1
|
Zeng Z, Yi Z, Xu B. The biological and technical challenges facing utilizing circulating tumor DNA in non-metastatic breast cancer patients. Cancer Lett 2025; 616:217574. [PMID: 39983895 DOI: 10.1016/j.canlet.2025.217574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/13/2025] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
Breast cancer is one of the most prevalent cancers and has emerged as a major global challenge. Circulating tumor DNA (ctDNA), a liquid biopsy method, overcomes the accessibility limitations of tissue-based testing and is widely used for monitoring minimal residual disease and molecular relapse, predicting prognosis, evaluating the response of neoadjuvant therapy, and optimizing treatment decisions in non-metastatic breast cancer. However, the application of ctDNA still faces many challenges. Here, we survey the clinical applications of ctDNA in non-metastatic breast cancer and discuss the significant biological and technical challenges of utilizing ctDNA. Importantly, we investigate potential avenues for addressing the challenges. In addition, emerging technologies, including fragmentomics detection, methylation sequencing, and long-read sequencing, have clinical potential and could be a future direction. Proper utilization of machine learning facilitates the identification of meaningful patterns from complex fragment and methylation profiles of ctDNA. There is still a lack of clinical trials focused on the subsets of ctDNA (e.g., circulating mitochondrial DNA), ctDNA-inferred drug-resistant clonal evolution, tumor heterogeneity, and ctDNA-guided clinical decision-making in non-metastatic breast cancer. Due to regional differences in the number of registered clinical trials, it is essential to enhance communication and foster global collaboration to advance the field.
Collapse
Affiliation(s)
- Zihang Zeng
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, 430071, Wuhan, China
| | - Zongbi Yi
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, 430071, Wuhan, China.
| | - Binghe Xu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
| |
Collapse
|
2
|
Nader-Marta G, Monteforte M, Agostinetto E, Cinquini M, Martins-Branco D, Langouo M, Llombart-Cusac A, Cortés J, Ignatiadis M, Torri V, Apolone G, Cappelletti V, Pruneri G, de Azambuja E, Di Cosimo S. Circulating tumor DNA for predicting recurrence in patients with operable breast cancer: a systematic review and meta-analysis. ESMO Open 2024; 9:102390. [PMID: 38460249 PMCID: PMC10940943 DOI: 10.1016/j.esmoop.2024.102390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 03/11/2024] Open
Abstract
BACKGROUND The incorporation of circulating tumor DNA (ctDNA) into the management of operable breast cancer (BC) has been hampered by the heterogeneous results from different studies. We aimed to assess the prognostic value of ctDNA in patients with operable (non metastatic) BC. MATERIALS AND METHODS A systematic search of databases (PubMed/Medline, Embase, and CENTRAL) and conference proceedings was conducted to identify studies reporting the association of ctDNA detection with disease-free survival (DFS) and overall survival (OS) in patients with stage I-III BC. Log-hazard ratios (HRs) were pooled at each timepoint of ctDNA assessment (baseline, after neoadjuvant therapy, and follow-up). ctDNA assays were classified as primary tumor-informed and non tumor-informed. RESULTS Of the 3174 records identified, 57 studies including 5779 patients were eligible. In univariate analyses, ctDNA detection was associated with worse DFS at baseline [HR 2.98, 95% confidence interval (CI) 1.92-4.63], after neoadjuvant therapy (HR 7.69, 95% CI 4.83-12.24), and during follow-up (HR 14.04, 95% CI 7.55-26.11). Similarly, ctDNA detection at all timepoints was associated with worse OS (at baseline: HR 2.76, 95% CI 1.60-4.77; after neoadjuvant therapy: HR 2.72, 95% CI 1.44-5.14; and during follow-up: HR 9.19, 95% CI 3.26-25.90). Similar DFS and OS results were observed in multivariate analyses. Pooled HRs were numerically higher when ctDNA was detected at the end of neoadjuvant therapy or during follow-up and for primary tumor-informed assays. ctDNA detection sensitivity and specificity for BC recurrence ranged from 0.31 to 1.0 and 0.7 to 1.0, respectively. The mean lead time from ctDNA detection to overt recurrence was 10.81 months (range 0-58.9 months). CONCLUSIONS ctDNA detection was associated with worse DFS and OS in patients with operable BC, particularly when detected after treatment and using primary tumor-informed assays. ctDNA detection has a high specificity for anticipating BC relapse.
Collapse
Affiliation(s)
- G Nader-Marta
- Academic Trials Promoting Team (ATPT), Institut Jules Bordet, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (U.L.B), Brussels, Belgium.
| | - M Monteforte
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - E Agostinetto
- Academic Trials Promoting Team (ATPT), Institut Jules Bordet, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (U.L.B), Brussels, Belgium. https://twitter.com/ElisaAgostinett
| | - M Cinquini
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - D Martins-Branco
- Academic Trials Promoting Team (ATPT), Institut Jules Bordet, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (U.L.B), Brussels, Belgium. https://twitter.com/DMBranco
| | - M Langouo
- Medical Oncology Department, Institut Jules Bordet, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (U.L.B), Brussels, Belgium
| | - A Llombart-Cusac
- Medica Scientia Innovation Research (MEDSIR), Barcelona, Spain; Medica Scientia Innovation Research (MEDSIR), Ridgewood, New Jersey, USA; Arnau de Vilanova Hospital; Universidad Católica de Valencia, Valencia, Spain
| | - J Cortés
- Medica Scientia Innovation Research (MEDSIR), Barcelona, Spain; Medica Scientia Innovation Research (MEDSIR), Ridgewood, New Jersey, USA; International Breast Cancer Center (IBCC), Pangaea Oncology, Quiron Group, Barcelona, Spain; Department of Medicine, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Madrid, Spain. https://twitter.com/JavierCortesMD
| | - M Ignatiadis
- Academic Trials Promoting Team (ATPT), Institut Jules Bordet, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (U.L.B), Brussels, Belgium; Medical Oncology Department, Institut Jules Bordet, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (U.L.B), Brussels, Belgium. https://twitter.com/MIgnatiadis
| | - V Torri
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy. https://twitter.com/ValterTorri
| | - G Apolone
- Scientific Directorate, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - V Cappelletti
- Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - G Pruneri
- Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; University of Milan, School of Medicine, Milan, Italy. https://twitter.com/PruneriG
| | - E de Azambuja
- Academic Trials Promoting Team (ATPT), Institut Jules Bordet, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (U.L.B), Brussels, Belgium; Medical Oncology Department, Institut Jules Bordet, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (U.L.B), Brussels, Belgium. https://twitter.com/E_de_Azambuja
| | - S Di Cosimo
- Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy. https://twitter.com/serenadicosimo
| |
Collapse
|
3
|
Habiburrahman M, Sutopo S, Wardoyo MP. Role of DEK in carcinogenesis, diagnosis, prognosis, and therapeutic outcome of breast cancer: An evidence-based clinical review. Crit Rev Oncol Hematol 2023; 181:103897. [PMID: 36535490 DOI: 10.1016/j.critrevonc.2022.103897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Breast cancer is a significantly burdening women's cancer with limited diagnostic modalities. DEK is a novel biomarker overexpressed in breast cancers, currently exhaustively researched for its diagnosis and prognosis. Search for relevant meta-analyses, cohorts, and experimental studies in the last fifteen years was done in five large scientific databases. Non-English, non-full text articles or unrelated studies were excluded. Thirteen articles discussed the potential of DEK to estimate breast cancer characteristics, treatment outcomes, and prognosis. This proto-oncogene plays a role in breast carcinogenesis, increasing tumour proliferation and invasion, preventing apoptosis, and creating an immunodeficient tumour milieu with M2 tumour-associated macrophages. DEK is also associated with worse clinicopathological features and survival in breast cancer patients. Using a Kaplan-Meier plotter data analysis, DEK expression predicts worse overall survival (HR 1.24, 95%CI: 1.01-1.52, p = 0.039), comparable to other biomarkers. DEK is a promising novel biomarker requiring further research to determine its bedside applications.
Collapse
Affiliation(s)
- Muhammad Habiburrahman
- Faculty of Medicine Universitas Indonesia, Central Jakarta, DKI Jakarta, Indonesia; Dr. Cipto Mangunkusumo Hospital, Central Jakarta, DKI Jakarta, Indonesia.
| | - Stefanus Sutopo
- Faculty of Medicine Universitas Indonesia, Central Jakarta, DKI Jakarta, Indonesia
| | - Muhammad Prasetio Wardoyo
- Faculty of Medicine Universitas Indonesia, Central Jakarta, DKI Jakarta, Indonesia; Dr. Cipto Mangunkusumo Hospital, Central Jakarta, DKI Jakarta, Indonesia
| |
Collapse
|
4
|
Kramer CJH, Vreeswijk MPG, Thijssen B, Bosse T, Wesseling J. Beyond the snapshot: optimizing prognostication and prediction by moving from fixed to functional multidimensional cancer pathology. J Pathol 2022; 257:403-412. [PMID: 35438188 PMCID: PMC9324156 DOI: 10.1002/path.5915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 11/10/2022]
Abstract
The role of pathology in patient management has evolved over time from the retrospective review of cells, tissue, and disease (‘what happened’) to a prospective outlook (‘what will happen’). Examination of a static, two‐dimensional hematoxylin and eosin (H&E)‐stained tissue slide has traditionally been the pathologist's primary task, but novel ancillary techniques enabled by technological breakthroughs have supported pathologists in their increasing ability to predict disease status and behaviour. Nevertheless, the informational limits of 2D, fixed tissue are now being reached and technological innovation is urgently needed to ensure that our understanding of disease entities continues to support improved individualized treatment options. Here we review pioneering work currently underway in the field of cancer pathology that has the potential to capture information beyond the current basic snapshot. A selection of exciting new technologies is discussed that promise to facilitate integration of the functional and multidimensional (space and time) information needed to optimize the prognostic and predictive value of cancer pathology. Learning how to analyse, interpret, and apply the wealth of data acquired by these new approaches will challenge the knowledge and skills of the pathology community. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- C J H Kramer
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - M P G Vreeswijk
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - B Thijssen
- Division of Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - T Bosse
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - J Wesseling
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Pathology, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands.,Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Yoo TK. Liquid Biopsy in Breast Cancer: Circulating Tumor Cells and Circulating Tumor DNA. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1187:337-361. [PMID: 33983587 DOI: 10.1007/978-981-32-9620-6_17] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cancer is associated with gene mutations, and the analysis of tumor-associated mutations is increasingly used for diagnostic, prognostic, and treatment purposes. These molecular landscapes of solid tumors are currently obtained from surgical or biopsy specimens. However, during cancer progression and treatment, selective pressures lead to additional genetic changes as tumors acquire drug resistance. Tissue sampling cannot be performed routinely owing to its invasive nature and a single biopsy only provides a limited snapshot of a tumor, which may fail to reflect spatial and temporal heterogeneity. This dilemma may be solved by analyzing cancer cells or cancer cell-derived DNA from blood samples, called liquid biopsy. Liquid biopsy is one of the most rapidly advancing fields in cancer diagnostics and recent technological advances have enabled the detection and detailed characterization of circulating tumor cells and circulating tumor DNA in blood samples.Liquid biopsy is an exciting area with rapid advances, but we are still at the starting line with many challenges to overcome. In this chapter we will explore how tumor cells and tumor-associated mutations detected in the blood can be used in the clinic. This will include detection of cancer, prediction of prognosis, monitoring systemic therapies, and stratification of patients for therapeutic targets or resistance mechanisms.
Collapse
Affiliation(s)
- Tae-Kyung Yoo
- Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Banys-Paluchowski M, Krawczyk N, Fehm T. Liquid Biopsy in Breast Cancer. Geburtshilfe Frauenheilkd 2020; 80:1093-1104. [PMID: 33173237 PMCID: PMC7647718 DOI: 10.1055/a-1124-7225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/02/2020] [Indexed: 02/06/2023] Open
Abstract
In recent years, the blood-based analysis of circulating tumour cells (CTCs) and nucleic acids (DNA/RNA), otherwise known as liquid biopsy, has become increasingly important in breast cancer. Numerous trials have already underscored the high prognostic significance of CTC detection in both early and metastatic stages. Moreover, the changes in CTC levels and circulating tumour DNA (ctDNA) during the course of the disease correlate with the response to treatment. Research currently focuses on liquid-biopsy based therapeutic interventions in metastatic breast cancer. In this context, alpelisib, a PI3K inhibitor, was the first agent to be approved by FDA and EMA.
Collapse
Affiliation(s)
| | - Natalia Krawczyk
- Universitäts-Frauenklinik, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| | - Tanja Fehm
- Universitäts-Frauenklinik, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
7
|
Lee JH, Jeong H, Choi JW, Oh HE, Kim YS. Liquid biopsy prediction of axillary lymph node metastasis, cancer recurrence, and patient survival in breast cancer: A meta-analysis. Medicine (Baltimore) 2018; 97:e12862. [PMID: 30334995 PMCID: PMC6211877 DOI: 10.1097/md.0000000000012862] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Liquid biopsies using circulating tumor DNA (ctDNA) and cell-free DNA (cfDNA) have been developed for early cancer detection and patient monitoring. To investigate the clinical usefulness of ctDNA aberrations and cfDNA levels in patients with breast cancer (BC), we conducted a meta-analysis of 69 published studies on 5736 patients with BC. METHODS The relevant publications were identified by searching PubMed and Embase databases. The effect sizes of outcome parameters were pooled using a random-effects model. RESULTS The ctDNA mutation rates of TP53, PIK3CA, and ESR1 were approximately 38%, 27%, and 32%, respectively. High levels of cfDNA were associated with BCs rather than with healthy controls. However, these detection rates were not satisfactory for BC screening. Although the precise mechanisms have been unknown, high cfDNA levels were significantly associated with axillary lymph node metastasis (odds ratio [OR] = 2.148, P = .030). The ctDNA mutations were significantly associated with cancer recurrence (OR = 3.793, P < .001), short disease-free survival (univariate hazard ratio [HR] = 5.180, P = .026; multivariate HR = 3.605, P = .001), and progression-free survival (HR = 1.311, P = .013) rates, and poor overall survival outcomes (HR = 2.425, P = .007). CONCLUSION This meta-analysis demonstrates that ctDNA mutation status predicts disease recurrence and unfavorable survival outcomes, while cfDNA levels can be predictive of axillary lymph node metastasis in patients with BC.
Collapse
|
8
|
Palmirotta R, Lovero D, Cafforio P, Felici C, Mannavola F, Pellè E, Quaresmini D, Tucci M, Silvestris F. Liquid biopsy of cancer: a multimodal diagnostic tool in clinical oncology. Ther Adv Med Oncol 2018; 10:1758835918794630. [PMID: 30181785 PMCID: PMC6116068 DOI: 10.1177/1758835918794630] [Citation(s) in RCA: 289] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 06/28/2018] [Indexed: 12/17/2022] Open
Abstract
Over the last decades, the concept of precision medicine has dramatically renewed the field of medical oncology; the introduction of patient-tailored therapies has significantly improved all measurable outcomes. Liquid biopsy is a revolutionary technique that is opening previously unexpected perspectives. It consists of the detection and isolation of circulating tumor cells, circulating tumor DNA and exosomes, as a source of genomic and proteomic information in patients with cancer. Many technical hurdles have been resolved thanks to newly developed techniques and next-generation sequencing analyses, allowing a broad application of liquid biopsy in a wide range of settings. Initially correlated to prognosis, liquid biopsy data are now being studied for cancer diagnosis, hopefully including screenings, and most importantly for the prediction of response or resistance to given treatments. In particular, the identification of specific mutations in target genes can aid in therapeutic decisions, both in the appropriateness of treatment and in the advanced identification of secondary resistance, aiming to early diagnose disease progression. Still application is far from reality but ongoing research is leading the way to a new era in oncology. This review summarizes the main techniques and applications of liquid biopsy in cancer.
Collapse
Affiliation(s)
- Raffaele Palmirotta
- Section of Clinical and Molecular Oncology,
Department of Biomedical Sciences and Human Oncology, University of Bari
Aldo Moro, Bari, Italy
| | - Domenica Lovero
- Section of Clinical and Molecular Oncology,
Department of Biomedical Sciences and Human Oncology, University of Bari
Aldo Moro, Bari, Italy
| | - Paola Cafforio
- Section of Clinical and Molecular Oncology,
Department of Biomedical Sciences and Human Oncology, University of Bari
Aldo Moro, Bari, Italy
| | - Claudia Felici
- Section of Clinical and Molecular Oncology,
Department of Biomedical Sciences and Human Oncology, University of Bari
Aldo Moro, Bari, Italy
| | - Francesco Mannavola
- Section of Clinical and Molecular Oncology,
Department of Biomedical Sciences and Human Oncology, University of Bari
Aldo Moro, Bari, Italy
| | - Eleonora Pellè
- Section of Clinical and Molecular Oncology,
Department of Biomedical Sciences and Human Oncology, University of Bari
Aldo Moro, Bari, Italy
| | - Davide Quaresmini
- Section of Clinical and Molecular Oncology,
Department of Biomedical Sciences and Human Oncology, University of Bari
Aldo Moro, Bari, Italy
| | - Marco Tucci
- Section of Clinical and Molecular Oncology,
Department of Biomedical Sciences and Human Oncology, University of Bari
Aldo Moro, Bari, Italy
| | - Franco Silvestris
- Section of Clinical and Molecular Oncology,
Department of Biomedical Sciences and Human Oncology, University of Bari
Aldo Moro, Bari, 70124, Italy
| |
Collapse
|
9
|
Benson JR, Jatoi I. Tailoring breast cancer therapies to reduce mortality and improve quality of life: San Antonio Breast Cancer Symposium 2017 (part 2). Future Oncol 2018; 14:1893-1896. [PMID: 30019940 DOI: 10.2217/fon-2018-0184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The 40th annual San Antonio Breast Cancer Symposium was convened in San Antonio, TX, USA on 5-9 December 2017. More than 7500 clinicians and scientists from around the world participated in the symposium which featured a range of presentations and keynote talks pertaining to breast cancer screening, prevention, loco-regional and systemic therapies. This two-part report highlights a selection of important studies presented at this premier breast cancer event with part 1 focusing on dose-intense radiotherapy, perioperative endocrine therapy, duration of bisphosphonates, immunotherapy, ovarian function suppression and acupuncture. The second part of this report will discuss a range of topics related to de-escalation of loco-regional therapies, the significance of complete pathological response, older patients and CDK 4/6 inhibitors, circulating tumor cells and plasma DNA as a tumor marker.
Collapse
Affiliation(s)
- John R Benson
- Cambridge University NHS Foundation Trust, University of Cambridge and School of Medicine, Anglia Ruskin University, Cambridge, UK
| | - Ismail Jatoi
- Division of Surgical Oncology, Dale H Dorn Chair in Surgery, University of Texas Health Science Center, San Antonio, TX, USA
| |
Collapse
|
10
|
Anunobi R, Boone BA, Cheh N, Tang D, Kang R, Loux T, Lotze MT, Zeh HJ. Extracellular DNA promotes colorectal tumor cell survival after cytotoxic chemotherapy. J Surg Res 2018; 226:181-191. [DOI: 10.1016/j.jss.2018.02.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/09/2018] [Accepted: 02/20/2018] [Indexed: 12/15/2022]
|
11
|
Gorgannezhad L, Umer M, Islam MN, Nguyen NT, Shiddiky MJA. Circulating tumor DNA and liquid biopsy: opportunities, challenges, and recent advances in detection technologies. LAB ON A CHIP 2018; 18:1174-1196. [PMID: 29569666 DOI: 10.1039/c8lc00100f] [Citation(s) in RCA: 202] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Cell-free DNA (cfDNA) refers to short fragments of acellular nucleic acids detectable in almost all body fluids, including blood, and is involved in various physiological and pathological phenomena such as immunity, coagulation, aging, and cancer. In cancer patients, a fraction of hematogenous cfDNA originates from tumors, termed circulating tumor DNA (ctDNA), and may carry the same mutations and genetic alterations as those of a primary tumor. Thus, ctDNA potentially provides an opportunity for noninvasive assessment of cancer. Recent advances in ctDNA analysis methods will potentially lead to the development of a liquid biopsy tool for the diagnosis, prognosis, therapy response monitoring, and tracking the rise of new mutant sub-clones in cancer patients. Over the past few decades, cancer-specific mutations in ctDNA have been detected using a variety of untargeted methods such as digital karyotyping, personalized analysis of rearranged ends (PARE), whole-genome sequencing of ctDNA, and targeted approaches such as conventional and digital PCR-based methods and deep sequencing-based technologies. More recently, several chip-based electrochemical sensors have been developed for the analysis of ctDNA in patient samples. This paper aims to comprehensively review the diagnostic, prognostic, and predictive potential of ctDNA as a minimally invasive liquid biopsy for cancer patients. We also present an overview of current advances in the analytical sensitivity and accuracy of ctDNA analysis methods as well as biological and technical challenges, which need to be resolved for the integration of ctDNA analysis into routine clinical practice.
Collapse
Affiliation(s)
- Lena Gorgannezhad
- School of Environment and Science, Griffith University, Nathan Campus, QLD 4111, Australia. and Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, QLD 4111, Australia
| | - Muhammad Umer
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, QLD 4111, Australia
| | - Md Nazmul Islam
- School of Environment and Science, Griffith University, Nathan Campus, QLD 4111, Australia. and Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, QLD 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, QLD 4111, Australia
| | - Muhammad J A Shiddiky
- School of Environment and Science, Griffith University, Nathan Campus, QLD 4111, Australia. and Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, QLD 4111, Australia
| |
Collapse
|
12
|
Abstract
BACKGROUND Circulating cell-free DNA (cfDNA) isolated from plasma or serum by noninvasive procedures can serve as a "liquid biopsy" and has potential as a biomarker for the tumor burden and survival prediction of breast cancer (BC). However, its prognostic value in patients with BC is currently under debate. The aim of this meta-analysis was to investigate the relationship between cfDNA and survival outcome. METHODS We systematically searched PubMed, Embase, and Science Citation Index electronic databases for studies about the prognostic utility of cfDNA in patients with BC. The clinical characteristics, relapse/disease-free survival (RFS/DFS), and overall survival (OS) data were extracted from the eligible studies. The hazard ratios (HR) and 95% confidence intervals (CI) were calculated and pooled with a fixed-effects model using the Stata12.0 software. Subgroup and sensitivity analyses were also performed. RESULTS This meta-analysis included a total of 10 eligible studies and 1127 patients with BC. The pooled HR with 95% CI showed strong associations between cfDNA and OS (HR = 2.41, 95% CI, 1.83-3.16) along with DFS/RFS (HR = 2.73, 95% CI, 2.04-3.67) in patients with BC. Although publication bias was found in the studies regarding RFS/DFS, further trim and fill analysis revealed that the adjusted HR would be 2.53 (95% CI, 1.83-3.51), which is close to the original HR. Subgroup analyses confirmed the role of cfDNA as a strong prognostic marker in patients with BC, regardless of cfDNA analysis, sampling time, sample source, detection method, tumor stage, sample size, or area. CONCLUSIONS Our meta-analysis indicates that cfDNA is a strong predictive and prognostic marker in patients with BC.
Collapse
Affiliation(s)
| | - Chang Chu
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, People's Republic of China
| | | | | | | |
Collapse
|
13
|
Zanetti-Dällenbach RA, Schmid S, Wight E, Holzgreve W, Ladewing A, Hahn S, Zhong XY. Levels of Circulating Cell-Free Serum DNA in Benign and Malignant Breast Lesions. Int J Biol Markers 2018; 22:95-9. [PMID: 17549664 DOI: 10.1177/172460080702200202] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Purposes of the study: We analyzed circulating cell-free DNA in the serum of patients with benign and malignant breast disease and in healthy individuals to determine its diagnostic value. Basic procedures: Serum samples were obtained from 50 healthy individuals, 33 patients with malignant breast disease and 32 patients with benign breast disease. Circulatory DNA was extracted from serum samples. Cell-free DNA was quantified by real-time quantitative PCR for the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene. Tissue samples from patients with malignant and benign breast lesions were histopathologically examined. Main findings: The mean levels of circulating cell-free DNA in serum samples were 41,149 genome equivalents (GE)/mL in patients with malignant disease, 30,826 GE/mL in patients with benign disease, and 13,267 GE/mL in healthy individuals. Healthy individuals had significantly lower levels of cell-free DNA than patients with malignant or benign breast disease (p=0.001, p=0.031). No significant difference was observed between malignant and benign disease. There was a correlation between cell-free DNA levels and tumor size but not with other tumor characteristics. Principal conclusion: Our results suggest that levels of circulating cell-free DNA in serum could have diagnostic value to discriminate between healthy individuals and patients with breast lesions but not between patients with malignant and benign breast lesions.
Collapse
|
14
|
Liquid biopsy: unlocking the potentials of cell-free DNA. Virchows Arch 2017; 471:147-154. [DOI: 10.1007/s00428-017-2137-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 04/20/2017] [Accepted: 04/26/2017] [Indexed: 01/02/2023]
|
15
|
Parsons HA, Beaver JA, Park BH. Circulating Plasma Tumor DNA. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 882:259-76. [PMID: 26987539 DOI: 10.1007/978-3-319-22909-6_11] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Circulating cell-free DNA (ccfDNA)--first identified in 1947--is "naked" DNA that is free-floating in the blood, and derived from both normal and diseased cells. In the 1970s, scientists observed that patients with cancer had elevated levels of ccfDNA as compared to their healthy, cancer-free counterparts. The maternal fetal medicine community first developed techniques to identify the small fraction of fetal-derived ccfDNA for diagnostic purposes. Similarly, due to the presence of tumor-specific (somatic) variations in all cancers, the fraction of circulating cell-free plasma tumor DNA (ptDNA) in the larger pool of ccfDNA derived from normal cells can serve as extremely specific blood-based biomarkers for a patient's cancer. In theory this "liquid biopsy" can provide a real-time assessment of molecular tumor genotype (qualitative) and existing tumor burden (quantitative). Historically, the major limitation for ptDNA as a biomarker has been related to a low detection rate; however, current and developing techniques have improved sensitivity dramatically. In this chapter, we discuss these methods, including digital polymerase chain reaction and various approaches to tagged next-generation sequencing.
Collapse
Affiliation(s)
- Heather A Parsons
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Bunting and Blaustein Building, 1650 Orleans Street, Room 151, 21287, Baltimore, MD, USA
| | - Julia A Beaver
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Bunting and Blaustein Building, 1650 Orleans Street, Room 151, 21287, Baltimore, MD, USA
| | - Ben H Park
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Bunting and Blaustein Building, 1650 Orleans Street, Room 151, 21287, Baltimore, MD, USA.
| |
Collapse
|
16
|
Krumbholz M, Hellberg J, Steif B, Bäuerle T, Gillmann C, Fritscher T, Agaimy A, Frey B, Juengert J, Wardelmann E, Hartmann W, Juergens H, Dirksen U, Metzler M. Genomic EWSR1 Fusion Sequence as Highly Sensitive and Dynamic Plasma Tumor Marker in Ewing Sarcoma. Clin Cancer Res 2016; 22:4356-65. [DOI: 10.1158/1078-0432.ccr-15-3028] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 04/14/2016] [Indexed: 11/16/2022]
|
17
|
Canzoniero JV, Park BH. Use of cell free DNA in breast oncology. Biochim Biophys Acta Rev Cancer 2016; 1865:266-74. [PMID: 27012505 DOI: 10.1016/j.bbcan.2016.03.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 03/18/2016] [Accepted: 03/19/2016] [Indexed: 12/24/2022]
Abstract
Cell free DNA (cfDNA) are short fragments of nucleic acids present in circulation outside of cells. In patients with cancer, some portion of cfDNA is derived from tumor cells, termed circulating tumor DNA (ctDNA), and contains the same mutations and genetic changes as the cancer. The development of new, more effective methods to detect these changes has led to increased interest in developing ctDNA as a biomarker for cancer. Here we will review current literature on the use of ctDNA, with an emphasis on breast cancer, for cancer detection, prognosis, monitoring response to therapy, and tracking the rise of new mutant subclones.
Collapse
Affiliation(s)
- Jenna VanLiere Canzoniero
- Division of General Internal Medicine, Johns Hopkins, 600 N Wolfe St, Nelson 207, Baltimore, MD 21287, USA.
| | - Ben Ho Park
- The Sidney Kimmel Comprehensive Cancer Institute at Johns Hopkins, 1650 Orleans Street, CRBI, Baltimore, MD 21287, USA.
| |
Collapse
|
18
|
Tamkovich SN, Voytsitskiy VE, Laktionov PP. Modern methods in breast cancer diagnostics. BIOCHEMISTRY (MOSCOW) SUPPLEMENT SERIES B: BIOMEDICAL CHEMISTRY 2014. [DOI: 10.1134/s1990750814040106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
19
|
Tamkovich S, Voytsitskiy V, Laktionov P. Modern approach of breast cancer diagnostics. ACTA ACUST UNITED AC 2014; 60:141-60. [DOI: 10.18097/pbmc20146002141] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In the review have been classified literature data concerning modern instrumental, microscopic and molecular (metabolomics, proteomics, genetics and epigenetics) approaches for early breast cancer diagnostics. The analytical performance and perspectives of their application in clinical practice also have been evaluated.
Collapse
Affiliation(s)
- S.N. Tamkovich
- Institute of chemical biology and fundamental medicine SB of RAS; Novosibirsk national research state university
| | | | - P.P. Laktionov
- Institute of chemical biology and fundamental medicine SB of RAS
| |
Collapse
|
20
|
The plasma DNA concentration as a potential breast cancer screening marker. Indian J Clin Biochem 2013; 30:55-8. [PMID: 25646041 DOI: 10.1007/s12291-013-0407-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 11/11/2013] [Indexed: 12/27/2022]
Abstract
Increased levels of plasma DNA have frequently been noticed in the blood plasma of cancer patients. The possibility of using plasma DNA level as the indicator of tumor stage in breast cancer was investigated in plasma samples obtained from 100 breast cancer patients and 100 healthy women who were included as controls. Circulatory plasma free DNA was extracted from plasma samples and quantified by fluorometer. The median concentration of plasma DNA in the plasma samples from breast cancer patients classified by TNM staging system as stage I, II, III, IV and breast surgical patients were 0.5, 235, 422, 1,280 and 0.5 ng/ml, respectively. The level of plasma DNA in the stage II- IV group was significantly higher than those in the surgical group with breast cancer and control group (P value < 0.001). The plasma DNA concentration in stage II, III and IV of breast cancer were higher when compared with healthy group. These tumor size, TNM stage and metastasis were significantly correlated with plasma DNA. The cut point of 120 ng/ml was early screening and treatment follow up breast cancer.
Collapse
|
21
|
Esposito A, Bardelli A, Criscitiello C, Colombo N, Gelao L, Fumagalli L, Minchella I, Locatelli M, Goldhirsch A, Curigliano G. Monitoring tumor-derived cell-free DNA in patients with solid tumors: clinical perspectives and research opportunities. Cancer Treat Rev 2013; 40:648-55. [PMID: 24184333 DOI: 10.1016/j.ctrv.2013.10.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 10/11/2013] [Indexed: 01/05/2023]
Abstract
Circulating cell-free DNA represents a non-invasive biomarker, as it can be isolated from human plasma, serum and other body fluids. Circulating tumor DNA shed from primary and metastatic cancers may allow the non-invasive analysis of the evolution of tumor genomes during treatment and disease progression through 'liquid biopsies'. The serial monitoring of tumor genotypes, which are instable and prone to changes under selection pressure, is becoming increasingly possible. The "liquid biopsy" provide novel biological insights into the process of metastasis and may elucidate signaling pathways involved in cell invasiveness and metastatic competence. This review will focus on the clinical utility of circulating cell free DNA in main solid tumors, including genetic and epigenetic alterations that can be detected.
Collapse
Affiliation(s)
- Angela Esposito
- Division of Early Drug Development for Innovative Therapies, Istituto Europeo di Oncologia, Via Ripamonti 435, 20133 Milano, Italy
| | - Alberto Bardelli
- Department of Oncology, University of Torino, Candiolo, Torino, Italy; IRCC Institute for Cancer Research and Treatment, Candiolo, Torino, Italy; FIRC Institute of Molecular Oncology (IFOM), Milano, Italy
| | - Carmen Criscitiello
- Division of Early Drug Development for Innovative Therapies, Istituto Europeo di Oncologia, Via Ripamonti 435, 20133 Milano, Italy
| | - Nicoletta Colombo
- Division of Gynecologic Oncology, Istituto Europeo di Oncologia, Via Ripamonti 435, 20133 Milano, Italy
| | - Lucia Gelao
- Division of Early Drug Development for Innovative Therapies, Istituto Europeo di Oncologia, Via Ripamonti 435, 20133 Milano, Italy
| | - Luca Fumagalli
- Division of Early Drug Development for Innovative Therapies, Istituto Europeo di Oncologia, Via Ripamonti 435, 20133 Milano, Italy
| | - Ida Minchella
- Division of Early Drug Development for Innovative Therapies, Istituto Europeo di Oncologia, Via Ripamonti 435, 20133 Milano, Italy
| | - Marzia Locatelli
- Division of Early Drug Development for Innovative Therapies, Istituto Europeo di Oncologia, Via Ripamonti 435, 20133 Milano, Italy
| | - Aron Goldhirsch
- Breast Cancer Program Istituto Europeo di Oncologia, Via Ripamonti 435, 20133 Milano, Italy
| | - Giuseppe Curigliano
- Division of Early Drug Development for Innovative Therapies, Istituto Europeo di Oncologia, Via Ripamonti 435, 20133 Milano, Italy.
| |
Collapse
|
22
|
González-Masiá JA, García-Olmo D, García-Olmo DC. Circulating nucleic acids in plasma and serum (CNAPS): applications in oncology. Onco Targets Ther 2013; 6:819-32. [PMID: 23874104 PMCID: PMC3711950 DOI: 10.2147/ott.s44668] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The presence of small amounts of circulating nucleic acids in plasma and serum (CNAPS) is not a new finding. The verification that such amounts are significantly increased in cancer patients, and that CNAPS might carry a variety of genetic and epigenetic alterations related to cancer development and progression, has aroused great interest in the scientific community in the last decades. Such alterations potentially reflect changes that occur during carcinogenesis, and include DNA mutations, loss of heterozygosity, viral genomic integration, disruption of microRNA, hypermethylation of tumor suppressor genes, and changes in the mitochondrial DNA. These findings have led to many efforts toward the implementation of new clinical biomarkers based on CNAPS analysis. In the present article, we review the main findings related to the utility of CNAPS analysis for early diagnosis, prognosis, and monitoring of cancer, most of which appear promising. However, due to the lack of harmonization of laboratory techniques, the heterogeneity of disease progression, and the small number of recruited patients in most of those studies, there has been a poor translation of basic research into clinical practice. In addition, many aspects remain unknown, such as the release mechanisms of cell-free nucleic acids, their biological function, and the way by which they circulate in the bloodstream. It is therefore expected that in the coming years, an improved understanding of the relationship between CNAPS and the molecular biology of cancer will lead to better diagnosis, management, and treatment.
Collapse
Affiliation(s)
| | - Damián García-Olmo
- Department of Surgery, Universidad Autónoma de Madrid and La Paz University Hospital, IdiPaz, Madrid, Spain
| | - Dolores C García-Olmo
- Experimental Research Unit, General University Hospital of Albacete, Albacete, Spain
| |
Collapse
|
23
|
Fehm T, Banys M. Circulating free DNA: a new surrogate marker for minimal residual disease? Breast Cancer Res Treat 2011; 130:119-22. [PMID: 21327462 DOI: 10.1007/s10549-011-1392-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 02/02/2011] [Indexed: 12/28/2022]
Affiliation(s)
- Tanja Fehm
- Department of Obstetrics and Gynecology, University of Tuebingen, Tuebingen, Germany.
| | | |
Collapse
|
24
|
Schwarzenbach H, Müller V, Milde-Langosch K, Steinbach B, Pantel K. Evaluation of cell-free tumour DNA and RNA in patients with breast cancer and benign breast disease. MOLECULAR BIOSYSTEMS 2011; 7:2848-54. [PMID: 21785770 DOI: 10.1039/c1mb05197k] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
High levels of DNA and RNA released by apoptotic and necrotic cells circulate in the blood of cancer patients. In the present study we determined the applicability of the quantification of nucleic acids and their genetic alterations as minimally invasive tool for breast cancer screening. The relative concentrations of DNA and RNA were determined in preoperative serum of 102 breast cancer patients, 32 patients with benign breast disease and 53 healthy women. The mean follow-up time of the cancer patients was 6.2 years. Loss of heterozygosity (LOH) at four polymorphic markers (D13S159, D13S280, D13S282 at region 13q31-33 and D10S1765 at PTEN region 10q23.31) was analyzed by PCR-based fluorescence microsatellite analyses using cell-free DNA. The serum levels of DNA (p = 0.016) and RNA (p = 0.001) could differentiate between healthy women and cancer patients, but could not discriminate malignant from benign breast lesions. A significant correlation of serum DNA with RNA levels was observed in all groups (p = 0.018). Increased serum DNA levels (but not RNA levels) in cancer patients were associated with a poorer overall (p = 0.021) and disease-free survival (p = 0.025). The occurrence of LOH at all markers significantly correlated with lymph node status (p = 0.026). In addition, the LOH frequency at D13S280 (p = 0.047) and D13S159 (p = 0.046) associated with overall and disease-free survival, respectively. In conclusion, the quantification of cell-free tumour DNA had diagnostic and prognostic values in breast cancer patients, and DNA loss at the region 13q31-33 may be an indication of lymphatic tumour cell spread.
Collapse
Affiliation(s)
- Heidi Schwarzenbach
- Department of Tumour Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, Germany.
| | | | | | | | | |
Collapse
|
25
|
Jung K, Fleischhacker M, Rabien A. Cell-free DNA in the blood as a solid tumor biomarker--a critical appraisal of the literature. Clin Chim Acta 2010; 411:1611-24. [PMID: 20688053 DOI: 10.1016/j.cca.2010.07.032] [Citation(s) in RCA: 246] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 07/24/2010] [Accepted: 07/25/2010] [Indexed: 12/21/2022]
Abstract
Circulating cell-free DNA (cfDNA) has been suggested as a cancer biomarker. Several studies assessed the usefulness of quantitative and qualitative tumor-specific alterations of cfDNA, such as DNA strand integrity, frequency of mutations, abnormalities of microsatellites, and methylation of genes, as diagnostic, prognostic, and monitoring markers in cancer patients. Most of the papers that could be evaluated in this review resulted in a positive conclusion. However, methodical diversity without the traceability of data and differently designed and often underpowered studies resulted in divergent results between studies. In addition, the limited diagnostic sensitivity and specificity of cfDNA alterations temper the effusive hope of novel tumor markers, raising similar issues as those for other tumor markers. To validate the actual clinical validity of various cfDNA alterations as potential cancer biomarkers in practice for individual tumor types, the main problems of the observed uncertainties must be considered in future studies. These include methodical harmonization concerning sample collection, processing, and analysis with the traceability of measurement results as well as the realization of well-designed prospective studies based on power analysis and sample size calculations.
Collapse
Affiliation(s)
- Klaus Jung
- Department of Urology, Research Division, University Hospital Charité, Schumannstr. 20/21, 10117 Berlin, Germany.
| | | | | |
Collapse
|
26
|
Casciano I, Vinci AD, Banelli B, Brigati C, Forlani A, Allemanni G, Romani M. Circulating Tumor Nucleic Acids: Perspective in Breast Cancer. Breast Care (Basel) 2010; 5:75-80. [PMID: 20847818 PMCID: PMC2931039 DOI: 10.1159/000310113] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In 1940, it was demonstrated that free DNA could be identified in the bloodstream. It was later shown that circulating nucleic acids (CNA), both DNA and RNA, are present in several neoplastic and non-neoplastic diseases, and that in cancer they originate mostly from the tumor. In this review, we discuss the potential application of CNA as a breast cancer biomarker for early diagnosis and patient evaluation. Most of the initial studies on CNA compared the levels of CNA in cancer patients and healthy individuals. To increase sensitivity and specificity, cancer-specific molecular alterations were then utilized. In this respect, epigenetic alterations and microRNA offer considerable advantages over mutations because of their easiness of detection. Epigenetic signatures, being early events of carcinogenesis, may also be valuable markers for screening purposes. Monitoring the follow-up of the patients is one of the most interesting applications of CNA-based assays, and it is reasonable to hypothesize that CNA may become a surrogate marker for circulating cancer cells in the prediction of patient outcome. Transferring these findings to the clinical practice is the next effort, and this will be possible when a 'common language' is defined to allow proper validation of these new markers.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Massimo Romani
- Laboratory of Tumor Genetics, Istituto Nazionale per la Ricerca sul Cancro – IST Genova, Italy
| |
Collapse
|
27
|
Taneja P, Maglic D, Kai F, Zhu S, Kendig RD, Fry EA, Inoue K. Classical and Novel Prognostic Markers for Breast Cancer and their Clinical Significance. CLINICAL MEDICINE INSIGHTS-ONCOLOGY 2010; 4:15-34. [PMID: 20567632 PMCID: PMC2883240 DOI: 10.4137/cmo.s4773] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The use of biomarkers ensures breast cancer patients receive optimal treatment. Established biomarkers such as estrogen receptor (ER) and progesterone receptor (PR) have been playing significant roles in the selection and management of patients for endocrine therapy. HER2 is a strong predictor of response to trastuzumab. Recently, the roles of ER as a negative and HER2 as a positive indicator for chemotherapy have been established. Ki67 has traditionally been recognized as a poor prognostic factor, but recent studies suggest that measurement of Ki67-positive cells during treatment will more effectively predict treatment efficacy for both anti-hormonal and chemotherapy. p53 mutations are found in 20–35% of human breast cancers and are associated with aggressive disease with poor clinical outcome when the DNA-binding domain is mutated. The utility of cyclin D1 as a predictor of breast cancer prognosis is controversial, but cyclin D1b overexpression is associated with poor prognosis. Likewise, overexpression of the low molecular weight form of cyclin E1 protein predicts poor prognosis. Breast cancers from BRCA1/2 carriers often show high nuclear grades, negativity to ER/PR/HER2, and p53 mutations, and thus, are associated with poor prognosis. The prognostic values of other molecular markers, such as p14ARF, TBX2/3, VEGF in breast cancer are also discussed. Careful evaluation of these biomarkers with current treatment modality is required to determine whether their measurement or monitoring offer significant clinical benefits.
Collapse
|
28
|
|
29
|
Garcia V, Garcia JM, Silva J, Martin P, Peña C, Dominguez G, Diaz R, Herrera M, Maximiano C, Sabin P, Rueda A, Cruz MA, Rodriguez J, Canales MA, Bonilla F, Provencio M. Extracellular tumor-related mRNA in plasma of lymphoma patients and survival implications. PLoS One 2009; 4:e8173. [PMID: 20016842 PMCID: PMC2788245 DOI: 10.1371/journal.pone.0008173] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 11/02/2009] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND We studied anomalous extracellular mRNAs in plasma from patients with diffuse large B-cell lymphoma (DLBCL) and their survival implications. mRNAs studied have been reported in the literature as markers of poor (BCL2, CCND2, MYC) and favorable outcome (LMO2, BCL6, FN1) in tumors. These markers were also analyzed in lymphoma tissues to test possible associations with their presence in plasma. METHODOLOGY/PRINCIPAL FINDINGS mRNA from 42 plasma samples and 12 tumors from patients with DLBCL was analyzed by real-time PCR. Samples post-treatment were studied. The immunohistochemistry of BCL2 and BCL6 was defined. Presence of circulating tumor cells was determined by analyzing the clonality of the immunoglobulin heavy-chain genes by PCR. In DLBCL, MYC mRNA was associated with short overall survival. mRNA targets with unfavorable outcome in tumors were associated with characteristics indicative of poor prognosis, with partial treatment response and with short progression-free survival in patients with complete response. In patients with low IPI score, unfavorable mRNA targets were related to shorter overall survival, partial response, high LDH levels and death. mRNA disappeared in post-treatment samples of patients with complete response, and persisted in those with partial response or death. No associations were found between circulating tumor cells and plasma mRNA. Absence of BCL6 protein in tumors was associated with presence of unfavorable plasma mRNA. CONCLUSIONS/SIGNIFICANCE Through a non-invasive procedure, tumor-derived mRNAs can be obtained in plasma. mRNA detected in plasma did not proceed from circulating tumor cells. In our study, unfavorable targets in plasma were associated with poor prognosis in B-cell lymphomas, mainly MYC mRNA. Moreover, the unfavorable targets in plasma could help us to classify patients with poor outcome within the good prognosis group according to IPI.
Collapse
MESH Headings
- Disease-Free Survival
- Extracellular Space/genetics
- Humans
- Immunohistochemistry
- Kaplan-Meier Estimate
- Lymphoma, Large B-Cell, Diffuse/blood
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/pathology
- Neoplastic Cells, Circulating
- RNA, Messenger/blood
- RNA, Neoplasm/blood
- Risk Factors
Collapse
Affiliation(s)
- Vanesa Garcia
- Department of Medical Oncology, Puerta de Hierro University Hospital, Madrid, Spain
| | - Jose Miguel Garcia
- Department of Medical Oncology, Puerta de Hierro University Hospital, Madrid, Spain
| | - Javier Silva
- Department of Medical Oncology, Puerta de Hierro University Hospital, Madrid, Spain
| | - Paloma Martin
- Department of Molecular Pathology, Puerta de Hierro University Hospital, Madrid, Spain
| | - Cristina Peña
- Department of Medical Oncology, Puerta de Hierro University Hospital, Madrid, Spain
| | - Gemma Dominguez
- Department of Medical Oncology, Puerta de Hierro University Hospital, Madrid, Spain
| | - Raquel Diaz
- Department of Medical Oncology, Puerta de Hierro University Hospital, Madrid, Spain
| | - Mercedes Herrera
- Department of Medical Oncology, Puerta de Hierro University Hospital, Madrid, Spain
| | - Constanza Maximiano
- Department of Medical Oncology, Puerta de Hierro University Hospital, Madrid, Spain
| | - Pilar Sabin
- Department of Medical Oncology, Gregorio Marañón Hospital, Madrid, Spain
| | - Antonio Rueda
- Department of Medical Oncology, Virgen de la Victoria Hospital, Málaga, Spain
| | - Miguel Angel Cruz
- Department of Medical Oncology, Virgen de la Salud Hospital, Toledo, Spain
| | - Jose Rodriguez
- Department of Medical Oncology, Gregorio Marañón Hospital, Madrid, Spain
| | | | - Felix Bonilla
- Department of Medical Oncology, Puerta de Hierro University Hospital, Madrid, Spain
- * E-mail: (FB); (MP)
| | - Mariano Provencio
- Department of Medical Oncology, Puerta de Hierro University Hospital, Madrid, Spain
- * E-mail: (FB); (MP)
| |
Collapse
|
30
|
García JM, García V, Peña C, Domínguez G, Silva J, Diaz R, Espinosa P, Citores MJ, Collado M, Bonilla F. Extracellular plasma RNA from colon cancer patients is confined in a vesicle-like structure and is mRNA-enriched. RNA (NEW YORK, N.Y.) 2008; 14:1424-1432. [PMID: 18456845 PMCID: PMC2441977 DOI: 10.1261/rna.755908] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Accepted: 03/17/2008] [Indexed: 02/05/2023]
Abstract
Little is yet known about the origin and protective mechanism of free nucleic acids in plasma. We investigated the possibility of these free nucleic acids being particle associated. Plasma samples from colon cancer patients and cell culture media were subjected to various antibody incubations, ultracentrifugation, and RNA extraction protocols for total RNA, epithelial RNA, and mRNA. Flow cytometry using a Ber-EP4 antibody and confocal laser microscopy after staining with propidium iodide were also performed. mRNA levels of the LISCH7 and SDHA genes were determined in cells and in culture media. Ber-EP4 antibody and polystyrene beads coated with oligo dT sequences were employed. We observed that, after incubation, total RNA and mRNA were always detected after membrane digestion, and that epithelial RNA was detected before this procedure. In ultracentrifugation, mRNA was caught in the supernatant only if a former lysis mediated or in the pellet if there was no previous digestion. Flow cytometry determinations showed that antibody-coated microbeads keep acellular structures bearing epithelial antigens apart. Confocal laser microscopy made 1- to 2-microm-diameter particles perceptible in the vicinity of magnetic polystyrene beads. Relevant differences were observed between mRNA of cells and culture media, as there was a considerable difference in LISCH7 mRNA levels between HT29 and IMR90 cell co-cultures and their culture media. Our results support the view that extracellular RNA found in plasma from cancer patients circulates in association with or is protected in a multiparticle complex, and that an active release mechanism by tumor cells may be a possible origin.
Collapse
Affiliation(s)
- José Miguel García
- Department of Medical Oncology, Hospital Universitario Puerta de Hierro, E-28035 Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
García V, García JM, Peña C, Silva J, Domínguez G, Lorenzo Y, Diaz R, Espinosa P, de Sola JG, Cantos B, Bonilla F. Free circulating mRNA in plasma from breast cancer patients and clinical outcome. Cancer Lett 2008; 263:312-20. [PMID: 18280643 DOI: 10.1016/j.canlet.2008.01.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 01/03/2008] [Accepted: 01/03/2008] [Indexed: 11/29/2022]
Abstract
We studied by real-time PCR cyclin D1 and thymidylate synthase (TS) mRNA in plasma as possible markers of clinical outcome in breast cancer. We observed poor outcome in patients with presence of cyclin D1 mRNA in good-prognosis groups, such as negative vascular invasion. Presence of both markers was associated with non-response to treatment after relapse. In patients treated with tamoxifen, a trend to significant relation between poor outcome and cyclin D1 mRNA was found. Cyclin D1 mRNA in plasma could identify patients with poor overall survival in good-prognosis groups and patients non-responsive to tamoxifen.
Collapse
Affiliation(s)
- Vanesa García
- Department of Medical Oncology, Hospital Universitario Puerta de Hierro, C/ San Martín de Porres, 4, E-28035 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Since the discovery of circulating nucleic acids in plasma in 1948, many diagnostic applications have emerged. For example, diagnostic and prognostic potentials of circulating tumour-derived DNA have been demonstrated for many types of cancer. The parallel development of fetal-derived DNA detection in maternal plasma has opened up the possibility of non-invasive prenatal diagnosis and monitoring of many pregnancy-associated disorders. In this regard, non-invasive fetal rhesus blood group genotyping has already been translated to clinical practice. Other applications of circulating DNA in traumatology and transplant monitoring have also been reported. The more recent discoveries of circulating tumour-derived RNA and fetal-derived RNA have proven to be equally important as their DNA counterparts. Successful prenatal diagnosis of Down's syndrome by fetal RNA analysis has recently been reported. However, the definite origin and release mechanisms of circulating nucleic acids have remained incompletely understood, with cell death being suggested to be associated with such nucleic acid release. Pre-analytical standardisation will become increasingly relevant when comparing data from different laboratories. In conclusion, studies of circulating nucleic acids have promised exciting developments in molecular diagnostics in the years to come.
Collapse
Affiliation(s)
- Jason C H Tsang
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, SAR
| | | |
Collapse
|
33
|
Fleischhacker M, Schmidt B. Circulating nucleic acids (CNAs) and cancer--a survey. Biochim Biophys Acta Rev Cancer 2006; 1775:181-232. [PMID: 17137717 DOI: 10.1016/j.bbcan.2006.10.001] [Citation(s) in RCA: 429] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Revised: 10/04/2006] [Accepted: 10/04/2006] [Indexed: 12/23/2022]
Abstract
It has been known for decades that it is possible to detect small amounts of extracellular nucleic acids in plasma and serum of healthy and diseased human beings. The unequivocal proof that part of these circulating nucleic acids (CNAs) is of tumor origin, initiated a surge of studies which confirmed and extended the original observations. In the past few years many experiments showed that tumor-associated alterations can be detected at the DNA and RNA level. At the DNA level the detection of point mutations, microsatellite alterations, chromosomal alterations, i.e. inversion and deletion, and hypermethylation of promoter sequences were demonstrated. At the RNA level the overexpression of tumor-associated genes was shown. These observations laid the foundation for the development of assays for an early detection of cancer as well as for other clinical means.
Collapse
Affiliation(s)
- M Fleischhacker
- Charité, Universitätsmedizin Berlin, Medizinische Klinik mS Onkologie u Hämatologie, CCM, Charitéplatz 1, 10117 Berlin, Germany.
| | | |
Collapse
|