1
|
Chinchole A, Gupta S, Tyagi S. To stay in shape and keep moving: MLL emerges as a new transcriptional regulator of Rho GTPases. Small GTPases 2023; 14:55-62. [PMID: 37671980 PMCID: PMC10484036 DOI: 10.1080/21541248.2023.2254437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023] Open
Abstract
RhoA, Rac1 and CDC42 are small G proteins that play a crucial role in regulating various cellular processes, such as the formation of actin cytoskeleton, cell shape and cell migration. Our recent results suggest that MLL is responsible for maintaining the balance of these small Rho GTPases. MLL depletion affects the stability of Rho GTPases, leading to a decrease in their protein levels and loss of activity. These changes manifest in the form of abnormal cell shape and disrupted actin cytoskeleton, resulting in reduced cell spreading and migration. Interestingly, their chaperone protein RhoGDI1 but not the Rho GTPases, is under the direct transcriptional regulation of MLL. Here, we comment on the possible implications of these observations on the signalling by Rho GTPases protein network.
Collapse
Affiliation(s)
- Akash Chinchole
- Laboratory of Cell Cycle Regulation, Centre for DNA Fingerprinting and Diagnostics (CDFD) Uppal, Hyderabad, India
- Graduate Studies, Manipal Academy of Higher Education, Manipal, India
| | - Shreyta Gupta
- Laboratory of Cell Cycle Regulation, Centre for DNA Fingerprinting and Diagnostics (CDFD) Uppal, Hyderabad, India
- Graduate Studies, Regional Centre for Biotechnology, Faridabad, India
| | - Shweta Tyagi
- Laboratory of Cell Cycle Regulation, Centre for DNA Fingerprinting and Diagnostics (CDFD) Uppal, Hyderabad, India
| |
Collapse
|
2
|
Xiao H, Wang G, Zhao M, Shuai W, Ouyang L, Sun Q. Ras superfamily GTPase activating proteins in cancer: Potential therapeutic targets? Eur J Med Chem 2023; 248:115104. [PMID: 36641861 DOI: 10.1016/j.ejmech.2023.115104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 01/11/2023]
Abstract
To search more therapeutic strategies for Ras-mutant tumors, regulators of the Ras superfamily involved in the GTP/GDP (guanosine triphosphate/guanosine diphosphate) cycle have been well concerned for their anti-tumor potentials. GTPase activating proteins (GAPs) provide the catalytic group necessary for the hydrolysis of GTPs, which accelerate the switch by cycling between GTP-bound active and GDP-bound inactive forms. Inactivated GAPs lose their function in activating GTPase, leading to the continuous activation of downstream signaling pathways, uncontrolled cell proliferation, and eventually carcinogenesis. A growing number of evidence has shown the close link between GAPs and human tumors, and as a result, GAPs are believed as potential anti-tumor targets. The present review mainly summarizes the critically important role of GAPs in human tumors by introducing the classification, function and regulatory mechanism. Moreover, we comprehensively describe the relationship between dysregulated GAPs and the certain type of tumor. Finally, the current status, research progress, and clinical value of GAPs as therapeutic targets are also discussed, as well as the challenges and future direction in the cancer therapy.
Collapse
Affiliation(s)
- Huan Xiao
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Min Zhao
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Wen Shuai
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Qiu Sun
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
3
|
Zhu XH, Wang JM, Yang SS, Wang FF, Hu JL, Xin SN, Men H, Lu GF, Lan XL, Zhang D, Wang XY, Liao WT, Ding YQ, Liang L. Down-regulation of DAB2IP promotes colorectal cancer invasion and metastasis by translocating hnRNPK into nucleus to enhance the transcription of MMP2. Int J Cancer 2017; 141:172-183. [PMID: 28335083 DOI: 10.1002/ijc.30701] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 01/05/2017] [Accepted: 03/13/2017] [Indexed: 01/05/2023]
Abstract
DOC-2/DAB2 interacting protein (DAB2IP) is a RasGAP protein that shows a suppressive effect on cancer progression. Our previous study showed the involvement of transcription regulation of DAB2IP in metastasis of colorectal cancer (CRC). However, the molecular mechanisms of DAB2IP in regulating the progression of CRC need to be further explored. Here, we identified heterogeneous nuclear ribonucleoprotein K (hnRNPK) and matrix metalloproteinase 2 (MMP2) as vital downstream targets of DAB2IP in CRC cells by two-dimensional fluorescence difference gel electrophoresis and cDNA microassay, respectively. Mechanistically, down-regulation of DAB2IP increased the level of hnRNPK through MAPK/ERK signaling pathway. Subsequently, translocation of hnRNPK into nucleus enhanced the transcription activity of MMP2, and therefore promoted invasion and metastasis of CRC. Down-regulation of DAB2IP correlated negatively with hnRNPK and MMP2 expressions in CRC tissues. In conclusion, our study elucidates a novel mechanism of the DAB2IP/hnRNPK/MMP2 axis in the regulation of CRC invasion and metastasis, which may be a potential therapeutic target.
Collapse
Affiliation(s)
- X H Zhu
- Department of Pathology, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong Province, People's Republic of China
| | - J M Wang
- Department of Pathology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - S S Yang
- Department of Pathology, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong Province, People's Republic of China
| | - F F Wang
- Department of Pathology, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong Province, People's Republic of China
| | - J L Hu
- Department of Pathology, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong Province, People's Republic of China
| | - S N Xin
- Department of Pathology, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong Province, People's Republic of China
| | - H Men
- Department of Pathology, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong Province, People's Republic of China
| | - G F Lu
- Department of Pathology, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong Province, People's Republic of China
| | - X L Lan
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - D Zhang
- Department of Pathology, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong Province, People's Republic of China
| | - X Y Wang
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - W T Liao
- Department of Pathology, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong Province, People's Republic of China
| | - Y Q Ding
- Department of Pathology, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong Province, People's Republic of China
| | - L Liang
- Department of Pathology, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong Province, People's Republic of China
| |
Collapse
|
4
|
Block one, unleash a hundred. Mechanisms of DAB2IP inactivation in cancer. Cell Death Differ 2016; 24:15-25. [PMID: 27858941 DOI: 10.1038/cdd.2016.134] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/26/2016] [Accepted: 10/12/2016] [Indexed: 02/07/2023] Open
Abstract
One of the most defining features of cancer is aberrant cell communication; therefore, a molecular understanding of the intricate network established among tumor cells and their microenvironment could significantly improve comprehension and clinical management of cancer. The tumor suppressor DAB2IP (Disabled homolog 2 interacting protein), also known as AIP1 (ASK1 interacting protein), has an important role in this context, as it modulates signal transduction by multiple inflammatory cytokines and growth factors. DAB2IP is a Ras-GAP, and negatively controls Ras-dependent mitogenic signals. In addition, acting as a signaling adaptor, DAB2IP modulates other key oncogenic pathways, including TNFα/NF-κB, WNT/β-catenin, PI3K/AKT, and androgen receptors. Therefore, DAB2IP inactivation can provide a selective advantage to tumors initiated by a variety of driver mutations. In line with this role, DAB2IP expression is frequently impaired by methylation in cancer. Interestingly, recent studies reveal that tumor cells can employ other sophisticated mechanisms to disable DAB2IP at the post-transcriptional level. We review the mechanisms and consequences of DAB2IP inactivation in cancer, with the purpose to support and improve research aimed to counteract such mechanisms. We suggest that DAB2IP reactivation in cancer cells could be a strategy to coordinately dampen multiple oncogenic pathways, potentially limiting progression of a wide spectrum of tumors.
Collapse
|
5
|
Liu L, Xu C, Hsieh JT, Gong J, Xie D. DAB2IP in cancer. Oncotarget 2016; 7:3766-76. [PMID: 26658103 PMCID: PMC4826168 DOI: 10.18632/oncotarget.6501] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 11/15/2015] [Indexed: 12/17/2022] Open
Abstract
DOC-2/DAB2 is a member of the disable gene family that features tumor-inhibiting activity. The DOC-2/DAB2 interactive protein, DAB2IP, is a new member of the Ras GTPase-activating protein family. It interacts directly with DAB2 and has distinct cellular functions such as modulating different signal cascades associated with cell proliferation, survival, apoptosis and metastasis. Recently, DAB2IP has been found significantly down regulated in multiple types of cancer. The aberrant alteration of DAB2IP in cancer is caused by a variety of mechanisms, including the aberrant promoter methylation, histone deacetylation, and others. Reduced expression of DAB2IP in neoplasm may indicate a poor prognosis of many malignant cancers. Moreover, DAB2IP stands for a promising direction for developing targeted therapies due to its capacity to inhibit tumor cell growth in vitro and in vivo. Here, we summarize the present understanding of the tumor suppressive role of DAB2IP in cancer progression; the mechanisms underlying the dysregulation of DAB2IP; the gene functional mechanism and the prospects of DAB2IP in the future cancer research.
Collapse
Affiliation(s)
- Liang Liu
- Tongji Cancer Research Institute, Tongji Hospital, Tongji Medical College in Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.,Department of Gastrointestinal Surgery, Tongji Hospital, Tongji Medical College in Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Cong Xu
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College in Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jer-Tsong Hsieh
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jianping Gong
- Tongji Cancer Research Institute, Tongji Hospital, Tongji Medical College in Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.,Department of Gastrointestinal Surgery, Tongji Hospital, Tongji Medical College in Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Daxing Xie
- Tongji Cancer Research Institute, Tongji Hospital, Tongji Medical College in Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.,Department of Gastrointestinal Surgery, Tongji Hospital, Tongji Medical College in Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| |
Collapse
|
6
|
Su Y, Shi F, Zeng Z, Wu X, Zhao Y, Zhang L, Xie Z, Wu Y. A Versatile Monoclonal Antibody Specific Against Human DAB2IP. Monoclon Antib Immunodiagn Immunother 2015; 34:246-50. [PMID: 26301927 DOI: 10.1089/mab.2015.0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human DAB2 interaction protein (DAB2IP) is a member of Ras-GTPase activating protein family and functions as a tumor suppressor, implying it could serve as a prognostic biomarker in cancers. Here we generated a mouse monoclonal antibody, 2A4, directed against human DAB2IP. This antibody was identified as IgG1 and specifically recognizes DAB2IP in both its native and denatured forms. It will serve as a useful and versatile tool for further mechanistic study and development of the potential prognostic significance of DAB2IP.
Collapse
Affiliation(s)
- Yintao Su
- 1 State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter , Chinese Academy of Sciences, Fuzhou, China
| | - Fangyuan Shi
- 2 Department of Physiology, Fujian University of Traditional Chinese Medicine , Fuzhou, China
| | - Zhanzhuang Zeng
- 3 Freshwater Fisheries Research Institute of Fujian Province , Fuzhou, China
| | - Xiuling Wu
- 1 State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter , Chinese Academy of Sciences, Fuzhou, China
| | - Yanhe Zhao
- 1 State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter , Chinese Academy of Sciences, Fuzhou, China
| | - Lei Zhang
- 1 State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter , Chinese Academy of Sciences, Fuzhou, China
| | - Zuofu Xie
- 2 Department of Physiology, Fujian University of Traditional Chinese Medicine , Fuzhou, China
| | - Yunkun Wu
- 1 State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter , Chinese Academy of Sciences, Fuzhou, China
| |
Collapse
|
7
|
Salami F, Qiao S, Homayouni R. Expression of mouse Dab2ip transcript variants and gene methylation during brain development. Gene 2015; 568:19-24. [PMID: 25958345 DOI: 10.1016/j.gene.2015.05.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 04/15/2015] [Accepted: 05/05/2015] [Indexed: 11/24/2022]
Abstract
Dab2ip (DOC-2/DAB2 interacting protein) is a RasGAP protein which shows a growth-inhibitory effect in human prostate cancer cell lines. Recent studies have shown that Dab2ip also plays an important role in regulating dendrite development and neuronal migration during brain development. In this study, we provide a more complete description of the mouse Dab2ip (mDab2ip) gene locus and examined DNA methylation and expression of Dab2ip during cerebellar development. Analysis of cDNA sequences in public databases revealed a total of 20 possible exons for mDab2ip gene, spanning over 172kb. Using Cap Analysis of Gene Expression (CAGE) data available through FANTOM5 project, we deduced five different transcription start sites for mDab2ip. Here, we characterized three different mDab2ip transcript variants beginning with exon 1. These transcripts varied by the presence or absence of exons 3 and 5, which encode a putative nuclear localization signal and the N-terminal region of a PH-domain, respectively. The 5' region of the mDab2ip gene contains three putative CpG islands (CpG131, CpG54, and CpG85). Interestingly, CpG54 and CpG85 are localized on exons 3 and 5. Bisulfate DNA sequencing showed that methylation level of CpG54 remained constant whereas methylation of CpG85 increased during cerebellar development. Real-time PCR analysis showed that the proportion of PH-domain containing mDab2ip transcripts increased during cerebellar development, in correlation with the increase in CpG85 methylation. These data suggest that site-specific methylation of mDab2ip gene during cerebellar development may play a role in inclusion of exon 5, resulting in a Dab2ip transcript variant that encodes a full pleckstrin homology (PH) domain.
Collapse
Affiliation(s)
- Farimah Salami
- Department of Biological Sciences, University of Memphis, Memphis, TN, United States
| | - Shuhong Qiao
- Department of Biological Sciences, University of Memphis, Memphis, TN, United States
| | - Ramin Homayouni
- Department of Biological Sciences, University of Memphis, Memphis, TN, United States.
| |
Collapse
|
8
|
The Functional Role of DAB2IP, a Homeostatic Factor, in Prostate Cancer. Prostate Cancer 2013. [DOI: 10.1007/978-1-4614-6828-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
9
|
Abstract
Human DOC-2/DAB2-interacting protein (DAB2IP) is encoded by a tumor suppressor gene and a newly recognized member of the Ras-GTPase-activating family. DAB2IP is a critical component of many signal transduction pathways mediated by Ras and tumor necrosis factors including apoptosis pathways, and it is involved in the formation of many types of tumors. DAB2IP participates in regulation of gene expression and pluripotency of cells. It has been reported that DAB2IP was expressed in different tumor tissues. Little information is available concerning the expression levels of DAB2IP in normal tissues and cells, however, and no studies of its expression patterns during the development of human embryos have been reported. We examined the expression of DAB2IP during human embryonic development to understand better DAB2IP functions. Human fetuses, weeks 9 to 38, and a newborn were obtained from miscarriages or stillbirths. Tissues were embedded in paraffin to construct arrays that were stained immunohistochemically. The DAB2IP-positive cells were identified and scored based on both the percentage of stained cells and their staining intensities. DAB2IP was expressed in most fetal tissues examined. DAB2IP was expressed primarily in cell cytoplasm throughout the fetal development. The expression levels varied among tissues and different gestational ages. Virtually no expression was observed in the cerebrum, parotid gland, thymus, thyroid gland and spleen. Expression was much greater in the adrenal gland and pancreas; weakly to moderately strong in the endocardium, stomach, kidney, testis and small intestine; and lower in liver, trachea, skin, ovary and endometrium. Its expression in the lung, esophagus and bladder were much weaker to absent.
Collapse
Affiliation(s)
- S Liu
- Department of Histology and Embryology, Shantou University Medical College, Shantou , Guangdong Province , P.R. China 515041
| | | | | |
Collapse
|
10
|
Smits M, van Rijn S, Hulleman E, Biesmans D, van Vuurden DG, Kool M, Haberler C, Aronica E, Vandertop WP, Noske DP, Würdinger T. EZH2-regulated DAB2IP is a medulloblastoma tumor suppressor and a positive marker for survival. Clin Cancer Res 2012; 18:4048-58. [PMID: 22696229 DOI: 10.1158/1078-0432.ccr-12-0399] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
PURPOSE Medulloblastoma is the most common malignant brain tumor in children. Despite recent improvements, the molecular mechanisms driving medulloblastoma are not fully understood and further elucidation could provide cues to improve outcome prediction and therapeutic approaches. EXPERIMENTAL DESIGN Here, we conducted a meta-analysis of mouse and human medulloblastoma gene expression data sets, to identify potential medulloblastoma tumor suppressor genes. RESULTS We identified DAB2IP, a member of the RAS-GTPase-activating protein family (RAS GAP), and showed that DAB2IP expression is repressed in medulloblastoma by EZH2-induced trimethylation. Moreover, we observed that reduced DAB2IP expression correlates significantly with a poor overall survival of patients with medulloblastoma, independent of metastatic stage. Finally, we showed that ectopic DAB2IP expression enhances stress-induced apoptosis in medulloblastoma cells and that reduced expression of DAB2IP in medulloblastoma cells conveys resistance to irradiation-induced cell death. CONCLUSION These results suggest that repression of DAB2IP may at least partly protect medulloblastoma cells from apoptotic cell death. Moreover, DAB2IP may represent a molecular marker to distinguish patients with medulloblastoma at high risk from those with a longer survival prognosis.
Collapse
Affiliation(s)
- Michiel Smits
- Neuro-oncology Research Group, Department of Neurosurgery, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Yang L, Li Y, Ling X, Liu L, Liu B, Xu K, Bin X, Ji W, Lu J. A common genetic variant (97906C>A) of DAB2IP/AIP1 is associated with an increased risk and early onset of lung cancer in Chinese males. PLoS One 2011; 6:e26944. [PMID: 22046421 PMCID: PMC3202597 DOI: 10.1371/journal.pone.0026944] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 10/06/2011] [Indexed: 01/06/2023] Open
Abstract
DOC-2/DAB2 interactive protein (DAB2IP) is a novel identified tumor suppressor gene that inhibits cell growth and facilitates cell apoptosis. One genetic variant in DAB2IP gene was reported to be associated with an increased risk of aggressive prostate cancer recently. Since DAB2IP involves in the development of lung cancer and low expression of DAB2IP are observed in lung cancer, we hypothesized that the variations in DAB2IP gene can increase the genetic susceptibility to lung cancer. In a case-control study of 1056 lung cancer cases and 1056 sex and age frequency-matched cancer-free controls, we investigated the association between two common polymorphisms in DAB2IP gene (-1420T>G, rs7042542; 97906C>A, rs1571801) and the risk of lung cancer. We found that compared with the 97906CC genotypes, carriers of variant genotypes (97906AC+AA) had a significant increased risk of lung cancer (adjusted odds ratio [OR] = 1.33, 95%CI = 1.04-1.70, P = 0.023) and the number of variant (risk) allele worked in a dose-response manner (P(trend) = 0.0158). Further stratification analysis showed that the risk association was more pronounced in subjects aged less than 60 years old, males, non-smokers, non-drinkers, overweight groups and in those with family cancer history in first or second-degree relatives, and the 97906A interacted with overweight on lung cancer risk. We further found the number of risk alleles (97906A allele) were negatively correlated with early diagnosis age of lung cancer in male patients (P = 0.003). However, no significant association was observed on the -1420T>G polymorphism. Our data suggested that the 97906A variant genotypes are associated with the increased risk and early onset of lung cancer, particularly in males.
Collapse
Affiliation(s)
- Lei Yang
- The Institute for Chemical Carcinogenesis, The State Key Lab of Respiratory Disease, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Yinyan Li
- The Institute for Chemical Carcinogenesis, The State Key Lab of Respiratory Disease, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Xiaoxuan Ling
- The Institute for Chemical Carcinogenesis, The State Key Lab of Respiratory Disease, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Lin Liu
- The Institute for Chemical Carcinogenesis, The State Key Lab of Respiratory Disease, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Bin Liu
- The Institute for Chemical Carcinogenesis, The State Key Lab of Respiratory Disease, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Kevin Xu
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Xiaonong Bin
- The Institute for Chemical Carcinogenesis, The State Key Lab of Respiratory Disease, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Weidong Ji
- The Institute for Chemical Carcinogenesis, The State Key Lab of Respiratory Disease, Guangzhou Medical University, Guangzhou, People's Republic of China
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail: (JL); (WJ)
| | - Jiachun Lu
- The Institute for Chemical Carcinogenesis, The State Key Lab of Respiratory Disease, Guangzhou Medical University, Guangzhou, People's Republic of China
- * E-mail: (JL); (WJ)
| |
Collapse
|
12
|
Studamire B, Goff SP. Interactions of host proteins with the murine leukemia virus integrase. Viruses 2010; 2:1110-45. [PMID: 21637732 PMCID: PMC3104679 DOI: 10.3390/v2051110] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 05/02/2010] [Accepted: 05/03/2010] [Indexed: 12/20/2022] Open
Abstract
Retroviral infections cause a variety of cancers in animals and a number of diverse diseases in humans such as leukemia and acquired immune deficiency syndrome. Productive and efficient proviral integration is critical for retroviral function and is the key step in establishing a stable and productive infection, as well as the mechanism by which host genes are activated in leukemogenesis. Host factors are widely anticipated to be involved in all stages of the retroviral life cycle, and the identification of integrase interacting factors has the potential to increase our understanding of mechanisms by which the incoming virus might appropriate cellular proteins to target and capture host DNA sequences. Identification of MoMLV integrase interacting host factors may be key to designing efficient and benign retroviral-based gene therapy vectors; key to understanding the basic mechanism of integration; and key in designing efficient integrase inhibitors. In this review, we discuss current progress in the field of MoMLV integrase interacting proteins and possible roles for these proteins in integration.
Collapse
Affiliation(s)
- Barbara Studamire
- Brooklyn College of the City University of New York, Department of Biology, 2900 Bedford Avenue, Brooklyn, NY 11210, USA; E-Mail:
| | - Stephen P. Goff
- Columbia University College of Physicians and Surgeons, Department of Biochemistry and Molecular Biophysics and Howard Hughes Medical Institute, 701 West 168 Street, New York, NY 10028, USA
| |
Collapse
|
13
|
Min J, Zaslavsky A, Fedele G, McLaughlin SK, Reczek EE, De Raedt T, Guney I, Strochlic DE, Laura E, Beroukhim R, Bronson RT, Ryeom S, Hahn WC, Loda M, Cichowski K. An oncogene-tumor suppressor cascade drives metastatic prostate cancer by coordinately activating Ras and nuclear factor-kappaB. Nat Med 2010; 16:286-94. [PMID: 20154697 PMCID: PMC2903662 DOI: 10.1038/nm.2100] [Citation(s) in RCA: 320] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 01/15/2010] [Indexed: 12/17/2022]
Abstract
Metastasis is responsible for the majority of prostate cancer-related deaths; however, little is known about the molecular mechanisms that underlie this process. Here we identify an oncogene-tumor suppressor cascade that promotes prostate cancer growth and metastasis by coordinately activating the small GTPase Ras and nuclear factor-kappaB (NF-kappaB). Specifically, we show that loss of the Ras GTPase-activating protein (RasGAP) gene DAB2IP induces metastatic prostate cancer in an orthotopic mouse tumor model. Notably, DAB2IP functions as a signaling scaffold that coordinately regulates Ras and NF-kappaB through distinct domains to promote tumor growth and metastasis, respectively. DAB2IP is suppressed in human prostate cancer, where its expression inversely correlates with tumor grade and predicts prognosis. Moreover, we report that epigenetic silencing of DAB2IP is a key mechanism by which the polycomb-group protein histone-lysine N-methyltransferase EZH2 activates Ras and NF-kappaB and triggers metastasis. These studies define the mechanism by which two major pathways can be simultaneously activated in metastatic prostate cancer and establish EZH2 as a driver of metastasis.
Collapse
Affiliation(s)
- Junxia Min
- Genetics Division, Department of Medicine, Boston, MA, 02115, USA
- Brigham and Women’s Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Alexander Zaslavsky
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia PA 19104
| | - Giuseppe Fedele
- Harvard Medical School, Boston, MA, 02115, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115
| | - Sara K. McLaughlin
- Genetics Division, Department of Medicine, Boston, MA, 02115, USA
- Brigham and Women’s Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Elizabeth E. Reczek
- Genetics Division, Department of Medicine, Boston, MA, 02115, USA
- Brigham and Women’s Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Thomas De Raedt
- Genetics Division, Department of Medicine, Boston, MA, 02115, USA
- Brigham and Women’s Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Isil Guney
- Harvard Medical School, Boston, MA, 02115, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115
| | - David E. Strochlic
- Harvard Medical School, Boston, MA, 02115, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115
| | - E. Laura
- Broad Institute of Harvard and MIT, Cambridge, MA 02142
- Ludwig Center at Dana-Farber/Harvard Cancer Center, Boston, MA 02115
| | - Rameen Beroukhim
- Brigham and Women’s Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115
- Ludwig Center at Dana-Farber/Harvard Cancer Center, Boston, MA 02115
| | | | - Sandra Ryeom
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia PA 19104
| | - William C. Hahn
- Brigham and Women’s Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115
- Ludwig Center at Dana-Farber/Harvard Cancer Center, Boston, MA 02115
| | - Massimo Loda
- Harvard Medical School, Boston, MA, 02115, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115
| | - Karen Cichowski
- Genetics Division, Department of Medicine, Boston, MA, 02115, USA
- Brigham and Women’s Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
- Ludwig Center at Dana-Farber/Harvard Cancer Center, Boston, MA 02115
| |
Collapse
|
14
|
Zhang H, He Y, Dai S, Xu Z, Luo Y, Wan T, Luo D, Jones D, Tang S, Chen H, Sessa WC, Min W. AIP1 functions as an endogenous inhibitor of VEGFR2-mediated signaling and inflammatory angiogenesis in mice. J Clin Invest 2008; 118:3904-16. [PMID: 19033661 DOI: 10.1172/jci36168] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Accepted: 09/17/2008] [Indexed: 12/26/2022] Open
Abstract
ASK1-interacting protein-1 (AIP1), a recently identified member of the Ras GTPase-activating protein family, is highly expressed in vascular ECs and regulates EC apoptosis in vitro. However, its function in vivo has not been established. To study this, we generated AIP1-deficient mice (KO mice). Although these mice showed no obvious defects in vascular development, they exhibited dramatically enhanced angiogenesis in 2 models of inflammatory angiogenesis. In one of these models, the enhanced angiogenesis observed in the KO mice was associated with increased VEGF-VEGFR2 signaling. Consistent with this, VEGF-induced ear, cornea, and retina neovascularization were greatly augmented in KO mice and the enhanced retinal angiogenesis was markedly diminished by overexpression of AIP1. In vitro, VEGF-induced EC migration was inhibited by AIP1 overexpression, whereas it was augmented by both AIP1 knockout and knockdown, with the enhanced EC migration caused by AIP1 knockdown being associated with increased VEGFR2 signaling. We present mechanistic data that suggest AIP1 is recruited to the VEGFR2-PI3K complex, binding to both VEGFR2 and PI3K p85, at a late phase of the VEGF response, and that this leads to inhibition of VEGFR2 signaling. Taken together, our data demonstrate that AIP1 functions as an endogenous inhibitor in VEGFR2-mediated adaptive angiogenesis in mice.
Collapse
Affiliation(s)
- Haifeng Zhang
- Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Duggan D, Zheng SL, Knowlton M, Benitez D, Dimitrov L, Wiklund F, Robbins C, Isaacs SD, Cheng Y, Li G, Sun J, Chang BL, Marovich L, Wiley KE, Balter K, Stattin P, Adami HO, Gielzak M, Yan G, Sauvageot J, Liu W, Kim JW, Bleecker ER, Meyers DA, Trock BJ, Partin AW, Walsh PC, Isaacs WB, Gronberg H, Xu J, Carpten JD. Two Genome-wide Association Studies of Aggressive Prostate Cancer Implicate Putative Prostate Tumor Suppressor Gene DAB2IP. J Natl Cancer Inst 2007; 99:1836-44. [DOI: 10.1093/jnci/djm250] [Citation(s) in RCA: 217] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
16
|
Hsieh JT, Karam JA, Min W. Genetic and biologic evidence that implicates a gene in aggressive prostate cancer. J Natl Cancer Inst 2007; 99:1823-4. [PMID: 18073373 DOI: 10.1093/jnci/djm263] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
17
|
Yamamoto K, Yakushijin K, Kawamori Y, Minagawa K, Katayama Y, Matsui T. Translocation (7;9)(q22;q34) in therapy-related myelodysplastic syndrome after allogeneic bone marrow transplantation for acute myeloblastic leukemia. ACTA ACUST UNITED AC 2007; 176:61-6. [PMID: 17574966 DOI: 10.1016/j.cancergencyto.2007.02.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Revised: 02/07/2007] [Accepted: 02/09/2007] [Indexed: 11/26/2022]
Abstract
Reciprocal translocations involving the long arm of chromosome 7 are relatively rare cytogenetic aberrations in myelodysplastic syndrome (MDS) and acute myeloblastic leukemia (AML). A 44-year-old woman was initially given a diagnosis of de novo AML M6A with a normal karyotype. After achieving complete remission, she received allogeneic bone marrow transplantation from an unrelated male donor. Seven months later, pancytopenia appeared with 14.8% myeloblasts and dysplastic changes of neutrophils and megakaryocytes in the bone marrow. Chromosome analysis revealed complex karyotypes, with add(7)(q22) and add(9)(q34) detected in all abnormal metaphase spreads; spectral karyotyping revealed these chromosomal aberrations to be derived from a reciprocal translocation t(7;9)(q22;q34). Fluorescence in situ hybridization analyses showed that D7S486 at 7q31 was translocated to the der(9)t(7;9), and that the ABL gene at 9q34 remained on the der(9)t(7;9). Because the same translocation reappeared and sustained for more than 8 months after second stem cell transplantation, we revised the diagnosis as therapy-related MDS after allogeneic transplantation. The t(7;9)(q22;q34) was supposed to have a crucial role in the pathogenesis of MDS. Considering two other such reported cases of AML, the t(7;9)(q22;q34) may be a novel recurrent translocation in myeloid malignancies.
Collapse
Affiliation(s)
- Katsuya Yamamoto
- Hematology/Oncology, Department of Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Miremadi A, Oestergaard MZ, Pharoah PDP, Caldas C. Cancer genetics of epigenetic genes. Hum Mol Genet 2007; 16 Spec No 1:R28-49. [PMID: 17613546 DOI: 10.1093/hmg/ddm021] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The cancer epigenome is characterised by specific DNA methylation and chromatin modification patterns. The proteins that mediate these changes are encoded by the epigenetics genes here defined as: DNA methyltransferases (DNMT), methyl-CpG-binding domain (MBD) proteins, histone acetyltransferases (HAT), histone deacetylases (HDAC), histone methyltransferases (HMT) and histone demethylases. We review the evidence that these genes can be targeted by mutations and expression changes in human cancers.
Collapse
Affiliation(s)
- Ahmad Miremadi
- Cancer Genomics Program, Department of Oncology, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK
| | | | | | | |
Collapse
|
19
|
Ehmann F, Horn S, Garcia-Palma L, Wegner W, Fiedler W, Giehl K, Mayr GW, Jücker M. Detection of N-RAS and K-RAS in their active GTP-bound form in acute myeloid leukemia without activating RAS mutations. Leuk Lymphoma 2007; 47:1387-91. [PMID: 16923573 DOI: 10.1080/10428190600565925] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
RAS genes, predominantly N-RAS and K-RAS, have been implicated in the pathogenesis of acute myeloid leukemia (AML), due to activating RAS mutations detectable in approximately 20% of AML patients. In the present study, RAS proteins were detected in their activated, GTP-bound form, in AML patients (n = 10) not expressing mutated forms of H-RAS, K-RAS and N-RAS. Further analysis revealed the simultaneous presence of N-RAS and K-RAS proteins in the GTP-bound state in seven out of 10 AML samples. In four out of 10 samples the levels of RAS-GTP were comparable to an AML cell line (TF-1) with an activating N-RAS mutation (Q61P). The detection of RAS-GTP in AML patients without RAS mutations further supports a functional role of RAS proteins in the pathogenesis of AML and may explain the observed effects of RAS inhibitors in some AML patients in the absence of activating RAS mutations.
Collapse
Affiliation(s)
- Falk Ehmann
- Center of Experimental Medicine, Institute of Biochemistry and Molecular Biology I, Cellular Signal Transduction, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Chen H, Karam JA, Schultz R, Zhang Z, Duncan C, Hsieh JT. Cloning of mouse Dab2ip gene, a novel member of the RasGTPase-activating protein family and characterization of its regulatory region in prostate. DNA Cell Biol 2006; 25:232-45. [PMID: 16629596 DOI: 10.1089/dna.2006.25.232] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Disabled homolog 2 (Drosophila) interacting protein (DAB2IP/Dab2IP) is a member of the GTPase-activating protein for downregulating the Ras-mediated signal pathway and TNF-mediated apoptosis. The downregulation of human DAB2IP mRNA levels was detected in prostate cancer cells due to the epigenetic regulation. Here, we isolated a mouse Dab2ip gene with a highly homologous sequence to that of the human and rat gene and mapped it at chromosome 2B. The mDab2ip gene contains 14 exons and 13 introns and spans approximately 65 kb. Exon1 contains at least three splicing variants (Ia, Ib, and Ic). The deduced amino acid sequence of mouse Dab2IP encompasses 1065 residues containing several unique protein interaction motifs as well as a Ras-like GAP-related domain, which shares a high homology with both humans and rats. Data from real-time RT-PCR analysis revealed a diverse expression pattern of the mDab2ip gene in various organs, implying differential regulation of this gene from various tissues. We have mapped a 1.3-kb segment containing a 5'-upstream region from exon Ia as a promoter region (-147/+545) in prostatic epithelial cell lines (TRAMP-C); this region is highly GC-rich, and mDab2ip appears to be a TATA-less promoter. It appears that epigenetic regulation, particularly histone acetylation of the Dab2ip gene promoter, plays an important role in modulating its gene expression in the mouse prostate cancer cell.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Adaptor Proteins, Vesicular Transport/genetics
- Adenocarcinoma/genetics
- Adenocarcinoma/metabolism
- Adenocarcinoma/pathology
- Amino Acid Sequence
- Animals
- Apoptosis Regulatory Proteins
- Cell Line, Tumor
- Chromatin Immunoprecipitation
- Chromosome Mapping
- Chromosomes, Artificial, Bacterial
- Chromosomes, Mammalian
- Cloning, Molecular
- Conserved Sequence
- Epigenesis, Genetic
- Exons
- Gene Expression Regulation, Neoplastic
- Gene Library
- Genes, Reporter
- In Situ Hybridization, Fluorescence
- Introns
- Luciferases/metabolism
- Male
- Mice
- Mice, Transgenic
- Molecular Sequence Data
- Promoter Regions, Genetic
- Prostate/metabolism
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/pathology
- Protein Structure, Tertiary
- Regulatory Sequences, Nucleic Acid
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Transcription Initiation Site
Collapse
Affiliation(s)
- Hong Chen
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | | | | | | | | |
Collapse
|
21
|
Cerveira N, Correia C, Bizarro S, Pinto C, Lisboa S, Mariz JM, Marques M, Teixeira MR. SEPT2 is a new fusion partner of MLL in acute myeloid leukemia with t(2;11)(q37;q23). Oncogene 2006; 25:6147-52. [PMID: 16682951 DOI: 10.1038/sj.onc.1209626] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We have identified a new mixed lineage leukemia (MLL) gene fusion partner in a patient with treatment-related acute myeloid leukemia (AML) presenting a t(2;11)(q37;q23) as the only cytogenetic abnormality. Fluorescence in situ hybridization demonstrated a rearrangement of the MLL gene and molecular genetic analyses identified a septin family gene, SEPT2, located on chromosome 2q37, as the fusion partner of MLL. RNA and DNA analyses showed the existence of an in-frame fusion of MLL exon 7 with SEPT2 exon 3, with the genomic breakpoints located in intron 7 and 2 of MLL and SEPT2, respectively. Search for DNA sequence motifs revealed the existence of two sequences with 94.4% homology with the topoisomerase II consensus cleavage site in MLL intron 7 and SEPT2 intron 2. SEPT2 is the fifth septin family gene fused with MLL, making this gene family the most frequently involved in MLL-related AML (about 10% of all known fusion partners). The protein encoded by SEPT2 is highly homologous to septins 1, 4 and 5 and is involved in the coordination of several key steps of mitosis. Further studies are warranted to understand why the septin protein family is particularly involved in the pathogenesis of MLL-associated leukemia.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Chromosomes, Human, Pair 11
- Chromosomes, Human, Pair 2
- DNA, Neoplasm
- Exons
- Female
- Histone-Lysine N-Methyltransferase
- Humans
- In Situ Hybridization, Fluorescence
- Karyotyping
- Leukemia, Myeloid/chemically induced
- Leukemia, Myeloid/genetics
- Middle Aged
- Molecular Sequence Data
- Myeloid-Lymphoid Leukemia Protein/genetics
- Phosphoric Monoester Hydrolases/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Homology, Nucleic Acid
- Translocation, Genetic
Collapse
Affiliation(s)
- N Cerveira
- Department of Genetics, Portuguese Oncology Institute, Porto, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Morgan MA, Reuter CWM. Molecularly targeted therapies in myelodysplastic syndromes and acute myeloid leukemias. Ann Hematol 2006; 85:139-63. [PMID: 16391911 DOI: 10.1007/s00277-005-0051-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Accepted: 11/11/2005] [Indexed: 12/18/2022]
Abstract
Although there has been significant progress in acute myeloid leukemia (AML) treatment in younger adults during the last decade, standard induction therapy still fails to induce remission in up to 40% of AML patients. Additionally, relapses are common in 50-70% of patients who achieve a complete remission, and only 20-30% of patients enjoy long-term disease-free survival. The natural history of myelodysplastic syndrome (MDS) is variable, with about half of the patients dying from cytopenic complications, and an additional 20-30% transforming to AML. The advanced age of the majority of MDS patients limits the therapeutic strategies often to supportive care. To address these shortcomings, much effort has been directed toward the development of novel treatment strategies that target the evolution and proliferation of malignant clones. Presented here is an overview of molecularly targeted therapies currently being tested in AML and MDS patients, with a focus on FMS-like tyrosine kinase 3 inhibitors, farnesyltransferase inhibitors, antiangiogenesis agents, DNA hypomethylation agents, and histone deacetylase inhibitors.
Collapse
MESH Headings
- Age Factors
- Animals
- Antineoplastic Agents/metabolism
- Antineoplastic Agents/therapeutic use
- Cell Proliferation/drug effects
- DNA Methylation/drug effects
- Disease-Free Survival
- Enzyme Inhibitors/metabolism
- Enzyme Inhibitors/therapeutic use
- Histone Acetyltransferases/antagonists & inhibitors
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/mortality
- Myelodysplastic Syndromes/drug therapy
- Myelodysplastic Syndromes/metabolism
- Myelodysplastic Syndromes/mortality
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/metabolism
- Protein Processing, Post-Translational/drug effects
- Receptor, Macrophage Colony-Stimulating Factor/antagonists & inhibitors
- Receptor, Macrophage Colony-Stimulating Factor/metabolism
- Remission Induction/methods
Collapse
Affiliation(s)
- Michael A Morgan
- Department of Hematology, Hemostasis and Oncology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | | |
Collapse
|
23
|
van Zutven LJCM, Onen E, Velthuizen SCJM, van Drunen E, von Bergh ARM, van den Heuvel-Eibrink MM, Veronese A, Mecucci C, Negrini M, de Greef GE, Beverloo HB. Identification ofNUP98 abnormalities in acute leukemia:JARID1A (12p13) as a new partner gene. Genes Chromosomes Cancer 2006; 45:437-46. [PMID: 16419055 DOI: 10.1002/gcc.20308] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Chromosome rearrangements are found in many acute leukemias. As a result, genes at the breakpoints can be disrupted, forming fusion genes. One of the genes involved in several chromosome aberrations in hematological malignancies is NUP98 (11p15). As NUP98 is close to the 11p telomere, small translocations might easily be missed. Using a NUP98-specific split-signal fluorescence in situ hybridization (FISH) probe combination, we analyzed 84 patients with acute myeloid leukemia (AML), acute lymphoblastic leukemia, or myelodysplastic syndrome with either normal karyotypes or 11p abnormalities to investigate whether there are unidentified 11p15 rearrangements. Neither NUP98 translocations nor deletions were identified in cases with normal karyotypes, indicating these aberrations may be very rare in this group. However, NUP98 deletions were observed in four cases with unbalanced 11p aberrations, indicating that the breakpoint is centromeric of NUP98. Rearrangements of NUP98 were identified in two patients, both showing 11p abnormalities in the diagnostic karyotype: a t(4;11)(q1?3;p15) with expression of the NUP98-RAP1GDS1 fusion product detected in a 60-year-old woman with AML-M0, and an add(11)(p15) with a der(21)t(11;21)(p15;p13) observed cytogenetically in a 1-year-old boy with AML-M7. JARID1A was identified as the fusion partner of NUP98 using 3' RACE, RT-PCR, and FISH. JARID1A, at 12p13, codes for retinoblastoma binding protein 2, a protein implicated in transcriptional regulation. This is the first report of JARID1A as a partner gene in leukemia.
Collapse
Affiliation(s)
- Laura J C M van Zutven
- Department of Genetics, Centre for Biomedical Genetics, Erasmus MC, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
In all organisms, cell proliferation is orchestrated by coordinated patterns of gene expression. Transcription results from the activity of the RNA polymerase machinery and depends on the ability of transcription activators and repressors to access chromatin at specific promoters. During the last decades, increasing evidence supports aberrant transcription regulation as contributing to the development of human cancers. In fact, transcription regulatory proteins are often identified in oncogenic chromosomal rearrangements and are overexpressed in a variety of malignancies. Most transcription regulators are large proteins, containing multiple structural and functional domains some with enzymatic activity. These activities modify the structure of the chromatin, occluding certain DNA regions and exposing others for interaction with the transcription machinery. Thus, chromatin modifiers represent an additional level of transcription regulation. In this review we focus on several families of transcription activators and repressors that catalyse histone post-translational modifications (acetylation, methylation, phosphorylation, ubiquitination and SUMOylation); and how these enzymatic activities might alter the correct cell proliferation program, leading to cancer.
Collapse
Affiliation(s)
- Helena Santos-Rosa
- The Wellcome Trust/Cancer Research UK Gurdon Institute of Cancer and Developmental Biology, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
25
|
Bitoun E, Davies KE. The robotic mouse: unravelling the function of AF4 in the cerebellum. CEREBELLUM (LONDON, ENGLAND) 2005; 4:250-60. [PMID: 16321881 DOI: 10.1080/14734220500325897] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The devastating nature and lack of effective treatments associated with neurodegenerative diseases have stimulated a world-wide search for the elucidation of their molecular basis to which mouse models have made a major contribution. In combination with transgenic and knockout technologies, large-scale mouse mutagenesis is a powerful approach for the identification of new genes and associated signalling pathways controlling neuronal cell death and survival. Here we review the characterization of the robotic mouse, a novel model of autosomal dominant cerebellar ataxia isolated from an ENU-mutagenesis programme, which develops adult-onset region-specific Purkinje cell loss and cataracts, and displays defects in early T-cell maturation and general growth retardation. The mutated protein, Af4, is a member of the AF4/LAF4/FMR2 (ALF) family of putative transcription factors previously implicated in childhood leukaemia and FRAXE mental retardation. The mutation, which lies in a highly conserved region among the ALF family members, significantly reduces the binding affinity of Af4 to the E3 ubiquitin-ligase Siah-1a, isolated with Siah-2 as interacting proteins in the brain. This leads to a markedly slower turnover of mutant Af4 by the ubiquitin-proteasome pathway and consequently to its abnormal accumulation in the robotic mouse. Importantly, the conservation of the Siah-binding domain of Af4 in all other family members reveals that Siah-mediated proteasomal degradation is a common regulatory mechanism that controls the levels, and thereby the function, of the ALF family. The robotic mouse represents a unique model in which to study the newly revealed role of Af4 in the maintenance of vital functions of Purkinje cells in the cerebellum and further the understanding of its implication in lymphopoeisis.
Collapse
Affiliation(s)
- Emmanuelle Bitoun
- MRC Functional Genetics Unit, Department of Human Anatomy and Genetics, University of Oxford, Oxford, UK
| | | |
Collapse
|