1
|
Sasongko TH, Kademane K, Chai Soon Hou S, Jocelyn TXY, Zabidi-Hussin Z. Rapamycin and rapalogs for tuberous sclerosis complex. Cochrane Database Syst Rev 2023; 7:CD011272. [PMID: 37432030 PMCID: PMC10334695 DOI: 10.1002/14651858.cd011272.pub3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
BACKGROUND Potential benefits of rapamycin or rapalogs for treating people with tuberous sclerosis complex (TSC) have been shown. Currently everolimus (a rapalog) is only approved for TSC-associated renal angiomyolipoma and subependymal giant cell astrocytoma (SEGA), but not other manifestations of TSC. A systematic review needs to establish evidence for rapamycin or rapalogs for various manifestations in TSC. This is an updated review. OBJECTIVES To determine the effectiveness of rapamycin or rapalogs in people with TSC for decreasing tumour size and other manifestations and to assess the safety of rapamycin or rapalogs in relation to their adverse effects. SEARCH METHODS We identified relevant studies from the Cochrane-Central-Register-of-Controlled-Trials (CENTRAL), Ovid MEDLINE and ongoing trials registries with no language restrictions. We searched conference proceedings and abstract books of conferences. Date of the last searches: 15 July 2022. SELECTION CRITERIA Randomised controlled trials (RCTs) or quasi-RCTs of rapamycin or rapalogs in people with TSC. DATA COLLECTION AND ANALYSIS Two review authors independently extracted data and assessed the risk of bias of each study; a third review author verified the extracted data and risk of bias decisions. We assessed the certainty of the evidence using GRADE. MAIN RESULTS The current update added seven RCTs, bringing the total number to 10 RCTs (with 1008 participants aged 3 months to 65 years; 484 males). All TSC diagnoses were by consensus criteria as a minimum. In parallel studies, 645 participants received active interventions and 340 placebo. Evidence is low-to-high certainty and study quality is mixed; mostly a low risk of bias across domains, but one study had a high risk of performance bias (lack of blinding) and three studies had a high risk of attrition bias. Manufacturers of the investigational products supported eight studies. Systemic administration Six studies (703 participants) administered everolimus (rapalog) orally. More participants in the intervention arm reduced renal angiomyolipoma size by 50% (risk ratio (RR) 24.69, 95% confidence interval (CI) 3.51 to 173.41; P = 0.001; 2 studies, 162 participants, high-certainty evidence). In the intervention arm, more participants in the intervention arm reduced SEGA tumour size by 50% (RR 27.85, 95% CI 1.74 to 444.82; P = 0.02; 1 study; 117 participants; moderate-certainty evidence) ,and reported more skin responses (RR 5.78, 95% CI 2.30 to 14.52; P = 0.0002; 2 studies; 224 participants; high-certainty evidence). In one 18-week study (366 participants), the intervention led to 25% fewer seizures (RR 1.63, 95% CI 1.27 to 2.09; P = 0.0001) or 50% fewer seizures (RR 2.28, 95% CI 1.44 to 3.60; P = 0.0004); but there was no difference in numbers being seizure-free (RR 5.30, 95% CI 0.69 to 40.57; P = 0.11) (moderate-certainty evidence). One study (42 participants) showed no difference in neurocognitive, neuropsychiatry, behavioural, sensory and motor development (low-certainty evidence). Total adverse events (AEs) did not differ between groups (RR 1.09, 95% CI 0.97 to 1.22; P = 0.16; 5 studies; 680 participants; high-certainty evidence). However, the intervention group experienced more AEs resulting in withdrawal, interruption of treatment, or reduced dose (RR 2.61, 95% CI 1.58 to 4.33; P = 0.0002; 4 studies; 633 participants; high-certainty evidence and also reported more severe AEs (RR 2.35, 95% CI 0.99 to 5.58; P = 0.05; 2 studies; 413 participants; high-certainty evidence). Topical (skin) administration Four studies (305 participants) administered rapamycin topically. More participants in the intervention arm showed a response to skin lesions (RR 2.72, 95% CI 1.76 to 4.18; P < 0.00001; 2 studies; 187 participants; high-certainty evidence) and more participants in the placebo arm reported a deterioration of skin lesions (RR 0.27, 95% CI 0.15 to 0.49; 1 study; 164 participants; high-certainty evidence). More participants in the intervention arm responded to facial angiofibroma at one to three months (RR 28.74, 95% CI 1.78 to 463.19; P = 0.02) and three to six months (RR 39.39, 95% CI 2.48 to 626.00; P = 0.009; low-certainty evidence). Similar results were noted for cephalic plaques at one to three months (RR 10.93, 95% CI 0.64 to 186.08; P = 0.10) and three to six months (RR 7.38, 95% CI 1.01 to 53.83; P = 0.05; low-certainty evidence). More participants on placebo showed a deterioration of skin lesions (RR 0.27, 95% CI 0.15 to 0.49; P < 0.0001; 1 study; 164 participants; moderate-certainty evidence). The intervention arm reported a higher general improvement score (MD -1.01, 95% CI -1.68 to -0.34; P < 0.0001), but no difference specifically in the adult subgroup (MD -0.75, 95% CI -1.58 to 0.08; P = 0.08; 1 study; 36 participants; moderate-certainty evidence). Participants in the intervention arm reported higher satisfaction than with placebo (MD -0.92, 95% CI -1.79 to -0.05; P = 0.04; 1 study; 36 participants; low-certainty evidence), although again with no difference among adults (MD -0.25, 95% CI -1.52 to 1.02; P = 0.70; 1 study; 18 participants; low-certainty evidence). Groups did not differ in change in quality of life at six months (MD 0.30, 95% CI -1.01 to 1.61; P = 0.65; 1 study; 62 participants; low-certainty evidence). Treatment led to a higher risk of any AE compared to placebo (RR 1.72, 95% CI 1.10, 2.67; P = 0.02; 3 studies; 277 participants; moderate-certainty evidence); but no difference between groups in severe AEs (RR 0.78, 95% CI 0.19 to 3.15; P = 0.73; 1 study; 179 participants; moderate-certainty evidence). AUTHORS' CONCLUSIONS Oral everolimus reduces the size of SEGA and renal angiomyolipoma by 50%, reduces seizure frequency by 25% and 50% and implements beneficial effects on skin lesions with no difference in the total number of AEs compared to placebo; however, more participants in the treatment group required a dose reduction, interruption or withdrawal and marginally more experienced serious AEs compared to placebo. Topical rapamycin increases the response to skin lesions and facial angiofibroma, an improvement score, satisfaction and the risk of any AE, but not severe adverse events. With caution regarding the risk of severe AEs, this review supports oral everolimus for renal angiomyolipoma, SEGA, seizure, and skin lesions, and topical rapamycin for facial angiofibroma.
Collapse
Affiliation(s)
- Teguh Haryo Sasongko
- Department of Physiology, School of Medicine, International Medical University, Kuala Lumpur, Malaysia
- Institute for Research, Development, and Innovation, International Medical University, Kuala Lumpur, Malaysia
| | - Kumaraswamy Kademane
- Department of Pharmacology, Arunai Medical College and Hospital, Tiruvannamalai, Tamilnadu, India
| | - Stanley Chai Soon Hou
- Perdana University - Royal College of Surgeons in Ireland (RCSI) School of Medicine, Kuala Lumpur, Malaysia
| | - Tan Xin Yi Jocelyn
- Perdana University - Royal College of Surgeons in Ireland (RCSI) School of Medicine, Kuala Lumpur, Malaysia
| | | |
Collapse
|
2
|
Astrinidis A, Li C, Zhang EY, Zhao X, Zhao S, Guo M, Olatoke T, Mattam U, Huang R, Zhang AG, Pitstick L, Kopras EJ, Gupta N, Jandarov R, Smith EP, Fugate E, Lindquist D, Markiewski MM, Karbowniczek M, Wikenheiser-Brokamp KA, Setchell KDR, McCormack FX, Xu Y, Yu JJ. Upregulation of acid ceramidase contributes to tumor progression in tuberous sclerosis complex. JCI Insight 2023; 8:e166850. [PMID: 36927688 PMCID: PMC10243802 DOI: 10.1172/jci.insight.166850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/15/2023] [Indexed: 03/18/2023] Open
Abstract
Tuberous sclerosis complex (TSC) is characterized by multisystem, low-grade neoplasia involving the lung, kidneys, brain, and heart. Lymphangioleiomyomatosis (LAM) is a progressive pulmonary disease affecting almost exclusively women. TSC and LAM are both caused by mutations in TSC1 and TSC2 that result in mTORC1 hyperactivation. Here, we report that single-cell RNA sequencing of LAM lungs identified activation of genes in the sphingolipid biosynthesis pathway. Accordingly, the expression of acid ceramidase (ASAH1) and dihydroceramide desaturase (DEGS1), key enzymes controlling sphingolipid and ceramide metabolism, was significantly increased in TSC2-null cells. TSC2 negatively regulated the biosynthesis of tumorigenic sphingolipids, and suppression of ASAH1 by shRNA or the inhibitor ARN14976 (17a) resulted in markedly decreased TSC2-null cell viability. In vivo, 17a significantly decreased the growth of TSC2-null cell-derived mouse xenografts and short-term lung colonization by TSC2-null cells. Combined rapamycin and 17a treatment synergistically inhibited renal cystadenoma growth in Tsc2+/- mice, consistent with increased ASAH1 expression and activity being rapamycin insensitive. Collectively, the present study identifies rapamycin-insensitive ASAH1 upregulation in TSC2-null cells and tumors and provides evidence that targeting aberrant sphingolipid biosynthesis pathways has potential therapeutic value in mechanistic target of rapamycin complex 1-hyperactive neoplasms, including TSC and LAM.
Collapse
Affiliation(s)
- Aristotelis Astrinidis
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Chenggang Li
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Erik Y. Zhang
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Xueheng Zhao
- Clinical Mass Spectrometry Laboratory, Division of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Shuyang Zhao
- Divisions of Pulmonary Biology and Biomedical Informatics, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Minzhe Guo
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Divisions of Pulmonary Biology and Biomedical Informatics, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Tasnim Olatoke
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Ushodaya Mattam
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Rong Huang
- Clinical Mass Spectrometry Laboratory, Division of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Alan G. Zhang
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Lori Pitstick
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Elizabeth J. Kopras
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Nishant Gupta
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Roman Jandarov
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Eric P. Smith
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Elizabeth Fugate
- Department of Radiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Diana Lindquist
- Department of Radiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Maciej M. Markiewski
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, Texas, USA
| | - Magdalena Karbowniczek
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, Texas, USA
| | - Kathryn A. Wikenheiser-Brokamp
- Division of Pathology and Laboratory Medicine; Division of Pulmonary Medicine; and Division of Pulmonary Biology, Section of Neonatology, Perinatal and Pulmonary Biology, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Kenneth D. R. Setchell
- Clinical Mass Spectrometry Laboratory, Division of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Francis X. McCormack
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Yan Xu
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Divisions of Pulmonary Biology and Biomedical Informatics, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jane J. Yu
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
3
|
Liu HJ, Du H, Khabibullin D, Zarei M, Wei K, Freeman GJ, Kwiatkowski DJ, Henske EP. mTORC1 upregulates B7-H3/CD276 to inhibit antitumor T cells and drive tumor immune evasion. Nat Commun 2023; 14:1214. [PMID: 36869048 PMCID: PMC9984496 DOI: 10.1038/s41467-023-36881-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 02/21/2023] [Indexed: 03/05/2023] Open
Abstract
Identifying the mechanisms underlying the regulation of immune checkpoint molecules and the therapeutic impact of targeting them in cancer is critical. Here we show that high expression of the immune checkpoint B7-H3 (CD276) and high mTORC1 activity correlate with immunosuppressive phenotypes and worse clinical outcomes in 11,060 TCGA human tumors. We find that mTORC1 upregulates B7-H3 expression via direct phosphorylation of the transcription factor YY2 by p70 S6 kinase. Inhibition of B7-H3 suppresses mTORC1-hyperactive tumor growth via an immune-mediated mechanism involving increased T-cell activity and IFN-γ responses coupled with increased tumor cell expression of MHC-II. CITE-seq reveals strikingly increased cytotoxic CD38+CD39+CD4+ T cells in B7-H3-deficient tumors. In pan-human cancers, a high cytotoxic CD38+CD39+CD4+ T-cell gene signature correlates with better clinical prognosis. These results show that mTORC1-hyperactivity, present in many human tumors including tuberous sclerosis complex (TSC) and lymphangioleiomyomatosis (LAM), drives B7-H3 expression leading to suppression of cytotoxic CD4+ T cells.
Collapse
Affiliation(s)
- Heng-Jia Liu
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, 02115, MA, USA.
| | - Heng Du
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, 02115, MA, USA
| | - Damir Khabibullin
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, 02115, MA, USA
| | - Mahsa Zarei
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, 02115, MA, USA
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, 77843, TX, USA
| | - Kevin Wei
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, 02115, MA, USA
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, 02215, MA, USA
| | - David J Kwiatkowski
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, 02115, MA, USA
| | - Elizabeth P Henske
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, 02115, MA, USA.
| |
Collapse
|
4
|
Agarwal S, Decavel-Bueff E, Wang YH, Qin H, Santos RD, Evans MJ, Sriram R. Defining the Magnetic Resonance Features of Renal Lesions and Their Response to Everolimus in a Transgenic Mouse Model of Tuberous Sclerosis Complex. Front Oncol 2022; 12:851192. [PMID: 35814396 PMCID: PMC9260108 DOI: 10.3389/fonc.2022.851192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is an inherited genetic disorder characterized by mutations in TSC1 or TSC2 class of tumor suppressers which impact several organs including the kidney. The renal manifestations are usually in the form of angiomyolipoma (AML, in 80% of the cases) and cystadenomas. mTOR inhibitors such as rapamycin and everolimus have shown efficacy in reducing the renal tumor burden. Early treatment prevents the progression of AML; however, the tumors regrow upon cessation of therapy implying a lifelong need for monitoring and management of this morbid disease. There is a critical need for development of imaging strategies to monitor response to therapy and progression of disease which will also facilitate development of newer targeted therapy. In this study we evaluated the potential of multiparametric 1H magnetic resonance imaging (mpMRI) to monitor tumor response to therapy in a preclinical model of TSC, the transgenic mouse A/J Tsc2+/-. We found 2-dimensional T2-weighted sequence with 0.5 mm slice thickness to be optimal for detecting renal lesions as small as 0.016 mm3. Baseline characterization of lesions with MRI to assess physiological parameters such as cellularity and perfusion is critical for distinguishing between cystic and solid lesions. Everolimus treatment for three weeks maintained tumor growth at 36% from baseline, while control tumors displayed steady growth and were 70% larger than baseline at the end of therapy. Apparent diffusion coefficient, T1 values and normalized T2 intensity changes were also indictive of response to treatment. Our results indicate that standardization and implementation of improved MR imaging protocols will significantly enhance the utility of mpMRI in determining the severity and composition of renal lesions for better treatment planning.
Collapse
Affiliation(s)
- Shubhangi Agarwal
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Emilie Decavel-Bueff
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Yung-Hua Wang
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Hecong Qin
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Romelyn Delos Santos
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Michael J. Evans
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, United States
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, United States
| | - Renuka Sriram
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
- *Correspondence: Renuka Sriram,
| |
Collapse
|
5
|
eIF4A1 Inhibitor Suppresses Hyperactive mTOR-Associated Tumors by Inducing Necroptosis and G2/M Arrest. Int J Mol Sci 2022; 23:ijms23136932. [PMID: 35805935 PMCID: PMC9266907 DOI: 10.3390/ijms23136932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 02/01/2023] Open
Abstract
Aberrantly activated mechanistic target of rapamycin (mTOR) signaling pathway stimulates translation initiation/protein synthesis and eventually causes tumors. Targeting these processes thus holds potential for treating mTOR-associated diseases. We tested the potential of eFT226, a sequence-selective inhibitor of eIF4A-mediated translation, in the treatment of mTOR hyperactive cells caused by the deletion of tuberous sclerosis complex 1/2 (TSC1/2) or phosphatase and TENsin homology (PTEN). eFT226 preferentially inhibited the proliferation of Tsc2- and Pten-deficient cells by inducing necroptosis and G2/M phase arrest. In addition, eFT226 blocked the development of TSC2-deficient tumors. The translation initiation inhibitor is thus a promising regimen for the treatment of hyperactive mTOR-mediated tumors.
Collapse
|
6
|
Interleukin-6 mediates PSAT1 expression and serine metabolism in TSC2-deficient cells. Proc Natl Acad Sci U S A 2021; 118:2101268118. [PMID: 34544857 DOI: 10.1073/pnas.2101268118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2021] [Indexed: 01/31/2023] Open
Abstract
Tuberous sclerosis complex (TSC) and lymphangioleiomyomatosis (LAM) are caused by aberrant mechanistic Target of Rapamycin Complex 1 (mTORC1) activation due to loss of either TSC1 or TSC2 Cytokine profiling of TSC2-deficient LAM patient-derived cells revealed striking up-regulation of Interleukin-6 (IL-6). LAM patient plasma contained increased circulating IL-6 compared with healthy controls, and TSC2-deficient cells showed up-regulation of IL-6 transcription and secretion compared to wild-type cells. IL-6 blockade repressed the proliferation and migration of TSC2-deficient cells and reduced oxygen consumption and extracellular acidification. U-13C glucose tracing revealed that IL-6 knockout reduced 3-phosphoserine and serine production in TSC2-deficient cells, implicating IL-6 in de novo serine metabolism. IL-6 knockout reduced expression of phosphoserine aminotransferase 1 (PSAT1), an essential enzyme in serine biosynthesis. Importantly, recombinant IL-6 treatment rescued PSAT1 expression in the TSC2-deficient, IL-6 knockout clones selectively and had no effect on wild-type cells. Treatment with anti-IL-6 (αIL-6) antibody similarly reduced cell proliferation and migration and reduced renal tumors in Tsc2 +/- mice while reducing PSAT1 expression. These data reveal a mechanism through which IL-6 regulates serine biosynthesis, with potential relevance to the therapy of tumors with mTORC1 hyperactivity.
Collapse
|
7
|
Wang Y, Li C, Zhang Y, Zha X, Zhang H, Hu Z, Wu C. Aberrant mTOR/autophagy/Nurr1 signaling is critical for TSC-associated tumor development. Biochem Cell Biol 2021; 99:570-577. [PMID: 34463540 DOI: 10.1139/bcb-2021-0017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Tuberous sclerosis complex (TSC), an inherited neurocutaneous disease, is caused by mutations in either the TSC1 or TSC2 gene. This genetic disorder is characterized by the growth of benign tumors in the brain, kidneys, and other organs. As a member of the orphan nuclear receptor family, nuclear receptor related 1 (Nurr1) plays a vital role in some neuropathological diseases and several types of benign or malignant tumors. Here, we explored the potential regulatory role of TSC1/2 signaling in Nurr1 and the effect of Nurr1 in TSC-related tumors. We found that Nurr1 expression was drastically decreased by the disruption of the TSC1/2 complex in Tsc2-null cells, genetically modified mouse models of TSC, cortical tubers of TSC patients, and kidney tumor tissue obtained from a TSC patient. Deficient TSC1/2 complex downregulated Nurr1 expression in an mTOR-dependent manner. Moreover, hyperactivation of mTOR reduced Nurr1 expression via suppression of autophagy. In addition, Nurr1 overexpression inhibited cell proliferation and suppressed cell cycle progression. Therefore, TSC/mTOR/autophagy/Nurr1 signaling is partially responsible for the tumorigenesis of TSC. Taken together, Nurr1 may be a novel therapeutic target for TSC-associated tumors, and Nurr1 agonists or reagents that induce Nurr1 expression may be used for the treatment of TSC.
Collapse
Affiliation(s)
- Ying Wang
- Department of Molecular Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Chunjia Li
- Department of Rheumatology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Yanzhuo Zhang
- Department of Molecular Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Xiaojun Zha
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, Anhui 230032, China
| | - Hongbing Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Zhongdong Hu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Chengai Wu
- Department of Molecular Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing 100035, China
| |
Collapse
|
8
|
Kovalenko A, Sanin A, Kosmas K, Zhang L, Wang J, Akl EW, Giannikou K, Probst CK, Hougard TR, Rue RW, Krymskaya VP, Asara JM, Lam HC, Kwiatkowski DJ, Henske EP, Filippakis H. Therapeutic Targeting of DGKA-Mediated Macropinocytosis Leads to Phospholipid Reprogramming in Tuberous Sclerosis Complex. Cancer Res 2021; 81:2086-2100. [PMID: 33593821 DOI: 10.1158/0008-5472.can-20-2218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/16/2020] [Accepted: 02/10/2021] [Indexed: 11/16/2022]
Abstract
Lymphangioleiomyomatosis is a rare destructive lung disease affecting primarily women and is the primary lung manifestation of tuberous sclerosis complex (TSC). In lymphangioleiomyomatosis, biallelic loss of TSC1/2 leads to hyperactivation of mTORC1 and inhibition of autophagy. To determine how the metabolic vulnerabilities of TSC2-deficient cells can be targeted, we performed a high-throughput screen utilizing the "Repurposing" library at the Broad Institute of MIT and Harvard (Cambridge, MA), with or without the autophagy inhibitor chloroquine. Ritanserin, an inhibitor of diacylglycerol kinase alpha (DGKA), was identified as a selective inhibitor of proliferation of Tsc2-/- mouse embryonic fibroblasts (MEF), with no impact on Tsc2+/+ MEFs. DGKA is a lipid kinase that metabolizes diacylglycerol to phosphatidic acid, a key component of plasma membranes. Phosphatidic acid levels were increased 5-fold in Tsc2-/- MEFs compared with Tsc2+/+ MEFs, and treatment of Tsc2-/- MEFs with ritanserin led to depletion of phosphatidic acid as well as rewiring of phospholipid metabolism. Macropinocytosis is known to be upregulated in TSC2-deficient cells. Ritanserin decreased macropinocytic uptake of albumin, limited the number of lysosomes, and reduced lysosomal activity in Tsc2-/- MEFs. In a mouse model of TSC, ritanserin treatment decreased cyst frequency and volume, and in a mouse model of lymphangioleiomyomatosis, genetic downregulation of DGKA prevented alveolar destruction and airspace enlargement. Collectively, these data indicate that DGKA supports macropinocytosis in TSC2-deficient cells to maintain phospholipid homeostasis and promote proliferation. Targeting macropinocytosis with ritanserin may represent a novel therapeutic approach for the treatment of TSC and lymphangioleiomyomatosis. SIGNIFICANCE: This study identifies macropinocytosis and phospholipid metabolism as novel mechanisms of metabolic homeostasis in mTORC1-hyperactive cells and suggest ritanserin as a novel therapeutic strategy for use in mTORC1-hyperactive tumors, including pancreatic cancer. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/8/2086/F1.large.jpg.
Collapse
Affiliation(s)
- Andrii Kovalenko
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Andres Sanin
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Kosmas Kosmas
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Long Zhang
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ji Wang
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Elie W Akl
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Krinio Giannikou
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Clemens K Probst
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Thomas R Hougard
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ryan W Rue
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Vera P Krymskaya
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - John M Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Hilaire C Lam
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - David J Kwiatkowski
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Elizabeth P Henske
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
| | - Harilaos Filippakis
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
9
|
Lu Y, Zhang EY, Liu J, Yu JJ. Inhibition of the mechanistic target of rapamycin induces cell survival via MAPK in tuberous sclerosis complex. Orphanet J Rare Dis 2020; 15:209. [PMID: 32807195 PMCID: PMC7433150 DOI: 10.1186/s13023-020-01490-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/05/2020] [Indexed: 01/29/2023] Open
Abstract
Background Tuberous sclerosis complex (TSC) is a genetic disorder that cause tumors to form in many organs. These lesions may lead to epilepsy, autism, developmental delay, renal, and pulmonary failure. Loss of function mutations in TSC1 and TSC2 genes by aberrant activation of the mechanistic target of rapamycin (mTORC1) signaling pathway are the known causes of TSC. Therefore, targeting mTORC1 becomes a most available therapeutic strategy for TSC. Although mTORC1 inhibitor rapamycin and Rapalogs have demonstrated exciting results in the recent clinical trials, however, tumors rebound and upon the discontinuation of the mTORC1 inhibition. Thus, understanding the underlying molecular mechanisms responsible for rapamycin-induced cell survival becomes an urgent need. Identification of additional molecular targets and development more effective remission-inducing therapeutic strategies are necessary for TSC patients. Results We have discovered an Mitogen-activated protein kinase (MAPK)-evoked positive feedback loop that dampens the efficacy of mTORC1 inhibition. Mechanistically, mTORC1 inhibition increased MEK1-dependent activation of MAPK in TSC-deficient cells. Pharmacological inhibition of MAPK abrogated this feedback loop activation. Importantly, the combinatorial inhibition of mTORC1 and MAPK induces the death of TSC2-deficient cells. Conclusions Our results provide a rationale for dual targeting of mTORC1 and MAPK pathways in TSC and other mTORC1 hyperactive neoplasm.
Collapse
Affiliation(s)
- Yiyang Lu
- Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati College of Medicine, 231 Albert Sabin Way-ML 0564, Cincinnati, OH, 45267, USA
| | - Erik Y Zhang
- Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati College of Medicine, 231 Albert Sabin Way-ML 0564, Cincinnati, OH, 45267, USA
| | - Jie Liu
- Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati College of Medicine, 231 Albert Sabin Way-ML 0564, Cincinnati, OH, 45267, USA.,Department of Pulmonary and Critical Care Medicine, Guangzhou Institute for Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jane J Yu
- Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati College of Medicine, 231 Albert Sabin Way-ML 0564, Cincinnati, OH, 45267, USA.
| |
Collapse
|
10
|
Yoon HY, Hwang JJ, Kim DS, Song JW. Efficacy and safety of low-dose Sirolimus in Lymphangioleiomyomatosis. Orphanet J Rare Dis 2018; 13:204. [PMID: 30428897 PMCID: PMC6236936 DOI: 10.1186/s13023-018-0946-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/30/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Lymphangioleiomyomatosis is a rare disease caused by unregulated activation of mammalian target of rapamycin (mTOR) signalling pathway. Sirolimus showed efficacy in a phase 3 trial of patients with lymphangioleiomyomatosis, but the optimal dose remains unclear. METHODS We investigated the efficacy and safety of low-dose compared with conventional-dose sirolimus. Clinical data of 39 patients with lymphangioleiomyomatosis (mean age, 34.8 years; median treatment period, 29.6 months) who received sirolimus were retrospectively reviewed. Low-dose sirolimus was defined as any dose that maintained mean blood trough levels lower than those maintained with conventional doses (5-15 ng/mL). RESULTS Fifty-one percent of patients received low-dose therapy. The rate of decline in lung function decreased after treatment in the whole group (forced expiratory volume in 1 s [FEV1], - 0.12 ± 0.47 [before] vs. 0.24 ± 0.48% predicted/month [after], p = 0.027; diffusing capacity for carbon monoxide [DLco], - 0.33 ± 0.61 vs. 0.03 ± 0.26% predicted/month, p = 0.006) compared with before treatment. In the low-dose group, the rate of decline in FEV1 (- 0.08 ± 0.38 [before] vs. 0.19 ± 0.51% predicted/month [after], p = 0.264) and DLco (-0.13 ± 0.62 vs. 0.02 ± 0.28% predicted/month, p = 0.679) showed a numeric trend towards improvement after treatment; however, the conventional-dose group showed significant improvement in FEV1 (- 0.26 ± 0.54 [before] vs. 0.22 ± 0.38 [after] % predicted/month, p = 0.024) and DLco (- 0.55 ± 0.58 vs. 0.04 ± 0.25% predicted/month, p = 0.002) after treatment. Adverse events (AEs) occurred in 89.7% of patients and the most common AEs was hypercholesterolaemia (43.6%), followed by stomatitis (35.9%). The occurrences of AE were similar between the low- and conventional-dose groups (85.0% vs. 94.7%, p = 0.605). CONCLUSIONS Low-dose sirolimus may stabilise lung function decline in lymphangioleiomyomatosis patients, but its efficacy appears to be inferior to that of conventional-dose sirolimus.
Collapse
Affiliation(s)
- Hee-Young Yoon
- Departments of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea
| | - Jung Jin Hwang
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea
| | - Dong Soon Kim
- Departments of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea
| | - Jin Woo Song
- Departments of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
11
|
Eldessouki I, Gaber O, Riaz MK, Wang J, Abdel Karim N. Clinical Presentation and Treatment Options for Clear Cell Lung Cancer: University of Cincinnati A Case Series and Literature Review of Clear Cell Lung Cancer. Asian Pac J Cancer Prev 2018; 19:2373-2376. [PMID: 30255689 PMCID: PMC6249457 DOI: 10.22034/apjcp.2018.19.9.2373] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 08/18/2018] [Indexed: 01/15/2023] Open
Abstract
Clear cell carcinomas are common finding in renal, ovarian and uterine carcinomas. However, clear cell lung cancer (CCLC), first described by Liebow and Castleman in 1963, is considered an extremely rare variant of lung tumors. The 2011 WHO classification of lung tumors considered CCLC as a rare cytologic feature of squamous cell or adenocarcinomas. It is no longer recognized as a formal subtype, albeit it can be referred to in the pathological diagnosis as “with clear cell features” even with marginal fractions of the tumor cells. Such recognition is needed since the variation in clinical features and outcome in this subset of patients. The disease has a clinically vague natural history, is characterized by slight female predominance and is often seen in the elderly. As frequently encountered with rare diseases, its clinical course and treatment options have many questions still yet to be answered. In this paper, we review both the natural history and treatment options mentioned in literature, in the light of our experience by reporting a case series of four patients diagnosed with CCLC and highlight their aspects.
Collapse
Affiliation(s)
- Ihab Eldessouki
- Department of Hematology- Oncology, Vontz Center for molecular studies, University of Cincinnati, OH,USA.
| | | | | | | | | |
Collapse
|
12
|
Lam HC, Siroky BJ, Henske EP. Renal disease in tuberous sclerosis complex: pathogenesis and therapy. Nat Rev Nephrol 2018; 14:704-716. [DOI: 10.1038/s41581-018-0059-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
Liu HJ, Lizotte PH, Du H, Speranza MC, Lam HC, Vaughan S, Alesi N, Wong KK, Freeman GJ, Sharpe AH, Henske EP. TSC2-deficient tumors have evidence of T cell exhaustion and respond to anti-PD-1/anti-CTLA-4 immunotherapy. JCI Insight 2018; 3:98674. [PMID: 29669930 DOI: 10.1172/jci.insight.98674] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/20/2018] [Indexed: 12/12/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is an incurable multisystem disease characterized by mTORC1-hyperactive tumors. TSC1/2 mutations also occur in other neoplastic disorders, including lymphangioleiomyomatosis (LAM) and bladder cancer. Whether TSC-associated tumors will respond to immunotherapy is unknown. We report here that the programmed death 1 coinhibitory receptor (PD-1) is upregulated on T cells in renal angiomyolipomas (AML) and pulmonary lymphangioleiomyomatosis (LAM). In C57BL/6J mice injected with syngeneic TSC2-deficient cells, anti-PD-1 alone decreased 105K tumor growth by 67% (P < 0.0001); the combination of PD-1 and CTLA-4 blockade was even more effective in suppressing tumor growth. Anti-PD-1 induced complete rejection of TSC2-deficient 105K tumors in 37% of mice (P < 0.05). Double blockade of PD-1 and CTLA-4 induced rejection in 62% of mice (P < 0.01). TSC2 reexpression in TSC2-deficient TMKOC cells enhanced antitumor immunity by increasing T cell infiltration and production of IFN-γ/TNF-α by T cells, suggesting that TSC2 and mTORC1 play specific roles in the induction of antitumor immunity. Finally, 1 month of anti-PD-1 blockade reduced renal tumor burden by 53% (P < 0.01) in genetically engineered Tsc2+/- mice. Taken together, these data demonstrate for the first time to our knowledge that checkpoint blockade may have clinical efficacy for TSC and LAM, and possibly other benign tumor syndromes, potentially yielding complete and durable clinical responses.
Collapse
Affiliation(s)
- Heng-Jia Liu
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Patrick H Lizotte
- Belfer Center for Applied Cancer Science, Boston, Massachusetts, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Heng Du
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Maria C Speranza
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Hilaire C Lam
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Spencer Vaughan
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Nicola Alesi
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kwok-Kin Wong
- Belfer Center for Applied Cancer Science, Boston, Massachusetts, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, New York, USA
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Arlene H Sharpe
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA.,Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Elizabeth P Henske
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Tee AR. The Target of Rapamycin and Mechanisms of Cell Growth. Int J Mol Sci 2018; 19:ijms19030880. [PMID: 29547541 PMCID: PMC5877741 DOI: 10.3390/ijms19030880] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/12/2018] [Accepted: 03/13/2018] [Indexed: 01/09/2023] Open
Abstract
Mammalian target of rapamycin (mTOR, now referred to as mechanistic target of rapamycin) is considered as the master regulator of cell growth. A definition of cell growth is a build-up of cellular mass through the biosynthesis of macromolecules. mTOR regulation of cell growth and cell size is complex, involving tight regulation of both anabolic and catabolic processes. Upon a growth signal input, mTOR enhances a range of anabolic processes that coordinate the biosynthesis of macromolecules to build cellular biomass, while restricting catabolic processes such as autophagy. mTOR is highly dependent on the supply of nutrients and energy to promote cell growth, where the network of signalling pathways that influence mTOR activity ensures that energy and nutrient homeostasis are retained within the cell as they grow. As well as maintaining cell size, mTOR is fundamental in the regulation of organismal growth. This review examines the complexities of how mTOR complex 1 (mTORC1) enhances the cell’s capacity to synthesis de novo proteins required for cell growth. It also describes the discovery of mTORC1, the complexities of cell growth signalling involving nutrients and energy supply, as well as the multifaceted regulation of mTORC1 to orchestrate ribosomal biogenesis and protein translation.
Collapse
Affiliation(s)
- Andrew R Tee
- Division of Cancer and Genetics, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| |
Collapse
|
15
|
McCormack FX, Gupta N, Finlay GR, Young LR, Taveira-DaSilva AM, Glasgow CG, Steagall WK, Johnson SR, Sahn SA, Ryu JH, Strange C, Seyama K, Sullivan EJ, Kotloff RM, Downey GP, Chapman JT, Han MK, D'Armiento JM, Inoue Y, Henske EP, Bissler JJ, Colby TV, Kinder BW, Wikenheiser-Brokamp KA, Brown KK, Cordier JF, Meyer C, Cottin V, Brozek JL, Smith K, Wilson KC, Moss J. Official American Thoracic Society/Japanese Respiratory Society Clinical Practice Guidelines: Lymphangioleiomyomatosis Diagnosis and Management. Am J Respir Crit Care Med 2017; 194:748-61. [PMID: 27628078 DOI: 10.1164/rccm.201607-1384st] [Citation(s) in RCA: 225] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Lymphangioleiomyomatosis (LAM) is a rare cystic lung disease that primarily affects women. The purpose of these guidelines is to provide recommendations for the diagnosis and treatment of LAM. METHODS Systematic reviews were performed to summarize evidence pertinent to our questions. The evidence was summarized and discussed by a multidisciplinary panel. Evidence-based recommendations were then formulated, written, and graded using the Grading of Recommendations, Assessment, Development, and Evaluation approach. RESULTS After considering the panel's confidence in the estimated effects, the balance of desirable (i.e., benefits) and undesirable (i.e., harms and burdens) consequences of treatment, patient values and preferences, cost, and feasibility, recommendations were formulated for or against specific interventions. These included recommendations for sirolimus treatment and vascular endothelial growth factor D testing and recommendations against doxycycline and hormonal therapy. CONCLUSIONS Evidence-based recommendations for the diagnosis and treatment of patients with LAM are provided. Frequent reassessment and updating will be needed.
Collapse
|
16
|
Lam HC, Baglini CV, Lope AL, Parkhitko AA, Liu HJ, Alesi N, Malinowska IA, Ebrahimi-Fakhari D, Saffari A, Yu JJ, Pereira A, Khabibullin D, Ogorek B, Nijmeh J, Kavanagh T, Handen A, Chan SY, Asara JM, Oldham WM, Diaz-Meco MT, Moscat J, Sahin M, Priolo C, Henske EP. p62/SQSTM1 Cooperates with Hyperactive mTORC1 to Regulate Glutathione Production, Maintain Mitochondrial Integrity, and Promote Tumorigenesis. Cancer Res 2017; 77:3255-3267. [PMID: 28512249 PMCID: PMC5485875 DOI: 10.1158/0008-5472.can-16-2458] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 01/20/2017] [Accepted: 04/12/2017] [Indexed: 01/11/2023]
Abstract
p62/sequestosome-1 (SQSTM1) is a multifunctional adaptor protein and autophagic substrate that accumulates in cells with hyperactive mTORC1, such as kidney cells with mutations in the tumor suppressor genes tuberous sclerosis complex (TSC)1 or TSC2. Here we report that p62 is a critical mediator of TSC2-driven tumorigenesis, as Tsc2+/- and Tsc2f/f Ksp-CreERT2+ mice crossed to p62-/- mice were protected from renal tumor development. Metabolic profiling revealed that depletion of p62 in Tsc2-null cells decreased intracellular glutamine, glutamate, and glutathione (GSH). p62 positively regulated the glutamine transporter Slc1a5 and increased glutamine uptake in Tsc2-null cells. We also observed p62-dependent changes in Gcl, Gsr, Nqo1, and Srxn1, which were decreased by p62 attenuation and implicated in GSH production and utilization. p62 attenuation altered mitochondrial morphology, reduced mitochondrial membrane polarization and maximal respiration, and increased mitochondrial reactive oxygen species and mitophagy marker PINK1. These mitochondrial phenotypes were rescued by addition of exogenous GSH and overexpression of Sod2, which suppressed indices of mitochondrial damage and promoted growth of Tsc2-null cells. Finally, p62 depletion sensitized Tsc2-null cells to both oxidative stress and direct inhibition of GSH biosynthesis by buthionine sulfoximine. Our findings show how p62 helps maintain intracellular pools of GSH needed to limit mitochondrial dysfunction in tumor cells with elevated mTORC1, highlighting p62 and redox homeostasis as nodal vulnerabilities for therapeutic targeting in these tumors. Cancer Res; 77(12); 3255-67. ©2017 AACR.
Collapse
Affiliation(s)
- Hilaire C Lam
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Christian V Baglini
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Alicia Llorente Lope
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | | | - Heng-Jia Liu
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Nicola Alesi
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Izabela A Malinowska
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Darius Ebrahimi-Fakhari
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Afshin Saffari
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jane J Yu
- Pulmonary Critical Care and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Ana Pereira
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Damir Khabibullin
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Barbara Ogorek
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Julie Nijmeh
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Taylor Kavanagh
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Adam Handen
- Division of Cardiology, Department of Medicine, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Stephen Y Chan
- Division of Cardiology, Department of Medicine, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - John M Asara
- Division of Signal Transduction, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - William M Oldham
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Maria T Diaz-Meco
- Cancer Metabolism and Signaling Networks Program, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California
| | - Jorge Moscat
- Cancer Metabolism and Signaling Networks Program, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California
| | - Mustafa Sahin
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Carmen Priolo
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Elizabeth P Henske
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
17
|
mTOR promotes pituitary tumor development through activation of PTTG1. Oncogene 2016; 36:979-988. [PMID: 27524416 DOI: 10.1038/onc.2016.264] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 05/19/2016] [Accepted: 06/16/2016] [Indexed: 12/11/2022]
Abstract
As one of the most common intracranial tumors, pituitary tumor is associated with high morbidity. Effective therapy is currently not available for some pituitary tumors due to the largely undefined pathological processes of pituitary tumorigenesis. In this study, hyperactivation of mammalian/mechanistic target of rapamycin (mTOR) signaling was observed in estrogen-induced rat pituitary tumor and mTOR inhibitor rapamycin blocked the tumor development. Pituitary knockout of either mTOR signaling pathway negative regulator Tsc1 or Pten caused mouse pituitary prolactinoma, which was abolished by rapamycin treatment. Mechanistically, the expression of pituitary tumor transforming gene 1 (PTTG1) was upregulated in an mTOR complex 1-dependent manner. Overexpressed PTTG1 was crucial in hyperactive mTOR-mediated tumorigenesis. mTOR-PTTG1 signaling axis may be targeted for the treatment of tumors with mTOR hyperactivation.
Collapse
|
18
|
Roles of mTOR complexes in the kidney: implications for renal disease and transplantation. Nat Rev Nephrol 2016; 12:587-609. [PMID: 27477490 DOI: 10.1038/nrneph.2016.108] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The mTOR pathway has a central role in the regulation of cell metabolism, growth and proliferation. Studies involving selective gene targeting of mTOR complexes (mTORC1 and mTORC2) in renal cell populations and/or pharmacologic mTOR inhibition have revealed important roles of mTOR in podocyte homeostasis and tubular transport. Important advances have also been made in understanding the role of mTOR in renal injury, polycystic kidney disease and glomerular diseases, including diabetic nephropathy. Novel insights into the roles of mTORC1 and mTORC2 in the regulation of immune cell homeostasis and function are helping to improve understanding of the complex effects of mTOR targeting on immune responses, including those that impact both de novo renal disease and renal allograft outcomes. Extensive experience in clinical renal transplantation has resulted in successful conversion of patients from calcineurin inhibitors to mTOR inhibitors at various times post-transplantation, with excellent long-term graft function. Widespread use of this practice has, however, been limited owing to mTOR-inhibitor- related toxicities. Unique attributes of mTOR inhibitors include reduced rates of squamous cell carcinoma and cytomegalovirus infection compared to other regimens. As understanding of the mechanisms by which mTORC1 and mTORC2 drive the pathogenesis of renal disease progresses, clinical studies of mTOR pathway targeting will enable testing of evolving hypotheses.
Collapse
|
19
|
Sasongko TH, Ismail NFD, Zabidi‐Hussin ZAMH, Cochrane Cystic Fibrosis and Genetic Disorders Group. Rapamycin and rapalogs for tuberous sclerosis complex. Cochrane Database Syst Rev 2016; 7:CD011272. [PMID: 27409709 PMCID: PMC6458010 DOI: 10.1002/14651858.cd011272.pub2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Previous studies have shown potential benefits of rapamycin or rapalogs for treating people with tuberous sclerosis complex. Although everolimus (a rapalog) is currently approved by the FDA (U.S. Food and Drug Administration) and the EMA (European Medicines Agency) for tuberous sclerosis complex-associated renal angiomyolipoma and subependymal giant cell astrocytoma, applications for other manifestations of tuberous sclerosis complex have not yet been established. A systematic review is necessary to establish the clinical value of rapamycin or rapalogs for various manifestations in tuberous sclerosis complex. OBJECTIVES To determine the effectiveness of rapamycin or rapalogs in people with tuberous sclerosis complex for decreasing tumour size and other manifestations and to assess the safety of rapamycin or rapalogs in relation to their adverse effects. SEARCH METHODS Relevant studies were identified by authors from the Cochrane Central Register of Controlled Trials (CENTRAL), Ovid MEDLINE, and clinicaltrials.gov. Relevant resources were also searched by the authors, such as conference proceedings and abstract books of conferences, from e.g. the Tuberous Sclerosis Complex International Research Conferences, other tuberous sclerosis complex-related conferences and the Human Genome Meeting. We did not restrict the searches by language as long as English translations were available for non-English reports.Date of the last searches: 14 March 2016. SELECTION CRITERIA Randomized or quasi-randomized studies of rapamycin or rapalogs in people with tuberous sclerosis complex. DATA COLLECTION AND ANALYSIS Data were independently extracted by two authors using standard acquisition forms. The data collection was verified by one author. The risk of bias of each study was independently assessed by two authors and verified by one author. MAIN RESULTS Three placebo-controlled studies with a total of 263 participants (age range 0.8 to 61 years old, 122 males and 141 females, with variable lengths of study duration) were included in the review. We found high-quality evidence except for response to skin lesions which was judged to be low quality due to the risk of attrition bias. Overall, there are 175 participants in the treatment arm (rapamycin or everolimus) and 88 in the placebo arm. Participants all had tuberous sclerosis complex as proven by consensus diagnostic criteria as a minimum. The quality in the description of the study methods was mixed, although we assessed most domains as having a low risk of bias. Blinding of treatment arms was successfully carried out in all of the studies. However, two studies did not report allocation concealment. Two of the included studies were funded by Novartis Pharmaceuticals.Two studies (235 participants) used oral (systemic) administration of everolimus (rapalog). These studies reported response to tumour size in terms of the number of individuals with a reduction in the total volume of tumours to 50% or more relative to baseline. Significantly more participants in the treatment arm (two studies, 162 participants, high quality evidence) achieved a 50% reduction in renal angiomyolipoma size, risk ratio 24.69 (95% confidence interval 3.51 to 173.41) (P = 0.001). For the sub-ependymal giant cell astrocytoma, our analysis of one study (117 participants, high quality evidence) showed significantly more participants in the treatment arm achieved a 50% reduction in tumour size, risk ratio 27.85 (95% confidence interval 1.74 to 444.82) (P = 0.02). The proportion of participants who showed a skin response from the two included studies analysed was significantly increased in the treatment arms, risk ratio 5.78 (95% confidence interval 2.30 to 14.52) (P = 0.0002) (two studies, 224 participants, high quality evidence). In one study (117 participants), the median change of seizure frequency was -2.9 in 24 hours (95% confidence interval -4.0 to -1.0) in the treatment group versus -4.1 in 24 hour (95% confidence interval -10.9 to 5.8) in the placebo group. In one study, one out of 79 participants in the treatment group versus three of 39 in placebo group had increased blood creatinine levels, while the median percentage change of forced expiratory volume at one second in the treatment arm was -1% compared to -4% in the placebo arm. In one study (117 participants, high quality evidence), we found that those participants who received treatment had a similar risk of experiencing adverse events compared to those who did not, risk ratio 1.07 (95% confidence interval 0.96 - 1.20) (P = 0.24). However, as seen from two studies (235 participants, high quality evidence), the treatment itself led to significantly more adverse events resulting in withdrawal, interruption of treatment, or reduction in dose level, risk ratio 3.14 (95% confidence interval 1.82 to 5.42) (P < 0.0001).One study (28 participants) used topical (skin) administration of rapamycin. This study reported response to skin lesions in terms of participants' perception towards their skin appearance following the treatment. There was a tendency of an improvement in the participants' perception of their skin appearance, although not significant, risk ratio 1.81 (95% confidence interval 0.80 to 4.06, low quality evidence) (P = 0.15). This study reported that there were no serious adverse events related to the study product and there was no detectable systemic absorption of the rapamycin during the study period. AUTHORS' CONCLUSIONS We found evidence that oral everolimus significantly increased the proportion of people who achieved a 50% reduction in the size of sub-ependymal giant cell astrocytoma and renal angiomyolipoma. Although we were unable to ascertain the relationship between the reported adverse events and the treatment, participants who received treatment had a similar risk of experiencing adverse events as compared to those who did not receive treatment. Nevertheless, the treatment itself significantly increased the risk of having dose reduction, interruption or withdrawal. This supports ongoing clinical applications of oral everolimus for renal angiomyolipoma and subependymal giant cell astrocytoma. Although oral everolimus showed beneficial effect on skin lesions, topical rapamycin only showed a non-significant tendency of improvement. Efficacy on skin lesions should be further established in future research. The beneficial effects of rapamycin or rapalogs on tuberous sclerosis complex should be further studied on other manifestations of the condition.
Collapse
Affiliation(s)
- Teguh H Sasongko
- International Medical UniversityHuman Biology Division, School of MedicineNo. 126, Jalan Jalil Perkasa 19, Bukit JalilKuala LumpurMalaysia57000
| | - Nur Farrah Dila Ismail
- Universiti Sains MalaysiaHuman Genome Center, School of Medical Sciences16150 Kubang KerianKota BharuKelantanMalaysia
| | - ZAMH Zabidi‐Hussin
- Universiti Sains MalaysiaCenter for Neuroscience Services and ResearchKelantanMalaysia
- Universiti Sains MalaysiaDepartment of Pediatrics, School of Medical SciencesUSM Health CampusKubang KerianKelantanMalaysia
| | | |
Collapse
|
20
|
Prizant H, Taya M, Lerman I, Light A, Sen A, Mitra S, Foster TH, Hammes SR. Estrogen maintains myometrial tumors in a lymphangioleiomyomatosis model. Endocr Relat Cancer 2016; 23:265-80. [PMID: 26880751 PMCID: PMC4992946 DOI: 10.1530/erc-15-0505] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 02/15/2016] [Indexed: 12/17/2022]
Abstract
Lymphangioleiomyomatosis (LAM) is a rare disease in women. Patients with LAM develop metastatic smooth-muscle cell adenomas within the lungs, resulting in reduced pulmonary function. LAM cells contain mutations in tuberous sclerosis genes (TSC1 or TSC2), leading to up-regulation of mTORC1 activity and elevated proliferation. The origin of LAM cells remains unknown; however, inactivation of Tsc2 gene in the mouse uterus resulted in myometrial tumors exhibiting LAM features, and approximately 50% of animals developed metastatic myometrial lung tumors. This suggests that LAM tumors might originate from the uterine myometrium, possibly explaining the overwhelming prevalence of LAM in female. Here, we demonstrate that mouse Tsc2-null myometrial tumors exhibit nearly all the features of LAM, including mTORC1/S6K activation, as well as expression of melanocytic markers and matrix metalloproteinases (MMPs). Estrogen ablation reduces S6K signaling and results in Tsc2-null myometrial tumor regression. Thus, even without TSC2, estradiol is required to maintain tumors and mTORC1/S6K signaling. Additionally, we find that MMP-2 and -9, as well as neutrophil elastase (NE), are overexpressed in Tsc2-null myometrial tumors in an estrogen-dependent fashion. In vivo fluorescent imaging using MMP- or NE-sensitive optical biomarkers confirms that protease activity is specific to myometrial tumors. Similar to LAM cells, uterine Tsc2-null myometrial cells also overexpress melanocytic markers in an estrogen-dependent fashion. Finally, we identify glycoprotein NMB (GPNMB) as a melanocytic marker up-regulated in Tsc2-null mouse uteri and human LAM samples. Our data highlight the potential importance of estradiol in LAM cells, suggesting that anti-estrogen therapy may be a treatment modality. Furthermore, proteases and GPNMB might be useful LAM biomarkers.
Collapse
Affiliation(s)
- Hen Prizant
- Division of Endocrinology and MetabolismDepartment of Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Manisha Taya
- Division of Endocrinology and MetabolismDepartment of Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Irina Lerman
- Division of Endocrinology and MetabolismDepartment of Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Allison Light
- Division of Endocrinology and MetabolismDepartment of Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Aritro Sen
- Division of Endocrinology and MetabolismDepartment of Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Soumya Mitra
- Department of Imaging SciencesUniversity of Rochester Medical Center, Rochester, New York, USA
| | - Thomas H Foster
- Department of Imaging SciencesUniversity of Rochester Medical Center, Rochester, New York, USA
| | - Stephen R Hammes
- Division of Endocrinology and MetabolismDepartment of Medicine, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
21
|
Llamas-Velasco M, Requena L, Mentzel T. Cutaneous perivascular epithelioid cell tumors: A review on an infrequent neoplasm. World J Methodol 2016; 6:87-92. [PMID: 27019799 PMCID: PMC4804255 DOI: 10.5662/wjm.v6.i1.87] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 12/15/2015] [Accepted: 02/17/2016] [Indexed: 02/06/2023] Open
Abstract
“Perivascular epithelioid cutaneous” cell tumors (PEComa) are a family of mesenchymal tumors with shared microscopic and immunohistochemical properties: They exhibit both smooth muscle cell and melanocytic differentiation. Non-neoplastic counterpart of PEComa’s cells are unknown, as well as the relationship between extracutaneous PEComa and primary cutaneous ones. We will review the clinical setting, histopathologic features, chromosomal abnormalities, differential diagnosis and treatment options for cutaneous PEComa.
Collapse
|
22
|
Acosta Materán RV, Martín Arribas MI, Velasco Guardado A, González Velasco C, Mora Soler AM, Revilla Morato C, Rodríguez Pérez A. Perivascular epithelioid cell tumor of the ileum. A case report. REVISTA ESPANOLA DE ENFERMEDADES DIGESTIVAS 2016; 108:741-742. [PMID: 26900883 DOI: 10.17235/reed.2016.3970/2015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Perivascular epithelioid cell tumors (PEComa) are tumors of perivascular epithelioid cells with immunohistochemical features of smooth muscle and melanocytic tumors. The PEComa of the gastrointestinal tract is rare. The treatment is surgical, although there are data that suggest a good response to rapamycin.
Collapse
|
23
|
Alkharusi A, Lesma E, Ancona S, Chiaramonte E, Nyström T, Gorio A, Norstedt G. Role of Prolactin Receptors in Lymphangioleiomyomatosis. PLoS One 2016; 11:e0146653. [PMID: 26765535 PMCID: PMC4713116 DOI: 10.1371/journal.pone.0146653] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 12/21/2015] [Indexed: 11/19/2022] Open
Abstract
Pulmonary lymphangioleiomyomatosis (LAM) is a rare lung disease caused by mutations in the tumor suppressor genes encoding Tuberous Sclerosis Complex (TSC) 1 and TSC2. The protein product of the TSC2 gene is a well-known suppressor of the mTOR pathway. Emerging evidence suggests that the pituitary hormone prolactin (Prl) has both endocrine and paracrine modes of action. Here, we have investigated components of the Prl system in models for LAM. In a TSC2 (+/-) mouse sarcoma cell line, down-regulation of TSC2 using siRNA resulted in increased levels of the Prl receptor. In human LAM cells, the Prl receptor is detectable by immunohistochemistry, and the expression of Prl in these cells stimulates STAT3 and Erk phosphorylation, as well as proliferation. A high affinity Prl receptor antagonist consisting of Prl with four amino acid substitutions reduced phosphorylation of STAT3 and Erk. Antagonist treatment further reduced the proliferative and invasive properties of LAM cells. In histological sections from LAM patients, Prl receptor immuno reactivity was observed. We conclude that the Prl receptor is expressed in LAM, and that loss of TSC2 increases Prl receptor levels. It is proposed that Prl exerts growth-stimulatory effects on LAM cells, and that antagonizing the Prl receptor can block such effects.
Collapse
Affiliation(s)
- Amira Alkharusi
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
- Sultan Qaboos University, College of Medicine and Health Sciences, Muscat, Oman
| | - Elena Lesma
- Department of Health Sciences, Laboratories of Pharmacology, Università degli Studi di Milano, Milano, Italy
| | - Silvia Ancona
- Department of Health Sciences, Laboratories of Pharmacology, Università degli Studi di Milano, Milano, Italy
| | - Eloisa Chiaramonte
- Department of Health Sciences, Laboratories of Pharmacology, Università degli Studi di Milano, Milano, Italy
| | - Thomas Nyström
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Alfredo Gorio
- Department of Health Sciences, Laboratories of Pharmacology, Università degli Studi di Milano, Milano, Italy
| | - Gunnar Norstedt
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
24
|
Abstract
Lymphangioleiomyomatosis (LAM) is a rare neoplastic disease affecting predominantly young women. Clinical symptoms of this progressive disease include dyspnoea, cough, recurrent pneumothorax, hemoptysis and chylothorax. LAM is generally aggressive in nature and ultimately results in respiratory failure. Important hallmark features of this metastatic disease include the formation of lesions of abnormal smooth muscle cells, cystic destruction of the lung tissue and lymphangiogenesis affecting the lungs, abdomen and lymphatics. Research over the last 10-15 years has significantly enhanced our understanding of the molecular and cellular processes associated with LAM. These processes include mutational inactivation of the tuberous sclerosis complex genes, TSC1 and TSC2, activation of the mammalian target of rapamycin (mTOR) pathway, enhanced cell proliferation and migration, lymphangiogenesis, metastatic spread through the blood and lymphatic circulations, sex steroid sensitivity and dysregulated autophagy. Despite this increased knowledge there is currently no cure for LAM and treatment options remain limited. Whilst the mTOR inhibitor rapamycin has shown some benefit in patients with LAM, with stabilisation of lung function and improved quality of life, cessation of treatment results in recurrence of the disease progression. This highlights the urgent need to identify novel targets and new treatment regimens. The focus of this review is to summarise our current understanding of the cellular and molecular processes associated with LAM and highlight emerging treatments.
Collapse
Affiliation(s)
- Lyn M Moir
- Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia; Discipline of Pharmacology, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
25
|
Sasongko TH, Ismail NFD, Nik Abdul Malik NMA, Zabidi-Hussin ZAMH. Rapamycin and its analogues (rapalogs) for Tuberous Sclerosis Complex-associated tumors: a systematic review on non-randomized studies using meta-analysis. Orphanet J Rare Dis 2015; 10:95. [PMID: 26259610 PMCID: PMC4531483 DOI: 10.1186/s13023-015-0317-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/03/2015] [Indexed: 12/26/2022] Open
Abstract
Background Rapamycin has gained significant attention for its potential activity in reducing the size of TSC-associated tumors, thus providing alternative to surgery. This study aimed at determining the efficacy of rapamycin and rapalogs for reducing the size of TSC-associated solid tumors in patients with Tuberous Sclerosis Complex (TSC). Methods Our data sources included electronic searches of the PubMed. We included into our meta-analysis any type of non-randomized study that reported the use of rapamycin and rapalogs for reducing the size of TSC-associated solid tumors in patients with TSC. Data was entered into Cochrane Review Manager Version 5.3 and analyzed. Results Four case reports and 4 clinical trials were included. Five patients from the case reports (all with SEGA) and 91 patients from the clinical trials (41 with SEGA, 63 with kidney angiomyolipoma and 5 with liver angiomyolipoma) were included into the analysis. Volume and diameter of SEGAs were significantly reduced by mean difference of 1.23 cc (95 % CI −2.32 to −0.13; p = 0.03) and 7.91 mm (95 % CI −11.82 to −4.01; p < 0.0001), respectively. Volume and mean of sum of longest diameter of kidney angiomyolipomas were significantly reduced by mean difference of 39.5 cc (95 % CI −48.85 to −30.15; p <0.00001) and 69.03 mm (95 % CI −158.05 to 12.65; p = 0.008), respectively. In liver angiomyolipomas, however, reduction in tumor size was not evident. Sum of longest diameter of liver angiomyolipomas in 4 patients were enlarged by 2.7 mm (95 % CI 28.42 to −23.02) by the end of treatment, though not significant (p = 0.84). Conclusions Rapamycin and rapalogs showed efficacy towards reducing the size of SEGA and kidney angiomyolipoma but not liver angiomyolipomas. This finding is strengthening the conclusion of our Cochrane systematic review on the randomized trials.
Collapse
Affiliation(s)
- Teguh Haryo Sasongko
- Human Genome Center, School of Medical Sciences, Universiti Sains Malaysia, USM Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia. .,Center for Neuroscience Services and Research, Universiti Sains Malaysia, USM Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia.
| | - Nur Farrah Dila Ismail
- Human Genome Center, School of Medical Sciences, Universiti Sains Malaysia, USM Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia.,Center for Neuroscience Services and Research, Universiti Sains Malaysia, USM Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Nik Mohamad Ariff Nik Abdul Malik
- Human Genome Center, School of Medical Sciences, Universiti Sains Malaysia, USM Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia.,Center for Neuroscience Services and Research, Universiti Sains Malaysia, USM Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Z A M H Zabidi-Hussin
- Department of Pediatrics, School of Medical Sciences, Universiti Sains Malaysia, USM Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia.,Center for Neuroscience Services and Research, Universiti Sains Malaysia, USM Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
26
|
Sadowski K, Kotulska-Jóźwiak K, Jóźwiak S. Role of mTOR inhibitors in epilepsy treatment. Pharmacol Rep 2015; 67:636-646. [PMID: 25933981 DOI: 10.1016/j.pharep.2014.12.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 12/24/2014] [Accepted: 12/30/2014] [Indexed: 01/16/2023]
Abstract
In spite of the fact, that subsequent new antiepileptic drugs (AEDs) are being introduced into clinical practice, the percentage of drug-resistant epilepsy cases remains stable. Although a substantial progress has been made in safety profile of antiepileptic drugs, currently available substances have not been unambiguously proven to display disease-modifying effect in epilepsy and their mechanisms of action influence mainly on the end-stage phase of epileptogenesis, namely seizures. Prevention of epileptogenesis requires new generation of drugs modulating molecular pathways engaged in epileptogenesis processes. The mammalian target of rapamycin (mTOR) pathway is involved in highly epileptogenic conditions, such as tuberous sclerosis complex (TSC) and represents a reasonable target for antiepileptogenic interventions. In animal models of TSC mTOR inhibitors turned out to prevent the development of epilepsy and reduce underlying brain abnormalities. Accumulating evidence from animal studies suggest the role of mTOR pathway in acquired forms of epilepsy. Preliminary clinical studies with patients affected by TSC demonstrated seizure reduction and potential disease-modifying effect of mTOR inhibitors. Further studies will determine the place for mTOR inhibitors in the treatment of patients with TSC as well as its potential antiepileptogenic effect in other types of genetic and acquired epilepsies. This review presents current knowledge of mTOR pathway physiology and pathology in the brain, as well as potential clinical use of its inhibitors.
Collapse
Affiliation(s)
| | | | - Sergiusz Jóźwiak
- Department of Neurology and Epileptology, The Children's Memorial Health Institute, Warszawa, Poland
| |
Collapse
|
27
|
|
28
|
Ito Y, Kawano H, Kanai F, Nakamura E, Tada N, Takai S, Horie S, Arai H, Kobayashi T, Hino O. Establishment of Tsc2‑deficient rat embryonic stem cells. Int J Oncol 2015; 46:1944-52. [PMID: 25738543 DOI: 10.3892/ijo.2015.2913] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 02/09/2015] [Indexed: 11/05/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is an autosomal dominant disorder caused by TSC1 or TSC2 mutations. TSC causes the development of tumors in various organs such as the brain, skin, kidney, lung, and heart. The protein complex TSC1/2 has been reported to have an inhibitory function on mammalian target of rapamycin complex 1 (mTORC1). Treatment with mammalian target of rapamycin (mTOR) inhibitors has demonstrated tumor‑reducing effects in patients with TSC but is also associated with various adverse effects. In recent years, experiments involving in vivo differentiation of pluripotent stem cells have been reported as useful in elucidating mechanisms of pathogenesis and discovering new therapeutic targets for several diseases. To reveal the molecular basis of the pathogenesis caused by the Tsc2 mutation, we derived embryonic stem cells (ESCs) from Eker rats, which have the Tsc2 mutation and develop brain lesions and renal tumors. Although several studies have reported the necessity of Tsc1 and Tsc2 regulation to maintain ESCs and hematopoietic stem cells, we successfully established not only Tsc2+/+ and Tsc2+/- ESCs but also Tsc2-/- ESCs. We confirmed that these cells express pluripotency markers and retain the ability to differentiate into all three germ layers. Comprehensive gene expression analysis of Tsc2+/+ and Tsc2+/- ESCs revealed similar profiles, whereas the profile of Tsc2-/- ESCs was distinct from these two. In vitro differentiation experiments using these ESCs combined with in vivo experiments may reveal the mechanism of the tissue‑specific pathogenesis caused by the Tsc2 mutation and identify specific new therapeutic targets.
Collapse
Affiliation(s)
- Yoshitaka Ito
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Haruna Kawano
- Department of Molecular Pathogenesis, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Fumio Kanai
- Laboratory of Genome Research, Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Eri Nakamura
- Laboratory of Genome Research, Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Norihiro Tada
- Laboratory of Genome Research, Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Setsuo Takai
- Department of Clinical Radiology, Faculty of Health Sciences, Hiroshima International University, Hiroshima, Japan
| | - Shigeo Horie
- Department of Urology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hajime Arai
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Toshiyuki Kobayashi
- Department of Molecular Pathogenesis, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Okio Hino
- Department of Molecular Pathogenesis, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
29
|
Abstract
Lymphangioleiomyomatosis (LAM), a multisystem disease affecting almost exclusively women, is characterized by cystic lung destruction and presents with dyspnea, recurrent pneumothoraxes, chylous effusions, lymphangioleiomyomas, and angiomyolipomas. It is caused by the proliferation of a cancer-like LAM cell that possesses a mutation in either the tuberous sclerosis complex (TSC)1 or TSC2 genes. This article reviews current therapies and new potential treatments that are currently undergoing investigation. The major development in the treatment of LAM is the discovery of two mammalian target of rapamycin (mTOR) inhibitors, sirolimus and everolimus, as effective drugs. However, inhibition of mTOR increases autophagy, which may lead to enhanced LAM cell survival. Use of autophagy inhibitors, for example, hydroxychloroquine, in combination with sirolimus is now the subject of an ongoing drug trial (SAIL trial). Another consequence of mTOR inhibition by sirolimus is an increase in Rho activity, resulting in reduced programmed cell death. From these data, the concept evolved that a combination of sirolimus with disruption of Rho activity with statins (e.g. simvastatin) may increase TSC-null cell death and reduce LAM cell survival. A combined trial of sirolimus with simvastatin is under investigation (SOS trial). Since LAM occurs primarily in women and TSC-null cell survival and tumor growth is promoted by estrogens, the inhibition of aromatase to block estrogen synthesis is currently undergoing study (TRAIL trial). Other targets, for example, estrogen receptors, mitogen-activated protein kinase inhibitors, vascular endothelial growth factor-D signaling pathway, and Src kinase, are also being studied in experimental model systems. As in the case of cancer, combination therapy may become the treatment of choice for LAM.
Collapse
|
30
|
Li C, Zhang E, Sun Y, Lee PS, Zhan Y, Guo Y, Osorio JC, Rosas IO, Xu KF, Kwiatkowski DJ, Yu JJ. Rapamycin-insensitive up-regulation of adipocyte phospholipase A2 in tuberous sclerosis and lymphangioleiomyomatosis. PLoS One 2014; 9:e104809. [PMID: 25347447 PMCID: PMC4210122 DOI: 10.1371/journal.pone.0104809] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 07/14/2014] [Indexed: 11/18/2022] Open
Abstract
Tuberous sclerosis syndrome (TSC) is an autosomal dominant tumor suppressor gene syndrome affecting multiple organs, including renal angiomyolipomas and pulmonary lymphangioleiomyomatosis (LAM). LAM is a female-predominant interstitial lung disease characterized by the progressive cyst formation and respiratory failure, which is also seen in sporadic patients without TSC. Mutations in TSC1 or TSC2 cause TSC, result in hyperactivation of mammalian target of rapamycin (mTOR), and are also seen in LAM cells in sporadic LAM. We recently reported that prostaglandin biosynthesis and cyclooxygenase-2 were deregulated in TSC and LAM. Phospholipase A2 (PLA2) is the rate-limiting enzyme that catalyzes the conversion of plasma membrane phospholipids into prostaglandins. In this study, we identified upregulation of adipocyte AdPLA2 (PLA2G16) in LAM nodule cells using publicly available expression data. We showed that the levels of AdPLA2 transcript and protein were higher in LAM lungs compared with control lungs. We then showed that TSC2 negatively regulates the expression of AdPLA2, and loss of TSC2 is associated with elevated production of prostaglandin E2 (PGE2) and prostacyclin (PGI2) in cell culture models. Mouse model studies also showed increased expression of AdPLA2 in xenograft tumors, estrogen-induced lung metastatic lesions of Tsc2 null leiomyoma-derived cells, and spontaneous renal cystadenomas from Tsc2+/- mice. Importantly, rapamycin treatment did not affect the expression of AdPLA2 and the production of PGE2 by TSC2-deficient mouse embryonic fibroblast (Tsc2-/-MEFs), rat uterine leiomyoma-derived ELT3 cells, and LAM patient-associated renal angiomyolipoma-derived "mesenchymal" cells. Furthermore, methyl arachidonyl fluorophosphate (MAFP), a potent irreversible PLA2 inhibitor, selectively suppressed the growth and induced apoptosis of TSC2-deficient LAM patient-derived cells relative to TSC2-addback cells. Our findings suggest that AdPLA2 plays an important role in promoting tumorigenesis and disease progression by modulating the production of prostaglandins and may serve as a potential therapeutic target in TSC and LAM.
Collapse
Affiliation(s)
- Chenggang Li
- Brigham and Women’s Hospital/Harvard Medical School, Boston, Massachusetts, United States of America
| | - Erik Zhang
- Brigham and Women’s Hospital/Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yang Sun
- Brigham and Women’s Hospital/Harvard Medical School, Boston, Massachusetts, United States of America
| | - Po-Shun Lee
- Brigham and Women’s Hospital/Harvard Medical School, Boston, Massachusetts, United States of America
| | | | - Yanan Guo
- Brigham and Women’s Hospital/Harvard Medical School, Boston, Massachusetts, United States of America
| | - Juan C. Osorio
- Brigham and Women’s Hospital/Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ivan O. Rosas
- Brigham and Women’s Hospital/Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kai-Feng Xu
- Peking Union Medical College, Beijing, China
| | - David J. Kwiatkowski
- Brigham and Women’s Hospital/Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jane J. Yu
- Brigham and Women’s Hospital/Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
31
|
Kapur S, Patel NK, Levin MB, Huang R. Malignant mesenteric perivascular epithelioid cell neoplasm presenting as an intra-abdominal fistula in a 49-year-old female. Case Rep Oncol Med 2014; 2014:534175. [PMID: 25114821 PMCID: PMC4119907 DOI: 10.1155/2014/534175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 06/03/2014] [Indexed: 11/17/2022] Open
Abstract
Perivascular epithelioid cell tumors are rare mesenchymal tumors arising from histologically and immunohistochemically distinctive perivascular epithelioid cells that express both myogenic and melanocytic markers. These tumors are known to arise from different organs in the body and usually have an unpredictable clinical course. We report a case of a 49-year-old female who presented with diffuse abdominal pain, fever, chills, and nonbilious vomiting for a day. Work-up revealed a mesenteric mass measuring 13.5 × 7.7 × 9.5 cm, arising in the mesentery of the hepatic flexure, with adjacent gas suggestive of fistularization into the right colon. An exploratory laparotomy with resection of the mesenteric mass was performed, and the initial histopathology results were compatible with either an adenocarcinoma or a sarcoma; however, because of poor differentiation it was difficult to make a definitive diagnosis. However, final histopathology results revealed a malignant perivascular epithelioid cell tumor (with reservation that a S100 negative metastatic melanoma must be excluded clinically). Following surgery the patient was started on everolimus, an m-TOR inhibitor, and has shown good response to this medication.
Collapse
Affiliation(s)
- Sakshi Kapur
- Department of Internal Medicine, Overlook Medical Center, 99 Beauvoir Avenue, Summit, NJ 07902, USA
| | - Napoleon K. Patel
- Department of Internal Medicine, Overlook Medical Center, 99 Beauvoir Avenue, Summit, NJ 07902, USA
| | - Miles B. Levin
- Division of Pathology, Overlook Medical Center, 99 Beauvoir Avenue, Summit, NJ 07902, USA
| | - Richard Huang
- MS III, St. George's University School of Medicine, True Blue, Grenada
| |
Collapse
|
32
|
Renal tumours in a Tsc2+/− mouse model do not show feedback inhibition of Akt and are effectively prevented by rapamycin. Oncogene 2014; 34:922-31. [DOI: 10.1038/onc.2014.17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 01/30/2014] [Accepted: 02/01/2014] [Indexed: 12/18/2022]
|
33
|
Atochina-Vasserman EN, Goncharov DA, Volgina AV, Milavec M, James ML, Krymskaya VP. Statins in lymphangioleiomyomatosis. Simvastatin and atorvastatin induce differential effects on tuberous sclerosis complex 2-null cell growth and signaling. Am J Respir Cell Mol Biol 2013; 49:704-9. [PMID: 23947572 DOI: 10.1165/rcmb.2013-0203rc] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mutations of the tumor suppressor genes tuberous sclerosis complex (TSC)1 and TSC2 cause pulmonary lymphangioleiomyomatosis (LAM) and tuberous sclerosis (TS). Current rapamycin-based therapies for TS and LAM have a predominantly cytostatic effect, and disease progression resumes with therapy cessation. Evidence of RhoA GTPase activation in LAM-derived and human TSC2-null cells suggests that 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitor statins can be used as potential adjuvant agents. The goal of this study was to determine which statin (simvastatin or atorvastatin) is more effective in suppressing TSC2-null cell growth and signaling. Simvastatin, but not atorvastatin, showed a concentration-dependent (0.5-10 μM) inhibitory effect on mouse TSC2-null and human LAM-derived cell growth. Treatment with 10 μM simvastatin induced dramatic disruption of TSC2-null cell monolayer and cell rounding; in contrast, few changes were observed in cells treated with the same concentration of atorvastatin. Combined treatment of rapamycin with simvastatin but not with atorvastatin showed a synergistic growth-inhibitory effect on TSC2-null cells. Simvastatin, but not atorvastatin, inhibited the activity of prosurvival serine-threonine kinase Akt and induced marked up-regulation of cleaved caspase-3, a marker of cell apoptosis. Simvastatin, but not atorvastatin, also induced concentration-dependent inhibition of p42/p44 Erk and mTORC1. Thus, our data show growth-inhibitory and proapoptotic effects of simvastatin on TSC2-null cells compared with atorvastatin. These findings have translational significance for combinatorial therapeutic strategies of simvastatin to inhibit TSC2-null cell survival in TS and LAM.
Collapse
Affiliation(s)
- Elena N Atochina-Vasserman
- 1 Airway Biology Initiative, Pulmonary, Allergy & Critical Care Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
The mammalian target of rapamycin (mTOR) pathway is an essential cellular signaling pathway involved in a number of important physiological functions, including cell growth, proliferation, metabolism, protein synthesis, and autophagy. Dysregulation of the mTOR pathway has been implicated in the pathophysiology of a number of neurological diseases. Hyperactivation of the mTOR pathway, leading to increased cell growth and proliferation, has been most convincingly shown to stimulate tumor growth in the brain and other organs in the genetic disorder, tuberous sclerosis complex (TSC). In addition, mTOR may also play a role in promoting epileptogenesis or maintaining seizures in TSC, as well as in acquired epilepsies following brain injury. Finally, the mTOR pathway may also be involved in the pathogenesis of cognitive dysfunction and other neurological deficits in developmental disorders and neurodegenerative diseases. mTOR inhibitors, such as rapamycin and its analogs, may represent novel, rational therapies for a variety of neurological disorders.
Collapse
Affiliation(s)
- Michael Wong
- Department of Neurology and the Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
35
|
Pontes M, Barbosa C, Coelho ML, Carvalho L. Probable initial pulmonary lymphangioleiomyomatosis and mediastinal lymphangioleiomyoma. REVISTA PORTUGUESA DE PNEUMOLOGIA 2013; 20:101-6. [PMID: 24268918 DOI: 10.1016/j.rppneu.2013.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 06/13/2013] [Accepted: 06/18/2013] [Indexed: 10/26/2022] Open
Abstract
A 68 year old woman was submitted to a mediastinal lymphangioleiomyoma resection found in a follow-up study of lower left lung resection due to bronchiectasis complicated by chylothorax. This led to a revaluation of the pulmonary specimen that revealed, in addition to inflammatory bronchiectasis, small spindle cell nodules in the lung parenchyma, similar to minute pulmonary meningothelial-like nodules, but with smooth muscle actin immunohistochemical positivity. The possibility of initial pulmonary development of lymphangioleiomyomatosis is discussed.
Collapse
Affiliation(s)
- M Pontes
- Serviço de Anatomia Patológica, Centro Hospitalar Universitário de Coimbra, Hospitais da Universidade de Coimbra, Coimbra, Portugal.
| | - C Barbosa
- Serviço de Anatomia Patológica, Instituto Português de Oncologia FG, Coimbra, Portugal
| | - M L Coelho
- Serviço de Radiologia, Hospital Infante D. Pedro, EPE, Aveiro, Portugal
| | - L Carvalho
- Serviço de Anatomia Patológica, Centro Hospitalar Universitário de Coimbra, Hospitais da Universidade de Coimbra, Coimbra, Portugal; Faculdade de Medicina, Universidade de Coimbra, Coimbra, Portugal; Pólo das Ciências da Saúde - Unidade Central, Instituto de Anatomia Patológica, Coimbra, Portugal
| |
Collapse
|
36
|
Wang Q, Weisberg E, Zhao JJ. The gene dosage of class Ia PI3K dictates the development of PTEN hamartoma tumor syndrome. Cell Cycle 2013; 12:3589-93. [PMID: 24131925 DOI: 10.4161/cc.26812] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The PTEN hamartoma tumor syndrome (PHTS) is a complex disorder caused by germline inactivating mutations of the tumor suppressor gene PTEN. Loss of PTEN function leads to unimpeded phosphatidylinositol-3'-kinase (PI3K) activity and PI3K-driven cell division. Individuals with PHTS develop benign hamartomas in various tissues and have an increased risk of developing malignant diseases. Notably, no effective therapy currently exists for this disorder. Using both genetic mouse models and pharmacological approaches, we recently demonstrated that PI3K p110α and p110β isoforms play spatially distinct but concerted roles in the skin that are required for the development and maintenance of PHTS. We also show that treatment with a pan-PI3K inhibitor prevents the development of skin PHTS and reverses advanced-stage skin hamartomas in vivo. Here, we report that genetic ablation of only 3 out of 4 p110 alleles is sufficient to block the development of skin hamartomas resulting from the complete loss of Pten in mice. Similar to our findings in skin, we now also show that mammary gland neoplastic lesions can be prevented or reversed upon PI3K inhibition in our PHTS mouse model. Our data suggest a possible route to chemoprevention using reduced doses of PI3K inhibitors for PTEN-deficient carrier patients.
Collapse
Affiliation(s)
- Qi Wang
- Department of Cancer Biology; Dana-Farber Cancer Institute; Boston, MA USA; Department of Biological Chemistry and Molecular Pharmacology; Harvard Medical School; Boston, MA USA
| | | | | |
Collapse
|
37
|
Pivotal role of augmented αB-crystallin in tumor development induced by deficient TSC1/2 complex. Oncogene 2013; 33:4352-8. [DOI: 10.1038/onc.2013.401] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Revised: 07/22/2013] [Accepted: 08/23/2013] [Indexed: 12/26/2022]
|
38
|
Prizant H, Sen A, Light A, Cho SN, DeMayo FJ, Lydon JP, Hammes SR. Uterine-specific loss of Tsc2 leads to myometrial tumors in both the uterus and lungs. Mol Endocrinol 2013; 27:1403-14. [PMID: 23820898 DOI: 10.1210/me.2013-1059] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Lymphangioleiomyomatosis (LAM) is a rare disease characterized by proliferation of abnormal smooth-muscle cells in the lungs, leading to functional loss and sometimes lung transplantation. Although the origin of LAM cells is unknown, several features of LAM provide clues. First, LAM cells contain inactivating mutations in genes encoding Tsc1 or Tsc2, proteins that limit mTORC1 activity. Second, LAM tumors recur after lung transplantation, suggesting a metastatic pathogenesis. Third, LAM is found almost exclusively in women. Finally, LAM shares features with uterine leiomyomas, benign tumors of myometrial cells. From these observations, we proposed that LAM cells might originate from uterine leiomyomas containing Tsc mutations. To test our hypothesis, and to develop mouse models for leiomyoma and LAM, we targeted Tsc2 deletion primarily in uterine cells. In fact, nearly 100% of uteri from uterine-specific Tsc2 knockout mice developed myometrial proliferation and uterine leiomyomas by 12 and 24 weeks, respectively. Myometrial proliferation and mTORC1/S6 activity were abrogated by the mTORC1 inhibitor rapamycin or by elimination of sex steroid production through ovariectomy or aromatase inhibition. In ovariectomized Tsc2 null mice, mTORC1/S6 activity and myometrial growth were restored by estrogen but not progesterone. Thus, even without Tsc2, estrogen appears to be required for myometrial mTORC1/S6 signaling and proliferation. Finally, we found Tsc2 null myometrial tumors in lungs of older Tsc2 uterine-specific knockout females, suggesting that lung LAM-like myometrial lesions may indeed originate from the uterus. This mouse model may improve our understanding of LAM and leiomyomas and might lead to novel therapeutic strategies for both diseases.
Collapse
Affiliation(s)
- Hen Prizant
- Division of Endocrinology and Metabolism, Department of Medicine, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
|
40
|
Pirson Y. Tuberous sclerosis complex-associated kidney angiomyolipoma: from contemplation to action. Nephrol Dial Transplant 2013; 28:1680-5. [PMID: 23413089 DOI: 10.1093/ndt/gft009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yves Pirson
- Nephrology, Université Catholique de Louvain, Bruxelles, Belgium.
| |
Collapse
|
41
|
Korsse SE, Peppelenbosch MP, van Veelen W. Targeting LKB1 signaling in cancer. Biochim Biophys Acta Rev Cancer 2012; 1835:194-210. [PMID: 23287572 DOI: 10.1016/j.bbcan.2012.12.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 12/18/2012] [Accepted: 12/20/2012] [Indexed: 12/13/2022]
Abstract
The serine/threonine kinase LKB1 is a master kinase involved in cellular responses such as energy metabolism, cell polarity and cell growth. LKB1 regulates these crucial cellular responses mainly via AMPK/mTOR signaling. Germ-line mutations in LKB1 are associated with the predisposition of the Peutz-Jeghers syndrome in which patients develop gastrointestinal hamartomas and have an enormously increased risk for developing gastrointestinal, breast and gynecological cancers. In addition, somatic inactivation of LKB1 has been associated with sporadic cancers such as lung cancer. The exact mechanisms of LKB1-mediated tumor suppression remain so far unidentified; however, the inability to activate AMPK and the resulting mTOR hyperactivation has been detected in PJS-associated lesions. Therefore, targeting LKB1 in cancer is now mainly focusing on the activation of AMPK and inactivation of mTOR. Preclinical in vitro and in vivo studies show encouraging results regarding these approaches, which have even progressed to the initiation of a few clinical trials. In this review, we describe the functions, regulation and downstream signaling of LKB1, and its role in hereditary and sporadic cancers. In addition, we provide an overview of several AMPK activators, mTOR inhibitors and additional mechanisms to target LKB1 signaling, and describe the effect of these compounds on cancer cells. Overall, we will explain the current strategies attempting to find a way of treating LKB1-associated cancer.
Collapse
Affiliation(s)
- S E Korsse
- Dept. of Gastroenterology and Hepatology, Erasmus Medical University Center, Rotterdam, The Netherlands
| | | | | |
Collapse
|
42
|
Kumari Kanchan R, Tripathi C, Singh Baghel K, Kumar Dwivedi S, Kumar B, Sanyal S, Sharma S, Mitra K, Garg V, Singh K, Sultana S, Kamal Tripathi R, Kumar Rath S, Bhadauria S. Estrogen receptor potentiates mTORC2 signaling in breast cancer cells by upregulating superoxide anions. Free Radic Biol Med 2012; 53:1929-41. [PMID: 23000059 DOI: 10.1016/j.freeradbiomed.2012.08.595] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 08/14/2012] [Accepted: 08/28/2012] [Indexed: 11/24/2022]
Abstract
The estrogen receptor (ER) plays a cardinal role in estrogen-responsive breast carcinogenesis. It is, however, unclear as to how estrogen-ER interaction potentiates breast cancer progression. Compelling evidence supports estrogen-induced redox alterations, such as augmented reactive oxygen species (ROS) levels, as having a crucial role in breast carcinogenesis. Despite ER being a biological mediator of the majority of estrogen-induced cellular responses; its role in estrogen-induced tissue-specific ROS generation remains largely debatable. We examined a panel of human breast cancer specimens and found that ER-positive breast cancer specimens exhibited a higher incidence of augmented O(2)(•-) levels compared to matched normal tissue. ROS are known to function as signal transducers and ROS-mediated signaling remains a key complementary mechanism that drives carcinogenesis by activating redox-sensitive oncogenic pathways. Additional studies revealed that augmented O(2)(•-) levels in breast cancer specimens coincided with mammalian target of rapamycin complex 2 (mTORC2) hyperactivation. Detailed investigations using in vitro experiments established that 17β-estradiol (E2)-stimulated breast cancer cells exhibited transiently upregulated O(2)(•-) levels, with the presence of ER being a crucial determinant for the phenomenon to take place. Gene expression, ER transactivation, and confocal studies revealed that the E2-induced transient O(2)(•-) upregulation was effected by ER through a nongenomic pathway possibly involving mitochondria. Furthermore, E2 treatment activated mTORC2 in breast cancer cells in a characteristically ER-dependent manner. Interestingly, altering O(2)(•-) anion levels through chemical/genetic methods caused significant modulation of the mTORC2 signaling cascade. Taken together, our findings unravel a novel nongenomic pathway unique to estrogen-responsive breast cancer cells wherein, upon stimulation by E2, ER may regulate mTORC2 activity in a redox-dependent manner by transiently modulating O(2)(•-) levels particularly within mitochondria. The findings suggest that therapies aimed at counteracting these redox alterations and/or resultant signaling cascades may complement conventional treatments for estrogen-responsive breast cancer.
Collapse
|
43
|
Cabrera-López C, Martí T, Catalá V, Torres F, Mateu S, Ballarín J, Torra R. Assessing the effectiveness of rapamycin on angiomyolipoma in tuberous sclerosis: a two years trial. Orphanet J Rare Dis 2012; 7:87. [PMID: 23140536 PMCID: PMC3519505 DOI: 10.1186/1750-1172-7-87] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 11/06/2012] [Indexed: 11/18/2022] Open
Abstract
Background Tuberous sclerosis (TS) is a rare autosomal dominant systemic disease with an estimated prevalence of 1/6000. Renal angiomyolipoma (AML) is a benign tumour with high morbidity frequently present in TS. The aim of the study was to test the effect of rapamycin in reducing the volume of AML in TS. Methods Twenty four-month prospective open-label, single arm, unicentre Phases II andIII study. The primary endpoint was to evaluate the effect of treatment on the reduction of at least 50% AML volume from baseline at 24 months. The secondary endpoints were: average tumour reduction, surgical complications, skin lesions and drug safety. The study population comprised 17 patients, aged >10 years who were diagnosed with TS and had ≥1 renal AML >2 cm of diameter and had a serum creatinine < 2mg/dl and urine protein/creatinine ratio < 22.6 mg/mmol. The trial was conducted at Fundació Puigvert. Rapamycin was given to achieve stable plasma levels between 4 and 8 ng/ml. AML volume was estimated using orthogonal measurements by MRI at baseline, 6, 12 and 24 months. Results Ten out of 17 patients were success responders for the main outcome −58.8%, 95%CI: 32.9% to 81.6%-. After 6 months of therapy, the mean volume decrease was 55.18% (5.01 standard error (SE); p<0.001) and 66.38% (4.41 SE; p<0.001) at year 1. There was no significant decrease between year 1 and 2. According to RECIST criteria, all patients achieved a partial response at year 1 and all but two had already achieved this partial response after 6 months. The main analysis was performed according to the intention-to-treat principle analysis. Tumour volume was analyzed over time by means of mixed models for repeated measurement analysis. We used the baseline tumour volume as a covariate for the absolute change and percentage change from baseline data. The analysis was performed using SAS version 9.2 software, and the level of significance was established at 0.05 (two-sided). Conclusions This study show that mTOR inhibitors are a relatively safe, efficacious and less aggressive alternative than currently available options in the management of AML in TS. Trial registration EudraCT number: 2007-005978-30, ClinicalTrials.gov number: NCT0121712
Collapse
Affiliation(s)
- Cristina Cabrera-López
- Department of Nephrology, Inherited Renal Diseases, Fundación Puigvert, Universidad Autónoma de Barcelona, Cartagena 340-350, Barcelona, 08025, Spain
| | | | | | | | | | | | | |
Collapse
|
44
|
Henske EP, McCormack FX. Lymphangioleiomyomatosis - a wolf in sheep's clothing. J Clin Invest 2012; 122:3807-16. [PMID: 23114603 DOI: 10.1172/jci58709] [Citation(s) in RCA: 221] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Lymphangioleiomyomatosis (LAM) is a rare progressive lung disease of women. LAM is caused by mutations in the tuberous sclerosis genes, resulting in activation of the mTOR complex 1 signaling network. Over the past 11 years, there has been remarkable progress in the understanding of LAM and rapid translation of this knowledge to an effective therapy. LAM pathogenic mechanisms mirror those of many forms of human cancer, including mutation, metabolic reprogramming, inappropriate growth and survival, metastasis via blood and lymphatic circulation, infiltration/invasion, sex steroid sensitivity, and local and remote tissue destruction. However, the smooth muscle cell that metastasizes, infiltrates, and destroys the lung in LAM arises from an unknown source and has an innocent histological appearance, with little evidence of proliferation. Thus, LAM is as an elegant, monogenic model of neoplasia, defying categorization as either benign or malignant.
Collapse
Affiliation(s)
- Elizabeth P Henske
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
45
|
mTORC1 enhancement of STIM1-mediated store-operated Ca2+ entry constrains tuberous sclerosis complex-related tumor development. Oncogene 2012; 32:4702-11. [PMID: 23108404 DOI: 10.1038/onc.2012.481] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 08/27/2012] [Accepted: 09/02/2012] [Indexed: 12/14/2022]
Abstract
The protein complex of tuberous sclerosis complex (TSC)1 and TSC2 tumor suppressors is a key negative regulator of mammalian target of rapamycin (mTOR). Hyperactive mTOR signaling due to the loss-of-function of mutations in either TSC1 or TSC2 gene causes TSC, an autosomal dominant disorder featured with benign tumors in multiple organs. As the ubiquitous second messenger calcium (Ca(2+)) regulates various cellular processes involved in tumorigenesis, we explored the potential role of mTOR in modulation of cellular Ca(2+) homeostasis, and in turn the effect of Ca(2+) signaling in TSC-related tumor development. We found that loss of Tsc2 potentiated store-operated Ca(2+) entry (SOCE) in an mTOR complex 1 (mTORC1)-dependent way. The endoplasmic reticulum Ca(2+) sensor, stromal interaction molecule 1 (STIM1), was upregulated in Tsc2-deficient cells, and was suppressed by mTORC1 inhibitor rapamycin. In addition, SOCE repressed AKT1 phosphorylation. Blocking SOCE either by depleting STIM1 or ectopically expressing dominant-negative Orai1 accelerated TSC-related tumor development, likely because of restored AKT1 activity and enhanced tumor angiogenesis. Our data, therefore, suggest that mTORC1 enhancement of store-operated Ca(2+) signaling hinders TSC-related tumor growth through suppression of AKT1 signaling. The augmented SOCE by hyperactive mTORC1-STIM1 cascade may contribute to the benign nature of TSC-related tumors. Application of SOCE agonists could thus be a contraindication for TSC patients. In contrast, SOCE agonists should attenuate mTOR inhibitors-mediated AKT reactivation and consequently potentiate their efficacy in the treatment of the patients with TSC.
Collapse
|
46
|
Krymskaya VP. Treatment option(s) for pulmonary lymphangioleiomyomatosis: progress and current challenges. Am J Respir Cell Mol Biol 2012; 46:563-5. [PMID: 22550272 DOI: 10.1165/rcmb.2011-0381ed] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
47
|
Auricchio N, Malinowska I, Shaw R, Manning BD, Kwiatkowski DJ. Therapeutic trial of metformin and bortezomib in a mouse model of tuberous sclerosis complex (TSC). PLoS One 2012; 7:e31900. [PMID: 22363765 PMCID: PMC3283697 DOI: 10.1371/journal.pone.0031900] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 01/15/2012] [Indexed: 11/26/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is a human genetic disorder in which loss of either TSC1 or TSC2 leads to development of hamartoma lesions, which can progress and be life-threatening or fatal. The TSC1/TSC2 protein complex regulates the state of activation of mTORC1. Tsc2+/− mice develop renal cystadenoma lesions which grow progressively. Both bortezomib and metformin have been proposed as potential therapeutics in TSC. We examined the potential benefit of 1 month treatment with bortezomib, and 4 month treatment with metformin in Tsc2+/− mice. Results were compared to vehicle treatment and treatment with the mTORC1 inhibitor rapamycin for 1 month. We used a quantitative tumor volume measurement on stained paraffin sections to assess the effect of these drugs. The median tumor volume per kidney was decreased by 99% in mice treated with rapamycin (p = 0.0004). In contrast, the median tumor volume per kidney was not significantly reduced for either the bortezomib cohort or the metformin cohort. Biochemical studies confirmed that bortezomib and metformin had their expected pharmacodynamic effects. We conclude that neither bortezomib nor metformin has significant benefit in this native Tsc2+/− mouse model, which suggests limited benefit of these compounds in the treatment of TSC hamartomas and related lesions.
Collapse
Affiliation(s)
- Neil Auricchio
- Translational Medicine Division, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Izabela Malinowska
- Translational Medicine Division, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Reuben Shaw
- The Salk Institute, San Diego, California, United States of America
| | - Brendan D. Manning
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - David J. Kwiatkowski
- Translational Medicine Division, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
48
|
Budde K, Gaedeke J. Tuberous Sclerosis Complex–Associated Angiomyolipomas: Focus on mTOR Inhibition. Am J Kidney Dis 2012; 59:276-83. [DOI: 10.1053/j.ajkd.2011.10.013] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 08/19/2011] [Indexed: 01/11/2023]
|
49
|
Obara I, Tochiki KK, Géranton SM, Carr FB, Lumb BM, Liu Q, Hunt SP. Systemic inhibition of the mammalian target of rapamycin (mTOR) pathway reduces neuropathic pain in mice. Pain 2011; 152:2582-2595. [PMID: 21917376 DOI: 10.1016/j.pain.2011.07.025] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 07/13/2011] [Accepted: 07/29/2011] [Indexed: 12/22/2022]
Abstract
The management of neuropathic pain is unsatisfactory, and new treatments are required. Because the sensitivity of a subset of fast-conducting primary afferent nociceptors is thought to be regulated by the mammalian target of rapamycin complex 1 (mTORC1) signaling pathway, selectively targeting mTORC1 represents a new strategy for the control of chronic pain. Here we show that activated mTOR was expressed largely in myelinated sensory fibers in mouse and that inhibiting the mTORC1 pathway systemically alleviated mechanical hypersensitivity in mouse models of inflammatory and neuropathic pain. Specifically, systemic administration of mTORC1 inhibitor temsirolimus (CCI-779), both acutely (25 mg/kg i.p.) and chronically (4 daily 25 mg/kg i.p.), inhibited the mTORC1 pathway in sensory axons and the spinal dorsal horn and reduced mechanical and cold hypersensitivity induced by nerve injury. Moreover, systemic treatment with CCI-779 also reduced mechanical but not heat hypersensitivity in an inflammatory pain state. This treatment did not influence nociceptive thresholds in naive or sham-treated control animals. Also, there was no evidence for neuronal toxicity after repeated systemic treatment with CCI-779. Additionally, we show that acute and chronic i.p. administration of Torin1 (20 mg/kg), a novel ATP-competitive inhibitor targeting both mTORC1 and mTORC2 pathways, reduced the response to mechanical and cold stimuli in neuropathic mice. Our findings emphasize the importance of the mTORC1 pathway as a regulator of nociceptor sensitivity and therefore as a potential target for therapeutic intervention, particularly in chronic pain.
Collapse
Affiliation(s)
- Ilona Obara
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland Department of Physiology, University of Bristol, Bristol BS8 1TD, UK Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02115, USA Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Multicenter phase 2 trial of sirolimus for tuberous sclerosis: kidney angiomyolipomas and other tumors regress and VEGF- D levels decrease. PLoS One 2011; 6:e23379. [PMID: 21915260 PMCID: PMC3167813 DOI: 10.1371/journal.pone.0023379] [Citation(s) in RCA: 159] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Accepted: 07/14/2011] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Tuberous sclerosis (TSC) related tumors are characterized by constitutively activated mTOR signaling due to mutations in TSC1 or TSC2. METHODS We completed a phase 2 multicenter trial to evaluate the efficacy and tolerability of the mTOR inhibitor, sirolimus, for the treatment of kidney angiomyolipomas. RESULTS 36 adults with TSC or TSC/LAM were enrolled and started on daily sirolimus. The overall response rate was 44.4% (95% confidence intervals [CI] 28 to 61); 16/36 had a partial response. The remainder had stable disease (47.2%, 17/36), or were unevaluable (8.3%, 3/36). The mean decrease in kidney tumor size (sum of the longest diameters [sum LD]) was 29.9% (95% CI, 22 to 37; n = 28 at week 52). Drug related grade 1-2 toxicities that occurred with a frequency of >20% included: stomatitis, hypertriglyceridemia, hypercholesterolemia, bone marrow suppression (anemia, mild neutropenia, leucopenia), proteinuria, and joint pain. There were three drug related grade 3 events: lymphopenia, headache, weight gain. Kidney angiomyolipomas regrew when sirolimus was discontinued but responses tended to persist if treatment was continued after week 52. We observed regression of brain tumors (SEGAs) in 7/11 cases (26% mean decrease in diameter), regression of liver angiomyolipomas in 4/5 cases (32.1% mean decrease in longest diameter), subjective improvement in facial angiofibromas in 57%, and stable lung function in women with TSC/LAM (n = 15). A correlative biomarker study showed that serum VEGF-D levels are elevated at baseline, decrease with sirolimus treatment, and correlate with kidney angiomyolipoma size (Spearman correlation coefficient 0.54, p = 0.001, at baseline). CONCLUSIONS Sirolimus treatment for 52 weeks induced regression of kidney angiomyolipomas, SEGAs, and liver angiomyolipomas. Serum VEGF-D may be a useful biomarker for monitoring kidney angiomyolipoma size. Future studies are needed to determine benefits and risks of longer duration treatment in adults and children with TSC. TRIAL REGISTRATION Clinicaltrials.gov NCT00126672.
Collapse
|