1
|
Schmidt RDCDR, Oliveira TED, Deon M. Polymeric nanocomposites in a biological interface: From a molecular view to final applications. Colloids Surf B Biointerfaces 2025; 251:114605. [PMID: 40073629 DOI: 10.1016/j.colsurfb.2025.114605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 02/20/2025] [Accepted: 03/02/2025] [Indexed: 03/14/2025]
Abstract
Polymeric nanocomposites have been valuable materials for the pharmaceutical and biomedical fields because they associate the unique properties of a material on a nanoscale with a polymeric matrix, with a synergistic outcome that improves their physical, chemical, and mechanical properties. Understanding the nature of the physical and chemical interactions and effects that take place at the polymer-nanomaterial interface is crucial to predict and explain how the nanocomposite behaves when set forth a health-related application and faces a biological interface. Therefore, this review aimed to assemble and examine experimental articles in which the molecular-level interaction between nanomaterials and polymer matrices were determinants of the biological outcome. For health applications, the nanocomposite systems were found to be most applied as antimicrobials, for tissue engineering, and for drug delivery. A plethora of biocompatible polymers have been reported, although for nanomaterials the most distinguished effects were attained with metal and metal oxide nanoparticles. The bioactivity of the nanocomposite was found to be dependent on features such as: colloidal size, release, and disintegration of the nanoparticle, controlled by the polymer matrix; hydrophilicity, degree of crosslinking, porosity, mechanical strength, and stability/responsiveness of the polymer, modified by the nanofiller; and the final charge and functional groups available at the whole nanocomposite surface. As a result, researchers can gather insights to design and characterize advanced polymeric nanocomposites with optimized performance for use in biomedical devices, drug delivery systems, and other therapeutic applications.
Collapse
Affiliation(s)
- Rita de Cássia Dos Reis Schmidt
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS 90050-170, Brazil
| | - Tiago Espinosa de Oliveira
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS 90050-170, Brazil.
| | - Monique Deon
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS 90050-170, Brazil.
| |
Collapse
|
2
|
Gao L, Su J, Guo L, Lin S, Xu J, Liu Y. Darutoside promotes skin wound healing via regulating macrophage polarization. Mol Immunol 2025; 181:129-138. [PMID: 40138783 DOI: 10.1016/j.molimm.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 02/20/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025]
Abstract
Wound healing is a complex and dynamic process of tissue formation, while polarization of macrophages plays an important role during this process. Darutoside is one of the major components of the ethanol extract from Siegesbeckia, which has the effects of anti-inflammation, healing rheumatism and promoting joint health. To investigate whether darutoside could promote wound healing, we established full-thickness excisional cutaneous wound healing model in C57/BL6 mice and applied darutoside on the skin wounds. The results showed that darutoside can improve wound healing in mice. Mechanistically, we treated RAW264.7 and macrophages with darutoside in vitro, and found that darutoside inhibited the LPS-induced polarization and pro-inflammatory cytokines expression in macrophages by inhibiting NF-κB signaling pathway. For in vivo study, we also found that darutoside could promote the growth of epithelial cells in wound tissue and inhibit the expression of iNOS+ macrophages around wound tissue by IHC staining. In addition, we also found that darutoside could inhibit the expression of inflammatory factors in wound tissue by PCR. Our data revealed that darutoside could promote wound healing by regulating macrophage polarization via inhibition of NF-κB signaling pathway.
Collapse
Affiliation(s)
- Linpei Gao
- Department of Periodontology, School of Stomatology, Capital Medical University, Beijing, China.
| | - Jing Su
- Department of Periodontology, School of Stomatology, Capital Medical University, Beijing, China.
| | - Lijia Guo
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China.
| | - Sheng Lin
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China.
| | - Junji Xu
- Department of Periodontology, School of Stomatology, Capital Medical University, Beijing, China; College of Stomatology, Chongqing Medical University, Chongqing, China.
| | - Yi Liu
- Department of Periodontology, School of Stomatology, Capital Medical University, Beijing, China.
| |
Collapse
|
3
|
Wei Z, Li X, Zhou J, Zhou Y, Xiao Z, Yang Q, Liu X, Peng Y, Yang Y, Ding Y, Ru Z, Wang Y, Yang M, Yang X. Inhibition of miRNA-365-2-5p Targeting SIRT1 Regulates Functions of Keratinocytes to Enhance Wound Healing. FASEB J 2025; 39:e70560. [PMID: 40261275 DOI: 10.1096/fj.202401124rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 04/01/2025] [Accepted: 04/14/2025] [Indexed: 04/24/2025]
Abstract
The development of drugs to accelerate wound healing is an important area of clinical research. Recent advancements have highlighted the prospects of microRNAs as therapeutic targets for various disorders, although their involvement in mice wound healing remains unclear. Peptides have been proved to be unique and irreplaceable molecules in the elucidation of competing endogenous RNAs mechanisms (ceRNA) involved with skin wound healing. In the present work, CyRL-QN15, a peptide characterized by its minimal length and maximal wound healing efficacy, was applied as a probe to explore the ceRNA mechanism in regard to accelerated wound healing. Results showed that the use of CyRL-QN15 significantly reduced the expression of miRNA-365-2-5p at the wound in mice. In mouse keratinocytes, miRNA-365-2-5p inhibition increased SIRT1 and FOXO1 protein expression and decreased STAT2 protein expression, promoting cell proliferation, migration, and reducing inflammatory factors. Similarly, inhibiting miRNA-365-2-5p at mouse wounds promoted Full-thickness injured skin wounds healing, increased SIRT1 and FOXO1 protein expression, decreased STAT2 protein expression, and reduced inflammatory factors. Overall, these findings demonstrate that miRNA-365-2-5p serves a crucial function in the biological processes underlying cutaneous wound healing in mice, offering a novel target for future therapeutic interventions in wound healing.
Collapse
Affiliation(s)
- Ziqi Wei
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, China
| | - Xingguo Li
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Jinyi Zhou
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, China
| | - Yuxuan Zhou
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, China
| | - Zhaoxun Xiao
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, China
| | - Qian Yang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, China
| | - Xin Liu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, China
| | - Ying Peng
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, China
| | - Yuliu Yang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, China
| | - Yujing Ding
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, China
| | - Zeqiong Ru
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, China
| | - Ying Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, Yunnan, China
| | - Meifeng Yang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, China
| | - Xinwang Yang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
4
|
Zhu J, Xia F, Wang S, Guan Y, Hu F, Yu F. Recent advances in nanomaterials and their mechanisms for infected wounds management. Mater Today Bio 2025; 31:101553. [PMID: 40182659 PMCID: PMC11966735 DOI: 10.1016/j.mtbio.2025.101553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/22/2025] [Accepted: 02/03/2025] [Indexed: 04/05/2025] Open
Abstract
Wounds infected by bacteria pose a considerable challenge in the field of healthcare, particularly with the increasing prevalence of antibiotic-resistant pathogens. Traditional antibiotics often fail to achieve effective results due to limited penetration, resistance development, and inadequate local concentration at wound sites. These limitations necessitate the exploration of alternative strategies that can overcome the drawbacks of conventional therapies. Nanomaterials have emerged as a promising solution for tackling bacterial infections and facilitating wound healing, thanks to their distinct physicochemical characteristics and multifunctional capabilities. This review highlights the latest developments in nanomaterials that demonstrated enhanced antibacterial efficacy and improved wound healing outcomes. The antibacterial mechanisms of nanomaterials are varied, including ion release, chemodynamic therapy, photothermal/photodynamic therapy, electrostatic interactions, and delivery of antibacterial drugs, which not only combat bacterial infections but also address the challenges posed by biofilms and antibiotic resistance. Furthermore, these nanomaterials create an optimal environment for tissue regeneration, promoting faster wound closure. By leveraging the unique attributes of nanomaterials, there is a significant opportunity to revolutionize the management of infected wounds and markedly improve patient outcomes.
Collapse
Affiliation(s)
- Jianping Zhu
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Fan Xia
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Shuaifei Wang
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Yan Guan
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Fuqiang Hu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Fangying Yu
- Department of Ultrasound in Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| |
Collapse
|
5
|
Zhang M, Hou L, Song W, Tan Y, Huang Y, Li Z, Huang X, Kong Y, Zhang C, Liang L, Feng Y, Liu Q, Fu X, Huang S. Development of an alginate-based bioink with enhanced hemostatic and antibacterial properties. Int J Biol Macromol 2025; 302:140549. [PMID: 39894123 DOI: 10.1016/j.ijbiomac.2025.140549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/17/2025] [Accepted: 01/30/2025] [Indexed: 02/04/2025]
Abstract
Alginate, a recognized biosafe material with inherent hemostatic properties, has been widely explored for emergency hemostatic applications and wound dressings. However, advancements in crosslinking strategies and the integration of additional functionalities are essential to expand its clinical versatility. In this study, we report the development of a novel alginate-based bioink designed to address urgent clinical challenges posed by incompressible and irregular site bleeding. Our bioink, characterized by rapid photocrosslinking and sustained antibacterial effects, offers a promising solution for hemorrhage control and wound repair. The developed bioink, AL@FM, is an injectable photopolymerized alginate-based hydrogel incorporating functional modifiers (PVP, CMC, glycerol and ε-PL) that enhance its rapid hemostasis, antibacterial action, and wound healing properties, demonstrating exceptional biocompatibility in extensive in vitro and in vivo evaluations. AL@FM exhibits superior hemostatic efficiency compared to commercial controls, effectively accelerating wound contraction and angiogenesis, while displaying potent antibacterial properties and improved injectability. The integration of these multifaceted features into an alginate-based platform extends its applicability, particularly in the context of in situ 3D bioprinting where rapid gelation and immediate functionality are critical.
Collapse
Affiliation(s)
- Mengde Zhang
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital, PLA Medical College, PLA Key Laboratory of Tissue Repair and Regenerative Medicine, Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, PR China
| | - Linhao Hou
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital, PLA Medical College, PLA Key Laboratory of Tissue Repair and Regenerative Medicine, Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, PR China
| | - Wei Song
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital, PLA Medical College, PLA Key Laboratory of Tissue Repair and Regenerative Medicine, Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, PR China
| | - Yaxin Tan
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital, PLA Medical College, PLA Key Laboratory of Tissue Repair and Regenerative Medicine, Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, PR China
| | - Yuyan Huang
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital, PLA Medical College, PLA Key Laboratory of Tissue Repair and Regenerative Medicine, Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, PR China
| | - Zhao Li
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital, PLA Medical College, PLA Key Laboratory of Tissue Repair and Regenerative Medicine, Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, PR China
| | - Xing Huang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 29 Zhongguancun East Road, Beijing 100190, PR China
| | - Yi Kong
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital, PLA Medical College, PLA Key Laboratory of Tissue Repair and Regenerative Medicine, Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, PR China
| | - Chao Zhang
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital, PLA Medical College, PLA Key Laboratory of Tissue Repair and Regenerative Medicine, Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, PR China
| | - Liting Liang
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital, PLA Medical College, PLA Key Laboratory of Tissue Repair and Regenerative Medicine, Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, PR China
| | - Yu Feng
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital, PLA Medical College, PLA Key Laboratory of Tissue Repair and Regenerative Medicine, Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, PR China
| | - Qinghua Liu
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital, PLA Medical College, PLA Key Laboratory of Tissue Repair and Regenerative Medicine, Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, PR China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital, PLA Medical College, PLA Key Laboratory of Tissue Repair and Regenerative Medicine, Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, PR China.
| | - Sha Huang
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital, PLA Medical College, PLA Key Laboratory of Tissue Repair and Regenerative Medicine, Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, PR China.
| |
Collapse
|
6
|
Zhang H, Zhao Z, Wu C. Bioactive Inorganic Materials for Innervated Multi-Tissue Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2415344. [PMID: 40013907 PMCID: PMC11967777 DOI: 10.1002/advs.202415344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/04/2025] [Indexed: 02/28/2025]
Abstract
Tissue engineering aims to repair damaged tissues with physiological functions recovery. Although several therapeutic strategies are there for tissue regeneration, the functional recovery of regenerated tissues still poses significant challenges due to the lack of concerns of tissue innervation. Design rationale of multifunctional biomaterials with both tissue-induction and neural induction activities shows great potential for functional tissue regeneration. Recently, the research and application of inorganic biomaterials attracts increasing attention in innervated multi-tissue regeneration, such as central nerves, bone, and skin, because of its superior tunable chemical composition, topographical structures, and physiochemical properties. More importantly, inorganic biomaterials are easily combined with other organic materials, biological factors, and external stimuli to enhance their therapeutic effects. This review presents a comprehensive overview of recent advancements of inorganic biomaterials for innervated multi-tissue regeneration. It begins with introducing classification and properties of typical inorganic biomaterials and design rationale of inorganic-based material composites. Then, recent progresses of inorganic biomaterials in regenerating various nerves and nerve-innervated tissues with functional recovery are systematically reviewed. Finally, the existing challenges and future perspectives are proposed. This review may pave the way for the direction of inorganic biomaterials and offers a new strategy for tissue regeneration in combination of innervation.
Collapse
Affiliation(s)
- Hongjian Zhang
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
| | - Ziyi Zhao
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| |
Collapse
|
7
|
Liu J, Wang Q, Le Y, Hu M, Li C, An N, Song Q, Yin W, Ma W, Pan M, Feng Y, Wang Y, Han L, Liu J. 3D-Bioprinting for Precision Microtissue Engineering: Advances, Applications, and Prospects. Adv Healthc Mater 2025; 14:e2403781. [PMID: 39648541 DOI: 10.1002/adhm.202403781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/18/2024] [Indexed: 12/10/2024]
Abstract
Microtissues, engineered to emulate the complexity of human organs, are revolutionizing the fields of regenerative medicine, disease modelling, and drug screening. Despite the promise of traditional microtissue engineering, it has yet to achieve the precision required to fully replicate organ-like structures. Enter 3D bioprinting, a transformative approach that offers unparalleled control over the microtissue's spatial arrangement and mechanical properties. This cutting-edge technology enables the detailed layering of bioinks, crafting microtissues with tissue-like 3D structures. It allows for the direct construction of organoids and the fine-tuning of the mechanical forces vital for tissue maturation. Moreover, 3D-printed devices provide microtissues with the necessary guidance and microenvironments, facilitating sophisticated tissue interactions. The applications of 3D-printed microtissues are expanding rapidly, with successful demonstrations of their functionality in vitro and in vivo. This technology excels at replicating the intricate processes of tissue development, offering a more ethical and controlled alternative to traditional animal models. By simulating in vivo conditions, 3D-printed microtissues are emerging as powerful tools for personalized drug screening, offering new avenues for pharmaceutical development and precision medicine.
Collapse
Affiliation(s)
- Jinrun Liu
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Qi Wang
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Yinpeng Le
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Min Hu
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Chen Li
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Ni An
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, 102218, China
| | - Qingru Song
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, 102218, China
| | - Wenzhen Yin
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, 102218, China
| | - Wenrui Ma
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, 102218, China
| | - Mingyue Pan
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Yutian Feng
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Yunfang Wang
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, 102218, China
| | - Lu Han
- Beijing Institute of Graphic Communication, Beijing, 102600, China
| | - Juan Liu
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| |
Collapse
|
8
|
Zhang X, Wusiman H, Wang Y, Wang L, Chen W, Huang D. The mussel-inspired GelMA/dopamine/hyaluronic acid composite hydrogel dressing for wet surface adhesion. Int J Biol Macromol 2025; 302:140448. [PMID: 39880233 DOI: 10.1016/j.ijbiomac.2025.140448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/11/2025] [Accepted: 01/27/2025] [Indexed: 01/31/2025]
Abstract
Tissue adhesives have attracted wide attention as alternatives to sutures. Further developments in adhesives with excellent adhesion and biocompatibility for wet tissue surfaces are still required. This study provides a new solution for the development of bioadhesives for use on tissue surfaces under wet conditions. In this study, a novel adhesive composite hydrogel (GDHA) consisting of methacrylated gelatin (GelMA), hyaluronic acid (HA) and dopamine (DA) is developed by Schiff base reaction and photo-crosslinking. A series of experiments including material characterization, mechanical tests, biocompatibility test and experiments in mice have been done to evaluate the proposed dressing. The results show that GDHA composite hydrogel dressing retains the photo-crosslinking properties of GelMA, which makes it easier to be prepared. In addition, the dressing overcomes the easy oxidation disadvantages of existing mussel-inspired adhesives by grafting DA onto HA, which makes it adhere more stable, especially for wet surfaces. Besides, the GDHA hydrogel exhibits excellent biocompatibility and it could promote wound healing by reducing inflammatory cells and accelerating collagen deposition in a full-layer skin wound mode of mice. These results suggest that the GDHA hydrogel with stable adhesion and great biocompatibility is an alternative for wet surface, presenting potential clinical applications.
Collapse
Affiliation(s)
- Xiangnan Zhang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Huershan Wusiman
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Yahui Wang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Longfei Wang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, PR China.
| | - Weiyi Chen
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China.
| | - Di Huang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, PR China.
| |
Collapse
|
9
|
Zhai X, Liu Y, Hao X, Luo M, Gao Z, Wu J, Yang Z, Gan Y, Zhao S, Song Z, Guan J. Photothermal-Driven α-Amylase-Modified Polydopamine Pot-Like Nanomotors for Enhancing Penetration and Elimination of Drug-Resistant Biofilms. Adv Healthc Mater 2025; 14:e2403033. [PMID: 39901377 DOI: 10.1002/adhm.202403033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 01/17/2025] [Indexed: 02/05/2025]
Abstract
Biological enzyme-functionalized antibacterial nanoparticles, which can degrade biofilm and kill bacteria under mild reaction conditions, have attracted much attention for the elimination of deep-seated bacterial infections. However, the poor diffusion and penetration capabilities of recently developed biological enzyme-functionalized antibacterial nanoparticles in biofilm severely impair the eradication efficacy of deep-seated bacteria. Herein, a photothermal-driven nanomotor (denoted as APPNM) is developed for enhancing the elimination of drug-resistant biofilms and the eradication of deep-seated bacteria. The nanomotor contained a pot-like polydopamine (PDA) nanostructure and its outer surface is chemically immobilized with a layer of α-amylases. Under exposure to 808 nm near-infrared (NIR) laser irradiation, the self-propelled nanomotors, integrating the α-amylases to destroy the compact structure of biofilms, can penetrate deeply into biofilms and effectively eliminate them. Subsequently, they can accumulate on the surface of bacteria using the inherent bio-adhesion property of PDA, thereby completely eradicating deep-seated bacteria by photothermal effect. These synergistic effects enable them to exhibit superior antibiofilm effects and produce remarkable therapeutic efficacy with accelerated wound healing in vivo. With excellent biocompatibility, the as-developed nanomotors have great potential to be applied for treating biofilm-related infections.
Collapse
Affiliation(s)
- Xiangxiang Zhai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Yi Liu
- National Key Laboratory of Agricultural Microbiology, College of Chemistry, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaomeng Hao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Ming Luo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Zhixue Gao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Jinmei Wu
- National Key Laboratory of Agricultural Microbiology, College of Chemistry, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zili Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Ying Gan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Suling Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Zhiyong Song
- National Key Laboratory of Agricultural Microbiology, College of Chemistry, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianguo Guan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| |
Collapse
|
10
|
Wang H, Wei B, WuLan H, Qu B, Li H, Ren J, Han Y, Guo L. Conditioned medium of engineering macrophages combined with soluble microneedles promote diabetic wound healing. PLoS One 2025; 20:e0316398. [PMID: 40072964 PMCID: PMC11902060 DOI: 10.1371/journal.pone.0316398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 12/10/2024] [Indexed: 03/14/2025] Open
Abstract
Diabetic wounds have a profound effect on both the physical and psychological health of patients, highlighting the urgent necessity for novel treatment strategies and materials. Macrophages are vital contributors to tissue repair mechanisms. Macrophage conditioned medium contains various proteins and cytokines related to wound healing, indicating its potential to improve recovery from diabetic wound. Engineering macrophages may enable a further improvement in their tissue repair capacity. Fibroblast growth factor 2 (FGF2) is a crucial growth factor that plays an integral role in wound healing process. And in this study, a stable macrophage cell line (engineered macrophages) overexpressing FGF2 was successfully established by engineering modification of macrophages. Proteomic analysis indicated that conditioned medium derived from FGF2 overexpressed macrophages may promote wound healing by enhancing the level of vascularization. Additionally, cellular assays demonstrated that this conditioned medium promotes endothelial cell migration in vitro. For the convenience of drug delivery and wound application, we prepared soluble hyaluronic acid microneedles to load the conditioned medium. These soluble microneedles exhibited excellent mechanical properties and biocompatibility while effectively releasing their contents in vivo. The microneedles significantly accelerated wound healing, leading to a marked increase in vascular proliferation and improved collagen deposition within a full thickness skin defect diabetic mouse model. In summary, we developed a type of hyaluronic acid microneedle loaded with conditioned medium of engineered macrophages. These microneedles have been demonstrated to enhance tissue vascularization and facilitate diabetic wound healing. This might potentially serve as a highly promising therapeutic approach for diabetic wounds.
Collapse
Affiliation(s)
- HongYu Wang
- Medical School of Chinese PLA, Department of Plastic and Reconstructive Surgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
- Department of Burn and Plastic Surgery, PLA No.983 Hospital, Tianjin, China
| | - BaoHua Wei
- Medical School of Chinese PLA, Department of Plastic and Reconstructive Surgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hasi WuLan
- Medical School of Chinese PLA, Department of Plastic and Reconstructive Surgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Bin Qu
- Department of Burn Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, China
| | - HuiLong Li
- College of Basic Medical Sciences, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jing Ren
- Medical School of Chinese PLA, Department of Plastic and Reconstructive Surgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yan Han
- Medical School of Chinese PLA, Department of Plastic and Reconstructive Surgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - LingLi Guo
- Medical School of Chinese PLA, Department of Plastic and Reconstructive Surgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
11
|
Wu F, Wang L, Zuo H, Tian H. LncRNA A1BG-AS1 regulates the progress of diabetic foot ulcers via sponging miR-214-3p. Endocr J 2025; 72:295-306. [PMID: 39779214 PMCID: PMC11913556 DOI: 10.1507/endocrj.ej24-0440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
Nerve aberrations and vascular lesions in the distal lower limbs are the etiological factors for diabetic foot ulcers (DFUs). This study aimed to understand the regulatory mechanism of angiogenesis in patients with DFU by examining lncRNA, as well as to explore effective targets for diagnosing and treating DFU. The serum levels of A1BG-AS1 and miR-214-3p and the predictive power of A1BG-AS1 for DFU were determined by quantitative PCR and ROC analysis. The correlation of A1BG-AS1 with clinical characteristics was examined using chi-square tests. The risk factors for DFU in patients with type 2 diabetes mellitus (T2DM) were identified using the logistic regression model. Furthermore, the binding sites of A1BG-AS1 and miR-214-3p were determined. Next, A1BG-AS1 interference plasmid and miR-214-3p inhibitor were co-transfected into high glucose-induced cells to investigate their effects on the expression of angiogenesis-related genes and cell proliferation. The A1BG-AS1 levels were upregulated, whereas the miR-214-3p levels were downregulated in patients with DFU. The upregulation of A1BG-AS1 was significantly associated with both blood glucose levels and ulcer grades. A1BG-AS1 served as a crucial biomarker for diagnosing DFU and evaluating the risk of DFU occurrence in patients with T2DM. Co-transfection experiments revealed that the inhibition of miR-214-3p effectively recovered the suppressive effects of A1BG-AS1 on angiogenesis-related gene expression, endothelial cell differentiation, and proliferation. The sponging effect of A1BG-AS1 on miR-214-3p impaired angiogenesis in patients with DFU. Thus, A1BG-AS1 is a potential therapeutic target for DFU.
Collapse
Affiliation(s)
- Fangfang Wu
- Department of Vascular, Shijiazhuang Hospital of Traditional Chinese Medicine, Shijiazhuang 050011, China
| | - Lixia Wang
- Department of Internal Medicine, Huailai Shiji Hospital, Zhangjiakou 075400, China
| | - Hongju Zuo
- Department of Vascular, Shijiazhuang Hospital of Traditional Chinese Medicine, Shijiazhuang 050011, China
| | - Hanbing Tian
- Department of Vascular, Shijiazhuang Hospital of Traditional Chinese Medicine, Shijiazhuang 050011, China
| |
Collapse
|
12
|
Gao S, He X, Liu H, Liu Y, Wang H, Zhou Z, Chen L, Ji X, Yang R, Xie J. Multifunctional Bioactive Nanozyme Systems for Enhanced Diabetic Wound Healing. Adv Healthc Mater 2025; 14:e2401580. [PMID: 39077928 DOI: 10.1002/adhm.202401580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/12/2024] [Indexed: 07/31/2024]
Abstract
The protracted transition from inflammation to proliferation in diabetic wound healing poses significant challenges, exacerbated by persistent inflammatory responses and inadequate vascularization. To address these issues, a novel nanozymatic therapeutic approach utilizing asymmetrically structured MnO₂-Au-mSiO₂@aFGF Janus nanoparticles is engineered. Nanozymes featuring a mSiO₂ head and MnO₂ extensions, into which acidic fibroblast growth factor (aFGF) is encapsulated, resulting in MnO₂-Au-mSiO₂@aFGF Janus nanoparticles (mSAM@aFGF), are synthesized. This nanozyme system effectively emulates enzymatic activities of catalase (CAT) and superoxide dismutase (SOD), catalyzing degradation of reactive oxygen species (ROS) and generating oxygen. In addition, controlled release of aFGF fosters tissue regeneration and vascularization. In vitro studies demonstrate that mSAM@aFGF significantly alleviates oxidative stress in cells, and enhances cell proliferation, migration, and angiogenesis. An injectable hydrogel based on photocrosslinked hyaluronic acid (HAMA), incorporating the nanozymatic ROS-scavenging and growth factor-releasing system, is developed. The HAMA-mSAM@aFGF hydrogel exhibits multifaceted benefits in a diabetic wound model, including injectability, wound adhesion, hemostasis, anti-inflammatory effects, macrophage polarization from M1 to M2 phenotype, and promotion of vascularization. These attributes underscore the potential of this system to facilitate transition from chronic inflammation to the proliferative phase of wound repair, offering a promising therapeutic strategy for diabetic wound management.
Collapse
Affiliation(s)
- Suyue Gao
- Department of Burns, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Xuefeng He
- Department of Burns, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Hengdeng Liu
- Department of Burns, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Yiling Liu
- Department of Burns, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Hanwen Wang
- Department of Burns, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Ziheng Zhou
- Department of Burns, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Lei Chen
- Department of Burns, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Xiaoyuan Ji
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Ronghua Yang
- Department of Burn and Plastic Surgery, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, 510180, China
| | - Julin Xie
- Department of Burns, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| |
Collapse
|
13
|
Ali MT, Al-Mahdy DA, El Fishawy AM, Salama A, Al-Karmalawy AA, Otify AM. Phytochemical investigation, role in wound healing process and cytotoxicity of Sphagneticola trilobata: In vitro, in vivo and in silico approach. JOURNAL OF ETHNOPHARMACOLOGY 2025; 342:119394. [PMID: 39855432 DOI: 10.1016/j.jep.2025.119394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/24/2024] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sphagneticola trilobata was traditionally used to alleviate wounds using topical plant preparations. The precise mechanism of the plant responsible for its wound healing effect are still unclear. Although the plant was reported to be cytotoxic, there is a lack of reported data regarding its cytotoxic impact on skin cancer. AIM OF THE STUDY To in-depth investigate wound healing and cytotoxic effects of the plant extracts and its fractions by using different assays. MATERIALS AND METHODS In vitro scratch assay and in vivo full-thickness wound model were performed to evaluate the plant's wound healing activity. Enzyme-linked immunosorbent assay kits were employed to assess key skin parameters levels. The cytotoxicity was evaluated using in vitro Western Standard Time assay against skin carcinoma cells. RESULTS Sphagneticola trilobata improved the wound closure percentage in both in vitro scratch assay and in vivo model by modulating inflammation, as evidenced by a reduction in tumor necrosis factor and mitogen activated protein kinase levels, and enhancing proliferation via elevating collagen, smooth muscle actin, and forkhead protein. The total extract's efficacy surpassed the effectiveness of reference ointment. The non-polar fraction outperformed the polar one in accelerating wound closure and improving the tested skin parameters levels. Trilobolide-6-O-isobutyrate displayed the best docking scores for the selected target receptors. Moreover, the non-polar fraction demonstrated the most powerful cytotoxic effect against skin cancer cells. A specific compound mixture (kaurenoic acid/grandiflorenic acid, 1 and 2) within this fraction exhibited stronger cytotoxicity. CONCLUSIONS Sphagneticola trilobata can be considered as a promising therapeutic agent in relieving wounds and combating skin cancer cell lines.
Collapse
Affiliation(s)
- Manar T Ali
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr-El-Ainy, Cairo, 11562, Egypt.
| | - Dalia A Al-Mahdy
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr-El-Ainy, Cairo, 11562, Egypt; Department of Pharmacognosy, Faculty of Pharmacy, Modern University for Technology and Information (MTI University), Cairo, Egypt.
| | - Ahlam M El Fishawy
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr-El-Ainy, Cairo, 11562, Egypt.
| | - Abeer Salama
- Pharmacology Department, National Research Centre, El-Buhouth St, Dokki, Cairo, 12622, Egypt.
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Chemistry, College of Pharmacy, The University of Mashreq, Baghdad, 10023, Iraq; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, 34518, Egypt.
| | - Asmaa M Otify
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr-El-Ainy, Cairo, 11562, Egypt.
| |
Collapse
|
14
|
Shuai Y, Qian Y, Zheng M, Yan C, Wang J, Wang P, Wang J, Mao C, Yang M. Injectable platelet-mimicking silk protein-peptide conjugate microspheres for hemostasis modulation and targeted treatment of internal bleeding. J Nanobiotechnology 2025; 23:128. [PMID: 39979914 PMCID: PMC11844073 DOI: 10.1186/s12951-025-03180-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 01/31/2025] [Indexed: 02/22/2025] Open
Abstract
Uncontrolled deep bleeding, commonly encountered in surgical procedures, combat injuries, and trauma, poses a significant threat to patient survival and recovery. The development of effective hemostatic agents capable of precisely targeting trauma sites in deep tissues and rapidly halt bleeding remains a considerable challenge. Drawing inspiration from the natural hemostatic cascade, we present platelet-like microspheres composed of silk fibroin (SF) and thrombus-targeting peptides, engineered to mimic natural platelets for rapid hemostasis in vivo. These peptide/SF hemostatic microspheres, formulated using a freezing self-assembly technology, closely resemble natural platelets in terms of size, shape, and zeta potential. Moreover, they exhibit favorable cytocompatibility, hemocompatibility, and anti-cell adhesion. Assessment of fibrin polymerization revealed that these hemostatic microspheres possessed enzymatic physiological functions, similar to activated platelets, facilitating platelet adhesion, fibrin binding, and wound-triggered hemostasis. Notably, these hemostatic microspheres rapidly target the bleeding site in vivo within 5 min, with minimal dispersion elsewhere, persisting after blood clot formation. Furthermore, these microspheres exhibit favorable metabolic kinetics, with 71% degradation occurring within one-day post-subcutaneous injection. Histological assessment revealed well-preserved organ structures and minimal inflammatory responses at 14 d post-injection, supporting their long-term biocompatibility. Importantly, they can be injected and targeted into damaged blood vessels, selectively binding to fibrin and forming blood clots within 2 min, resulting in a 74% reduction in bleeding volume compared to SF microspheres alone. Therefore, these injectable SF-based hemostatic microspheres emerge as promising candidates for future rapid hemostasis in tissue injuries.
Collapse
Affiliation(s)
- Yajun Shuai
- Institute of Applied Bioresource Research, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Yu Qian
- Institute of Applied Bioresource Research, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Meidan Zheng
- Institute of Applied Bioresource Research, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chi Yan
- Institute of Applied Bioresource Research, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jue Wang
- Institute of Applied Bioresource Research, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Peng Wang
- Institute of Applied Bioresource Research, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jie Wang
- Institute of Applied Bioresource Research, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Chuanbin Mao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China.
| | - Mingying Yang
- Institute of Applied Bioresource Research, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
15
|
Ren J, Wang C, Gao H, Lu S, Fu C, Wang H, Wang G, Zhu Z, Wu H, Luo W, Zhang Y. Multitasking Asynchronous Collaborative Nanosystem for Diabetic Wound Healing Based on Hypoglycemic, Antimicrobial, and Angiogenesis-Promoting Effects. Adv Healthc Mater 2025; 14:e2403282. [PMID: 39686780 DOI: 10.1002/adhm.202403282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/03/2024] [Indexed: 12/18/2024]
Abstract
A diabetic foot ulcer (DFU) is a common and serious complication of diabetes. This complication can result in amputation and death because of the several challenges associated with wound healing that can be attributed to the complex wound microenvironment, including biofilm infection, hyperglycemia, and diabetic angiopathy. Existing investigations on the wound-healing rate consider only one or two pathogenic factors, and therefore, despite the extensive research on these pathological microenvironments, there is an urgent need to optimize the wound-healing rate in patients with diabetic foot ulcers. To this end, a multitasking asynchronous collaborative nanosystem is designed in this study. The designed nanosystem can efficiently clear biofilm infections using optimized photodynamic therapy based on a poly photosensitizer ionic liquid (i.e., Ce6IL), reduce local blood glucose concentration using glucose oxidase, and reconstruct blood vessels by stimulating endothelial cell proliferation and migration using nitric oxide. The experimental results indicate that the three-step sequential collaboration strategy for clearing biofilm infections, reducing glucose concentrations, and reconstructing damaged blood vessels can help significantly accelerate wound healing rate in patients with diabetic foot ulcers.
Collapse
Affiliation(s)
- Jun Ren
- Department of Orthopedics, Second Affiliated Hospital, Air Force Medical University, 1 Xinsi Rd, Xi'an, Shaanxi, 710038, China
| | - Chaoli Wang
- Department of pharmacy, Air Force Medical University, 169 Changlexi Rd, Xi'an, Shaanxi, 710032, China
| | - Hao Gao
- Department of Orthopedics, Second Affiliated Hospital, Air Force Medical University, 1 Xinsi Rd, Xi'an, Shaanxi, 710038, China
| | - Shuaikun Lu
- Department of Orthopedics, Second Affiliated Hospital, Air Force Medical University, 1 Xinsi Rd, Xi'an, Shaanxi, 710038, China
| | - Congxiao Fu
- Department of Orthopedics, Second Affiliated Hospital, Air Force Medical University, 1 Xinsi Rd, Xi'an, Shaanxi, 710038, China
| | - Hu Wang
- Department of Orthopedics, Second Affiliated Hospital, Air Force Medical University, 1 Xinsi Rd, Xi'an, Shaanxi, 710038, China
| | - Guoliang Wang
- Department of Orthopedics, Second Affiliated Hospital, Air Force Medical University, 1 Xinsi Rd, Xi'an, Shaanxi, 710038, China
| | - Zhenfeng Zhu
- Department of Orthopedics, Second Affiliated Hospital, Air Force Medical University, 1 Xinsi Rd, Xi'an, Shaanxi, 710038, China
| | - Hong Wu
- Department of pharmacy, Air Force Medical University, 169 Changlexi Rd, Xi'an, Shaanxi, 710032, China
| | - Wen Luo
- Department of Ultrasonography, First Affiliated Hospital, Air Force Medical University, 169 Changlexi Rd, Xi'an, Shaanxi, 710032, China
| | - Yunfei Zhang
- Department of Orthopedics, Second Affiliated Hospital, Air Force Medical University, 1 Xinsi Rd, Xi'an, Shaanxi, 710038, China
| |
Collapse
|
16
|
Wang Y, Khan SS, Ullah I, Rady A, Aldahmash B, Yu Y, Liu L, Zhu X. One pot synthesis of SeTe-ZnO nanoparticles for antibacterial and wound healing applications. RSC Adv 2025; 15:3439-3447. [PMID: 39906629 PMCID: PMC11791623 DOI: 10.1039/d4ra06594h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/26/2025] [Indexed: 02/06/2025] Open
Abstract
Bacterial infections, particularly those involving biofilms, pose significant treatment challenges due to their resistance to traditional antibiotics. Herein, this research explores the integration of selenium-tellurium nanoparticles (SeTe NP) and zinc oxide (ZnO) NP to create hybrid NP with dual photodynamic and photothermal properties. The synthesized SeTe-ZnO NP demonstrated significant efficacy against both Gram-positive Staphylococcus aureus (S. aureus), Staphylococcus epidermidis (S. epidermidis) and Gram-negative Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa) bacteria, effectively disrupting biofilm formation and promoting wound healing. In vivo studies further confirmed the biocompatibility and superior wound healing capabilities of SeTe-ZnO NP, highlighting their potential as a versatile and effective treatment for bacterial infections and wound care.
Collapse
Affiliation(s)
- Yushu Wang
- The People's Hospital of Gaozhou, National Drug Clinical Trial Institution Gaozhou City 525200 China
| | - Shahin Shah Khan
- College of Life Science and Technology, Beijing University of Chemical Technology No. 15 East Road of North Third Ring Road Beijing 100029 China
| | - Irfan Ullah
- College of Life Science and Technology, Beijing University of Chemical Technology No. 15 East Road of North Third Ring Road Beijing 100029 China
| | - Ahmed Rady
- Department of Zoology, College of Science, King Saud University P.O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Badr Aldahmash
- Department of Zoology, College of Science, King Saud University P.O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Yingjie Yu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology Beijing 100029 China
| | - Luo Liu
- College of Life Science and Technology, Beijing University of Chemical Technology No. 15 East Road of North Third Ring Road Beijing 100029 China
| | - Xiulong Zhu
- The People's Hospital of Gaozhou, National Drug Clinical Trial Institution Gaozhou City 525200 China
| |
Collapse
|
17
|
Tang X, Wu W, Zhang S, He C, Fan K, Fan Y, Yang X, Li J, Yang Y, Ling J. Photodynamic hemostatic silk fibroin film with photo-controllable modulation of macrophages for bacteria-infected wound healing. Biomater Sci 2025; 13:606-616. [PMID: 39308338 DOI: 10.1039/d4bm01038h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Massive hemorrhage and chronic wounds caused by bacterial infections after trauma are significant challenges in clinical practice. An ideal hemostatic wound dressing should simultaneously manage bleeding and prevent bacterial infections and also hold excellent biocompatibility and bioactivities to successfully modulate immune microenvironments to promote wound healing. In this study, a silk fibroin-based light-responsive film was demonstrated to possess effective capacity of light-induced non-compressible hemostasis on liver hemorrhage and tail bleeding in vivo by binding with blood platelets to promote the clotting cascade. The blood loss of the rats was significantly less after C-MASiF films were applied, which were 1223.33 ± 347.9 mg (liver trauma) and 363.33 ± 60.28 mg (tail trimming). Importantly, the films exhibited photo-controllable modulation activity on macrophages through repeated near-infrared irradiation to regulate the immune microenvironment to enhance photodynamic antibacterial therapy. Moreover, the light-responsive silk fibroin film effectively promoted Staphylococcus aureus infected burn wound healing in vivo. The quantity of residual bacteria in the wound sites of mice in the C-MASiF films group (0.05 ± 0.0047 × 108 CFU mL-1) was considerably less than that in the control group (3.18 ± 0.75 × 108 CFU mL-1), and the wound area in the C-MASiF group (78.03% ± 4.12%) was considerably smaller than that in the control group (60.33% ± 8.81%) after 14 days. Overall, this light-responsive silk fibroin film can provide a powerful strategy for wound healing of burns.
Collapse
Affiliation(s)
- Xiaoxuan Tang
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Wenpin Wu
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Shuxuan Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Chang He
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Kewei Fan
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Yulan Fan
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Xuewa Yang
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Jiaying Li
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Yumin Yang
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Jue Ling
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| |
Collapse
|
18
|
Wang X, Zhang Z, Ye X, Chen L, Zheng W, Zeng N, Shen Z, Guo F, Koshevoy IO, Kisel KS, Chou PT, Liu TM. Assessing Wound Healing in Vivo Using a Dual-Function Phosphorescent Probe Sensitive to Tissue Oxygenation and Regenerating Collagen. ACS APPLIED MATERIALS & INTERFACES 2025; 17:398-407. [PMID: 39730313 PMCID: PMC11783361 DOI: 10.1021/acsami.4c15069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 12/29/2024]
Abstract
Levels of tissue oxygenation and collagen regeneration are critical indicators in the early evaluation of wound healing. Traditionally, these factors have been assessed using separate instruments and different methodologies. Here, we adopt the spatially averaged phosphorescence lifetime approach using ReI-diimine complexes (ReI-probe) to enable simultaneous quantification of these two critical factors in healing wounds. The topically applied, biocompatible ReI-probe penetrates wound tissue effectively and selectively binds to collagen fibers. During collagen regeneration, the phosphorescence lifetimes of the collagen-bound probe significantly extend from an initial range of 4.5-6.5 μs on day 0 to 5.5-8.5 μs by day 7. Concurrently, unbound probes in the tissue interstitial spaces exhibit a phosphorescence lifetime of 4.5-5.2 μs, revealing the oxygenation states. Using phosphorescence lifetime imaging microscopy (PLIM) and a frequency domain phosphorescence lifetime measurement (FD-PLM) system, we validated the dual-functionality of this ReI-probe in differentiating healing stages in chronic wounds. With its noninvasive, quantitative measurement capabilities for cutaneous wounds, this ReI-probe-based approach offers promising potential for early wound healing diagnosis.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Institute
of Translational Medicine, Faculty of Health Sciences & Ministry
of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa 999078, Macau, China
| | - Zhiming Zhang
- Institute
of Translational Medicine, Faculty of Health Sciences & Ministry
of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa 999078, Macau, China
| | - Xuhao Ye
- Institute
of Translational Medicine, Faculty of Health Sciences & Ministry
of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa 999078, Macau, China
| | - Liping Chen
- Department
of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong
Provincial Key Laboratory of Research in Structural Birth Defect Disease,
Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Weiming Zheng
- Institute
of Translational Medicine, Faculty of Health Sciences & Ministry
of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa 999078, Macau, China
| | - Ning Zeng
- First
Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
- Guangdong
Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou 510280, China
| | - Zhouji Shen
- Ningbo
Medical Center LiHuiLi Hospital, The Affiliated
LiHuiLi Hospital of Ningbo University, Ningbo, Zhejiang 315040, China
| | - Fei Guo
- Ningbo
Institute of Innovation for Combined Medicine and Engineering (NIIME), The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang 315040, China
| | - Igor O. Koshevoy
- Department
of Chemistry, University of Eastern Finland, FI-70211 Joensuu, Finland
| | - Kristina S. Kisel
- Department
of Chemistry, University of Eastern Finland, FI-70211 Joensuu, Finland
| | - Pi-Tai Chou
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Tzu-Ming Liu
- Institute
of Translational Medicine, Faculty of Health Sciences & Ministry
of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa 999078, Macau, China
| |
Collapse
|
19
|
Zhang Y, Ding F, Han J, Wang Z, Tian W. Recent advances in innovative biomaterials for promoting bladder regeneration: processing and functionalization. Front Bioeng Biotechnol 2025; 12:1528658. [PMID: 39834643 PMCID: PMC11743525 DOI: 10.3389/fbioe.2024.1528658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 12/16/2024] [Indexed: 01/22/2025] Open
Abstract
The bladder is a dynamic organ located in the lower urinary tract, responsible for complex and important physiological activities in the human body, including collecting and storing urine. Severe diseases or bladder injuries often lead to tissue destruction and loss of normal function, requiring surgical intervention and reconstruction. The rapid development of innovative biomaterials has brought revolutionary opportunities for modern urology to overcome the limitations of tissue transplantation. This article first summarized the latest research progress in the processing approaches and functionalization of acellular matrix, hydrogels, nanomaterials, and porous scaffolds in repairing and reconstructing the physiological structure and dynamic function of damaged bladder. Then, we discussed emerging strategies for bladder regeneration and functional recovery, such as cell therapy, organoids, etc. Finally, we outlined the important issues and future development prospects of biomaterials in bladder regeneration to inspire future research directions. By reviewing these innovative biomaterials and technologies, we hope to provide appropriate insights to achieve the ultimate goal of designing and manufacturing artificial bladder substitutes with ideal performance in all aspects.
Collapse
Affiliation(s)
- Yi Zhang
- The Second Hospital of Jilin University, Changchun, China
| | - Fu’an Ding
- The Second Hospital of Jilin University, Changchun, China
| | - Junjie Han
- The Second Hospital of Jilin University, Changchun, China
| | - Zongliang Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Wenjie Tian
- The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
20
|
Bhardwaj N, Ashraf MT, Maitra J. Tailoring Gelatin Films: Functionality, Stability, and Beyond Biodegradability. Biopolymers 2025; 116:e23645. [PMID: 39679719 DOI: 10.1002/bip.23645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/22/2024] [Accepted: 11/28/2024] [Indexed: 12/17/2024]
Abstract
This study investigates the enhancement of biodegradable gelatin films through the incorporation of glycerol as a plasticizer, and citric acid and zinc oxide as cross-linkers. The results showed notable improvements in various properties, including solubility, swelling behavior, thickness, pH, biodegradability, and both mechanical and thermal characteristics. The films demonstrated complete water solubility and UV-visible light absorbance in the 280-480 nm range. Soil burial tests indicated gradual weight loss over 15 days, leading to complete degradation. Structural and thermal analyses via FTIR and TGA confirmed the films' integrity and stability. Additionally, the study highlighted the effectiveness of these modified films in adsorbing copper (II) ions from acidic solutions, showcasing their potential for environmental applications like heavy metal remediation. These findings emphasize the potential of tailored additive combinations to produce biodegradable films with enhanced properties and functionality.
Collapse
Affiliation(s)
- Nikita Bhardwaj
- Department of Applied Chemistry, University School of Vocational and Applied Sciences, Gautam Buddha University, Greater Noida, India
| | | | - Jaya Maitra
- Department of Applied Chemistry, University School of Vocational and Applied Sciences, Gautam Buddha University, Greater Noida, India
| |
Collapse
|
21
|
Li P, Li Y, Yao J, Li LL. Peptide-Induced Hydrogelation with Ordered Metal-Organic Framework Nanoparticles Generating Reactive Oxygen Species for Integrated Wound Repair. Adv Healthc Mater 2025; 14:e2403292. [PMID: 39639393 DOI: 10.1002/adhm.202403292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/21/2024] [Indexed: 12/07/2024]
Abstract
Hydrogels, with their high water content and flexible nature, are a promising class of medical dressings for combating bacterial wound infections. However, their development has been hindered by low sterilization efficiency. Here, this issue is addressed by designing a peptide hydrogel that assembles ordered metal-organic framework (MOF) nanoparticles with photocatalytic bactericidal activity. Specifically, a short peptide, Nap-Gly-Phe-Phe-His (Nap-GFFH), is used to induce the assembly of zinc-imidazolate MOF (ZIF-8) into a hydrogel (NHZ gel). This innovative structure integrates three key features: 1) ZIF-8 nanoparticles are encapsulated within the hydrogel, overcoming their inherent brittleness, insolubility, and limited moldability; 2) the ordered ZIF-8 structure enhances charge transfer, enabling efficient generation of reactive oxygen species (ROS); and 3) ZIF-8 simultaneously improves the photocatalytic bactericidal efficiency and mechanical properties of the hydrogel. The NHZ gel demonstrates remarkable antibacterial performance, achieving >99.9% and 99.99% inactivation of Escherichia coli and Staphylococcus aureus, respectively, within 15 min of simulated solar radiation. Additionally, the NHZ gel exhibits excellent biocompatibility, water retention, and exudate absorption, highlighting its broad potential for wound healing.
Collapse
Affiliation(s)
- Ping Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Yiying Li
- Beijing Key Laboratory of Failure, Corrosion, and Protection of Oil/Gas Facilities, New Energy and Material College, China University of Petroleum-Beijing, Beijing, 102249, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Jiahui Yao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Li-Li Li
- School of Material Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| |
Collapse
|
22
|
Deng Z, Iwasaki K, Peng Y, Honda Y. Mesenchymal Stem Cell Extract Promotes Skin Wound Healing. Int J Mol Sci 2024; 25:13745. [PMID: 39769505 PMCID: PMC11679360 DOI: 10.3390/ijms252413745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
Recently, it has been reported that mesenchymal stem cell (MSC)-derived humoral factors promote skin wound healing. As these humoral factors are transiently stored in cytoplasm, we collected them as part of the cell extracts from MSCs (MSC-ext). This study aimed to investigate the effects of MSC-ext on skin wound healing. We examined the effects of MSC-ext on cell proliferation and migration. Additionally, the effect of MSC-ext on skin wound healing was evaluated using a mouse skin defect model. The MSC-ext enhanced the proliferation of dermal fibroblasts, epithelial cells, and endothelial cells. It also increased the number of migrating fibroblasts and epithelial cells. The skin defects treated with MSC-ext demonstrated rapid wound closure compared to those treated with phosphate-buffered saline. The MSC-ext group exhibited a thicker dermis, larger Picrosirius red-positive areas, and a higher number of Ki67-positive cells. Our results indicate that MSC-ext promotes the proliferation and/or migration of fibroblasts, epithelial cells, and endothelial cells, and enhances skin wound healing. This suggests the therapeutic potential of MSC-ext in treating skin defects as a novel cell-free treatment modality.
Collapse
Affiliation(s)
- Zi Deng
- Department of Oral Anatomy, Osaka Dental University, Osaka 573-1121, Japan; (Z.D.); (Y.H.)
| | - Kengo Iwasaki
- Advanced Medicine Research Center, Translational Research Institute for Medical Innovation (TRIMI), Osaka Dental University, Osaka 573-1121, Japan
| | - Yihao Peng
- Department of Periodontology, Osaka Dental University, Osaka 573-1121, Japan;
| | - Yoshitomo Honda
- Department of Oral Anatomy, Osaka Dental University, Osaka 573-1121, Japan; (Z.D.); (Y.H.)
| |
Collapse
|
23
|
Xu F, Wang W, Zhao W, Zheng H, Xin H, Sun W, Ma Q. All-aqueous microfluidic fabrication of calcium alginate/alkylated chitosan core-shell microparticles with time-sequential functions for promoting whole-stage wound healing. Int J Biol Macromol 2024; 282:136685. [PMID: 39454904 DOI: 10.1016/j.ijbiomac.2024.136685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/04/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Wound healing comprises a series of complex physiological processes, including hemostasis, inflammation, cell proliferation, and tissue remodeling. Designing new functional biomaterials by biological macromolecules with tailored therapeutic effects to precisely match the unique requirements of each stage is cherished but rarely discussed. Here, we employ all-aqueous microfluidics to fabricate multifunctional core-shell microparticles aimed at promoting whole-stage wound healing. These microparticles feature a core comprising calcium alginate, cellulose nanocrystals and epidermal growth factor, surrounded by a shell made of alkylated chitosan, alginate, and ciprofloxacin (EGF + CNC@Ca-ALG/CIP@ACS core-shell microparticles, D-CSMP). Response surface methodology (RSM) with a combination of central composite rotatable design (CCRD) is used to meticulously optimize the fabrication processes, endowing the resulting D-CSMP with superior capabilities for efficiently encapsulating and controlled releasing CIP and EGF tailored to each stage aligning the healing timeline. The developed D-CSMP demonstrate notable time-sequential functionalities, including promoting blood coagulation, enhancing hemostasis, and exerting antibacterial effects. Furthermore, in a skin injury model, D-CSMP significantly expedite and enhance the chronic wound healing process. In conclusion, our core-shell microparticles with notable time-sequential functions present a versatile and robust approach for wound treatment and related biomedical applications.
Collapse
Affiliation(s)
- Fenglan Xu
- Department of Clinical Pharmacy, The Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China; School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Weijiang Wang
- School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Wenbin Zhao
- Department of Clinical Pharmacy, The Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China; School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Huiyuan Zheng
- School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Huan Xin
- School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Wentao Sun
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266113, China
| | - Qingming Ma
- School of Pharmacy, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
24
|
Lv Y, Yang W, Kannan PR, Zhang H, Zhang R, Zhao R, Kong X. Materials-based hair follicle engineering: Basic components and recent advances. Mater Today Bio 2024; 29:101303. [PMID: 39498149 PMCID: PMC11532916 DOI: 10.1016/j.mtbio.2024.101303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 11/07/2024] Open
Abstract
The hair follicle (HF) is a significant skin appendage whose primary function is to produce the hair shaft. HFs are a non-renewable resource; skin damage or follicle closure may lead to permanent hair loss. Advances in biomaterials and biomedical engineering enable the feasibility of manipulating the HF-associated cell function for follicle reconstruction via rational design. The regeneration of bioengineered HF addresses the issue of limited resources and contributes to advancements in research and applications in hair loss treatment, HF development, and drug screening. Based on these requirements, this review summarizes the basic and recent advances in hair follicle regulation, including four components: acquisition of stem cells, signaling pathways, materials, and engineering methods. Recent studies have focused on efficiently combining these components and reproducing functionality, which would boost fabrication in HF rebuilding ex vivo, thereby eliminating the obstacles of transplantation into animals to promote mature development.
Collapse
Affiliation(s)
- Yudie Lv
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Weili Yang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Perumal Ramesh Kannan
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Han Zhang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Rui Zhang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Ruibo Zhao
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xiangdong Kong
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| |
Collapse
|
25
|
Ruggeri M, Nomicisio C, Taviot-Guého C, Vigani B, Boselli C, Grisoli P, Icaro Cornaglia A, Bianchi E, Viseras C, Rossi S, Sandri G. Smart copper-doped clays in biomimetic microparticles for wound healing and infection control. Mater Today Bio 2024; 29:101292. [PMID: 39483391 PMCID: PMC11525154 DOI: 10.1016/j.mtbio.2024.101292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/19/2024] [Accepted: 10/06/2024] [Indexed: 11/03/2024] Open
Abstract
Chronic wounds are non-healing lesions characterized by a high degree of inflammation, posing significant challenges in clinical management due to the increased risk of severe infection. This study focuses on developing a powder for cutaneous application to enhance the healing and prevent infections in chronic wounds. The smart nanocomposites-based biomimetic microparticles here developed combine the properties of chitosan and of clays and represent a significant innovation in the field of biomaterials for skin regeneration since they possess enhanced antimicrobial properties, are multi-functional scaffolds and promote cell proliferation, support tissue reconstruction by mimicking the natural extracellular matrix, and provide hemostatic properties to control bleeding during wound closure. The microparticles were made of chitosan and doped with clay minerals, specifically montmorillonite or layered double hydroxides, containing copper ions. The synergistic combination of biomimetic polymers and clays aims to regulate cellular responses, angiogenesis, and extracellular matrix (ECM) deposition, leveraging the bioactive properties of both components to promote wound healing. Montmorillonite and layered double hydroxides were enriched with copper ions through intercalation or coprecipitation methods, respectively. The water-insoluble microparticles were prepared using a chitosan derivative, chitosan carbamate, synthesized to obtain chitosan-based microparticles via spray-drying without crosslinkers. Physico-chemical characterization confirmed the successful doping of Cu-clay interaction products in the microparticles. In addition to enhanced cell proliferation and hemostatic properties, the presence of Cu-clays boosted the microparticles' antibacterial properties. Encouraging preclinical in vitro and in vivo results suggest that these smart nanocomposite biomimetic microparticles doped with Cu-enriched clay minerals could be promising candidates for simultaneously enhancing healing and controlling infections in chronic wounds.
Collapse
Affiliation(s)
- Marco Ruggeri
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Cristian Nomicisio
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Christine Taviot-Guého
- Institut de Chimie de Clermont-Ferrand, Université Clermont-Auvergne, UMR CNRS 6296, 24 av Blaise Pascal, 63171, Aubière, France
| | - Barbara Vigani
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Cinzia Boselli
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Pietro Grisoli
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Antonia Icaro Cornaglia
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, via Forlanini 2, 27100, Pavia, Italy
| | - Eleonora Bianchi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - César Viseras
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071, Granada, Spain
| | - Silvia Rossi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Giuseppina Sandri
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| |
Collapse
|
26
|
Wu C, Yu Q, Huang C, Li F, Zhang L, Zhu D. Microneedles as transdermal drug delivery system for enhancing skin disease treatment. Acta Pharm Sin B 2024; 14:5161-5180. [PMID: 39807331 PMCID: PMC11725105 DOI: 10.1016/j.apsb.2024.08.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 01/16/2025] Open
Abstract
Microneedles (MNs) serve as a revolutionary paradigm in transdermal drug delivery, heralding a viable resolution to the formidable barriers presented by the cutaneous interface. This review examines MNs as an advanced approach to enhancing dermatological pathology management. It explores the complex dermis structure and highlights the limitations of traditional transdermal methods, emphasizing MNs' advantage in bypassing the stratum corneum to deliver drugs directly to the subdermal matrix. The discourse outlines the diverse typologies of MNs, including solid, coated, hollow, hydrogel, and dissolvable versions. Each type is characterized by its unique applications and benefits. The treatise details the deployment of MNs in the alleviation of cutaneous cancers, the administration of inflammatory dermatoses such as psoriasis and atopic dermatitis, and their utility in wound management. Additionally, the paper contemplates the prospects of MNs within the realm of aesthetic dermatology and the burgeoning market traction of cosmetic MN formulations. The review summarizes the scientific and commercial challenges to the clinical adoption of MN therapeutics, including dosage calibration, pharmacodynamics, biocompatibility, patient compliance, sterilization, mass production, and regulatory oversight. It emphasizes the need for ongoing research, innovation, and regulatory harmonization to overcome these obstacles and fully realize MNs' potential in treating skin diseases and improving patient welfare.
Collapse
Affiliation(s)
- Chaoxiong Wu
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Qingyu Yu
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Chenlu Huang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Fangzhou Li
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Linhua Zhang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Dunwan Zhu
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| |
Collapse
|
27
|
Li S, Ren X, Liu Y, Wang L, Zhou Y, Zhang Y, Yan Z, Lan X, Guo L. Multifunctional carboxymethyl chitosan/oxidized carboxymethyl cellulose hydrogel loaded with ginsenoside Rg1 and polydopamine nanoparticles for infected diabetic wound healing. Int J Biol Macromol 2024; 282:136686. [PMID: 39427794 DOI: 10.1016/j.ijbiomac.2024.136686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 10/07/2024] [Accepted: 10/16/2024] [Indexed: 10/22/2024]
Abstract
Besides bacterial infection, diabetic wounds are often accompanied by local inflammatory response, oxidative stress imbalances, and vascular formation disorders, which are the main reasons for long-term non-healing of diabetic wounds. In order to solve this problem, Ch-OCMC-PDA NPs-Rg1 self-healing hydrogel was constructed by Schiff base reaction. With the addition of PDA NPs and Rg1, Ch-OCMC-PDA NPs-Rg1 hydrogel showed excellent physical properties, like compressive strength of 142 kPa, swelling ratio of 148.91 %, and Rg1 carried in the hydrogel could achieve a slow release of 90.59 % within 48 h. What's more, PDA NPs endowed it with highly efficient photothermal antibacterial properties. In addition to excellent biocompatibility, Ch-OCMC-PDA NPs-Rg1 hydrogel could effectively clear intracellular reactive oxygen species, promote macrophages M2 transformation, and facilitate human umbilical vein endothelial cells migration and tube formation. In vivo experiments exhibited that Ch-OCMC-PDA NPs-Rg1 hydrogel could reduce wound inflammation, stimulate early angiogenesis, promote collagen deposition, and shorten the healing process of diabetic infected wounds, and the wound healing rate was significantly increased compared with other groups, reaching 98.41 ± 0.31 %. In summary, the multi-functional dynamic Ch-OCMC-PDA NPs-Rg1 hydrogel provides a new possibility for the treatment of diabetic infection wounds.
Collapse
Affiliation(s)
- Sihui Li
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, China; Institute of Stomatology, Southwest Medical University, Luzhou, China; Ziyang Central Hospital, China
| | - Xiaofeng Ren
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, China; Institute of Stomatology, Southwest Medical University, Luzhou, China
| | - Youbo Liu
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, China; Institute of Stomatology, Southwest Medical University, Luzhou, China
| | - Li Wang
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, China; Institute of Stomatology, Southwest Medical University, Luzhou, China
| | - Yang Zhou
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, China; Institute of Stomatology, Southwest Medical University, Luzhou, China
| | - Yunan Zhang
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, China; Institute of Stomatology, Southwest Medical University, Luzhou, China
| | - Zhongyi Yan
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, China; Institute of Stomatology, Southwest Medical University, Luzhou, China
| | - Xiaorong Lan
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, China; Institute of Stomatology, Southwest Medical University, Luzhou, China
| | - Ling Guo
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, China; Institute of Stomatology, Southwest Medical University, Luzhou, China.
| |
Collapse
|
28
|
Deng R, Ren C, Song X, Wei W, Wang H, Nie Q, Liu Y, Li P, Ding L, Chang M, Chen Y, Zhou Y. Two-Dimensional Atomically Thin Piezoelectric Nanosheets for Efficient Pyroptosis-Dominated Sonopiezoelectric Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405741. [PMID: 39248778 PMCID: PMC11558157 DOI: 10.1002/advs.202405741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/09/2024] [Indexed: 09/10/2024]
Abstract
Sonopiezocatalytic therapy is an emerging therapeutic strategy that utilizes ultrasound irradiation to activate piezoelectric materials, inducing polarization and energy band bending to facilitate the generation of reactive oxygen species (ROS). However, the efficient generation of ROS is hindered by the long distance of charge migration from the bulk to the material surface. Herein, atomically thin Bi2O2(OH)(NO3) (AT-BON) nanosheets are rationally engineered through disrupting the weaker hydrogen bonds within the [OH] and [NO3] layer in the bulk material. The ultrathin structure of AT-BON piezocatalytic nanosheets shortens the migration distance of carriers, expands the specific surface area, and accelerates the charge transfer efficiency, showcasing a natural advantage in ROS generation. Importantly, the non-centrosymmetric polar crystal structure grants the nanosheets the ability to separate electron-hole pairs. Under ultrasonic mechanical stress, Bi2O2(OH)(NO3) nanosheets with the remarkable piezoelectric feature exhibit the desirable in vivo antineoplastic outcomes in both breast cancer model and liver cancer model. Especially, the AT-BON-induced ROS bursts lead to the activation of the Caspase-1-driven pyroptosis pathway. This study highlights the beneficial impact of bulk material thinning on enhancing ROS generation efficiency and anti-cancer effects.
Collapse
Affiliation(s)
- Ruxi Deng
- Department of UltrasoundThe Third People's Hospital of ChengduAffiliated Hospital of Southwest Jiaotong UniversityChengduSichuan610031P. R. China
| | - Chunrong Ren
- Department of GastroenterologyThe Third People's Hospital of ChengduAffiliated Hospital of Southwest Jiaotong UniversityChengduSichuan610031P. R. China
| | - Xinran Song
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Wuyang Wei
- Department of UltrasoundThe Third People's Hospital of ChengduAffiliated Hospital of Southwest Jiaotong UniversityChengduSichuan610031P. R. China
| | - Hai Wang
- Department of UltrasoundThe Third People's Hospital of ChengduAffiliated Hospital of Southwest Jiaotong UniversityChengduSichuan610031P. R. China
| | - Quanyu Nie
- Department of UltrasoundThe Third People's Hospital of ChengduAffiliated Hospital of Southwest Jiaotong UniversityChengduSichuan610031P. R. China
| | - Ying Liu
- Department of UltrasoundThe Third People's Hospital of ChengduAffiliated Hospital of Southwest Jiaotong UniversityChengduSichuan610031P. R. China
| | - Pan Li
- Department of UltrasoundChongqing Key Laboratory of Ultrasound Molecular Imagingthe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010P. R. China
| | - Li Ding
- Department of Medical UltrasoundNational Clinical Research Center of Interventional MedicineShanghai Tenth People's HospitalTongji University Cancer CenterSchool of MedicineTongji UniversityShanghai200072P. R. China
| | - Meiqi Chang
- Laboratory CenterShanghai Municipal Hospital of Traditional Chinese MedicineShanghai University of Traditional Chinese MedicineShanghai200071P. R. China
| | - Yu Chen
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
- Shanghai Institute of MaterdicineShanghai200051P. R. China
| | - Yang Zhou
- Department of UltrasoundThe Third People's Hospital of ChengduAffiliated Hospital of Southwest Jiaotong UniversityChengduSichuan610031P. R. China
| |
Collapse
|
29
|
Liu H, Li H, Bai X, Zhao Y, Cai Y, Pan H, Guo L, Liu K, Liu Q, Huang X, Zampetaki A, Margariti A, Zeng L, Cai T. Histone Deacetylase 7-Derived 7-Amino Acid Peptide Increases Skin Wound Healing via Regulating Epidermal Fibroblast Proliferation and Migration. J Cell Mol Med 2024; 28:e70209. [PMID: 39601342 PMCID: PMC11600263 DOI: 10.1111/jcmm.70209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/16/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Due to the complexity of wound healing, how to achieve successful healing is a significant clinical challenge. In this study, we found that the histone deacetylase-7-derived 7-amino acid peptide (7A, MHSPGAD), especially its phosphorylated version 7Ap (MH[pSer]PGAD), increased dermal fibroblast cell HDFα proliferation and migration via elevated delta-catenin (CTNND1) serine phosphorylation-mediated beta-catenin (CTNNB) nuclear translocation and subsequent upregulation of c-Myc and cyclin D1 expression. 7Ap physically interacted with platelet-derived growth factor receptor (PDGFR) and increased PDGFR interaction with cyclin-dependent kinase 6 (CDK6). The PDGFR siRNA or CDK6 siRNA knockdown ablated 7AP-induced CTNND1 phosphorylation and subsequent c-Myc/cyclin D1 expression, indicating a novel 7Ap-PDGFR-CDK6-CTNND1/CTNNB signal pathway in regulating fibroblast proliferation and migration. Furthermore, 7Ap increased human umbilic vein endothelial cell proliferation and tube formation, suggesting an angiogenic effect. In a full-thickness excision wound rat model, the local administration of 50 ng/mL of 7Ap in hydrogel exerted a similar effect as 1 μg/mL vascular endothelial growth factor on accelerating wound healing, featured by enhanced fibroblast proliferation and migration, collagen deposition, and increased new vessel formation during the early phase of wound healing. Taken together, this study not only elicited a novel signal pathway in fibroblast proliferation but also paved an avenue to develop 7Ap as a treatment option for skin wound healing.
Collapse
Affiliation(s)
- Huina Liu
- Ningbo No.2 HospitalNingboChina
- Ningbo Institute of Life and Health IndustryUniversity of Chinese Academy of SciencesNingboChina
| | - Hua Li
- Ningbo Institute of Life and Health IndustryUniversity of Chinese Academy of SciencesNingboChina
| | - Xuefeng Bai
- School of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Science and MedicineKing's College LondonLondonUK
| | - Yue Zhao
- School of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Science and MedicineKing's College LondonLondonUK
| | - Yannan Cai
- Ningbo Women and Children's HospitalNingboChina
| | - Huiqing Pan
- Ningbo Institute of Life and Health IndustryUniversity of Chinese Academy of SciencesNingboChina
| | - Linyan Guo
- Ningbo Institute of Life and Health IndustryUniversity of Chinese Academy of SciencesNingboChina
| | - Kun Liu
- Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Qian Liu
- Department of GeriatricChengdu Fifth People's HospitalChengduChina
| | | | - Anna Zampetaki
- School of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Science and MedicineKing's College LondonLondonUK
| | - Andriana Margariti
- School of Medicine, Dentistry and Biomedical SciencesThe Wellcome‐Wolfson Institute of Experimental MedicineBelfastUK
| | - Lingfang Zeng
- School of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Science and MedicineKing's College LondonLondonUK
| | - Ting Cai
- Ningbo No.2 HospitalNingboChina
- Ningbo Institute of Life and Health IndustryUniversity of Chinese Academy of SciencesNingboChina
| |
Collapse
|
30
|
Kang Y, Zhang S, Wang G, Yan Z, Wu G, Tang L, Wang W. Nanocarrier-Based Transdermal Drug Delivery Systems for Dermatological Therapy. Pharmaceutics 2024; 16:1384. [PMID: 39598508 PMCID: PMC11597219 DOI: 10.3390/pharmaceutics16111384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/12/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
Dermatoses are among the most prevalent non-fatal conditions worldwide. Given this context, it is imperative to introduce safe and effective dermatological treatments to address the diverse needs and concerns of individuals. Transdermal delivery technology offers a promising alternative compared to traditional administration methods such as oral or injection routes. Therefore, this review focuses on the recent achievements of nanocarrier-based transdermal delivery technology for dermatological therapy, which summarizes diverse delivery strategies to enhance skin penetration using various nanocarriers including vesicular nanocarriers, lipid-based nanocarriers, emulsion-based nanocarriers, and polymeric nanocarrier according to the pathogenesis of common dermatoses. The fundamentals of transdermal delivery including skin physiology structure and routes of penetration are introduced. Moreover, mechanisms to enhance skin penetration due to the utilization of nanocarriers such as skin hydration, system deformability, disruption of the stratum corneum, surface charge, and tunable particle size are outlined as well.
Collapse
Affiliation(s)
- Yunxiang Kang
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, China
| | - Sunxin Zhang
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, China
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Guoqi Wang
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, China
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ziwei Yan
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, China
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Guyuan Wu
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, China
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Lu Tang
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, China
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Wei Wang
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, China
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
31
|
Samarawickrama PN, Zhang G, Zhu E, Dong X, Nisar A, Zhu H, Ma Y, Zhou Z, Yang H, Gui L, Cao M, Li W, Chang Y, Zi M, Cui H, Duan Z, Zhang X, Li W, He Y. Clearance of senescent cells enhances skin wound healing in type 2 diabetic mice. Theranostics 2024; 14:5429-5442. [PMID: 39310100 PMCID: PMC11413796 DOI: 10.7150/thno.100991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/16/2024] [Indexed: 09/25/2024] Open
Abstract
Background: Diabetic foot ulcers (DFUs) pose a substantial healthcare challenge due to their high rates of morbidity, recurrence, disability, and mortality. Current DFU therapeutics continue to grapple with multiple limitations. Senescent cells (SnCs) have been found to have a beneficial effect on acute wound healing, however, their roles in chronic wounds, such as DFU, remain unclear. Methods and results: We collected skin, fat, and muscle samples from clinical patients with DFU and lower limb fractures. RNA-sequencing combined with qPCR analyses on these samples demonstrate a significant accumulation of SnCs at DFU, as indicated by higher senescence markers (e.g., p16 and p21) and a senescence-associated secretory phenotype (SASP). We constructed a type 2 diabetic model of db/db mice, fed with a high-fat diet (Db-HFD), which were wounded using a 6 mm punch to the dorsal skin. HFD slightly affected wound healing in wild-type (WT) mice, but high glucose significantly delayed wound healing in the Db-HFD mice. We injected the mice with a previously developed fluorescent probe (XZ1208), which allows the detection of SnCs in vivo, and observed a strong senescence signal at the wound site of the Db-HFD mice. Contrary to the beneficial effects of SnCs in acute wound healing, our results demonstrated that clearance of SnCs using the senolytic compound ABT263 significantly accelerated wound healing in Db-HFD mice. Conclusion: Collectively, these findings suggest that SnCs critically accumulate at wound sites, delaying the healing process in DFUs. Thus, targeting SnCs with senolytic therapy represents a promising approach for DFU treatment, potentially improving the quality of life for patients with DFUs.
Collapse
Affiliation(s)
- Priyadarshani Nadeeshika Samarawickrama
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guiqin Zhang
- Department of Endocrinology, the Second Affiliated Hospital of Dali University (the Third People's Hospital of Yunnan Province), Kunming, Yunnan 650011, China
| | - Enfang Zhu
- Department of Endocrinology, the Second Affiliated Hospital of Dali University (the Third People's Hospital of Yunnan Province), Kunming, Yunnan 650011, China
| | - Xin Dong
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Ayesha Nisar
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Zhu
- Department of Endocrinology, the Second Affiliated Hospital of Dali University (the Third People's Hospital of Yunnan Province), Kunming, Yunnan 650011, China
| | - Yuan Ma
- Department of Orthopedics, the Third People's Hospital of Yunnan Province, Kunming, Yunnan 650011, China
| | - Zheyan Zhou
- Department of Pathology, the Third People's Hospital of Yunnan Province, Kunming, Yunnan 650011, China
| | - Honglin Yang
- Department of Orthopedics, the Third People's Hospital of Yunnan Province, Kunming, Yunnan 650011, China
| | - Li Gui
- Department of Endocrinology, the Second Affiliated Hospital of Dali University (the Third People's Hospital of Yunnan Province), Kunming, Yunnan 650011, China
| | - Mei Cao
- Department of Endocrinology, the Second Affiliated Hospital of Dali University (the Third People's Hospital of Yunnan Province), Kunming, Yunnan 650011, China
| | - Wei Li
- Department of Endocrinology, the Second Affiliated Hospital of Dali University (the Third People's Hospital of Yunnan Province), Kunming, Yunnan 650011, China
| | - Yu Chang
- Department of Endocrinology, the Second Affiliated Hospital of Dali University (the Third People's Hospital of Yunnan Province), Kunming, Yunnan 650011, China
| | - Meiting Zi
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Haoling Cui
- Department of Endocrinology, the Second Affiliated Hospital of Dali University (the Third People's Hospital of Yunnan Province), Kunming, Yunnan 650011, China
| | - Zhongping Duan
- Department of Endocrinology, the Second Affiliated Hospital of Dali University (the Third People's Hospital of Yunnan Province), Kunming, Yunnan 650011, China
| | - Xuan Zhang
- Drug Discovery & Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Wen Li
- Department of Endocrinology, the Second Affiliated Hospital of Dali University (the Third People's Hospital of Yunnan Province), Kunming, Yunnan 650011, China
| | - Yonghan He
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
32
|
Zhang Y, Chen J, Sun Y, Wang M, Liu H, Zhang W. Endogenous Tissue Engineering for Chondral and Osteochondral Regeneration: Strategies and Mechanisms. ACS Biomater Sci Eng 2024; 10:4716-4739. [PMID: 39091217 DOI: 10.1021/acsbiomaterials.4c00603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Increasing attention has been paid to the development of effective strategies for articular cartilage (AC) and osteochondral (OC) regeneration due to their limited self-reparative capacities and the shortage of timely and appropriate clinical treatments. Traditional cell-dependent tissue engineering faces various challenges such as restricted cell sources, phenotypic alterations, and immune rejection. In contrast, endogenous tissue engineering represents a promising alternative, leveraging acellular biomaterials to guide endogenous cells to the injury site and stimulate their intrinsic regenerative potential. This review provides a comprehensive overview of recent advancements in endogenous tissue engineering strategies for AC and OC regeneration, with a focus on the tissue engineering triad comprising endogenous stem/progenitor cells (ESPCs), scaffolds, and biomolecules. Multiple types of ESPCs present within the AC and OC microenvironment, including bone marrow-derived mesenchymal stem cells (BMSCs), adipose-derived mesenchymal stem cells (AD-MSCs), synovial membrane-derived mesenchymal stem cells (SM-MSCs), and AC-derived stem/progenitor cells (CSPCs), exhibit the ability to migrate toward injury sites and demonstrate pro-regenerative properties. The fabrication and characteristics of scaffolds in various formats including hydrogels, porous sponges, electrospun fibers, particles, films, multilayer scaffolds, bioceramics, and bioglass, highlighting their suitability for AC and OC repair, are systemically summarized. Furthermore, the review emphasizes the pivotal role of biomolecules in facilitating ESPCs migration, adhesion, chondrogenesis, osteogenesis, as well as regulating inflammation, aging, and hypertrophy-critical processes for endogenous AC and OC regeneration. Insights into the applications of endogenous tissue engineering strategies for in vivo AC and OC regeneration are provided along with a discussion on future perspectives to enhance regenerative outcomes.
Collapse
Affiliation(s)
- Yanan Zhang
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Jialin Chen
- School of Medicine, Southeast University, 210009 Nanjing, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096 Nanjing, China
- China Orthopedic Regenerative Medicine Group (CORMed), 310058 Hangzhou, China
| | - Yuzhi Sun
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, China
| | - Mingyue Wang
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Haoyang Liu
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Wei Zhang
- School of Medicine, Southeast University, 210009 Nanjing, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096 Nanjing, China
- China Orthopedic Regenerative Medicine Group (CORMed), 310058 Hangzhou, China
| |
Collapse
|
33
|
Wang H, Mu G, Cai X, Zhang X, Mao R, Jia H, Luo H, Liu J, Zhao C, Wang Z, Yang C. Glucopeptide Superstructure Hydrogel Promotes Surgical Wound Healing Following Neoadjuvant Radiotherapy by Producing NO and Anticellular Senescence. Adv Healthc Mater 2024; 13:e2400406. [PMID: 38683036 DOI: 10.1002/adhm.202400406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/26/2024] [Indexed: 05/01/2024]
Abstract
Neoadjuvant radiotherapy, a preoperative intervention regimen for reducing the stage of primary tumors and surgical margins, has gained increasing attention in the past decade. However, radiation-induced skin damage during neoadjuvant radiotherapy exacerbates surgical injury, remarkably increasing the risk of refractory wounds and compromising the therapeutic effects. Radiation impedes wound healing by increasing the production of reactive oxygen species and inducing cell apoptosis and senescence. Here, a self-assembling peptide (R-peptide) and hyaluronic-acid (HA)-based and cordycepin-loaded superstructure hydrogel is prepared for surgical incision healing after neoadjuvant radiotherapy. Results show that i) R-peptide coassembles with HA to form biomimetic fiber bundle microstructure, in which R-peptide drives the assembly of single fiber through π-π stacking and other forces and HA, as a single fiber adhesive, facilitates bunching through electrostatic interactions. ii) The biomimetic superstructure contributes to the adhesion and proliferation of cells in the surgical wound. iii) Aldehyde-modified HA provides dynamic covalent binding sites for cordycepin to achieve responsive release, inhibiting radiation-induced cellular senescence. iv) Arginine in the peptides provides antioxidant capacity and a substrate for the endogenous production of nitric oxide to promote wound healing and angiogenesis of surgical wounds after neoadjuvant radiotherapy.
Collapse
Affiliation(s)
- Hang Wang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Ganen Mu
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Xiaoyao Cai
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Xiaoguang Zhang
- Tianjin Center for Medical Devices Evaluation and Inspection, Tianjin, 300191, P. R. China
| | - Ruiqi Mao
- Tianjin Center for Medical Devices Evaluation and Inspection, Tianjin, 300191, P. R. China
| | - Haixue Jia
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Hongjing Luo
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Jianfeng Liu
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Cuicui Zhao
- Tianjin Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy (Tianjin), Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, P. R. China
| | - Zhongyan Wang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Cuihong Yang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| |
Collapse
|
34
|
Jiang S, Xie D, Hu Z, Song H, Tang P, Jin Y, Xia J, Ji Y, Xiao Y, Chen S, Fu Q, Dai J. Enhanced diabetic wound healing with injectable hydrogel containing self-assembling nanozymes. J Control Release 2024; 372:265-280. [PMID: 38906418 DOI: 10.1016/j.jconrel.2024.06.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
To build a smart system in response to the variable microenvironment in infected diabetic wounds, a multifunctional wound dressing was constructed by co-incorporating glucose oxidase (GOx) and a pH-responsive self-assembly Cu2-xSe-BSA nanozyme into a dual-dynamic bond cross-linked hydrogel (OBG). This composite hydrogel (OBG@CG) can adhere to the wound site and respond to the acidic inflammatory environment, initiating the GOx-catalyzed generation of H2O2 and the self-assembly activated peroxidase-like property of Cu2-xSe-BSA nanozymes, resulting in significant hydroxyl radical production to attack the biofilm during the acute infection period and alleviate the high-glucose microenvironment for better wound healing. During the wound recovery phase, Cu2-xSe-BSA aggregates disassembled owing to the elevated pH, terminating catalytic reactive oxygen species generation. Simultaneously, Cu2+ released from the Cu2-xSe-BSA not only promotes the production of mature collagen but also enhances the migration and proliferation of endothelial cells. RNA-seq analysis demonstrated that OBG@CG exerted its antibacterial property by damaging the integrity of the biofilm by inducing radicals and interfering with the energy supply, along with destroying the defense system by disturbing thiol metabolism and reducing transporter activities. This work proposes an innovative glucose consumption strategy for infected diabetic wound management, which may inspire new ideas in the exploration of smart wound dressing.
Collapse
Affiliation(s)
- Sicheng Jiang
- Department of Orthopaedic Surgery, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Biomedical Research Center, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou 310016, China
| | - Dingqi Xie
- Department of Orthopaedic Surgery, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Biomedical Research Center, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou 310016, China
| | - Zehui Hu
- Department of Orthopaedic Surgery, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Biomedical Research Center, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou 310016, China
| | - Honghai Song
- Department of Orthopaedic Surgery, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Biomedical Research Center, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou 310016, China
| | - Pan Tang
- Department of Orthopaedic Surgery, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Biomedical Research Center, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou 310016, China
| | - Yang Jin
- Department of Orthopaedic Surgery, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Biomedical Research Center, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou 310016, China
| | - Jiechao Xia
- Department of Orthopaedic Surgery, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Biomedical Research Center, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou 310016, China
| | - Yinwen Ji
- The Children's Hospital, National Clinical Research Center for Child Health, Medical College of Zhejiang University, Hangzhou 310052, China
| | - Ying Xiao
- Department of Orthopaedic Surgery, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Biomedical Research Center, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou 310016, China
| | - Shuai Chen
- Department of Orthopaedic Surgery, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Biomedical Research Center, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou 310016, China.
| | - Qinrui Fu
- Institute for Translational Medicine, Medicine College of Qingdao University, Qingdao 266021, China.
| | - Jiayong Dai
- Department of Orthopaedic Surgery, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Biomedical Research Center, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou 310016, China.
| |
Collapse
|
35
|
Wei J, Wang Z, Pan F, Yuan T, Fang Y, Gao C, Ping H, Wang Y, Zhao S, Fu Z. Biosustainable Multiscale Transparent Nanocomposite Films for Sensitive Pressure and Humidity Sensors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37122-37130. [PMID: 38953852 DOI: 10.1021/acsami.4c09157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Light weight, thinness, transparency, flexibility, and insulation are the key indicators for flexible electronic device substrates. The common flexible substrates are usually polymer materials, but their recycling is an overwhelming challenge. Meanwhile, paper substrates are limited in practical applications because of their poor mechanical and thermal stability. However, natural biomaterials have excellent mechanical properties and versatility thanks to their organic-inorganic multiscale structures, which inspired us to design an organic-inorganic nanocomposite film. For this purpose, a bio-inspired multiscale film was developed using cellulose nanofibers with abundant hydrophilic functional groups to assist in dispersing hydroxyapatite nanowires. The thickness of the biosustainable film is only 40 μm, and it incorporates distinctive mechanical properties (strength: 52.8 MPa; toughness: 0.88 MJ m-3) and excellent optical properties (transmittance: 80.0%; haze: 71.2%). Consequently, this film is optimal as a substrate employed for flexible sensors, which can transmit capacitance and resistance signals through wireless Bluetooth, showing an ultrasensitive response to pressure and humidity (for example, responding to finger pressing with 5000% signal change and exhaled water vapor with 4000% signal change). Therefore, the comprehensive performance of the biomimetic multiscale organic-inorganic composite film confers a prominent prospect in flexible electronics devices, food packaging, and plastic substitution.
Collapse
Affiliation(s)
- Jingjiang Wei
- Institute for Advanced Study, Chengdu University, Chengdu 610106, P. R. China
| | - Zhikang Wang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Fei Pan
- Department of Chemistry, University of Basel, Basel 4058, Switzerland
| | - Tianyu Yuan
- Institute for Advanced Study, Chengdu University, Chengdu 610106, P. R. China
| | - Yuanlai Fang
- Institute for Advanced Study, Chengdu University, Chengdu 610106, P. R. China
| | - Caiqin Gao
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Hang Ping
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Yanqing Wang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Shanyu Zhao
- Laboratory for Building Energy Materials and Components, Swiss Federal Laboratories for Materials Science and Technology (Empa), Dübendorf 8600, Switzerland
| | - Zhengyi Fu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
| |
Collapse
|
36
|
Chen X, Li ZW, Duan H, Sun YW, Su Y, Peng S, Guo Y, Xiong Y, Tang BZ, Huang X. A Ligand-Directed Spatial Regulation to Structural and Functional Tunability in Aggregation-Induced Emission Luminogen-Functionalized Organic-Inorganic Nanoassemblies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313381. [PMID: 38647215 DOI: 10.1002/adma.202313381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/19/2024] [Indexed: 04/25/2024]
Abstract
Aggregation-induced emission luminogen (AIEgen)-functionalized organic-inorganic hybrid nanoparticles (OINPs) are an emerging category of multifunctional nanomaterials with vast potential applications. The spatial arrangement and positioning of AIEgens and inorganic compounds in AIEgen-functionalized OINPs determine the structures, properties, and functionalities of the self-assembled nanomaterials. In this work, a facile and general emulsion self-assembly tactic for synthesizing well-defined AIEgen-functionalized OINPs is proposed by coassembling alkane chain-functionalized inorganic nanoparticles with hydrophobic organic AIEgens. As a proof of concept, the self-assembly and structural evolution of plasmonic-fluorescent hybrid nanoparticles (PFNPs) from concentric circle to core shell and then to Janus structures is demonstrated by using alkane chain-modified AuNPs and AIEgens as building blocks. The spatial position of AuNPs in the signal nanocomposite is controlled by varying the alkane ligand length and density on the AuNP surface. The mechanism behind the formation of various PFNP nanostructures is also elucidated through experiments and theoretical simulation. The obtained PFNPs with diverse structures exhibit spatially tunable optical and photothermal properties for advanced applications in multicolor and multimode immunolabeling and photothermal sterilization. This work presents an innovative synthetic approach of constructing AIEgen-functionalized OINPs with diverse structures, compositions, and functionalities, thereby championing the progressive development of these OINPs.
Collapse
Affiliation(s)
- Xirui Chen
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Zhan-Wei Li
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, China
| | - Hong Duan
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University, Beijing, 100048, China
| | - Yu-Wei Sun
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, China
| | - Yu Su
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Shiyu Peng
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Yuqian Guo
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| |
Collapse
|
37
|
Zhang Y, Chen S, Qin X, Guo A, Li K, Chen L, Yi W, Deng Z, Tay FR, Geng W, Miao L, Jiao Y, Tao B. A Versatile Chitosan-Based Hydrogel Accelerates Infected Wound Healing via Bacterial Elimination, Antioxidation, Immunoregulation, and Angiogenesis. Adv Healthc Mater 2024; 13:e2400318. [PMID: 38408212 DOI: 10.1002/adhm.202400318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Indexed: 02/28/2024]
Abstract
Drug-resistant bacterial infection of cutaneous wounds causes great harm to the human body. These infections are characterized by a microenvironment with recalcitrant bacterial infections, persistent oxidative stress, imbalance of immune regulation, and suboptimal angiogenesis. Treatment strategies available to date are incapable of handling the healing dynamics of infected wounds. A Schiff base and borate ester cross-linked hydrogel, based on phenylboronic acid-grafted chitosan (CS-PBA), dibenzaldehyde-grafted poly(ethylene glycol), and tannic acid (TA), is fabricated in the present study. Customized phenylboronic acid-modified zinc oxide nanoparticles (ZnO) are embedded in the hydrogel prior to gelation. The CPP@ZnO-P-TA hydrogel effectively eliminates methicillin-resistant Staphylococcus aureus (MRSA) due to the pH-responsive release of Zn2+ and TA. Killing is achieved via membrane damage, adenosine triphosphate reduction, leakage of intracellular components, and hydrolysis of bacterial o-nitrophenyl-β-d-galactopyranoside. The CPP@ZnO-P-TA hydrogel is capable of scavenging reactive oxygen and nitrogen species, alleviating oxidative stress, and stimulating M2 polarization of macrophages. The released Zn2+ and TA also induce neovascularization via the PI3K/Akt pathway. The CPP@ZnO-P-TA hydrogel improves tissue regeneration in vivo by alleviating inflammatory responses, stimulating angiogenesis, and facilitating collagen deposition. These findings suggest that this versatile hydrogel possesses therapeutic potential for the treatment of MRSA-infected cutaneous wounds.
Collapse
Affiliation(s)
- Ye Zhang
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Sinan Chen
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Xian Qin
- Women and Children's Hospital of Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Ai Guo
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Kai Li
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Lixue Chen
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Weiwei Yi
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Zhongliang Deng
- Department of OrthopediCP, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Franklin R Tay
- The Graduate School, Augusta University, Augusta, GA, 30912, USA
| | - Wenbo Geng
- Chongqing Key Laboratory of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Li Miao
- Department of Stomatology, The Seventh Medical Center of PLA General Hospital, Beijing, 100700, P. R. China
| | - Yang Jiao
- Department of Stomatology, The Seventh Medical Center of PLA General Hospital, Beijing, 100700, P. R. China
| | - Bailong Tao
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
| |
Collapse
|
38
|
Li N, Zhang W, Wu S, Shafiq M, Xie P, Zhang L, Jiang S, Bi Y. Mesoporous Silicon with Strontium-Powered Poly(Lactic-Co-Glycolic acid)/Gelatin-Based Dressings Facilitate Skin Tissue Repair. Int J Nanomedicine 2024; 19:6449-6462. [PMID: 38946883 PMCID: PMC11214017 DOI: 10.2147/ijn.s460177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/22/2024] [Indexed: 07/02/2024] Open
Abstract
Purpose Functional inorganic nanomaterials (NMs) are widely exploited as bioactive materials and drug depots. The lack of a stable form of application of NMs at the site of skin injury, may impede the removal of the debridement, elevate pH, induce tissue toxicity, and limit their use in skin repair. This necessitates the advent of innovative wound dressings that overcome the above limitations. The overarching objective of this study was to exploit strontium-doped mesoporous silicon particles (PSiSr) to impart multifunctionality to poly(lactic-co-glycolic acid)/gelatin (PG)-based fibrous dressings (PG@PSiSr) for excisional wound management. Methods Mesoporous silicon particles (PSi) and PSiSr were synthesized using a chemo-synthetic approach. Both PSi and PSiSr were incorporated into PG fibers using electrospinning. A series of structure, morphology, pore size distribution, and cumulative pH studies on the PG@PSi and PG@PSiSr membranes were performed. Cytocompatibility, hemocompatibility, transwell migration, scratch wound healing, and delineated angiogenic properties of these composite dressings were tested in vitro. The biocompatibility of composite dressings in vivo was assessed by a subcutaneous implantation model of rats, while their potential for wound healing was discerned by implantation in a full-thickness excisional defect model of rats. Results The PG@PSiSr membranes can afford the sustained release of silicon ions (Si4+) and strontium ions (Sr2+) for up to 192 h as well as remarkably promote human umbilical vein endothelial cells (HUVECs) and NIH-3T3 fibroblasts migration. The PG@PSiSr membranes also showed better cytocompatibility, hemocompatibility, and significant formation of tubule-like networks of HUVECs in vitro. Moreover, PG@PSiSr membranes also facilitated the infiltration of host cells and promoted the deposition of collagen while reducing the accumulation of inflammatory cells in a subcutaneous implantation model in rats as assessed for up to day 14. Further evaluation of membranes transplanted in a full-thickness excisional wound model in rats showed rapid wound closure (PG@SiSr vs control, 96.1% vs 71.7%), re-epithelialization, and less inflammatory response alongside skin appendages formation (eg, blood vessels, glands, hair follicles, etc.). Conclusion To sum up, we successfully fabricated PSiSr particles and prepared PG@PSiSr dressings using electrospinning. The PSiSr-mediated release of therapeutic ions, such as Si4+ and Sr2+, may improve the functionality of PLGA/Gel dressings for an effective wound repair, which may also have implications for the other soft tissue repair disciplines.
Collapse
Affiliation(s)
- Naijing Li
- Department of Orthopedic Oncology, Yantai Shan Hospital, Yantai, People’s Republic of China
| | - Weiying Zhang
- Health Management Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
| | - Siyuan Wu
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
| | - Muhammad Shafiq
- Innovation Center of Nanomedicines, Kawasaki Institute of Industrial Promotion, Kawasaki, Japan
| | - Peihan Xie
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
| | - Lixiang Zhang
- Department of Health Management, Characteristic Medical Center of Chinese People’s Armed Police Force, Tianjin, People’s Republic of China
| | - Shichao Jiang
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
| | - Yue Bi
- Department of Orthopedic Oncology, Yantai Shan Hospital, Yantai, People’s Republic of China
| |
Collapse
|
39
|
Ullah I, Khan SS, Ahmad W, Liu L, Rady A, Aldahmash B, Yu C, Wang Y. Silver incorporated SeTe nanoparticles with enhanced photothermal and photodynamic properties for synergistic effects on anti-bacterial activity and wound healing. RSC Adv 2024; 14:18871-18878. [PMID: 38873544 PMCID: PMC11167613 DOI: 10.1039/d4ra01343c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/22/2024] [Indexed: 06/15/2024] Open
Abstract
Bacteria invade the host's immune system, thereby inducing serious infections. Current treatments for bacterial infections mostly rely on single modalities, which cannot completely inhibit bacteria. This study evaluates the therapeutic potential of SeTe-Ag NPs, designed with excellent photo responsiveness, with a particular focus on their dual-action antibacterial effect and wound healing properties. SeTe-Ag NPs exhibited promising synergistic antibacterial effects due to their superior photothermal and photodynamic properties. The investigation records substantial zones of inhibition of bacteria, demonstrating potent antibacterial effect. Furthermore, upon the irradiation of near-infrared (NIR) light, SeTe-Ag NPs exhibit remarkable antibiofilm and wound-healing capabilities. Overall, this study shows the applications of NIR-active SeTe-Ag NPs, which serve as a versatile platform for biomedical applications.
Collapse
Affiliation(s)
- Irfan Ullah
- College of Life Science and Technology, Beijing University of Chemical Technology No. 15 East Road of North Third Ring Road, Chao Yang District Beijing 100029 China
| | - Shahin Shah Khan
- College of Life Science and Technology, Beijing University of Chemical Technology No. 15 East Road of North Third Ring Road, Chao Yang District Beijing 100029 China
| | - Waqar Ahmad
- College of Life Science and Technology, Beijing University of Chemical Technology No. 15 East Road of North Third Ring Road, Chao Yang District Beijing 100029 China
| | - Luo Liu
- College of Life Science and Technology, Beijing University of Chemical Technology No. 15 East Road of North Third Ring Road, Chao Yang District Beijing 100029 China
| | - Ahmed Rady
- Department of Zoology, College of Science, King Saud University P. O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Badr Aldahmash
- Department of Zoology, College of Science, King Saud University P. O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Changyuan Yu
- College of Life Science and Technology, Beijing University of Chemical Technology No. 15 East Road of North Third Ring Road, Chao Yang District Beijing 100029 China
| | - Yushu Wang
- School of Pharmaceutical Sciences, Southern Medical University No. 1023, South Shatai Road Guangzhou 510515 P. R. China
| |
Collapse
|
40
|
Li N, Lu X, Yang Y, Ning S, Tian Y, Zhou M, Wang Z, Wang L, Zang J. Calcium Peroxide-Based Hydrogel Patch with Sustainable Oxygenation for Diabetic Wound Healing. Adv Healthc Mater 2024; 13:e2303314. [PMID: 38558386 DOI: 10.1002/adhm.202303314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/24/2024] [Indexed: 04/04/2024]
Abstract
Nonhealing diabetic wounds are predominantly attributed to the inhibition of angiogenesis, re-epithelialization, and extracellular matrix (ECM) synthesis caused by hypoxia. Although oxygen therapy has demonstrated efficacy in promoting healing, its therapeutic impact remains suboptimal due to unsustainable oxygenation. Here, this work proposes an oxygen-releasing hydrogel patch embedded with polyethylene glycol-modified calcium peroxide microparticles, which sustainably releases oxygen for 7 days without requiring any supplementary conditions. The released oxygen effectively promotes cell migration and angiogenesis under hypoxic conditions as validated in vitro. The in vivo tests in diabetic mice models show that the sustainably released oxygen significantly facilitates the synthesis of ECM, induces angiogenesis, and decreases the expression of inflammatory cytokines, achieving a diabetic wound healing rate of 84.2% on day 7, outperforming the existing oxygen-releasing approaches. Moreover, the proposed hydrogel patch is designed with porous, soft, antibacterial, biodegradable, and storage stability for 15 days. The proposed hydrogel patch is expected to be promising in clinics treating diabetic wounds.
Collapse
Affiliation(s)
- Na Li
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan, 430074, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaohuan Lu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yueying Yang
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan, 430074, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shan Ning
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan, 430074, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ye Tian
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan, 430074, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Mengyuan Zhou
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan, 430074, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zheng Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lin Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jianfeng Zang
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan, 430074, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
- The State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
41
|
Wang X, Yuan Z, Shafiq M, Cai G, Lei Z, Lu Y, Guan X, Hashim R, El-Newehy M, Abdulhameed MM, Lu X, Xu Y, Mo X. Composite Aerogel Scaffolds Containing Flexible Silica Nanofiber and Tricalcium Phosphate Enable Skin Regeneration. ACS APPLIED MATERIALS & INTERFACES 2024; 16:25843-25855. [PMID: 38717308 DOI: 10.1021/acsami.4c03744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Poor hemostatic ability and less vascularization at the injury site could hinder wound healing as well as adversely affect the quality of life (QOL). An ideal wound dressing should exhibit certain characteristics: (a) good hemostatic ability, (b) rapid wound healing, and (c) skin appendage formation. This necessitates the advent of innovative dressings to facilitate skin regeneration. Therapeutic ions, such as silicon ions (Si4+) and calcium ions (Ca2+), have been shown to assist in wound repair. The Si4+ released from silica (SiO2) can upregulate the expression of proteins, including the vascular endothelial growth factor (VEGF) and alpha smooth muscle actin (α-SMA), which is conducive to vascularization; Ca2+ released from tricalcium phosphate (TCP) can promote the coagulation alongside upregulating the expression of cell migration and cell differentiation related proteins, thereby facilitating the wound repair. The overarching objective of this study was to exploit short SiO2 nanofibers along with the TCP to prepare TCPx@SSF aerogels and assess their wound healing ability. Short SiO2 nanofibers were prepared by electrospinning and blended with varying proportions of TCP to afford TCPx@SSF aerogel scaffolds. The TCPx@SSF aerogels exhibited good cytocompatibility in a subcutaneous implantation model and manifested a rapid hemostatic effect (hemostatic time 75 s) in a liver trauma model in the rabbit. These aerogel scaffolds also promoted skin regeneration and exhibited rapid wound closure, epithelial tissue regeneration, and collagen deposition. Taken together, TCPx@SSF aerogels may be valuable for wound healing.
Collapse
Affiliation(s)
- Xinyi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Zhengchao Yuan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Muhammad Shafiq
- Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Guangfang Cai
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Zheng Lei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Yifan Lu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Xiangheng Guan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Rashida Hashim
- Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Mohamed El-Newehy
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Meera Moydeen Abdulhameed
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Xiao Lu
- Shanghai Orthopedic Biomaterial Technology Innovation Center, Shanghai Bio-lu Biomaterials Co., Ltd., Shanghai 201114, P. R. China
| | - Yuan Xu
- Department of Orthopaedics, Xinqiao Hospital, Army Military Medical University, No. 183, Xinqiao Street, Shapingba District, Chongqing 400037, P. R. China
| | - Xiumei Mo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China
| |
Collapse
|
42
|
Abdollahi M, Andalib S, Ghorbani R, Afshar D, Gholinejad M, Abdollahi H, Akbari A, Nikfarjam N. Polydopamine contained hydrogel nanocomposites with combined antimicrobial and antioxidant properties for accelerated wound healing. Int J Biol Macromol 2024; 268:131700. [PMID: 38657919 DOI: 10.1016/j.ijbiomac.2024.131700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/10/2024] [Accepted: 04/18/2024] [Indexed: 04/26/2024]
Abstract
Overproduction of reactive oxygen species (ROS) in infected wounds induces a tremendous inflammatory reaction to delay wound healing. To address this problem, we designed a multifunctional polyacrylamide/PVA-based hydrogel containing synthesized poly(1-glycidyl-3-butylimidazolium salicylate) (polyGBImSal) and fabricated polydopamine-coated polyphenolic nanosheet (PDA@PNS) for wound dressing. The PDA@PNS particles were designed to induce I) antioxidant and anti-inflammatory features through ROS-scavenging and II) cell adhesive properties by the existing polydopamine into the hydrogels. The poly(ionic liquid)-based polyGBImSal was designed to allocate effective hydrogel antimicrobial activity. The fabricated hydrogel nanocomposites showed excellent properties in the swelling ratio, cell adhesiveness, protein adsorption, and anti-inflammatory, proving their general performance for application in wound healing. Furthermore, these hydrogels showed high antimicrobial activity (over 95 %) against three common wound-infecting pathogenic microbes: Escherichia coli, Staphylococcus aureus, and Candida albicans. The healing process of full-thickness dermal wounds in rats was accelerated by applying hydrogel nanocomposites with 0.5 wt% of PDA@PNS and 28 wt% of polyGBImSal. The wound closure contraction attained full closure, reaching 100 %, after 14 days, contrasted with the control group employing commercial wound dressing (Tegaderm), which achieved a closure rate of 68 % within the equivalent timeframe. These results make these hydrogel nanocomposites promising candidates for multifunctional wound dressing applications.
Collapse
Affiliation(s)
- Mahin Abdollahi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Sina Andalib
- School of Pharmacy, Zanjan University of Medical Sciences, Zanjan 45139-56111, Iran
| | - Roghayeh Ghorbani
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Davoud Afshar
- Department of Microbiology and Virology, School of Medicine, Zanjan University of Medical Sciences, Zanjan 45139-56111, Iran
| | - Mohammad Gholinejad
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Hamed Abdollahi
- Department of Computer Science and Engineering, University of South Carolina, 29201 Columbia, SC, USA
| | - Ali Akbari
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia 57147, Iran
| | - Nasser Nikfarjam
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran; Department of Chemical Engineering, College of Engineering and Computing, University of South Carolina, Columbia 29208, SC, USA.
| |
Collapse
|
43
|
Elshazly N, Nasr FE, Hamdy A, Saied S, Elshazly M. Advances in clinical applications of bioceramics in the new regenerative medicine era. World J Clin Cases 2024; 12:1863-1869. [PMID: 38660540 PMCID: PMC11036528 DOI: 10.12998/wjcc.v12.i11.1863] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/31/2024] [Accepted: 03/20/2024] [Indexed: 04/11/2024] Open
Abstract
In this editorial, we comment on the hard and soft tissue applications of different ceramic-based scaffolds prepared by different mechanisms such as 3D printing, sol-gel, and electrospinning. The new concept of regenerative medicine relies on biomaterials that can trigger in situ tissue regeneration and stem cell recruitment at the defect site. A large percentage of these biomaterials is ceramic-based as they provide the essential requirements of biomaterial principles such as tailored multisize porosity, antibacterial properties, and angiogenic properties. All these previously mentioned properties put bioceramics on top of the hierarchy of biomaterials utilized to stimulate tissue regeneration in soft and hard tissue wounds. Multiple clinical applications registered the use of these materials in triggering soft tissue regeneration in healthy and diabetic patients such as bioactive glass nanofibers. The results were promising and opened new frontiers for utilizing these materials on a larger scale. The same results were mentioned when using different forms and formulas of bioceramics in hard defect regeneration. Some bioceramics were used in combination with other polymers and biological scaffolds to improve their regenerative and mechanical properties. All this progress will enable a larger scale of patients to receive such services with ease and decrease the financial burden on the government.
Collapse
Affiliation(s)
- Noha Elshazly
- Tissue Engineering Laboratory, Faculty of Dentistry, Alexandria University, Alexandria 21526, Egypt
| | - Fayza Eid Nasr
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria 21526, Egypt
| | - Ayat Hamdy
- Tissue Engineering Laboratory, Faculty of Dentistry, Alexandria University, Alexandria 21526, Egypt
- Public Dental Clinic, Central Administration of Dentistry, Ministry of Health and Population, Alexandria 21554, Egypt
| | - Safa Saied
- Tissue Engineering Laboratory, Faculty of Dentistry, Alexandria University, Alexandria 21526, Egypt
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria 21526, Egypt
| | - Mohamed Elshazly
- Department of Surgery, Faculty of Veterinary Medicine, Alexandria 21526, Egypt
| |
Collapse
|
44
|
Zhang W, Zhao S, Guan Q, Li P, Fan Y. Enhancing Chronic Wound Healing through Engineering Mg 2+-Coordinated Asiatic Acid/Bacterial Cellulose Hybrid Hydrogels. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8238-8249. [PMID: 38345938 DOI: 10.1021/acsami.3c14690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Infectious chronic wounds have gradually become a major clinical problem due to their high prevalence and poor treatment outcomes. The urgent need for wound dressings with immune modulatory, antibacterial, and angiogenic properties has led to the development of innovative solutions. Asiatic acid (AA), derived from herbs, has demonstrated excellent antibacterial, anti-inflammatory, and angiogenic effects, making it a promising candidate for incorporation into hydrogel carriers for wound healing. However, there is currently no available report on AA-based self-assembled hydrogels. Here, a novel hybrid hydrogel dressing consists of interpenetrating polymer networks composed of self-assembled magnesium ion (Mg2+) coordinated asiatic acid (AA-Mg) and bacterial cellulose (BC) is developed to promote infected chronic wound healing. A natural carrier-free self-assembled AA-Mg hydrogel with good injectable and self-healing properties could maintain the sustained release of AA and Mg2+ over an extended period. Notably, the introduction of Mg2+ boosted some pharmacological effects of self-assembled hydrogels due to its excellent anti-inflammatory and angiogenesis. In vitro studies confirmed the exceptional biocompatibility, antibacterial efficacy, and anti-inflammatory potential of the AA-Mg/BC hybrid hydrogel, which also exhibited a commendable mechanical strength. Furthermore, in vivo biological results displayed that the hybrid hydrogel significantly accelerated the wound healing process by boosting dense and organized collagen deposition and the granulation tissue and benefiting revascularization. The introduced self-assembled AA-Mg-based hydrogel offers a promising solution for the effective management of chronic wounds. This universal strategy for the preparation of self-assembled hydrogels modulated with bioactive divalent metal ions is able to excavate more herbal small molecules to construct new self-assembled biomaterials.
Collapse
Affiliation(s)
- Wenxin Zhang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Centerfor Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Beijing 100083, China
| | - Shubi Zhao
- Department of Critical Care Medicine, Shenzhen People's Hospital, No. 3046 Shennan East Road, Shenzhen 518020, China
| | - Qifeng Guan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Centerfor Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Beijing 100083, China
| | - Ping Li
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Centerfor Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Beijing 100083, China
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Centerfor Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Beijing 100083, China
- School of Medical Science and Engineering, Beihang University, No. 37 Xueyuan Road, Beijing 100083, China
| |
Collapse
|
45
|
Li B, Yang W, Shu R, Yang H, Yang F, Dai W, Chen W, Chan YK, Bai D, Deng Y. Antibacterial and Angiogenic (2A) Bio-Heterojunctions Facilitate Infectious Ischemic Wound Regeneration via an Endogenous-Exogenous Bistimulatory Strategy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307613. [PMID: 37848208 DOI: 10.1002/adma.202307613] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/23/2023] [Indexed: 10/19/2023]
Abstract
In infectious ischemic wounds, a lack of blood perfusion significantly worsens microbe-associated infection symptoms and frequently complicates healing. To overcome this daunting issue, antibacterial and angiogenic (2A) bio-heterojunctions (bio-HJs) consisting of CuS/MXene heterojunctions and a vascular endothelial growth factor (VEGF)-mimicking peptide (VMP) are devised and developed to accelerate infectious cutaneous regeneration by boosting angiogenesis via an endogenous-exogenous bistimulatory (EEB) strategy. Assisted by near-infrared irradiation, the bio-HJ platform exhibits versatile synergistic photothermal, photodynamic, and chemodynamic effects for robust antibacterial efficacy. In addition, copper ions liberated from 2A bio-HJs elevate VEGF secretion from fibroblasts, which provokes VEGF receptors (VEGFR) activation through an endogenous pathway, whereas VMP itself promotes an exogenous pathway to facilitate endothelial cell multiplication and tube formation by directly activating the VEGFR signaling pathway. Moreover, employing an in vivo model of infectious ischemic wounds, it is confirmed that the EEB strategy can considerably boost cutaneous regeneration through pathogen elimination, angiogenesis promotion, and collagen deposition. As envisaged, this work leads to the development of a powerful 2A bio-HJ platform that can serve as an effective remedy for bacterial invasion-induced ischemic wounds through the EEB strategy.
Collapse
Affiliation(s)
- Bin Li
- West China Hospital of Stomatology, College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics and Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610065, China
| | - Weizhong Yang
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
| | - Rui Shu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics and Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610065, China
| | - Hang Yang
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
| | - Fan Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics and Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610065, China
| | - Wenyu Dai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics and Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610065, China
| | - Wanxi Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics and Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610065, China
| | - Yau Kei Chan
- Department of Ophthalmology, The University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Ding Bai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics and Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610065, China
| | - Yi Deng
- West China Hospital of Stomatology, College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, 999077, China
| |
Collapse
|
46
|
Zhu J, Wen T, Qu S, Li Q, Liu B, Zhou W. G-Quadruplex/Hemin DNAzyme-Functionalized Silver Nanoclusters with Synergistic Antibacterial and Wound Healing Capabilities for Infected Wound Management. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307220. [PMID: 37828643 DOI: 10.1002/smll.202307220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/28/2023] [Indexed: 10/14/2023]
Abstract
Systematic management of infected wounds requires simultaneous antiinfection and wound healing, which has become the current treatment dilemma. Recently, a multifunctional silver nanoclusters (AgNCs)-based hydrogel dressing to meet these demands is developed. Here a diblock DNA with a cytosine-rich fragment (as AgNCs template) and a guanine-rich fragment (to form G-quadruplex/hemin DNAzyme, termed G4/hemin) is designed, for G4/hemin functionalization of AgNCs. Inside bacteria, G4/hemin can not only accelerate the oxidative release of Ag+ from AgNCs but also generate reactive oxygen species (ROS) via catalase- and peroxidase-mimic activities, which enhance the antibacterial effect. On the other hand, the AgNCs exhibit robust anti-inflammatory and antioxidative activities to switch M1 macrophages into M2 phenotype, which promotes wound healing. Moreover, the hemin is released to upregulate the heme oxygenase-1, an intracellular enzyme that can relieve oxidative stress, which significantly alleviates the cytotoxicity of silver. As a result, such silver-based dressing achieves potent therapeutic efficacy on infected wounds with excellent biosafety.
Collapse
Affiliation(s)
- Jiaojiao Zhu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Tiao Wen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Shuangquan Qu
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- Department of Anesthesiology, Hunan Children's Hospital, Changsha, Hunan, 410007, China
| | - Qingnian Li
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Biwu Liu
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
| |
Collapse
|
47
|
Jain B, Verma DK, Rawat RN, Berdimurodov E. Nanomaterials in Targeting Cancer Cells with Nanotherapeutics: Transitioning Towards Responsive Systems. Curr Pharm Des 2024; 30:3018-3037. [PMID: 39143881 DOI: 10.2174/0113816128317407240724065912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/16/2024] [Accepted: 05/29/2024] [Indexed: 08/16/2024]
Abstract
On a global scale, cancer is a difficult and devastating illness. Several problems with current chemotherapies include cytotoxicity, lack of selectivity, stem-like cell growth, and multi-drug resistance. The most appropriate nanomaterials for cancer treatment are those with characteristics, such as cytotoxicity, restricted specificity, and drug capacity and bioavailability; these materials are nanosized (1-100 nm). Nanodrugs are rarely licenced for therapeutic use despite growing research. These compounds need nanocarrier-targeted drug delivery experiments to improve their translation. This review describes new nanomaterials reported in the literature, impediments to their clinical studies, and their beneficial cancer therapeutic use. It also suggests ways to use nanomaterials in cancer therapy more efficiently and describes the intrinsic challenges of cancer treatment and the different nanocarriers and chemicals that can be utilised for specified tumour targeting. Furthermore, it provides a concise overview of cancer theranostics methods, with a focus on those that make use of nanomaterials. Although nanotechnology offers a great source for future advancements in cancer detection and therapy, there is an emerging need for more studies to address the present barriers to clinical translation.
Collapse
Affiliation(s)
- Bhawana Jain
- Siddhachalam Laboratory, Institute of Life Science Research, Raipur, Chhattisgarh, 493221, India
| | - Dakeshwar Kumar Verma
- Department of Medicinal Chemistry, Govt. Digvijay P.G. Autonomous College, Rajnandgaon, 491441, India
| | - Reena Negi Rawat
- Department of Chemistry, Echelon Institute of Technology, Kabulpur, Kheri-Manjhawali Road, Naharpar, Faridabad, 121101, India
| | - Elyor Berdimurodov
- Department of Chemistry, National University of Uzbekistan, Tashkent, Uzbekistan
| |
Collapse
|
48
|
Huang Y, He S, Yu S, Johnson HM, Chan YK, Jiao Z, Wang S, Wu Z, Deng Y. MXene-Decorated Nanofibrous Membrane with Programmed Antibacterial and Anti-Inflammatory Effects via Steering NF-κB Pathway for Infectious Cutaneous Regeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304119. [PMID: 37759420 DOI: 10.1002/smll.202304119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/08/2023] [Indexed: 09/29/2023]
Abstract
Although antibiotic is still the main choice for antibacteria both in hospital and community, phototherapy has become a possibly one of the alternative approaches in the treatment of microbe-associated infections nowadays because of its considerable potential in effective eradication of pathogenic bacteria. However, overwhelming reactive oxygen species (ROS) generated from phototherapy inevitably provoke an inflammatory response, complicating the healing process. To address this outstanding issue, a MXene-decorated nanofibrious is devised that not only yield localized heat but also elevate ROS levels under near-infrared laser exposure ascribed to the synergistic photothermal/photodynamic effect, for potent bacterial inactivation. After being further loaded with aspirin, the nanofibrous membranes exhibit benign cytocompatibility, boosting cell growth and suppressing the (nuclear factor kappa-B ( NF-κB) signaling pathways through RNA sequencing analysis, indicating an excellent anti-inflammatory effect. Interestingly, in vivo investigations also corroborate that the nanofibrous membranes accelerate infectious cutaneous regeneration by efficiently killing pathogenic bacteria, promoting collagen deposition, boosting angiogenesis, and dampening inflammatory reaction via steering NF-κB pathway. As envisaged, this work furnishes a decorated nanofibrous membrane with programmed antibacterial and anti-inflammatory effects for remedy of refractory bacteria-invaded wound regeneration.
Collapse
Affiliation(s)
- Yixuan Huang
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Shuai He
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Sheng Yu
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Hannah M Johnson
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Yau Kei Chan
- Department of Ophthalmology, The University of Hong Kong, Hong Kong, 999077, China
| | - Zheng Jiao
- Sichuan University-Pittsburgh Institute, Sichuan University, Chengdu, 610207, China
| | - Shouteng Wang
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Zixiang Wu
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Yi Deng
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, 999077, China
| |
Collapse
|
49
|
Dang LH, Do THT, Pham TKT, Ha PT, Nguyen TP, Dao TP, Tran NQ. Injectable thermogel incorporating reactive oxygen species scavenger and nitric oxide donor to accelerate the healing process of diabetic wounds. Int J Pharm 2023; 648:123576. [PMID: 37926176 DOI: 10.1016/j.ijpharm.2023.123576] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/13/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023]
Abstract
The healing of diabetic wounds is challenging due to redox imbalances. Herein, the thermogelling system AR-ACP hydrogel, with encapsulated biosafe nitric oxide (NO) donor L-arginine and resveratrol as an ROS scavenger, is established for sustainable wound therapy in the diabetic state. The innovated AR-ACP hydrogel dressings shows the sol-gel transition at 34 °C, allowing the hydrogel to fully cover wounds. The combination of L-arginine and resveratrol showed a prominent effect on anti-oxidative activity. The elimination of superoxide anions from the activated immune cells/oxidative cells by resveratrol maintained the NO-proangiogenic factors generated from L-arginine. Furthermore, the AR-ACP hydrogel endowed outstanding features such as haemocompatibility, non-skin irradiation as well as antibacterial activity. In the in vivo diabetic mice model, complete epidermal regeneration comparable to undamaged skin was observed with AR-ACP hydrogel. The synergy between L-arginine and resveratrol in the ACP hydrogel facilitated neovascularisation in the early stage, resulting in the higher balance in cellularity growth and collagen deposition in the dermal layer compared to control groups. Taken together, our findings demonstrate that the use of a customised ACP-based hydrogel, with the additional L-arginine and resveratrol, resulted in significant skin regeneration in the diabetic state.
Collapse
Affiliation(s)
- Le Hang Dang
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, HCMC, Viet Nam; Institute of Applied Materials Science, Vietnam Academy of Science and Technology, HCMC, Viet Nam.
| | - Thi Hong Tuoi Do
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Viet Nam
| | - Thi Kim Tram Pham
- Biotechnology Center of Ho Chi Minh City, Hochiminh City 700000, Viet Nam
| | - Phuong Thu Ha
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi 10000, Viet Nam
| | - Thi Phuong Nguyen
- Faculty of Chemical Technology, Ho Chi Minh City University of Industry and Trade, Ho Chi Minh City 700000, Viet Nam
| | - Tan Phat Dao
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Viet Nam
| | - Ngoc Quyen Tran
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, HCMC, Viet Nam; Institute of Applied Materials Science, Vietnam Academy of Science and Technology, HCMC, Viet Nam.
| |
Collapse
|
50
|
Jing S, Lian L, Hou Y, Li Z, Zheng Z, Li G, Tang G, Xie G, Xie M. Advances in volumetric bioprinting. Biofabrication 2023; 16:012004. [PMID: 37922535 DOI: 10.1088/1758-5090/ad0978] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/03/2023] [Indexed: 11/07/2023]
Abstract
The three-dimensional (3D) bioprinting technologies are suitable for biomedical applications owing to their ability to manufacture complex and high-precision tissue constructs. However, the slow printing speed of current layer-by-layer (bio)printing modality is the major limitation in biofabrication field. To overcome this issue, volumetric bioprinting (VBP) is developed. VBP changes the layer-wise operation of conventional devices, permitting the creation of geometrically complex, centimeter-scale constructs in tens of seconds. VBP is the next step onward from sequential biofabrication methods, opening new avenues for fast additive manufacturing in the fields of tissue engineering, regenerative medicine, personalized drug testing, and soft robotics, etc. Therefore, this review introduces the printing principles and hardware designs of VBP-based techniques; then focuses on the recent advances in VBP-based (bio)inks and their biomedical applications. Lastly, the current limitations of VBP are discussed together with future direction of research.
Collapse
Affiliation(s)
- Sibo Jing
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Liming Lian
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States of America
| | - Yingying Hou
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Zeqing Li
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Zihao Zheng
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Gang Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, People's Republic of China
| | - Guosheng Tang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Guoxi Xie
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Maobin Xie
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| |
Collapse
|