DNA damage, γ-H2AX induction and micronucleus [MN] formation) were measured in gill and digestive gland tissues, along with transcriptional expression of selected stress-related genes in both the species (i.e. hsp70/90, sod, cat and gst). Our results demonstrate the relationship between tissue specific dosimetry, where 32P induced a dose-dependent increase, and biological responses independent of species. Gene expression analysis revealed little significant variation across species or tissues. Overall, MG appeared to be more sensitive to short-term damage (i.e. high DNA damage and γ-H2AX induction), particularly in digestive gland. This study contributes to limited knowledge on the transfer and biological impact of radionuclides within differing aquatic systems on a tissue specific level, aiding the development of adequate management and protective strategies.
Collapse
Affiliation(s)
- Emily L Vernon
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Tim P Bean
- Cefas Weymouth Laboratory, Barrack Road, The Nothe, Weymouth, Dorset, DT4 8UB, UK
| | - Awadhesh N Jha
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK.
| |
Collapse
|
20
|
Arcanjo C, Adam-Guillermin C, Murat El Houdigui S, Loro G, Della-Vedova C, Cavalie I, Camilleri V, Floriani M, Gagnaire B. Effects of tritiated water on locomotion of zebrafish larvae: a new insight in tritium toxic effects on a vertebrate model species. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 219:105384. [PMID: 31869577 DOI: 10.1016/j.aquatox.2019.105384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 12/05/2019] [Accepted: 12/15/2019] [Indexed: 06/10/2023]
Abstract
Tritium (3H), a radioactive isotope of hydrogen, is ubiquitously present in the environment. In a previous study, we highlighted a mis-regulation of genes involved in muscle contraction, eye transparency and response to DNA damages after exposure of zebrafish embryo-larvae from 3 hpf to 96 hpf at 0.4 and 4 mGy/h of tritiated water (HTO). The present study aimed to link this gene mis-regulation to responses observed at higher biological levels. Analyses on spontaneous tail movement, locomotor activity and heart rate were performed. Histological sections of eyes were made to evaluate the impact of HTO on eye transparency and whole embryo immunostainings were realized to assess DNA double strand breaks repair using gamma-H2AX foci. We found a decrease of basal velocity as well as a decrease of response in 96 hpf larvae exposed at 0.4 mGy/h after a tactile stimulus as compared to controls. Histological sections of larvae eyes performed after the exposure to 4 mGy/h did not show obvious differences in lens transparency or retinal development between contaminated and control organisms. Gamma-H2AX foci detection revealed no differences in the number of foci between contaminated organisms and controls, for both dose rates. Overall, results highlighted more detrimental effects of HTO exposure on locomotor behavior in 96 hpf larvae exposed at the lowest dose rate. Those results could be linked to mis-regulation of genes involved in muscle contraction found in a previous study at the same dose rate. It appears that not all effects found at the molecular scale were confirmed using higher biological scales. These results could be due to a delay between gene expression modulation and the onset of physiological disruption or homeostatic mechanisms to deal with tritium effects. However, crossing data from different scales highlighted new pathways to explore, i.e. neurotoxic pathways, for better understanding HTO effects on organisms.
Collapse
Affiliation(s)
- Caroline Arcanjo
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, 13115, Saint-Paul-lez-Durance, France.
| | - Christelle Adam-Guillermin
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE\SDOS\LMDN, Cadarache, 13115, Saint-Paul-lez-Durance, France
| | - Sophia Murat El Houdigui
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, 13115, Saint-Paul-lez-Durance, France
| | - Giovanna Loro
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, 13115, Saint-Paul-lez-Durance, France
| | - Claire Della-Vedova
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, 13115, Saint-Paul-lez-Durance, France
| | - Isabelle Cavalie
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, 13115, Saint-Paul-lez-Durance, France
| | - Virginie Camilleri
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, 13115, Saint-Paul-lez-Durance, France
| | - Magali Floriani
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, 13115, Saint-Paul-lez-Durance, France
| | - Béatrice Gagnaire
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, 13115, Saint-Paul-lez-Durance, France.
| |
Collapse
|
21
|
A systems biology approach reveals neuronal and muscle developmental defects after chronic exposure to ionising radiation in zebrafish. Sci Rep 2019; 9:20241. [PMID: 31882844 PMCID: PMC6934629 DOI: 10.1038/s41598-019-56590-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/13/2019] [Indexed: 11/11/2022] Open
Abstract
Contamination of the environment after the Chernobyl and Fukushima Daiichi nuclear power plant (NPP) disasters led to the exposure of a large number of humans and wild animals to radioactive substances. However, the sub-lethal consequences induced by these absorbed radiological doses remain understudied and the long-term biological impacts largely unknown. We assessed the biological effects of chronic exposure to ionizing radiation (IR) on embryonic development by exposing zebrafish embryo from fertilization and up to 120 hours post-fertilization (hpf) at dose rates of 0.5 mGy/h, 5 mGy/h and 50 mGy/h, thereby encompassing the field of low dose rates defined at 6 mGy/h. Chronic exposure to IR altered larval behaviour in a light-dark locomotor test and affected cardiac activity at a dose rate as low as 0.5 mGy/h. The multi-omics analysis of transcriptome, proteome and transcription factor binding sites in the promoters of the deregulated genes, collectively points towards perturbations of neurogenesis, muscle development, and retinoic acid (RA) signaling after chronic exposure to IR. Whole-mount RNA in situ hybridization confirmed the impaired expression of the transcription factors her4.4 in the central nervous system and myogenin in the developing muscles of exposed embryos. At the organ level, the assessment of muscle histology by transmission electron microscopy (TEM) demonstrated myofibers disruption and altered neuromuscular junctions in exposed larvae at 5 mGy/h and 50 mGy/h. The integration of these multi-level data demonstrates that chronic exposure to low dose rates of IR has an impact on neuronal and muscle progenitor cells, that could lead to motility defects in free swimming larvae at 120 hpf. The mechanistic understanding of these effects allows us to propose a model where deregulation of RA signaling by chronic exposure to IR has pleiotropic effects on neurogenesis and muscle development.
Collapse
|
22
|
Maremonti E, Eide DM, Oughton DH, Salbu B, Grammes F, Kassaye YA, Guédon R, Lecomte-Pradines C, Brede DA. Gamma radiation induces life stage-dependent reprotoxicity in Caenorhabditis elegans via impairment of spermatogenesis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 695:133835. [PMID: 31425988 DOI: 10.1016/j.scitotenv.2019.133835] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/31/2019] [Accepted: 08/06/2019] [Indexed: 06/10/2023]
Abstract
The current study investigated life stage, tissue and cell dependent sensitivity to ionizing radiation of the nematode Caenorhabditis elegans. Results showed that irradiation of post mitotic L4 stage larvae induced no significant effects with respect to mortality, morbidity or reproduction at either acute dose ≤6 Gy (1500 mGy·h-1) or chronic exposure ≤15 Gy (≤100 mGy·h-1). In contrast, chronic exposure from the embryo to the L4-young adult stage caused a dose and dose-rate dependent reprotoxicity with 43% reduction in total brood size at 6.7 Gy (108 mGy·h-1). Systematic irradiation of the different developmental stages showed that the most sensitive life stage was L1 to young L4. Exposure during these stages was associated with dose-rate dependent genotoxic effects, resulting in a 1.8 to 2 fold increase in germ cell apoptosis in larvae subjected to 40 or 100 mGy·h-1, respectively. This was accompanied by a dose-rate dependent reduction in the number of spermatids, which was positively correlated to the reprotoxic effect (0.99, PCC). RNAseq analysis of nematodes irradiated from L1 to L4 stage revealed a significant enrichment of differentially expressed genes related to both male and hermaphrodite reproductive processes. Gene network analysis revealed effects related to down-regulation of genes required for spindle formation and sperm meiosis/maturation, including smz-1, smz-2 and htas-1. Furthermore, the expression of a subset of 28 set-17 regulated Major Sperm Proteins (MSP) required for spermatid production was correlated (R2 0.80) to the reduction in reproduction and the number of spermatids. Collectively these observations corroborate the impairment of spermatogenesis as the major cause of gamma radiation induced life-stage dependent reprotoxic effect. Furthermore, the progeny of irradiated nematodes showed significant embryonal DNA damage that was associated with persistent effect on somatic growth. Unexpectedly, these nematodes maintained much of their reproductive capacity in spite of the reduced growth.
Collapse
Affiliation(s)
- Erica Maremonti
- Centre for Environmental Radioactivity (CERAD), Faculty of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences (NMBU), 1432 Ås, Norway.
| | - Dag M Eide
- Centre for Environmental Radioactivity (CERAD), Faculty of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences (NMBU), 1432 Ås, Norway; Norwegian Institute of Public Health, Lovisenberggata 8, 0456 Oslo, Norway
| | - Deborah H Oughton
- Centre for Environmental Radioactivity (CERAD), Faculty of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences (NMBU), 1432 Ås, Norway
| | - Brit Salbu
- Centre for Environmental Radioactivity (CERAD), Faculty of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences (NMBU), 1432 Ås, Norway
| | - Fabian Grammes
- Centre for Integrative Genetics (CIGENE), Faculty of Biosciences (BIOVIT), Norwegian University of Life Sciences (NMBU), 1432 Ås, Norway
| | - Yetneberk A Kassaye
- Centre for Environmental Radioactivity (CERAD), Faculty of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences (NMBU), 1432 Ås, Norway
| | - Rémi Guédon
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV, SERIS, Laboratoire d'ECOtoxicologie des radionucléides (LECO), Cadarache, France
| | - Catherine Lecomte-Pradines
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV, SERIS, Laboratoire d'ECOtoxicologie des radionucléides (LECO), Cadarache, France
| | - Dag Anders Brede
- Centre for Environmental Radioactivity (CERAD), Faculty of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences (NMBU), 1432 Ås, Norway
| |
Collapse
|
23
|
Zhang W, Xie HQ, Zou X, Li J, Xu L, Li Y, Zhou Z, Jin T, Ma D, Zhao B. The toxic effects of in situ exposure of a native fish species (Anabas testudineus) to electronic waste pollution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 690:1170-1177. [PMID: 31470480 DOI: 10.1016/j.scitotenv.2019.06.479] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/27/2019] [Accepted: 06/27/2019] [Indexed: 06/10/2023]
Abstract
In recent decades, crude recycling of electronic waste (e-waste) has caused serious pollution and threatened wild organisms in certain regions. It is therefore valuable to investigate the pollution-induced toxic effects in situ using native fish species. Unlike the death or decline observed in other species, Anabas testudineus can better adapt to severe e-waste pollution. Using it as a model, the true status of this wild organism was revealed. We collected A. testudineus from two polluted sites (st1 and st2) and conducted transcriptome analyses of the liver, gill, and kidney. Clear whole-transcriptome differences were found between polluted and clean sites and between differentially polluted sites (st1 and st2). Pathway analysis revealed that long-term e-waste pollution would cause significant hypoxia, oxidative stress, and potentially apoptosis. Accordingly, several defensive responses were elicited including 'oxidation-reduction' and the 'unfolded protein response'. Certain biological processes, including 'DNA repair' and 'endoplasmic reticulum stress response', were altered in a tissue- or burden-specific pattern suggesting transcriptome plasticity in response to distinct burdens. This study revealed the toxic impacts of e-waste pollution on wild organisms using a native fish species. Additionally, due to its highly adaptive nature, A. testudineus could be a suitable test species for such severe conditions in the wild or otherwise.
Collapse
Affiliation(s)
- Wanglong Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heidi Qunhui Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianghui Zou
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou 521041, China
| | - Jiao Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunping Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiguang Zhou
- State Environmental Protection Key Laboratory of Dioxin Pollution Control, National Research Center for Environmental Analysis and Measurement, Beijing 100029, China
| | - Tao Jin
- China National Genebank-Shenzhen, BGI-Shenzhen, Shenzhen 518083, China; BGI-Qingdao, Qingdao 266510, China
| | - Dan Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
24
|
Cruz FF, Pereira TCB, Altenhofen S, da Costa KM, Bogo MR, Bonan CD, Morrone FB. Characterization of the adenosinergic system in a zebrafish embryo radiotherapy model. Comp Biochem Physiol C Toxicol Pharmacol 2019; 224:108572. [PMID: 31306805 DOI: 10.1016/j.cbpc.2019.108572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/27/2019] [Accepted: 07/09/2019] [Indexed: 12/15/2022]
Abstract
Adenosine is a nucleoside that acts as a signaling molecule by activating P1 purinergic receptors (A1, A2A, A2B and A3). This activation is involved in immune responses, inflammation, and tissue remodeling and tumor progression. Gamma rays are a type of ionizing radiation widely adopted in radiotherapy of tumors. Although it brings benefits to the success of the therapeutic scheme, it can trigger cellular damages, inducing a perpetual inflammatory response that culminates in adverse effects and severe toxicity. Our study aims to characterize the adenosinergic system in a zebrafish embryo radiotherapy model, relating the adenosine signaling to the changes elicited by radiation exposure. To standardize the radiotherapy procedure, we established a toxicological profile after exposure. Zebrafish were irradiated with different doses of gamma rays (2, 5, 10, 15 and 20 Gy) at 24 hpf. Survival, hatching rate, heartbeats, locomotor activity and morphological changes were determined during embryos development. Although without significant difference in survival, gamma-irradiated embryos had their heartbeats increased and presented decreased hatching time, changes in locomotor activity and important morphological alterations. The exposure to 10 Gy disrupted the ecto-5'-nucleotidase/CD73 and adenosine deaminase/ADA enzymatic activity, impairing adenosine metabolism. We also demonstrated that radiation decreased A2B receptor gene expression, suggesting the involvement of extracellular adenosine in the changes prompted by radiotherapy. Our results indicate that the components of the adenosinergic system may be potential targets to improve radiotherapy and manage the tissue damage and toxicity of ionizing radiation.
Collapse
Affiliation(s)
- Fernanda Fernandes Cruz
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Talita Carneiro Brandão Pereira
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Biologia Genômica e Molecular, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Stefani Altenhofen
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Kesiane Mayra da Costa
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Biologia Genômica e Molecular, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maurício Reis Bogo
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Biologia Genômica e Molecular, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carla Denise Bonan
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Fernanda Bueno Morrone
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
25
|
Dubois C, Pophillat M, Audebert S, Fourquet P, Lecomte C, Dubourg N, Galas S, Camoin L, Frelon S. Differential modification of the C. elegans proteome in response to acute and chronic gamma radiation: Link with reproduction decline. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 676:767-781. [PMID: 31055208 DOI: 10.1016/j.scitotenv.2019.04.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/28/2019] [Accepted: 04/03/2019] [Indexed: 06/09/2023]
Abstract
Emission of ionizing radiation (IR) in the environment is a natural phenomenon which can be enhanced by human activities. Ecosystems are then chronically exposed to IR. But environmental risk assessment of chronic exposure suffers from a lack of knowledge. Extrapolation of data from acute to chronic exposure is not always relevant, and can lead to uncertainties as effects could be different between the two irradiation modes, especially regarding reproduction endpoint, which is an ecologically relevant parameter. In the present study, we decided to refine the understanding of the molecular mechanisms involved in response to acute and chronic γ-irradiation by a global proteome label free LC-MS/MS analysis. C. elegans were exposed to 3 common cumulated radiation doses for acute or chronic exposure condition and global modification of the proteome was studied. This analysis of protein expression has demonstrated the modulation of proteins involved in regulatory biological processes such as lipid transport, DNA replication, germ cell development, apoptosis, ion transport, cuticle development, and aging at lower doses than those for which individual effects on reproduction have been previously observed. Thus, these proteins could constitute early and sensitive markers of radio-induced reprotoxicity; more specifically HAT-1, RPS-19 in acute and VIT-3 for chronic conditions that are expressed in a dose-dependent manner. Finally, to focus on reproduction process, this analysis showed either repression or overexpression of 12 common proteins in organisms exposed to acute or chronic irradiation, respectively. These proteins include the vitellogenin cluster notably involved in lipid transport and oocyte maturation and proteins involved in cuticle development and molting i.e. COL-14, GLF-1, NOAH-1, NOAH-2, ACN-1. These results show that protein expression modulation is a sensitive and predictive marker of radio-induced reproductive effects, but also highlight limitation of data extrapolation from acute to chronic exposure for environmental risk assessment.
Collapse
Affiliation(s)
- Cécile Dubois
- IRSN/PSE-ENV/SRTE, Laboratoire d'ecotoxicologie des radionucléides, BP3 - 13115 St Paul lez Durance Cedex, France
| | - Matthieu Pophillat
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France
| | - Stéphane Audebert
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France
| | - Patrick Fourquet
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France
| | - Catherine Lecomte
- IRSN/PSE-ENV/SRTE, Laboratoire d'ecotoxicologie des radionucléides, BP3 - 13115 St Paul lez Durance Cedex, France
| | - Nicolas Dubourg
- IRSN/PSE-ENV/SRTE, Laboratoire d'ecotoxicologie des radionucléides, BP3 - 13115 St Paul lez Durance Cedex, France
| | - Simon Galas
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Luc Camoin
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France.
| | - Sandrine Frelon
- IRSN/PSE-ENV/SRTE, Laboratoire d'ecotoxicologie des radionucléides, BP3 - 13115 St Paul lez Durance Cedex, France.
| |
Collapse
|
26
|
Žegura B, Filipič M. The application of the Comet assay in fish cell lines. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 842:72-84. [DOI: 10.1016/j.mrgentox.2019.01.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 01/18/2019] [Accepted: 01/21/2019] [Indexed: 12/28/2022]
|
27
|
Zhao W, Hu N, Ding D, Long D, Li S, Li G, Zhang H. Developmental toxicity and apoptosis in zebrafish embryos induced by low-dose γ-ray irradiation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:3869-3881. [PMID: 30539402 DOI: 10.1007/s11356-018-3893-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 11/29/2018] [Indexed: 06/09/2023]
Abstract
In this paper, the developmental toxicity and apoptosis in zebrafish (Danio rerio) embryos induced by 0.01, 0.05, and 0.10-Gy γ-ray irradiation were investigated and verified by single cell gel electrophoresis, acridine orange staining, flow cytometry, transmission electron microscopy, digital gene expression sequencing, and Western blot analysis. DNA damage, deformity rates, and apoptosis of zebrafish embryos were found to increase significantly with the increase of irradiation dose, and survival and hatching rates significantly decreased when the irradiation dose exceeds 0.10 and 0.05 Gy, respectively. Exposure to 0.10-Gy γ-ray irradiation resulted in the swelling of cell mitochondria of zebrafish embryos and changes in their intracellular vacuoles. mRNA and protein expression levels of Shh (sonic hedgehog 19 KDa) and Smo (smoothened 86 KDa) of Hh signaling pathway associated with the development of early embryos significantly increased with the increase of irradiation dose. Expression of the AKT (56 KDa) and PiK3r3 (55 KDa) genes, which are anti-apoptotic and involved with the PI3K/Akt signaling pathway, significantly decreased, while expression of the bada gene, which is pro-apoptotic, significantly increased. The results show that γ-ray irradiations of 0.01 and 0.05 Gy can induce developmental toxicity and apoptosis in zebrafish embryos via Hh and PI3K/Akt signaling pathways, respectively.
Collapse
Affiliation(s)
- Weichao Zhao
- School of Environment Protection and Safety Engineering, University of South China, Hengyang, 421001, China
- School of Public Health, University of South China, Hengyang, 421001, Hunan, China
| | - Nan Hu
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, China
| | - Dexin Ding
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, China.
| | - Dingxin Long
- School of Public Health, University of South China, Hengyang, 421001, Hunan, China
| | - Sheng Li
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, China
| | - Guangyue Li
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, China
| | - Hui Zhang
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, China
| |
Collapse
|
28
|
Cayuela ML, Claes KBM, Ferreira MG, Henriques CM, van Eeden F, Varga M, Vierstraete J, Mione MC. The Zebrafish as an Emerging Model to Study DNA Damage in Aging, Cancer and Other Diseases. Front Cell Dev Biol 2019; 6:178. [PMID: 30687705 PMCID: PMC6335974 DOI: 10.3389/fcell.2018.00178] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/22/2018] [Indexed: 12/17/2022] Open
Abstract
Cancer is a disease of the elderly, and old age is its largest risk factor. With age, DNA damage accumulates continuously, increasing the chance of malignant transformation. The zebrafish has emerged as an important vertebrate model to study these processes. Key mechanisms such as DNA damage responses and cellular senescence can be studied in zebrafish throughout its life course. In addition, the zebrafish is becoming an important resource to study telomere biology in aging, regeneration and cancer. Here we review some of the tools and resources that zebrafish researchers have developed and discuss their potential use in the study of DNA damage, cancer and aging related diseases.
Collapse
Affiliation(s)
- Maria Luisa Cayuela
- Telomerase, Cancer and Aging Group, Surgery Unit, Instituto Murciano de Investigación Biosanitaria-Arrixaca, Murcia, Spain
| | | | | | - Catarina Martins Henriques
- Department of Oncology and Metabolism, Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | | | - Máté Varga
- Department of Genetics, Eötvös Loránd University, Budapest, Hungary
- MTA-SE Lendület Nephrogenetic Laboratory, Budapest, Hungary
| | | | | |
Collapse
|
29
|
Simon O, Barjhoux I, Camilleri V, Gagnaire B, Cavalié I, Orjollet D, Darriau F, Pereira S, Beaugelin-Seillers K, Adam-Guillermin C. Uptake, depuration, dose estimation and effects in zebrafish exposed to Am-241 via dietary route. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2018; 193-194:68-74. [PMID: 30199762 DOI: 10.1016/j.jenvrad.2018.08.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 07/13/2018] [Accepted: 08/19/2018] [Indexed: 06/08/2023]
Abstract
Zebrafish were chronically exposed to Am-241, an alpha-emitting radionuclide via daily consumption of an enriched artificial diet. Am-241 uptake was quantified in Danio rerio after 5 and 21 days of exposure via daily Am-spiked food ingestion and after 21 days of exposure followed by 5 days of depuration. Americium accumulates mostly in digestive tract, muscle, rest of the body but the accumulation levels and trophic transfer rate (0.033-0.013%) were low. Corresponding cumulative doses were calculated for the whole body (9 mGy) and for the digestive tract (42 mGy) with internal alpha radiation contributing to more than 99% of the total dose. Genotoxic effects (gamma-H2AX assay) and differential gene expressions of main biological functions were examined. Although fish were exposed to a low dose rate of 13 μGy h-1, DNA integrity and gene expression linked to oxidative stress, hormonal signaling and spermatogenesis were altered after 21 days of Am-241 exposure. These results underline the higher toxicity of alpha emitter Am-241, as compared to other studies on gamma radiation exposure.
Collapse
Affiliation(s)
- O Simon
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN) PSE ENV SRTE LECO, Cadarache, Saint Paul-lez-Durance, France.
| | - I Barjhoux
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN) PSE ENV SRTE LECO, Cadarache, Saint Paul-lez-Durance, France
| | - V Camilleri
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN) PSE ENV SRTE LECO, Cadarache, Saint Paul-lez-Durance, France
| | - B Gagnaire
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN) PSE ENV SRTE LECO, Cadarache, Saint Paul-lez-Durance, France
| | - I Cavalié
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN) PSE ENV SRTE LECO, Cadarache, Saint Paul-lez-Durance, France
| | - D Orjollet
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN) PSE ENV SRTE LR2T, Cadarache, Saint Paul-lez-Durance, France
| | - F Darriau
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN) PSE ENV SRTE LECO, Cadarache, Saint Paul-lez-Durance, France
| | - S Pereira
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN) PSE ENV SRTE LECO, Cadarache, Saint Paul-lez-Durance, France
| | - K Beaugelin-Seillers
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN) PSE ENV SRTE LECO, Cadarache, Saint Paul-lez-Durance, France
| | - C Adam-Guillermin
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN) PSE ENV SRTE LECO, Cadarache, Saint Paul-lez-Durance, France
| |
Collapse
|
30
|
Wang Y, Zhou X, Zhao B, Ren X, Chen Y, Si J, Zhou R, Gan L, Zhang H. Early embryonic exposure of ionizing radiations disrupts zebrafish pigmentation. J Cell Physiol 2018; 234:940-949. [PMID: 30144054 DOI: 10.1002/jcp.26922] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 06/13/2018] [Indexed: 12/23/2022]
Abstract
Studies have demonstrated that zebrafish are powerful tools for monitoring environmental toxicity, including radiation hazard. Here we investigated the developmental toxicity of ionizing radiation (IR) in an in vivo embryonic zebrafish model. The effects of heavy ion (12 C6+ ), proton, and X-ray radiation on early zebrafish embryos were determined. A similar dose-dependent decrease in the hatch and survival rate of zebrafish embryos was observed after exposure to these irradiations. Exposure of zebrafish embryos to 1-4 Gy IR caused significant loss of pigmentation. Quantitative real-time reverse transcription polymerase chain reaction, western blot analysis, and in situ hybridization (ISH) experiment revealed that atp5α1 was markedly upregulated in irradiated zebrafish embryos. In addition, IR resulted in a rapid decrease in total adenosine triphosphate (ATP) generation. With dual functions of synthesizing or hydrolyzing ATP, ATP synthase regulated H+ transport crossing the mitochondrial inner. Administration of the mitochondrial ATP synthase inhibitor, oligomycin, partially restored pigmentation in irradiated zebrafish embryos, but the ATPase inhibitor, BTB06584, had no effect. Taken together, these results showed that IR exposure downregulated zebrafish pigmentation through regulation of H+ ion transport in mitochondria.
Collapse
Affiliation(s)
- Yupei Wang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,CAS Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Institute of Modern Physics, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xin Zhou
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Baoquan Zhao
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Peking, China
| | - Xiaotang Ren
- State Key Laboratory of Nuclear Physics and Technology, Peking University, Peking, China
| | - Yuhong Chen
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,CAS Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Institute of Modern Physics, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Si
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,CAS Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Institute of Modern Physics, Lanzhou, China
| | - Rong Zhou
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,CAS Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Institute of Modern Physics, Lanzhou, China
| | - Lu Gan
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,CAS Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Institute of Modern Physics, Lanzhou, China
| | - Hong Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,CAS Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Institute of Modern Physics, Lanzhou, China.,Gansu Wuwei Tumor Hospital, Wuwei, China
| |
Collapse
|
31
|
Dubois C, Lecomte C, Ruys SPD, Kuzmic M, Della-Vedova C, Dubourg N, Galas S, Frelon S. Precoce and opposite response of proteasome activity after acute or chronic exposure of C. elegans to γ-radiation. Sci Rep 2018; 8:11349. [PMID: 30054490 PMCID: PMC6063909 DOI: 10.1038/s41598-018-29033-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 07/04/2018] [Indexed: 12/14/2022] Open
Abstract
Species are chronically exposed to ionizing radiation, a natural phenomenon which can be enhanced by human activities. The induced toxicity mechanisms still remain unclear and seem depending on the mode of exposure, i.e. acute and chronic. To better understand these phenomena, studies need to be conducted both at the subcellular and individual levels. Proteins, functional molecules in organisms, are the targets of oxidative damage (especially via their carbonylation (PC)) and are likely to be relevant biomarkers. After exposure of Caenorhabditis elegans to either chronic or acute γ rays we showed that hatching success is impacted after acute but not after chronic irradiation. At the molecular level, the carbonylated protein level in relation with dose was slightly different between acute and chronic exposure whereas the proteolytic activity is drastically modified. Indeed, whereas the 20S proteasome activity is inhibited by acute irradiation from 0.5 Gy, it is activated after chronic irradiation from 1 Gy. As expected, the 20S proteasome activity is mainly modified by irradiation whereas the 26S and 30S activity are less changed. This study provides preliminaries clues to understand the role of protein oxidation and proteolytic activity in the radiation-induced molecular mechanisms after chronic versus acute irradiation in C. elegans.
Collapse
Affiliation(s)
- Cécile Dubois
- IRSN/PSE-ENV/SRTE - Laboratoire d'ecotoxicologie des radionucléides - BP3, 13115, St Paul lez Durance Cedex, France
| | - Catherine Lecomte
- IRSN/PSE-ENV/SRTE - Laboratoire d'ecotoxicologie des radionucléides - BP3, 13115, St Paul lez Durance Cedex, France
| | - Sébastien Pyr Dit Ruys
- IRSN/PSE-ENV/SRTE - Laboratoire d'ecotoxicologie des radionucléides - BP3, 13115, St Paul lez Durance Cedex, France
| | - Mira Kuzmic
- IRSN/PSE-ENV/SRTE - Laboratoire d'ecotoxicologie des radionucléides - BP3, 13115, St Paul lez Durance Cedex, France
| | | | - Nicolas Dubourg
- IRSN/PSE-ENV/SRTE - Laboratoire d'ecotoxicologie des radionucléides - BP3, 13115, St Paul lez Durance Cedex, France
| | - Simon Galas
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Sandrine Frelon
- IRSN/PSE-ENV/SRTE - Laboratoire d'ecotoxicologie des radionucléides - BP3, 13115, St Paul lez Durance Cedex, France.
| |
Collapse
|
32
|
Barrett C, Hellickson I, Ben-Avi L, Lamb D, Krahenbuhl M, Cerveny KL. Impact of Low-level Ionizing Radiation on Cell Death During Zebrafish Embryonic Development. HEALTH PHYSICS 2018; 114:421-428. [PMID: 29481533 DOI: 10.1097/hp.0000000000000788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Ionizing radiation (IR) has been linked to multiple types of cellular responses, but its effects on developing organisms are still poorly understood. The authors investigated whether zebrafish embryos exhibit differential responses relative to IR dose and developmental age at time of exposure. Early-stage zebrafish embryos were exposed to different levels of gamma radiation and then, at varying points after irradiation, assayed for morphological defects and levels of cell death. To quantify in vivo cellular responses to low-dose IR exposure and explore how tissue-specific cell functions affect radiation response, apoptotic cells were counted in three regions: the tail, urogenital papilla, and left eye. The authors found that increased gamma radiation doses correlated with increased levels of apoptosis in the developing tail and eye, whereas cells of the urogenital papilla appeared to undergo apoptosis independently of radiation dose. This suggests that the linear-no-threshold model may not be appropriate in all contexts. Grouping embryos by age at IR exposure revealed that gamma radiation exposure resulted in higher levels of apoptosis in embryos irradiated at 2 d post fertilization (dpf), suggesting a radiosensitive stage of development. Moreover, levels of apoptosis were statistically influenced by days grown after irradiation, with embryos fixed at later stages showing more dramatic apoptotic responses to radiation exposure. This latency to effect suggests potential competition between DNA repair and apoptosis pathways, which may lead to the accumulation of apoptotic cells only after an initial lag period.
Collapse
|
33
|
Lourenço J, Marques S, Carvalho FP, Oliveira J, Malta M, Santos M, Gonçalves F, Pereira R, Mendo S. Uranium mining wastes: The use of the Fish Embryo Acute Toxicity Test (FET) test to evaluate toxicity and risk of environmental discharge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 605-606:391-404. [PMID: 28672228 DOI: 10.1016/j.scitotenv.2017.06.125] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 06/15/2017] [Accepted: 06/15/2017] [Indexed: 05/28/2023]
Abstract
Active and abandoned uranium mining sites often create environmentally problematic situations, since they cause the contamination of all environmental matrices (air, soil and water) with stable metals and radionuclides. Due to their cytotoxic, genotoxic and teratogenic properties, the exposure to these contaminants may cause several harmful effects in living organisms. The Fish Embryo Acute Toxicity Test (FET) test was employed to evaluate the genotoxic and teratogenic potential of mine liquid effluents and sludge elutriates from a deactivated uranium mine. The aims were: a) to determine the risk of discharge of such wastes in the environment; b) the effectiveness of the chemical treatment applied to the uranium mine water, which is a standard procedure generally applied to liquid effluents from uranium mines and mills, to reduce its toxicological potential; c) the suitability of the FET test for the evaluation the toxicity of such wastes and the added value of including the evaluation of genotoxicity. Results showed that through the FET test it was possible to determine that both elutriates and effluents are genotoxic and also that the mine effluent is teratogenic at low concentrations. Additionally, liquid effluents and sludge elutriates affect other parameters namely, growth and hatching and that water pH alone played an important role in the hatching process. The inclusion of genotoxicity evaluation in the FET test was crucial to prevent the underestimation of the risks posed by some of the tested effluents/elutriates. Finally, it was possible to conclude that care should be taken when using benchmark values calculated for specific stressors to evaluate the risk posed by uranium mining wastes to freshwater ecosystems, due to their chemical complexity.
Collapse
Affiliation(s)
- J Lourenço
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - S Marques
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - F P Carvalho
- Instituto Superior Técnico/Laboratório de Proteccão e Segurança Radiológica, Universidade de Lisboa, Estrada Nacional 10, km 139, 2695-066 Bobadela LRS, Portugal.
| | - J Oliveira
- Instituto Superior Técnico/Laboratório de Proteccão e Segurança Radiológica, Universidade de Lisboa, Estrada Nacional 10, km 139, 2695-066 Bobadela LRS, Portugal.
| | - M Malta
- Instituto Superior Técnico/Laboratório de Proteccão e Segurança Radiológica, Universidade de Lisboa, Estrada Nacional 10, km 139, 2695-066 Bobadela LRS, Portugal.
| | - M Santos
- Instituto Superior Técnico/Laboratório de Proteccão e Segurança Radiológica, Universidade de Lisboa, Estrada Nacional 10, km 139, 2695-066 Bobadela LRS, Portugal.
| | - F Gonçalves
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - R Pereira
- Department of Biology, Faculty of Sciences of the University of Porto & CIIMAR - Interdisciplinary Centre of Marine and Environmental Research & GreenUP/CITAB-UP, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal.
| | - S Mendo
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
34
|
Gagnaire B, Adam-Guillermin C, Festarini A, Cavalié I, Della-Vedova C, Shultz C, Kim SB, Ikert H, Dubois C, Walsh S, Farrow F, Beaton D, Tan E, Wen K, Stuart M. Effects of in situ exposure to tritiated natural environments: A multi-biomarker approach using the fathead minnow, Pimephales promelas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 599-600:597-611. [PMID: 28494285 DOI: 10.1016/j.scitotenv.2017.04.210] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/14/2017] [Accepted: 04/27/2017] [Indexed: 06/07/2023]
Abstract
Aquatic ecosystems are chronically exposed to radionuclides as well as other pollutants. Increased concentrations of pollutants in aquatic environments can present a risk to exposed organisms, including fish. The goal of this study was to characterize the effects of tritium, in the context of natural environments, on the health of fathead minnow, Pimephales promelas. Fish were exposed to tritium (activity concentrations ranging from 2 to 23,000Bq/L) and also to various concentrations of several metals to replicate multiple-stressor environments. Fish were exposed for 60days, then transferred to the tritium background site where they stayed for another 60days. Tritium, in the forms of tritiated water (HTO) and organically bound tritium (OBT), and a series of fish health indicators were measured in fish tissues at seven time points throughout the 120days required to complete the exposure and the depuration phases. Results showed effects of environmental exposure following the increase of tritium activity and metals concentrations in water. The internal dose rates of tritium, estimated from tissue HTO and OBT activity concentrations, were consistently low (maximum of 0.2μGy/h) compared to levels at which population effects may be expected (>100μGy/h) and no effects were observed on survival, fish condition, gonado-somatic, hepato-somatic, spleno-somatic and metabolic indices (RNA/DNA, proteins/DNA and protein carbonylation (in gonads and kidneys)). Using multivariate analyses, we showed that several biomarkers (DNA damages, MN frequency, gamma-H2AX, SFA/MUFA ratios, lysosomal membrane integrity, AChE, SOD, phagocytosis and esterase activities) were exclusively correlated with fish tritium internal dose rate, showing that tritium induced genotoxicity, DNA repair activity, changes in fatty acid composition, and immune, neural and antioxidant responses. Some biomarkers were responding to the presence of metals, but overall, more biomarkers were linked to internalized tritium. The results are discussed in the context of multiple stressors involving metals and tritium.
Collapse
Affiliation(s)
- B Gagnaire
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, Saint-Paul-lez-Durance 13115, France.
| | - C Adam-Guillermin
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, Saint-Paul-lez-Durance 13115, France
| | - A Festarini
- Canadian Nuclear Laboratories (formerly Atomic Energy of Canada Limited), Chalk River Laboratories, 286 Plant Road, Chalk River, ON K0J 1J0, Canada
| | - I Cavalié
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, Saint-Paul-lez-Durance 13115, France
| | - C Della-Vedova
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PRP-ENV/SERIS/LRTE, Cadarache, Saint-Paul-lez-Durance 13115, France
| | - C Shultz
- Canadian Nuclear Laboratories (formerly Atomic Energy of Canada Limited), Chalk River Laboratories, 286 Plant Road, Chalk River, ON K0J 1J0, Canada
| | - S B Kim
- Canadian Nuclear Laboratories (formerly Atomic Energy of Canada Limited), Chalk River Laboratories, 286 Plant Road, Chalk River, ON K0J 1J0, Canada
| | - H Ikert
- Canadian Nuclear Laboratories (formerly Atomic Energy of Canada Limited), Chalk River Laboratories, 286 Plant Road, Chalk River, ON K0J 1J0, Canada
| | - C Dubois
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, Saint-Paul-lez-Durance 13115, France; Canadian Nuclear Laboratories (formerly Atomic Energy of Canada Limited), Chalk River Laboratories, 286 Plant Road, Chalk River, ON K0J 1J0, Canada
| | - S Walsh
- Canadian Nuclear Laboratories (formerly Atomic Energy of Canada Limited), Chalk River Laboratories, 286 Plant Road, Chalk River, ON K0J 1J0, Canada
| | - F Farrow
- Canadian Nuclear Laboratories (formerly Atomic Energy of Canada Limited), Chalk River Laboratories, 286 Plant Road, Chalk River, ON K0J 1J0, Canada
| | - D Beaton
- Canadian Nuclear Laboratories (formerly Atomic Energy of Canada Limited), Chalk River Laboratories, 286 Plant Road, Chalk River, ON K0J 1J0, Canada
| | - E Tan
- Canadian Nuclear Laboratories (formerly Atomic Energy of Canada Limited), Chalk River Laboratories, 286 Plant Road, Chalk River, ON K0J 1J0, Canada
| | - K Wen
- Canadian Nuclear Laboratories (formerly Atomic Energy of Canada Limited), Chalk River Laboratories, 286 Plant Road, Chalk River, ON K0J 1J0, Canada
| | - M Stuart
- Canadian Nuclear Laboratories (formerly Atomic Energy of Canada Limited), Chalk River Laboratories, 286 Plant Road, Chalk River, ON K0J 1J0, Canada
| |
Collapse
|
35
|
Vo NTK, Seymour CB, Mothersill CE. Dose rate effects of low-LET ionizing radiation on fish cells. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2017; 56:433-441. [PMID: 28780694 DOI: 10.1007/s00411-017-0706-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 08/03/2017] [Indexed: 06/07/2023]
Abstract
Radiobiological responses of a highly clonogenic fish cell line, eelB, to low-LET ionizing radiation and effects of dose rates were studied. In acute exposure to 0.1-12 Gy of gamma rays, eelB's cell survival curve displayed a linear-quadratic (LQ) relationship. In the LQ model, α, β, and α/β ratio were 0.0024, 0.037, and 0.065, respectively; for the first time that these values were reported for fish cells. In the multi-target model, n, D o, and D q values were determined to be 4.42, 2.16, and 3.21 Gy, respectively, and were the smallest among fish cell lines being examined to date. The mitochondrial potential response to gamma radiation in eelB cells was at least biphasic: mitochondria hyperpolarized 2 h and then depolarized 5 h post-irradiation. Upon receiving gamma rays with a total dose of 5 Gy, dose rates (ranging between 83 and 1366 mGy/min) had different effects on the clonogenic survival but not the mitochondrial potential. The clonogenic survival was significantly higher at the lowest dose rate of 83 mGy/min than at the other higher dose rates. Upon continuous irradiation with beta particles from tritium at 0.5, 5, 50, and 500 mGy/day for 7 days, mitochondria significantly depolarized at the three higher dose rates. Clearly, dose rates had differential effects on the clonogenic survival of and mitochondrial membrane potential in fish cells.
Collapse
Affiliation(s)
- Nguyen T K Vo
- Radiation Sciences Program, School of Graduate and Postdoctoral Studies, McMaster University, Hamilton, ON, Canada.
| | - Colin B Seymour
- Radiation Sciences Program, School of Graduate and Postdoctoral Studies, McMaster University, Hamilton, ON, Canada
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Carmel E Mothersill
- Radiation Sciences Program, School of Graduate and Postdoctoral Studies, McMaster University, Hamilton, ON, Canada
- Department of Biology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
36
|
Praveen Kumar MK, Shyama SK, Kashif S, Dubey SK, Avelyno D, Sonaye BH, Kadam Samit B, Chaubey RC. Effects of gamma radiation on the early developmental stages of Zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 142:95-101. [PMID: 28395206 DOI: 10.1016/j.ecoenv.2017.03.054] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 03/30/2017] [Accepted: 03/31/2017] [Indexed: 06/07/2023]
Abstract
The zebrafish is gaining importance as a popular vertebrate model organism and is widely employed in ecotoxicological studies, especially for the biomonitoring of pollution in water bodies. There is limited data on the genetic mechanisms governing the adverse health effects in regards to an early developmental exposure to gamma radiation. In the present study zebrafish (Danio rerio) embryos were exposed to 1, 2.5, 5, 7.5 and 10Gy of gamma radiation at 3h post fertilization (hpf). Different developmental toxicity endpoints were investigated. Further, expression of genes associated with the development and DNA damage i.e. (sox2 sox19a and p53) were evaluated using Quantitative PCR (qPCR). The significant changes in the expression of sox2 sox19a and p53 genes were observed. This data was supported the developmental defects observed in the zebrafish embryo exposed to gamma radiation such as i.e. increased DNA damage, decreased hatching rate, increase in median hatching time, decreased body length, increased mortality rate, increased morphological deformities. Further, study shows that the potential ecotoxicological threat of gamma radiation on the early developmental stages of zebrafish. Further, it revealed that the above parameters can be used as predictive biomarkers of gamma radiation exposure.
Collapse
Affiliation(s)
| | - S K Shyama
- Department of Zoology, Goa University, Goa 403 206, India.
| | - Shamim Kashif
- Department of Microbiology, Goa University, Goa 403 206, India
| | - S K Dubey
- Department of Microbiology, Goa University, Goa 403 206, India
| | | | - B H Sonaye
- Department of Radiation Oncology, Goa Medical College, Goa, India
| | - B Kadam Samit
- Department of Zoology, Goa University, Goa 403 206, India
| | - R C Chaubey
- Radiation Biology & Health Science Division, Bhabha Atomic Research Centre, Mumbai, India
| |
Collapse
|
37
|
Hurem S, Martín LM, Brede DA, Skjerve E, Nourizadeh-Lillabadi R, Lind OC, Christensen T, Berg V, Teien HC, Salbu B, Oughton DH, Aleström P, Lyche JL. Dose-dependent effects of gamma radiation on the early zebrafish development and gene expression. PLoS One 2017; 12:e0179259. [PMID: 28628668 PMCID: PMC5476279 DOI: 10.1371/journal.pone.0179259] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 05/27/2017] [Indexed: 01/07/2023] Open
Abstract
Ionizing radiation from natural sources or anthropogenic activity has the potential to cause oxidative stress or genetic damage in living organisms, through the ionization and excitation of molecules and the subsequent production of free radicals and reactive oxygen species (ROS). The present work focuses on radiation-induced biological effects using the zebrafish (Danio rerio) vertebrate model. Changes in developmental traits and gene expression in zebrafish were assessed after continuous external gamma irradiation (0.4, 3.9, 15 and 38 mGy/h) with corresponding controls, starting at 2.5 hours post fertilization (hpf) and lasting through embryogenesis and the early larval stage. The lowest dose rate corresponded to recommended benchmarks at which adverse effects are not expected to occur in aquatic ecosystems (2-10 mGy/day). The survival observed at 96 hours post fertilization (hpf) in the 38 mGy/h group was significantly lower, while other groups showed no significant difference compared to controls. The total hatching was significantly lower from controls in the 15 mGy/h group and a delay in hatching onset in the 0.4 mGy/h group was observed. The deformity frequency was significantly increased by prolonged exposure duration at dose rates ≥ 0.4 mGy/h. Molecular responses analyzed by RNA-seq at gastrulation (5.5 hpf transcriptome) indicate that the radiation induced adverse effects occurred during the earliest stages of development. A dose-response relationship was found in the numbers of differentially regulated genes in exposure groups compared to controls at a total dose as low as 1.62 mGy. Ingenuity Pathway Analysis identified retinoic acid receptor activation, apoptosis, and glutathione mediated detoxification signaling as the most affected pathways in the lower dose rate (0.54 mGy/h), while eif2 and mTOR, i.e., involved in the modulation of angiogenesis, were most affected in higher dose rates (5.4 and 10.9 mGy/h). By comparing gene expression data, myc was found to be the most significant upstream regulator, followed by tp53, TNF, hnf4a, TGFb1 and cebpa, while crabp2b and vegfab were identified as most frequent downstream target genes. These genes are associated with various developmental processes. The present findings show that continuous gamma irradiation (≥ 0.54 mGy/h) during early gastrula causes gene expression changes that are linked to developmental defects in zebrafish embryos.
Collapse
Affiliation(s)
- Selma Hurem
- Norwegian University of Life Sciences (NMBU), CERAD CoE, Faculty of Veterinary Medicine and Biosciences, Oslo, Norway
| | - Leonardo Martín Martín
- Norwegian University of Life Sciences (NMBU), CERAD CoE, Faculty of Veterinary Medicine and Biosciences, Oslo, Norway
- University of Camagüey Ignacio Agramonte y Loynaz (UC), Faculty of Agropecuary Sciences, Camagüey, Cuba
| | - Dag Anders Brede
- Norwegian University of Life Sciences (NMBU), CERAD CoE, Faculty of Environmental Sciences and Natural Resource Management, 1433 Ås, Norway
| | - Eystein Skjerve
- Norwegian University of Life Sciences (NMBU), CERAD CoE, Faculty of Veterinary Medicine and Biosciences, Oslo, Norway
| | - Rasoul Nourizadeh-Lillabadi
- Norwegian University of Life Sciences (NMBU), CERAD CoE, Faculty of Veterinary Medicine and Biosciences, Oslo, Norway
| | - Ole Christian Lind
- Norwegian University of Life Sciences (NMBU), CERAD CoE, Faculty of Environmental Sciences and Natural Resource Management, 1433 Ås, Norway
| | - Terje Christensen
- Norwegian Radiation Protection Authority (NRPA), CERAD CoE, Østerås, Norway
| | - Vidar Berg
- Norwegian University of Life Sciences (NMBU), CERAD CoE, Faculty of Veterinary Medicine and Biosciences, Oslo, Norway
| | - Hans-Christian Teien
- Norwegian University of Life Sciences (NMBU), CERAD CoE, Faculty of Environmental Sciences and Natural Resource Management, 1433 Ås, Norway
| | - Brit Salbu
- Norwegian University of Life Sciences (NMBU), CERAD CoE, Faculty of Environmental Sciences and Natural Resource Management, 1433 Ås, Norway
| | - Deborah Helen Oughton
- Norwegian University of Life Sciences (NMBU), CERAD CoE, Faculty of Environmental Sciences and Natural Resource Management, 1433 Ås, Norway
| | - Peter Aleström
- Norwegian University of Life Sciences (NMBU), CERAD CoE, Faculty of Veterinary Medicine and Biosciences, Oslo, Norway
| | - Jan Ludvig Lyche
- Norwegian University of Life Sciences (NMBU), CERAD CoE, Faculty of Veterinary Medicine and Biosciences, Oslo, Norway
| |
Collapse
|
38
|
Si J, Zhou R, Song J, Gan L, Zhou X, Di C, Liu Y, Mao A, Zhao Q, Wang Y, Zhang H. Toxic effects of 56Fe ion radiation on the zebrafish (Danio rerio) embryonic development. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 186:87-95. [PMID: 28267650 DOI: 10.1016/j.aquatox.2017.02.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 02/20/2017] [Accepted: 02/27/2017] [Indexed: 06/06/2023]
Abstract
All living organisms and ecosystems are permanently exposed to ionizing radiation. Of all the types of ionizing radiation, heavy ions such as 56Fe have the potential to cause the most severe biological effects. We therefore examined the effects and potential mechanisms of iron ion irradiation on the induction of developmental toxicity and apoptosis in zebrafish embryos. Zebrafish embryos at 4h post-fertilization (hpf) were divided into five groups: a control group; and four groups irradiated with 0.5, 1, 2, and 4Gy radiation, respectively. Mortality and teratogenesis were significantly increased, and spontaneous movement, heart rate, and swimming distance were decreased in the irradiated groups, accompanied by increased apoptosis. mRNA levels of genes involved in the apoptotic pathway, including p53, bax, bcl-2, and caspase-3, were significantly affected by radiation exposure. Moreover, protein expression levels of P53 and Bcl-2 changed in accordance with the corresponding mRNA expression levels. In addition, we detected the protein expression levels of γ-H2AX, which is a biomarker for radiation-induced DNA double-strand breaks, and found that γ-H2AX protein levels were significantly increased in the irradiated groups. Overall, the results of this study improve our understanding of the mechanisms of iron ion radiation-induced developmental toxicity and apoptosis, potentially involving the induction of DNA damage and mitochondrial dysfunction. The findings of this study may aid future impact assessment of environmental radioactivity in fish.
Collapse
Affiliation(s)
- Jing Si
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China
| | - Rong Zhou
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China
| | - Jing'e Song
- Hospital of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Lu Gan
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China
| | - Xin Zhou
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China
| | - Cuixia Di
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China
| | - Yang Liu
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China
| | - Aihong Mao
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China
| | - Qiuyue Zhao
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China
| | - Yupei Wang
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China
| | - Hong Zhang
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China; Gansu Wuwei Institute of Medical Sciences, Wuwei 733000, China.
| |
Collapse
|
39
|
Hu M, Hu N, Ding D, Zhao W, Feng Y, Zhang H, Li G, Wang Y. Developmental toxicity and oxidative stress induced by gamma irradiation in zebrafish embryos. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2016; 55:441-450. [PMID: 27582010 DOI: 10.1007/s00411-016-0663-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 08/18/2016] [Indexed: 06/06/2023]
Abstract
This study aimed to evaluate the biological effects of gamma irradiation on zebrafish embryos. Different doses of gamma rays (0.01, 0.05, 0.1, 0.5 and 1 Gy) were used to irradiate zebrafish embryos at three developmental stages (stage 1, 6 h post-fertilization (hpf); stage 2, 12 hpf; stage three, 24 hpf), respectively. The survival, malformation and hatching rates of the zebrafish embryos were measured at the morphological endpoint of 96 hpf. The activities of superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx) and glutathione S-transferase (GST) were assayed. Morphology analysis showed that gamma irradiation inhibited hatching and induced developmental toxicity in a dose-dependent manner. Interestingly, after irradiation the malformation rate changed not only in a dose-dependent manner but also in a developmental stage-dependent manner, indicating that the zebrafish embryos at stage 1 were more sensitive to gamma rays than those at other stages. Biochemical analysis showed that gamma irradiation modulated the activities of antioxidant enzymes in a dose-dependent manner. A linear relationship was found between GPx activity and irradiation dose in 0.1-1 Gy group, and GPx was a suitable biomarker for gamma irradiation in the dose range from 0.1 to 1 Gy. Furthermore, the activities of SOD, CAT, GR and GPx of the zebrafish embryos at stage 3 were found to be much higher than those at other stages, indicating that the zebrafish embryos at stage 3 had a greater ability to protect against gamma rays than those at other stages, and thus the activities of antioxidant enzymes changed in a developmental stage-dependent manner.
Collapse
Affiliation(s)
- Miao Hu
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, Hunan Province, China
| | - Nan Hu
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, Hunan Province, China
| | - Dexin Ding
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, Hunan Province, China.
| | - Weichao Zhao
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, Hunan Province, China
| | - Yongfu Feng
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, Hunan Province, China
| | - Hui Zhang
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, Hunan Province, China
| | - Guangyue Li
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, Hunan Province, China
| | - Yongdong Wang
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, Hunan Province, China
| |
Collapse
|
40
|
Chernyavskaya Y, Kent B, Sadler KC. Zebrafish Discoveries in Cancer Epigenetics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 916:169-97. [PMID: 27165354 DOI: 10.1007/978-3-319-30654-4_8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The cancer epigenome is fundamentally different than that of normal cells. How these differences arise in and contribute to carcinogenesis is not known, and studies using model organisms such as zebrafish provide an opportunity to address these important questions. Modifications of histones and DNA comprise the complex epigenome, and these influence chromatin structure, genome stability and gene expression, all of which are fundamental to the cellular changes that cause cancer. The cancer genome atlas covers the wide spectrum of genetic changes associated with nearly every cancer type, however, this catalog is currently uni-dimensional. As the pattern of epigenetic marks and chromatin structure in cancer cells is described and overlaid on the mutational landscape, the map of the cancer genome becomes multi-dimensional and highly complex. Two major questions remain in the field: (1) how the epigenome becomes repatterned in cancer and (2) which of these changes are cancer-causing. Zebrafish provide a tractable in vivo system to monitor the epigenome during transformation and to identify epigenetic drivers of cancer. In this chapter, we review principles of cancer epigenetics and discuss recent work using zebrafish whereby epigenetic modifiers were established as cancer driver genes, thus providing novel insights into the mechanisms of epigenetic reprogramming in cancer.
Collapse
Affiliation(s)
- Yelena Chernyavskaya
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1020, 1 Gustave L. Levy Place, New York, NY, 10029, USA
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1020, 1 Gustave L. Levy Place, New York, NY, 10029, USA
| | - Brandon Kent
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1020, 1 Gustave L. Levy Place, New York, NY, 10029, USA
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1020, 1 Gustave L. Levy Place, New York, NY, 10029, USA
- School of Biomedical Science, Icahn School of Medicine at Mount Sinai, 1020, 1 Gustave L. Levy Place, New York, NY, 10029, USA
| | - Kirsten C Sadler
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1020, 1 Gustave L. Levy Place, New York, NY, 10029, USA.
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1020, 1 Gustave L. Levy Place, New York, NY, 10029, USA.
- School of Biomedical Science, Icahn School of Medicine at Mount Sinai, 1020, 1 Gustave L. Levy Place, New York, NY, 10029, USA.
- Biology Program, New York University Abu Dhabi, Saadiyat Campus, 129188, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
41
|
Anbumani S, Mohankumar MN. Nucleoplasmic bridges and tailed nuclei are signatures of radiation exposure in Oreochromis mossambicus using erythrocyte micronucleus cytome assay (EMNCA). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:18425-18436. [PMID: 26263884 DOI: 10.1007/s11356-015-5107-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 07/21/2015] [Indexed: 06/04/2023]
Abstract
Gamma radiation-induced genetic perturbations in aquatic vertebrates is largely unknown at low-dose rate, especially in the wake of a nuclear disaster and/or other environmental outbreaks. Freshwater fish, Oreochromis mossambicus subjected to low-dose rate (2 mGy/min) at 2.5-, 5-, and 10-Gy doses, were analyzed for "exposure signatures" in blood samples drawn on days 3, 6, 12, 18, and 30, respectively. Significant dose-dependent increments in micronuclei frequency and other anomalies such as nucleoplasmic bridges and tailed nuclei were observed and exhibit a strong positive correlation, suggesting that they could be used as prospective signatures of radiation exposure. Similarly increased incidence of apoptosis and DNA repair machinery circuits at high and low doses were noted. This work highlighted "cytogenetic signatures" in fish and the sensitivity of these endpoints toward low-dose rate of radiation exposure.
Collapse
Affiliation(s)
- S Anbumani
- Radiological Safety Division, Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, Tamilnadu, India, 603102.
- Ecotoxicology Division, CSIR-Indian Institute of Toxicology Research (IITR), Govt. of India, M.G.Marg, Lucknow, 226001, UP, India.
| | - Mary N Mohankumar
- Ecotoxicology Division, CSIR-Indian Institute of Toxicology Research (IITR), Govt. of India, M.G.Marg, Lucknow, 226001, UP, India.
- , 40, D.J.Nagar, B.R.Puram, Peelamedu, Coimbatore, 641004, Tamilnadu, India.
| |
Collapse
|
42
|
Gagnaire B, Cavalié I, Pereira S, Floriani M, Dubourg N, Camilleri V, Adam-Guillermin C. External gamma irradiation-induced effects in early-life stages of zebrafish, Danio rerio. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 169:69-78. [PMID: 26517177 DOI: 10.1016/j.aquatox.2015.10.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/04/2015] [Accepted: 10/07/2015] [Indexed: 06/05/2023]
Abstract
In the general context of validation of tools useful for the characterization of ecological risk linked to ionizing radiation, the effects of an external gamma irradiation were studied in zebrafish larvae irradiated for 96 h with two dose rates: 0.8 mGy/d, which is close to the level recommended to protect ecosystems from adverse effects of ionizing radiation (0.24 mGy/d) and a higher dose rate of 570 mGy/d. Several endpoints were investigated, such as mortality, hatching, and some parameters of embryo-larval development, immunotoxicity, apoptosis, genotoxicity, neurotoxicity and histological alterations. Results showed that an exposure to gamma rays induced an acceleration of hatching for both doses and a decrease of yolk bag diameter for the highest dose, which could indicate an increase of global metabolism. AChE activity decreased with the low dose rate of gamma irradiation and alterations were also shown in muscles of irradiated larvae. These results suggest that gamma irradiation can induce damages on larval neurotransmission, which could have repercussions on locomotion. DNA damages, basal ROS production and apoptosis were also induced by irradiation, while ROS stimulation index and EROD biotransformation activity were decreased and gene expression of acetylcholinesterase, choline acetyltransferase, cytochrome p450 and myeloperoxidase increased. These results showed that ionizing radiation induced an oxidative stress conducting to DNA damages. This study characterized further the modes of action of ionizing radiation in fish.
Collapse
Affiliation(s)
- B Gagnaire
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, Saint-Paul-lez-Durance 13115, France.
| | - I Cavalié
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, Saint-Paul-lez-Durance 13115, France
| | - S Pereira
- Neolys Diagnostics, Lyon 69373, France
| | - M Floriani
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, Saint-Paul-lez-Durance 13115, France
| | - N Dubourg
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, Saint-Paul-lez-Durance 13115, France
| | - V Camilleri
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, Saint-Paul-lez-Durance 13115, France
| | - C Adam-Guillermin
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, Saint-Paul-lez-Durance 13115, France
| |
Collapse
|
43
|
Braunbeck T, Kais B, Lammer E, Otte J, Schneider K, Stengel D, Strecker R. The fish embryo test (FET): origin, applications, and future. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:16247-61. [PMID: 25395325 DOI: 10.1007/s11356-014-3814-7] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 11/03/2014] [Indexed: 05/06/2023]
Abstract
Originally designed as an alternative for the acute fish toxicity test according to, e.g., OECD TG 203, the fish embryo test (FET) with the zebrafish (Danio rerio) has been optimized, standardized, and validated during an OECD validation study and adopted as OECD TG 236 as a test to assess toxicity of embryonic forms of fish. Given its excellent correlation with the acute fish toxicity test and the fact that non-feeding developmental stages of fish are not categorized as protected stages according to the new European Directive 2010/63/EU on the protection of animals used for scientific purposes, the FET is ready for use not only for range-finding but also as a true alternative for the acute fish toxicity test, as required for a multitude of national and international regulations. If-for ethical reasons-not accepted as a full alternative, the FET represents at least a refinement in the sense of the 3Rs principle. Objections to the use of the FET have mainly been based on the putative lack of biotransformation capacity and the assumption that highly lipophilic and/or high molecular weight substances might not have access to the embryo due to the protective role of the chorion. With respect to bioactivation, the only substance identified so far as not being activated in the zebrafish embryo is allyl alcohol; all other biotransformation processes that have been studied in more detail so far were found to be present, albeit, in some cases, at lower levels than in adult fish. With respect to larger molecules, the extension of the test duration to 96 h (i.e., beyond hatch) has-at least for the substances tested so far-compensated for the reduced access to the embryo; however, more research is necessary to fully explore the applicability of the FET to substances with a molecular weight >3 kDa as well as substances with a neurotoxic mode of action. An extension of the endpoints to also cover sublethal endpoints makes the FET a powerful tool for the detection of teratogenicity, dioxin-like activity, genotoxicity and mutagenicity, neurotoxicity, as well as various forms of endocrine disruption.
Collapse
Affiliation(s)
- Thomas Braunbeck
- Aquatic Ecology and Toxicology Group, Center for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany.
| | - Britta Kais
- Aquatic Ecology and Toxicology Group, Center for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Eva Lammer
- Aquatic Ecology and Toxicology Group, Center for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Jens Otte
- Aquatic Ecology and Toxicology Group, Center for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Katharina Schneider
- Aquatic Ecology and Toxicology Group, Center for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Daniel Stengel
- Aquatic Ecology and Toxicology Group, Center for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Ruben Strecker
- Aquatic Ecology and Toxicology Group, Center for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| |
Collapse
|
44
|
M.K. PK, Soorambail K. S, Bhagatsingh Harisingh S, D’costa A, Ramesh Chandra C. The effect of gamma radiation on the Common carp (Cyprinus carpio): In vivo genotoxicity assessment with the micronucleus and comet assays. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 792:19-25. [DOI: 10.1016/j.mrgentox.2015.08.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 07/20/2015] [Accepted: 08/10/2015] [Indexed: 11/29/2022]
|
45
|
Zhou R, Zhang H, Wang Z, Zhou X, Si J, Gan L, Li J, Liu Y. The developmental toxicity and apoptosis in zebrafish eyes induced by carbon-ion irradiation. Life Sci 2015; 139:114-22. [DOI: 10.1016/j.lfs.2015.08.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 07/28/2015] [Accepted: 08/17/2015] [Indexed: 01/08/2023]
|
46
|
Buisset-Goussen A, Goussen B, Della-Vedova C, Galas S, Adam-Guillermin C, Lecomte-Pradines C. Effects of chronic gamma irradiation: a multigenerational study using Caenorhabditis elegans. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2014; 137:190-197. [PMID: 25102824 DOI: 10.1016/j.jenvrad.2014.07.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 07/08/2014] [Accepted: 07/10/2014] [Indexed: 05/24/2023]
Abstract
The effects of chronic exposure to (137)Cs gamma radiation (dose rate ranging from 6.6 to 42.7 mGy h(-1)) on growth and reproductive ability were carried out over three generations of Caenorhabditis elegans (F0, F1, and F2). Exposure began at the egg stage for the first generation and was stopped at the end of laying of third-generation eggs (F2). At the same time, the two subsequent generations from parental exposure were returned to the control conditions (F1' and F2'). There was no radiation-induced significant effect on growth, hatchability, and cumulative number of larvae within generations. Moreover, no significant differences were found in growth parameters (hatching length, maximal length, and a constant related to growth rate) among the generations. However, a decrease in the cumulative number of larvae across exposed generations was observed between F0 and F2 at the highest dose rate (238.8 ± 15.4 and 171.2 ± 13.1 number of larvae per individual, respectively). Besides, the F1' generation was found to lay significantly fewer eggs than the F1 generation for tested dose rates 6.6, 8.1, 19.4, and 28.1 mGy h(-1). Our results confirmed that reproduction (here, cumulative number of larvae) is the most sensitive endpoint affected by chronic exposure to ionizing radiation. The results obtained revealed transgenerational effects from parental exposure in the second generation, and the second non-exposed generation was indeed more affected than the second exposed generation.
Collapse
Affiliation(s)
- Adeline Buisset-Goussen
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV, SERIS, Laboratoire d'ECOtoxicologie des radionucléides (LECO), Cadarache, France.
| | - Benoit Goussen
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV, SERIS, Laboratoire d'ECOtoxicologie des radionucléides (LECO), Cadarache, France; Unité Modèles pour l'Ecotoxicologie et la Toxicologie (METO), Institut National de l'Environnement Industriel et des Risques (INERIS), BP2, F-60550 Verneuil en Halatte, France
| | | | - Simon Galas
- Université Montpellier1, Faculté de Pharmacie, Laboratoire de Toxicologie, 15, Avenue Charles Flahault BP 14491, 34093 Montpellier Cedex 5, France
| | - Christelle Adam-Guillermin
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV, SERIS, Laboratoire d'ECOtoxicologie des radionucléides (LECO), Cadarache, France
| | - Catherine Lecomte-Pradines
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV, SERIS, Laboratoire d'ECOtoxicologie des radionucléides (LECO), Cadarache, France
| |
Collapse
|
47
|
Lecomte-Pradines C, Bonzom JM, Della-Vedova C, Beaugelin-Seiller K, Villenave C, Gaschak S, Coppin F, Dubourg N, Maksimenko A, Adam-Guillermin C, Garnier-Laplace J. Soil nematode assemblages as bioindicators of radiation impact in the Chernobyl Exclusion Zone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 490:161-170. [PMID: 24852614 DOI: 10.1016/j.scitotenv.2014.04.115] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 04/23/2014] [Accepted: 04/27/2014] [Indexed: 06/03/2023]
Abstract
In radioecology, the need to understand the long-term ecological effects of radioactive contamination has been emphasised. This requires that the health of field populations is evaluated and linked to an accurate estimate of received radiological dose. The aim of the present study was to assess the effects of current radioactive contamination on nematode assemblages at sites affected by the fallout from the Chernobyl accident. First, we estimated the total dose rates (TDRs) absorbed by nematodes, from measured current soil activity concentrations, Dose Conversion Coefficients (DCCs, calculated using EDEN software) and soil-to-biota concentration ratios (from the ERICA tool database). The impact of current TDRs on nematode assemblages was then evaluated. Nematodes were collected in spring 2011 from 18 forest sites in the Chernobyl Exclusion Zone (CEZ) with external gamma dose rates, measured using radiophotoluminescent dosimeters, varying from 0.2 to 22 μGy h(-1). These values were one order of magnitude below the TDRs. A majority of bacterial-, plant-, and fungal-feeding nematodes and very few of the disturbance sensitive families were identified. No statistically significant association was observed between TDR values and nematode total abundance or the Shannon diversity index (H'). The Nematode Channel Ratio (which defines the relative abundance of bacterial- versus fungal-feeding nematodes) decreased significantly with increasing TDR, suggesting that radioactive contamination may influence nematode assemblages either directly or indirectly by modifying their food resources. A greater Maturity Index (MI), usually characterising better soil quality, was associated with higher pH and TDR values. These results suggest that in the CEZ, nematode assemblages from the forest sites were slightly impacted by chronic exposure at a predicted TDR of 200 μGy h(-1). This may be imputable to a dominant proportion of pollutant resistant nematodes in all sites. This might result from a selection at the expense of sensitive species after the accident.
Collapse
Affiliation(s)
- C Lecomte-Pradines
- Institute for Radioprotection and Nuclear Safety, IRSN/PRP-ENV/SERIS, LECO, Building 186, Cadarache 13115 Saint Paul lez Durance cedex, France.
| | - J-M Bonzom
- Institute for Radioprotection and Nuclear Safety, IRSN/PRP-ENV/SERIS, LECO, Building 186, Cadarache 13115 Saint Paul lez Durance cedex, France
| | | | - K Beaugelin-Seiller
- Institute for Radioprotection and Nuclear Safety, IRSN/PRP-ENV/SERIS, LM2E, Building 159, Cadarache 13115 Saint Paul lez Durance cedex, France
| | - C Villenave
- ELISOL Environment, Building 12, Campus de la Gaillarde, 2 place Viala, 34060 Montpellier cedex 2, France
| | - S Gaschak
- Chernobyl Center for Nuclear Safety, Radioactive Waste and Radioecology, International Radioecology Laboratory, 07100 Slavutych, Ukraine
| | - F Coppin
- Institute for Radioprotection and Nuclear Safety, IRSN/PRP-ENV/SERIS, L2BT, Building 186, Cadarache 13115 Saint Paul lez Durance cedex, France
| | - N Dubourg
- Institute for Radioprotection and Nuclear Safety, IRSN/PRP-ENV/SERIS, GARM Building 186, Cadarache 13115 Saint Paul lez Durance cedex, France
| | - A Maksimenko
- Chernobyl Center for Nuclear Safety, Radioactive Waste and Radioecology, International Radioecology Laboratory, 07100 Slavutych, Ukraine
| | - C Adam-Guillermin
- Institute for Radioprotection and Nuclear Safety, IRSN/PRP-ENV/SERIS, LECO, Building 186, Cadarache 13115 Saint Paul lez Durance cedex, France
| | - J Garnier-Laplace
- Institute for Radioprotection and Nuclear Safety, IRSN/PRP-ENV/SERIS, Building 159, Cadarache 13115 Saint Paul lez Durance cedex, France
| |
Collapse
|
48
|
Freeman JL, Weber GJ, Peterson SM, Nie LH. Embryonic ionizing radiation exposure results in expression alterations of genes associated with cardiovascular and neurological development, function, and disease and modified cardiovascular function in zebrafish. Front Genet 2014; 5:268. [PMID: 25147559 PMCID: PMC4124797 DOI: 10.3389/fgene.2014.00268] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 07/21/2014] [Indexed: 01/16/2023] Open
Abstract
The relationship between ionizing radiation (IR) and carcinogenesis is long established, but recently the association between IR and other diseases is starting to be recognized. Currently, there is limited information on the genetic mechanisms governing the role of IR in non-cancer related adverse health effects and in regards to an early developmental exposure. In this study, zebrafish embryos were exposed to a range of IR doses (0, 1, 2, 5, 10 Gy) at 26 h post fertilization (hpf). No significant increase in mortality or hatching rate was observed, but a significant decrease in total larval length, head length, and eye diameter was observed in the 10 Gy dose. Transcriptomic analysis was conducted at 120 hpf to compare gene expression profiles between the control and highest IR dose at which no significant differences were observed in morphological measurements (5 Gy). 253 genes with well-established function or orthology to human genes were significantly altered. Gene ontology and molecular network analysis revealed enrichment of genes associated with cardiovascular and neurological development, function, and disease. Expression of a subset of genetic targets with an emphasis on those associated with the cardiovascular system was assessed using Quantitative PCR (qPCR) to confirm altered expression at 5 Gy and then to investigate alterations at lower doses (1 and 2 Gy). Strong correlation between microarray and qPCR expression values was observed, but zebrafish exposed to 1 or 2 Gy resulted in a significant expression alteration in only one of these genes (LIN7B). Moreover, heart rate was analyzed through 120 hpf following IR dosing at 26 hpf. A significant decrease in heart rate was observed at 10 Gy, while a significant increase in heart rate was observed at 1, 2, and 5 Gy. Overall these findings indicate IR exposure at doses below those that induce gross morphological changes alters heart rate and expression of genes associated with cardiovascular and neurological functions.
Collapse
Affiliation(s)
| | - Gregory J Weber
- School of Health Sciences, Purdue University West Lafayette, IN, USA
| | - Samuel M Peterson
- School of Health Sciences, Purdue University West Lafayette, IN, USA
| | - Linda H Nie
- School of Health Sciences, Purdue University West Lafayette, IN, USA
| |
Collapse
|
49
|
Chakravarthy S, Sadagopan S, Nair A, Sukumaran SK. Zebrafish as anIn VivoHigh-Throughput Model for Genotoxicity. Zebrafish 2014; 11:154-66. [DOI: 10.1089/zeb.2013.0924] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
| | - Sathish Sadagopan
- Discovery Biology, Anthem Biosciences Private Limited, Bangalore, India
| | - Ayyappan Nair
- Discovery Biology, Anthem Biosciences Private Limited, Bangalore, India
| | | |
Collapse
|
50
|
Pereira S, Malard V, Ravanat JL, Davin AH, Armengaud J, Foray N, Adam-Guillermin C. Low doses of gamma-irradiation induce an early bystander effect in zebrafish cells which is sufficient to radioprotect cells. PLoS One 2014; 9:e92974. [PMID: 24667817 PMCID: PMC3965492 DOI: 10.1371/journal.pone.0092974] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 02/27/2014] [Indexed: 11/18/2022] Open
Abstract
The term “bystander effect” is used to describe an effect in which cells that have not been exposed to radiation are affected by irradiated cells though various intracellular signaling mechanisms. In this study we analyzed the kinetics and mechanisms of bystander effect and radioadaptation in embryonic zebrafish cells (ZF4) exposed to chronic low dose of gamma rays. ZF4 cells were irradiated for 4 hours with total doses of gamma irradiation ranging from 0.01–0.1 Gy. In two experimental conditions, the transfer of irradiated cells or culture medium from irradiated cells results in the occurrence of DNA double strand breaks in non-irradiated cells (assessed by the number of γ-H2AX foci) that are repaired at 24 hours post-irradiation whatever the dose. At low total irradiation doses the bystander effect observed does not affect DNA repair mechanisms in targeted and bystander cells. An increase in global methylation of ZF4 cells was observed in irradiated cells and bystander cells compared to control cells. We observed that pre-irradiated cells which are then irradiated for a second time with the same doses contained significantly less γ-H2AX foci than in 24 h gamma-irradiated control cells. We also showed that bystander cells that have been in contact with the pre-irradiated cells and then irradiated alone present less γ-H2AX foci compared to the control cells. This radioadaptation effect is significantly more pronounced at the highest doses. To determine the factors involved in the early events of the bystander effect, we performed an extensive comparative proteomic study of the ZF4 secretomes upon irradiation. In the experimental conditions assayed here, we showed that the early events of bystander effect are probably not due to the secretion of specific proteins neither the oxidation of these secreted proteins. These results suggest that early bystander effect may be due probably to a combination of multiple factors.
Collapse
Affiliation(s)
- Sandrine Pereira
- Institut de Radioprotection et de Sûreté Nucléaire, PRP-Environnement/SERIS, Laboratoire d’Ecotoxicologie des Radionucléides, Cadarache, St Paul Lez Durance, France
- CRCL - UMR INSERM 1052 - CNRS 5286, Equipe de Radiobiologie, Cheney A- 1éme étage, Lyon, France
- * E-mail:
| | - Véronique Malard
- CEA, DSV, IBEB, Lab Biochim System Perturb, Bagnols-sur-Cèze, France
| | - Jean-Luc Ravanat
- Laboratoire des Lésions des Acides Nucléiques, INAC/Scib UMR E3 CEA-UJF, CEA Grenoble, Grenoble, France
| | - Anne-Hélène Davin
- CEA, DSV, IBEB, Lab Biochim System Perturb, Bagnols-sur-Cèze, France
| | - Jean Armengaud
- CEA, DSV, IBEB, Lab Biochim System Perturb, Bagnols-sur-Cèze, France
| | - Nicolas Foray
- CRCL - UMR INSERM 1052 - CNRS 5286, Equipe de Radiobiologie, Cheney A- 1éme étage, Lyon, France
| | - Christelle Adam-Guillermin
- Institut de Radioprotection et de Sûreté Nucléaire, PRP-Environnement/SERIS, Laboratoire d’Ecotoxicologie des Radionucléides, Cadarache, St Paul Lez Durance, France
| |
Collapse
|