1
|
Gorunova L, Boye K, Panagopoulos I, Berner JM, Bjerkehagen B, Hompland I, Lobmaier I, Hølmebakk T, Hveem TS, Heim S, Micci F. Cytogenetic and molecular analyses of 291 gastrointestinal stromal tumors: site-specific cytogenetic evolution as evidence of pathogenetic heterogeneity. Oncotarget 2022; 13:508-517. [PMID: 35284037 PMCID: PMC8901076 DOI: 10.18632/oncotarget.28209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/17/2022] [Indexed: 12/02/2022] Open
Abstract
Gastrointestinal stromal tumor (GIST) is a mesenchymal neoplasm with variable behavior. An increased understanding of the tumor pathogenesis may improve clinical decision-making. Our aim was to obtain more data about the overall chromosome aberrations and intratumor cytogenetic heterogeneity in GIST. We analyzed 306 GIST samples from 291 patients using G-banding, direct sequencing, and statistics. Clonal chromosome aberrations were found in 81% of samples, with 34% of 226 primary tumors demonstrating extensive cytogenetic heterogeneity. 135 tumors had simple (≤5 changes) and 91 had complex (>5 changes) karyotypes. The karyotypically complex tumors more often were non-gastric (P < 0.001), larger (P < 0.001), more mitotically active (P = 0.009) and had a higher risk of rupture (P < 0.001) and recurrence (P < 0.001). Significant differences between gastric and non-gastric tumors were found also in the frequency of main chromosome losses: of 14q (79% vs. 63%), 22q (38% vs. 67%), 1p (23% vs. 88%), and 15q (18% vs. 77%). Gastric PDGFRA-mutated tumors, compared with gastric KIT-mutated, had a lower incidence of 22q losses (18% vs. 43%) but a higher rate of 1p losses (42% vs. 22%). The present, largest by far karyotypic study of GISTs provides further evidence for the existence of variable pathogenetic pathways operating in these tumors’ development.
Collapse
Affiliation(s)
- Ludmila Gorunova
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Kjetil Boye
- Department of Oncology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Department of Tumor Biology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Ioannis Panagopoulos
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Jeanne-Marie Berner
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Bodil Bjerkehagen
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Ivar Hompland
- Department of Oncology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Ingvild Lobmaier
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Toto Hølmebakk
- Department of Oncology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Tarjei S. Hveem
- Section for Applied Informatics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Sverre Heim
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Francesca Micci
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
2
|
Zhu J, Lv Y, Hao J, Shi T, Wang S, Wang K, Fan X, Guo Y, Zhang J, Li J. N-myc downstream-regulated gene 2 promotes the protein stability of estrogen receptor beta via inhibition of ubiquitin-protein ligase E3A to suppress colorectal cancer. J Gastrointest Oncol 2020; 11:1200-1213. [PMID: 33456993 DOI: 10.21037/jgo-20-557] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background N-myc downstream-regulated gene 2 (NDRG2) and estrogen receptor beta (ERβ) both play key roles in cellular differentiation in colorectal cancer (CRC). Previous studies have demonstrated that ERβ co-locates with and directly transactivates NDRG2. However, the effect of NDRG2 on ERβ and its underlying mechanism remain largely unknown. Our aim of the study is to explore the effect of NDRG2 on ERβ and their contributions to progression of CRC. Methods The Cancer Genome Atlas (TCGA) database was first utilized to validate the clinical significance of ERβ and NDRG2 in CRC. MTT and scratch migration assays were carried out to verify the role of ERβ and NDRG2 in CRC cells. Western blotting and polymerase chain reaction were performed to analyze the effect of NDRG2 on ERβ, and an immunoprecipitation assay was conducted to explore the protein-protein interaction. Results ERβ and NDRG2 were both found to be significantly down-regulated in tumor tissues from the TCGA-CRC database. NDRG2 was also observed to enhance the protein stability of ERβ while could not change messenger RNA (mRNA) level of ESR2 (encoding ERβ). A positive relationship was found to exist between the two proteins in CRC cells, with NDRG2 prolonging the half-life of ERβ and improving its nuclear translocation. Through detecting expression of ERβ downstream genes (such as TP53 and JNK) and performing related function experiment, we demonstrated that NDRG2 could promote transcriptional activation of ERβ target genes and enhance the function of tumor suppressors when the ERβ agonist diarylpropionitrile (DPN). The immunoprecipitation assay showed that NDRG2 could affect the complex components of ubiquitin-protein ligase E3A (UBE3A, known as E6AP) and ERβ, reducing the ubiquitin-mediated proteasome degradation of ERβ. Conclusions In the current study, we found that NDRG2 could bind with UBE3A to hinder the binding of UBE3A with ERβ. Moreover, a positive feedback loop was discovered between NDRG2 and ERβ, which provides a novel insight and therapeutic target for CRC.
Collapse
Affiliation(s)
- Jun Zhu
- State Key Laboratory of Cancer Biology, Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yongzhi Lv
- The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Jun Hao
- Department of Experiment Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Tingyu Shi
- Department of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Shuai Wang
- State Key Laboratory of Cancer Biology, Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Ke Wang
- State Key Laboratory of Cancer Biology, Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xiaoyan Fan
- Department of Experiment Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yuan Guo
- School of Clinical Medicine, Xi'an Medical University, Xi'an, China
| | - Jian Zhang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, China
| | - Jipeng Li
- State Key Laboratory of Cancer Biology, Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
3
|
Liang CW, Yang CY, Flavin R, Fletcher JA, Lu TP, Lai IR, Li YI, Chang YL, Lee JC. Loss of SFRP1 expression is a key progression event in gastrointestinal stromal tumor pathogenesis. Hum Pathol 2020; 107:69-79. [PMID: 33186588 DOI: 10.1016/j.humpath.2020.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/26/2020] [Accepted: 10/30/2020] [Indexed: 11/28/2022]
Abstract
The mechanism of high-grade transformation in gastrointestinal stromal tumors (GISTs) remains to be clarified. We aim to discover the key progression events by studying biphasic GISTs. The study group included 101 GISTs. Nineteen of these had been screened from 263 GISTs to represent the early stage of GIST high-grade transformation, characterized by juxtaposed low-grade and high-grade regions in the same tumor (so-called biphasic GISTs). Mutational analyses, fluorescence in situ hybridization (FISH), NanoString analyses, telomere analysis, and gene expression profiling were carried out, followed by in silico analyses, cell line study, and immunohistochemical validation. Using gene expression analysis, downregulation of SFRP1 was revealed to be the main event in GIST high-grade transformation (p = 0.013), accompanied by upregulation of EZH2. In silico analyses revealed that downregulation of SFRP1 was a common feature in GIST progression across several different series. Immunohistochemically, the expression of SFRP1 was validated to be significantly lower in high-grade GISTs (WHO risk group 3a or higher) than in low-grade GISTs (p < 0.001), and attenuation/loss of SFRP1 was associated with GIST tumor progression (p < 0.001). By NanoString and FISH analyses, chromosomal 9/9p loss was the only recurrent large-scale chromosome aberration in biphasic GISTs, with a correlation with SFRP1 downregulation. Subclones containing chromosome 9/9p loss could be appreciated in the low-grade parts of biphasic GISTs. TP53 mutation, RB1 loss, KIT/PDGFRA mutation, and alternative lengthening of telomeres did not play a significant role in GIST high-grade transformation. In conclusion, high-grade transformation of GISTs features SFRP1 downregulation and chromosome 9/9p loss.
Collapse
Affiliation(s)
- Cher-Wei Liang
- Department and Graduate Institute of Pathology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, 10002, Taiwan; Department of Pathology, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, 24352, Taiwan; School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, 24205, Taiwan
| | - Ching-Yao Yang
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, 10002, Taiwan
| | - Richard Flavin
- Department of Pathology, St. James's Hospital and Trinity College Dublin, Dublin, D02, Ireland
| | - Jonathan A Fletcher
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Tzu-Pin Lu
- Department of Public Health, Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, 10055, Taiwan
| | - I-Rue Lai
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, 10002, Taiwan
| | - Yu-I Li
- Department of Pathology, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, 24352, Taiwan
| | - Yih-Leong Chang
- Department and Graduate Institute of Pathology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, 10002, Taiwan.
| | - Jen-Chieh Lee
- Department and Graduate Institute of Pathology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, 10002, Taiwan.
| |
Collapse
|
4
|
Amirnasr A, Sleijfer S, Wiemer EAC. Non-Coding RNAs, a Novel Paradigm for the Management of Gastrointestinal Stromal Tumors. Int J Mol Sci 2020; 21:6975. [PMID: 32972022 PMCID: PMC7555847 DOI: 10.3390/ijms21186975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal malignancies found in the gastrointestinal tract. At a molecular level, most GISTs are characterized by gain-of-function mutations in V-Kit Hardy-Zuckerman 4 Feline Sarcoma Viral Oncogene Homolog (KIT) and Platelet Derived Growth Factor Receptor Alpha (PDGFRA), leading to constitutive activated signaling through these receptor tyrosine kinases, which drive GIST pathogenesis. In addition to surgery, treatment with the tyrosine kinase inhibitor imatinib forms the mainstay of GIST treatment, particularly in the advanced setting. Nevertheless, the majority of GISTs develop imatinib resistance. Biomarkers that indicate metastasis, drug resistance and disease progression early on could be of great clinical value. Likewise, novel treatment strategies that overcome resistance mechanisms are equally needed. Non-coding RNAs, particularly microRNAs, can be employed as diagnostic, prognostic or predictive biomarkers and have therapeutic potential. Here we review which non-coding RNAs are deregulated in GISTs, whether they can be linked to specific clinicopathological features and discuss how they can be used to improve the clinical management of GISTs.
Collapse
Affiliation(s)
| | | | - Erik A. C. Wiemer
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands; (A.A.); (S.S.)
| |
Collapse
|
5
|
Wang Y, Call J. Mutational Testing in Gastrointestinal Stromal Tumor. Curr Cancer Drug Targets 2020; 19:688-697. [PMID: 30914028 DOI: 10.2174/1568009619666190326123945] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/05/2019] [Accepted: 03/13/2019] [Indexed: 12/14/2022]
Abstract
Targeted treatment has become a major modality in cancer management. Such cancer drugs are generally designed to treat tumors with certain genetic/genomic makeups. Mutational testing prior to prescribing targeted therapy is crucial in identifying who can receive clinical benefit from specific cancer drugs. Over the last two decades, gastrointestinal stromal tumors (GISTs) have evolved from histogenetically obscure to being identified as distinct gastrointestinal mesenchymal tumors with well-defined clinical and molecular characteristics, for which multiple lines of targeted therapies are available. Although the National Comprehensive Cancer Network (NCCN) strongly recommends mutational testing for optimal management of GIST, many GIST patients still have neither a mutation test performed or any mutation-guided cancer management. Here, we review the mutation-guided landscape of GIST, mutational testing methods, and the recent development of new therapies targeting GIST with specific mutations.
Collapse
Affiliation(s)
- Yu Wang
- The Life Raft Group, 155 US-46 Wayne, NJ 07470, United States
| | - Jerry Call
- The Life Raft Group, 155 US-46 Wayne, NJ 07470, United States
| |
Collapse
|
6
|
Stefanou IK, Gazouli M, Zografos GC, Toutouzas KG. Role of non-coding RNAs in pathogenesis of gastrointestinal stromal tumors. World J Meta-Anal 2020; 8:233-244. [DOI: 10.13105/wjma.v8.i3.233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/22/2020] [Accepted: 06/28/2020] [Indexed: 02/06/2023] Open
|
7
|
Heilig CE, Horak P, Lipka DB, Mock A, Uhrig S, Kreutzfeldt S, Richter S, Gieldon L, Fröhlich M, Hutter B, Hübschmann D, Teleanu V, Schmier JW, Philipzen J, Beuthien-Baumann B, Schröck E, von Deimling A, Bauer S, Heining C, Mechtersheimer G, Stenzinger A, Brors B, Wardelmann E, Glimm H, Hartmann W, Fröhling S. Germline SDHB-inactivating mutation in gastric spindle cell sarcoma. Genes Chromosomes Cancer 2020; 59:601-608. [PMID: 32501622 DOI: 10.1002/gcc.22876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/12/2020] [Accepted: 05/30/2020] [Indexed: 01/30/2023] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are the most frequent mesenchymal tumors of the gastrointestinal tract. Inactivating mutations or epigenetic deregulation of succinate dehydrogenase complex (SDH) genes are considered defining features of a subset of GIST occurring in the stomach. Based on comprehensive molecular profiling and biochemical analysis within a precision oncology program, we identified hallmarks of SDH deficiency (germline SDHB-inactivating mutation accompanied by somatic loss of heterozygosity, lack of SDHB expression, global DNA hypermethylation, and elevated succinate/fumarate ratio) in a 40-year-old woman with undifferentiated gastric spindle cell sarcoma that did not meet the diagnostic criteria for other mesenchymal tumors of the stomach, including GIST. These data reveal that the loss of SDH function can be involved in the pathogenesis of non-GIST sarcoma of the gastrointestinal tract.
Collapse
Affiliation(s)
- Christoph E Heilig
- Department of Translational Medical Oncology, National Center for Tumor Diseases Heidelberg and German Cancer Research Center, Heidelberg, Germany.,German Cancer Consortium, Heidelberg, Germany
| | - Peter Horak
- Department of Translational Medical Oncology, National Center for Tumor Diseases Heidelberg and German Cancer Research Center, Heidelberg, Germany.,German Cancer Consortium, Heidelberg, Germany
| | - Daniel B Lipka
- German Cancer Consortium, Heidelberg, Germany.,Section Translational Cancer Epigenomics, Department of Translational Medical Oncology, National Center for Tumor Diseases Heidelberg and German Cancer Research Center, Heidelberg, Germany
| | - Andreas Mock
- Department of Translational Medical Oncology, National Center for Tumor Diseases Heidelberg and German Cancer Research Center, Heidelberg, Germany.,German Cancer Consortium, Heidelberg, Germany.,Department of Medical Oncology, National Center for Tumor Diseases Heidelberg and Heidelberg University Hospital, Heidelberg, Germany
| | - Sebastian Uhrig
- Division of Applied Bioinformatics, German Cancer Research Center, Heidelberg, Germany.,Molecular Diagnostics Program, National Center for Tumor Diseases Heidelberg and German Cancer Research Center, Heidelberg, Germany
| | - Simon Kreutzfeldt
- Department of Translational Medical Oncology, National Center for Tumor Diseases Heidelberg and German Cancer Research Center, Heidelberg, Germany.,German Cancer Consortium, Heidelberg, Germany
| | - Susan Richter
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Laura Gieldon
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Martina Fröhlich
- Division of Applied Bioinformatics, German Cancer Research Center, Heidelberg, Germany.,Molecular Diagnostics Program, National Center for Tumor Diseases Heidelberg and German Cancer Research Center, Heidelberg, Germany
| | - Barbara Hutter
- Division of Applied Bioinformatics, German Cancer Research Center, Heidelberg, Germany.,Molecular Diagnostics Program, National Center for Tumor Diseases Heidelberg and German Cancer Research Center, Heidelberg, Germany
| | - Daniel Hübschmann
- German Cancer Consortium, Heidelberg, Germany.,Molecular Diagnostics Program, National Center for Tumor Diseases Heidelberg and German Cancer Research Center, Heidelberg, Germany
| | - Veronica Teleanu
- Department of Translational Medical Oncology, National Center for Tumor Diseases Heidelberg and German Cancer Research Center, Heidelberg, Germany.,German Cancer Consortium, Heidelberg, Germany
| | - Johann-Wilhelm Schmier
- Department of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Bettina Beuthien-Baumann
- German Cancer Consortium, Heidelberg, Germany.,Division of Radiology, German Cancer Research Center, Heidelberg, Germany
| | - Evelin Schröck
- Institute of Clinical Genetics, Faculty of Medicine Carl Gustav Carus, Technical University Dresden, Dresden, Germany.,German Cancer Consortium, Dresden, Germany
| | - Andreas von Deimling
- German Cancer Consortium, Heidelberg, Germany.,Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Neuropathology, German Cancer Research Center, Heidelberg, Germany
| | - Sebastian Bauer
- West German Cancer Center, University of Duisburg-Essen, Essen, Germany.,German Cancer Consortium, Essen, Germany
| | - Christoph Heining
- German Cancer Consortium, Dresden, Germany.,Department of Translational Medical Oncology, National Center for Tumor Diseases Dresden and German Cancer Research Center, Dresden, Germany.,Center for Personalized Oncology, NCT Dresden and University Hospital Carl Gustav Carus Dresden, Technical University Dresden, Dresden, Germany
| | | | - Albrecht Stenzinger
- German Cancer Consortium, Heidelberg, Germany.,Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Benedikt Brors
- German Cancer Consortium, Heidelberg, Germany.,Division of Applied Bioinformatics, German Cancer Research Center, Heidelberg, Germany
| | - Eva Wardelmann
- Gerhard Domagk Institute of Pathology, Münster University Hospital, Münster, Germany
| | - Hanno Glimm
- German Cancer Consortium, Dresden, Germany.,Department of Translational Medical Oncology, National Center for Tumor Diseases Dresden and German Cancer Research Center, Dresden, Germany.,Center for Personalized Oncology, NCT Dresden and University Hospital Carl Gustav Carus Dresden, Technical University Dresden, Dresden, Germany.,Translational Functional Cancer Genomics Group, National Center for Tumor Diseases Heidelberg and German Cancer Research Center, Heidelberg, Germany
| | - Wolfgang Hartmann
- Division of Translational Pathology, Gerhard Domagk Institute of Pathology, Münster University Hospital, Münster, Germany
| | - Stefan Fröhling
- Department of Translational Medical Oncology, National Center for Tumor Diseases Heidelberg and German Cancer Research Center, Heidelberg, Germany.,German Cancer Consortium, Heidelberg, Germany
| |
Collapse
|
8
|
Niinuma T, Suzuki H, Sugai T. Molecular characterization and pathogenesis of gastrointestinal stromal tumor. Transl Gastroenterol Hepatol 2018; 3:2. [PMID: 29441367 DOI: 10.21037/tgh.2018.01.02] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 01/04/2018] [Indexed: 12/11/2022] Open
Abstract
Most gastrointestinal stromal tumors (GISTs) harbor activating mutations in the receptor tyrosine kinase gene KIT or platelet-derived growth factor receptor alpha (PDGFRA), and the resultant activation of downstream signals plays a pivotal role in the development of GISTs. The sites of the tyrosine kinase gene mutations are associated with the biological behavior of GISTs, including risk category, clinical outcome and drug response. Mutations in RAS signaling pathway genes, including KRAS and BRAF, have also been reported in KIT/PDGFRA wild-type GISTs, though they are rare. Neurofibromin 1 (NF1) is a tumor suppressor gene mutated in neurofibromatosis type 1. Patients with NF1 mutations are at high risk of developing GISTs. Recent findings suggest that altered expression or mutation of members of succinate dehydrogenase (SDH) heterotetramer are causally associated with GIST development through induction of aberrant DNA methylation. At present, GISTs with no alterations in KIT, PDGFRA, RAS signaling genes or SDH family genes are referred to as true wild-type GISTs. KIT and PDGFRA mutations are thought as the earliest events in GIST development, and subsequent accumulation of chromosomal aberrations and other molecular alterations are required for malignant progression. In addition, recent studies have shown that epigenetic alterations and noncoding RNAs also play key roles in the pathogenesis of GISTs.
Collapse
Affiliation(s)
- Takeshi Niinuma
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiromu Suzuki
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tamotsu Sugai
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Morioka, Japan
| |
Collapse
|
9
|
Li K, Cheng H, Li Z, Pang Y, Jia X, Xie F, Hu G, Cai Q, Wang Y. Genetic progression in gastrointestinal stromal tumors: mechanisms and molecular interventions. Oncotarget 2017; 8:60589-60604. [PMID: 28947997 PMCID: PMC5601165 DOI: 10.18632/oncotarget.16014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/02/2017] [Indexed: 01/15/2023] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are the most common sarcomas in humans. Constitutively activating mutations in the KIT or PDGFRA receptor tyrosine kinases are the initiating oncogenic events. Most metastatic GISTs respond dramatically to therapies with KIT/PDGFRA inhibitors. Asymptomatic and mitotically-inactive KIT/PDGFRA-mutant "microGISTs" are found in one third of adults, but most of these small tumors never progress to malignancy, underscoring that a progression of oncogenic mutations is required. Recent studies have identified key genomic abnormalities in GIST progression. Novel insights into the genetic progression of GISTs are shedding new light on therapeutic innovations.
Collapse
Affiliation(s)
- Ke Li
- SIBS (Institute of Health Sciences), Changzheng Hospital Joint Center for Translational Medicine, Institute of Health Sciences, Shanghai Changzheng Hospital, Institutes for Translational Medicine (CAS-SMMU), University of Chinese Academy of Sciences, Shanghai, China.,Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haibo Cheng
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China.,Key Laboratory of SATCM for Empirical Formulae Evaluation and Achievements Transformation, Nanjing, China.,Collaborative Innovation Center of Jiangsu Province Chinese Medicine in Cancer Prevention and Treatment, Nanjing, China
| | - Zhang Li
- SIBS (Institute of Health Sciences), Changzheng Hospital Joint Center for Translational Medicine, Institute of Health Sciences, Shanghai Changzheng Hospital, Institutes for Translational Medicine (CAS-SMMU), University of Chinese Academy of Sciences, Shanghai, China.,Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuzhi Pang
- SIBS (Institute of Health Sciences), Changzheng Hospital Joint Center for Translational Medicine, Institute of Health Sciences, Shanghai Changzheng Hospital, Institutes for Translational Medicine (CAS-SMMU), University of Chinese Academy of Sciences, Shanghai, China.,Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaona Jia
- SIBS (Institute of Health Sciences), Changzheng Hospital Joint Center for Translational Medicine, Institute of Health Sciences, Shanghai Changzheng Hospital, Institutes for Translational Medicine (CAS-SMMU), University of Chinese Academy of Sciences, Shanghai, China.,Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feifei Xie
- SIBS (Institute of Health Sciences), Changzheng Hospital Joint Center for Translational Medicine, Institute of Health Sciences, Shanghai Changzheng Hospital, Institutes for Translational Medicine (CAS-SMMU), University of Chinese Academy of Sciences, Shanghai, China.,Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guohong Hu
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingping Cai
- Department of Gastro-intestinal Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yuexiang Wang
- SIBS (Institute of Health Sciences), Changzheng Hospital Joint Center for Translational Medicine, Institute of Health Sciences, Shanghai Changzheng Hospital, Institutes for Translational Medicine (CAS-SMMU), University of Chinese Academy of Sciences, Shanghai, China.,Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Collaborative Innovation Center of Systems Biomedicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
[Gastrointestinal stromal tumors of the stomach and precursor lesions]. DER PATHOLOGE 2017; 38:105-111. [PMID: 28243730 DOI: 10.1007/s00292-017-0275-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Gastrointestinal stromal tumors (GIST) are the most common mesenchymal tumors in the gastrointestinal tract although they are much less frequent than epithelial tumors. In more than 60% of cases they occur in the stomach. Especially small lesions measuring ≤1 cm in diameter, so-called microscopic GIST can occur multifocally, frequently in the proximal stomach wall and sometimes as an incidental finding in a gastrectomy specimen resected for gastric cancer. The multicentricity of GIST alone is not proof of a metastatic behavior or a syndromal or hereditary disease. Multiple sporadic synchronous and metachronous GIST are characterized by different primary mutations mostly in the KIT or PDGFRA genes and are often less aggressive. It is speculative whether a field effect is responsible or whether still unknown GIST-promoting factors may facilitate the development of several independent lesions. If KIT or PDGFRA mutations are lacking, a succinate dehydrogenase (SDH) deficient GIST has to be considered, either hereditary as Carney-Stratakis syndrome or syndromal as part of a Carney triad.
Collapse
|
11
|
Merten L, Agaimy A, Moskalev EA, Giedl J, Kayser C, Geddert H, Schaefer IM, Cameron S, Werner M, Ströbel P, Hartmann A, Haller F. Inactivating Mutations of RB1 and TP53 Correlate With Sarcomatous Histomorphology and Metastasis/Recurrence in Gastrointestinal Stromal Tumors. Am J Clin Pathol 2016; 146:718-726. [PMID: 28028119 DOI: 10.1093/ajcp/aqw193] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
OBJECTIVES Loss-of-function mutations in TP53 and CDKN2A have been found at varying frequencies in gastrointestinal stromal tumors (GISTs), while no mutations of RB1 have been reported to date. The aim of the current study was to determine the mutation frequency of TP53, RB1, and CDKN2A in GISTs. METHODS A cohort of 83 primary untreated GISTs was analyzed for mutations in TP53, RB1, and CDKN2A by massive parallel sequencing. Tumors with mutations in TP53 and RB1 were analyzed by fluorescence in situ hybridization for the corresponding gene loci. RESULTS Two GISTs harbored inactivating mutations in RB1, and two other GISTs displayed inactivating mutations in TP53 All four tumors were KIT mutant high-risk tumors with highly cellular sarcomatous histomorphology and variable combinations of plump spindle cells to epithelioid highly atypical cells and high mitotic activity. Three of these patients developed recurrent or metastatic disease, while the fourth patient showed tumor rupture intraoperatively. The combined overall frequency of TP53 and RB1 mutations was 13% considering high-risk or malignant GISTs. CONCLUSIONS TP53 and RB1 mutations seem to be restricted to high-risk/malignant GISTs and occur at an equal although relatively low frequency.
Collapse
Affiliation(s)
- Larissa Merten
- From the Institute of Pathology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Abbas Agaimy
- From the Institute of Pathology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Evgeny A Moskalev
- From the Institute of Pathology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Johannes Giedl
- From the Institute of Pathology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Claudia Kayser
- Institute of Pathology, Albert-Ludwigs University, Freiburg, Germany
| | - Helene Geddert
- Institute of Pathology, St. Vincentius Hospital, Karlsruhe, Germany
| | - Inga-Marie Schaefer
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and
| | - Silke Cameron
- Clinic for Gastroenterology and Gastrointestinal Oncology
| | - Martin Werner
- Institute of Pathology, Albert-Ludwigs University, Freiburg, Germany
| | - Philip Ströbel
- Institute of Pathology, Georg August University, Göttingen, Germany
| | - Arndt Hartmann
- From the Institute of Pathology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Florian Haller
- From the Institute of Pathology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
12
|
Szucs Z, Thway K, Fisher C, Bulusu R, Constantinidou A, Benson C, van der Graaf WT, Jones RL. Molecular subtypes of gastrointestinal stromal tumors and their prognostic and therapeutic implications. Future Oncol 2016; 13:93-107. [PMID: 27600498 DOI: 10.2217/fon-2016-0192] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are composed of various molecular subtypes, with differing prognostic and predictive relevance. Previously, tumors lacking mutations in the KIT and PDGFRA genes have been designated as 'wild-type' GISTs; however, they represent a heterogeneous group currently undergoing further subclassification. Primary and secondary resistance to imatinib poses a significant clinical challenge, therefore ongoing research is trying to evaluate mechanisms to overcome resistance. Thorough understanding of the prognostic and predictive relevance of different genetic subtypes of GIST can guide clinical decision-making both in the adjuvant and the metastatic setting. Further work is required to identify tailored therapies for specific subgroups of GISTs wild-type for KIT and PDGFRA mutations and to identify predictive factors of resistance to currently approved systemic therapies.
Collapse
Affiliation(s)
- Zoltan Szucs
- The Royal Marsden Hospital NHS Foundation Trust, Fulham Road, London, SW3 6JJ, UK
| | - Khin Thway
- The Royal Marsden Hospital NHS Foundation Trust, Fulham Road, London, SW3 6JJ, UK
| | - Cyril Fisher
- The Royal Marsden Hospital NHS Foundation Trust, Fulham Road, London, SW3 6JJ, UK
| | - Ramesh Bulusu
- Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0QQ, UK
| | | | - Charlotte Benson
- The Royal Marsden Hospital NHS Foundation Trust, Fulham Road, London, SW3 6JJ, UK
| | - Winette Ta van der Graaf
- The Royal Marsden Hospital NHS Foundation Trust, Fulham Road, London, SW3 6JJ, UK.,The Institute of Cancer Research, Cotswold Road, Sutton, SM2 5NG, UK
| | - Robin L Jones
- The Royal Marsden Hospital NHS Foundation Trust, Fulham Road, London, SW3 6JJ, UK
| |
Collapse
|
13
|
Akçakaya P, Lui WO. MicroRNAs and Gastrointestinal Stromal Tumor. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 889:51-70. [PMID: 26658996 DOI: 10.1007/978-3-319-23730-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Gastrointestinal stromal tumor (GIST) is the most commonly diagnosed mesenchymal tumor in the gastrointestinal tract. This tumor type is driven by gain-of-function mutations in receptor tyrosine kinases (such as KIT, PDGFRA, and BRAF) or loss-of-function mutations in succinate dehydrogenase complex subunit genes (SDHx). Molecular studies on GIST have improved our understanding of the biology of the disease and have led to the use of targeted therapy approach, such as imatinib for KIT/PDGFRA-mutated GIST. Recently, microRNAs have emerged as important regulators of KIT expression, cancer cell behavior, and imatinib response in GIST. This chapter aims to provide an overview on current understanding of the biological roles of microRNAs in GIST and possible implications in prognosis and therapeutic response.
Collapse
Affiliation(s)
- Pinar Akçakaya
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, SE-17176, Sweden. .,Cancer Center Karolinska, Karolinska University Hospital, Stockholm, SE-17176, Sweden.
| | - Weng-Onn Lui
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, SE-17176, Sweden. .,Cancer Center Karolinska, Karolinska University Hospital, Stockholm, SE-17176, Sweden.
| |
Collapse
|
14
|
Belinsky MG, Rink L, Cai KQ, Capuzzi SJ, Hoang Y, Chien J, Godwin AK, von Mehren M. Somatic loss of function mutations in neurofibromin 1 and MYC associated factor X genes identified by exome-wide sequencing in a wild-type GIST case. BMC Cancer 2015; 15:887. [PMID: 26555092 PMCID: PMC4641358 DOI: 10.1186/s12885-015-1872-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/30/2015] [Indexed: 12/25/2022] Open
Abstract
Background Approximately 10–15 % of gastrointestinal stromal tumors (GISTs) lack gain of function mutations in the KIT and platelet-derived growth factor receptor alpha (PDGFRA) genes. An alternate mechanism of oncogenesis through loss of function of the succinate-dehydrogenase (SDH) enzyme complex has been identified for a subset of these “wild type” GISTs. Methods Paired tumor and normal DNA from an SDH-intact wild-type GIST case was subjected to whole exome sequencing to identify the pathogenic mechanism(s) in this tumor. Selected findings were further investigated in panels of GIST tumors through Sanger DNA sequencing, quantitative real-time PCR, and immunohistochemical approaches. Results A hemizygous frameshift mutation (p.His2261Leufs*4), in the neurofibromin 1 (NF1) gene was identified in the patient’s GIST; however, no germline NF1 mutation was found. A somatic frameshift mutation (p.Lys54Argfs*31) in the MYC associated factor X (MAX) gene was also identified. Immunohistochemical analysis for MAX on a large panel of GISTs identified loss of MAX expression in the MAX-mutated GIST and in a subset of mainly KIT-mutated tumors. Conclusion This study suggests that inactivating NF1 mutations outside the context of neurofibromatosis may be the oncogenic mechanism for a subset of sporadic GIST. In addition, loss of function mutation of the MAX gene was identified for the first time in GIST, and a broader role for MAX in GIST progression was suggested. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1872-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Martin G Belinsky
- Molecular Therapeutics Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111-2497, USA.
| | - Lori Rink
- Molecular Therapeutics Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111-2497, USA.
| | - Kathy Q Cai
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA, USA.
| | - Stephen J Capuzzi
- Molecular Therapeutics Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111-2497, USA. .,Division of Chemical Biology and Medicinal Chemistry, University of North Carolina, Chapel Hill, NC, USA.
| | - Yen Hoang
- Department of Bioinformatics and Biosystems Technology, University of Applied Sciences Wildau, Wildau, Germany. .,Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA.
| | - Jeremy Chien
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA.
| | - Andrew K Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA.
| | - Margaret von Mehren
- Molecular Therapeutics Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111-2497, USA.
| |
Collapse
|
15
|
Isosaka M, Niinuma T, Nojima M, Kai M, Yamamoto E, Maruyama R, Nobuoka T, Nishida T, Kanda T, Taguchi T, Hasegawa T, Tokino T, Hirata K, Suzuki H, Shinomura Y. A Screen for Epigenetically Silenced microRNA Genes in Gastrointestinal Stromal Tumors. PLoS One 2015. [PMID: 26214687 PMCID: PMC4516245 DOI: 10.1371/journal.pone.0133754] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Dysregulation of microRNA (miRNA) has been implicated in gastrointestinal stromal tumors (GISTs) but the mechanism is not fully understood. In this study, we aimed to explore the involvement of epigenetic alteration of miRNA genes in GISTs. Methods GIST-T1 cells were treated with 5-aza-2’-deoxycytidine (5-aza-dC) and 4-phenylbutyric acid (PBA), after which miRNA expression profiles were analyzed using TaqMan miRNA arrays. DNA methylation was then analyzed using bisulfite pyrosequencing. The functions of miRNAs were examined using MTT assays, wound-healing assays, Boyden chamber assays and Matrigel invasion assays. Gene expression microarrays were analyzed to assess effect of ectopic miRNA expression in GIST-T1 cells. Results Of the 754 miRNAs analyzed, 61 were significantly upregulated in GIST-T1 cells treated with 5-aza-dC plus PBA. Among those, 21 miRNA genes were associated with an upstream CpG island (CGI), and the CGIs of miR-34a and miR-335 were frequently methylated in GIST-T1 cells and primary GIST specimens. Transfection of miR-34a or miR-335 mimic molecules into GIST-T1 cells suppressed cell proliferation, and miR-34a also inhibited migration and invasion by GIST-T1 cells. Moreover, miR-34a downregulated a number of predicted target genes, including PDGFRA. RNA interference-mediated knockdown of PDGFRA in GIST-T1 cells suppressed cell proliferation, suggesting the tumor suppressive effect of miR-34a is mediated, at least in part, through targeting PDGFRA. Conclusions Our results suggest that miR-34a and miR-335 are candidate tumor suppressive miRNAs in GISTs, and that they are frequent targets of epigenetic silencing in GISTs.
Collapse
Affiliation(s)
- Mai Isosaka
- Department of Gastroenterology, Rheumatology and Clinical Immunology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takeshi Niinuma
- Department of Molecular Biology, Sapporo Medical University, Sapporo, Japan
| | - Masanori Nojima
- Center for Translational Research, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Masahiro Kai
- Department of Molecular Biology, Sapporo Medical University, Sapporo, Japan
| | - Eiichiro Yamamoto
- Department of Gastroenterology, Rheumatology and Clinical Immunology, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Molecular Biology, Sapporo Medical University, Sapporo, Japan
| | - Reo Maruyama
- Department of Gastroenterology, Rheumatology and Clinical Immunology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takayuki Nobuoka
- Department of Surgery, Surgical Oncology and Science, Sapporo Medical University School of Medicine, Sapporo, Japan
| | | | - Tatsuo Kanda
- Department of Surgery, Sanjo General Hospital, Sanjo City, Niigata, Japan
| | - Takahiro Taguchi
- Division of Human Health and Medical Science, Graduate School of Kuroshio Science, Kochi University, Nankoku, Japan
| | - Tadashi Hasegawa
- Department of Surgical Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takashi Tokino
- Medical Genome Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Koichi Hirata
- Department of Surgery, Surgical Oncology and Science, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiromu Suzuki
- Department of Molecular Biology, Sapporo Medical University, Sapporo, Japan
- * E-mail:
| | - Yasuhisa Shinomura
- Department of Gastroenterology, Rheumatology and Clinical Immunology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
16
|
Personalized Medicine in Gastrointestinal Stromal Tumor (GIST): Clinical Implications of the Somatic and Germline DNA Analysis. Int J Mol Sci 2015; 16:15592-608. [PMID: 26184165 PMCID: PMC4519915 DOI: 10.3390/ijms160715592] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/07/2015] [Accepted: 07/07/2015] [Indexed: 12/26/2022] Open
Abstract
Gastrointestinal stromal tumors (GIST) are the most common mesenchymal tumors of the gastrointestinal tract. They are characterized by gain of function mutations in KIT or PDGFRA tyrosine kinase receptors, with their consequent constitutive activation. The gold standard therapy is imatinib that offers a good and stable response for approximately 18–36 months. However, resistance is very common and it is vital to identify new biomarkers. Up until now, there have been two main approaches with focus to characterize novel targets. On the one hand, the focus is on the tumor genome, as the final clinical outcome depends mainly from the cancer specific mutations/alterations patterns. However, the germline DNA is important as well, and it is inconceivable to think the patients response to the drug is not related to it. Therefore the aim of this review is to outline the state of the art of the personalized medicine in GIST taking into account both the tumor DNA (somatic) and the patient DNA (germline).
Collapse
|
17
|
Gu Y, Zhang X, Yang Q, Wang JM, He YP, Sun ZG, Zhang HQ, Wang J. Uterine NDRG2 expression is increased at implantation sites during early pregnancy in mice, and its down-regulation inhibits decidualization of mouse endometrial stromal cells. Reprod Biol Endocrinol 2015; 13:49. [PMID: 26013399 PMCID: PMC4447025 DOI: 10.1186/s12958-015-0047-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 05/20/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND N-myc down-regulated gene 2 (NDRG2) is a tumor suppressor involved in cell proliferation and differentiation. The aim of this study was to determine the uterine expression pattern of this gene during early pregnancy in mice. METHODS Uterine NDRG2 mRNA and protein expression levels were determined by RT-PCR and Western blot analyses, respectively, during the peri-implantation period in mice. Immunohistochemical (IHC) analysis was performed to examine the spatial localization of NDRG2 expression in mouse uterine tissues. The in vitro decidualization model of mouse endometrial stromal cells (ESCs) was used to evaluate decidualization of ESCs following NDRG2 knock down by small interfering RNA (siRNA). Statistical significance was analyzed by one-way ANOVA using SPSS 19.0 software. RESULTS Uterine NDRG2 gene expression was significantly up-regulated and was predominantly localized to the secondary decidual zone on days 5 and 8 of pregnancy in mice. Its increased expression was associated with artificial decidualization as well as the activation of delayed implantation. Furthermore, uterine NDRG2 expression was induced by estrogen and progesterone treatments. The in vitro decidualization of mouse ESCs was accompanied by up-regulation of NDRG2 expression, and knock down of its expression in these cells by siRNA inhibited the decidualization process. CONCLUSIONS These results suggest that NDRG2 might play an important role in the process of decidualization during early pregnancy.
Collapse
Affiliation(s)
- Yan Gu
- Shanghai Medical School, Fudan University, Shanghai, China.
| | - Xuan Zhang
- NPFPC Key Laboratory of Contraceptive Drugs & Devices, Shanghai Institute of Planned Parenthood Research, Shanghai, China.
| | - Qian Yang
- Shanghai Medical School, Fudan University, Shanghai, China.
| | - Jian-mei Wang
- The Second Hospital of Tianjin Medical University, Tianjin, China.
| | - Ya-ping He
- NPFPC Key Laboratory of Contraceptive Drugs & Devices, Shanghai Institute of Planned Parenthood Research, Shanghai, China.
| | - Zhao-gui Sun
- NPFPC Key Laboratory of Contraceptive Drugs & Devices, Shanghai Institute of Planned Parenthood Research, Shanghai, China.
| | - Hui-qin Zhang
- Shanghai Medical School, Fudan University, Shanghai, China.
| | - Jian Wang
- NPFPC Key Laboratory of Contraceptive Drugs & Devices, Shanghai Institute of Planned Parenthood Research, Shanghai, China.
| |
Collapse
|
18
|
Li CF, Chen LT, Lan J, Chou FF, Lin CY, Chen YY, Chen TJ, Li SH, Yu SC, Fang FM, Tai HC, Huang HY. AMACR amplification and overexpression in primary imatinib-naïve gastrointestinal stromal tumors: a driver of cell proliferation indicating adverse prognosis. Oncotarget 2014; 5:11588-11603. [PMID: 25473890 PMCID: PMC4294386 DOI: 10.18632/oncotarget.2597] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 10/18/2014] [Indexed: 12/12/2022] Open
Abstract
Non-random gains of chromosome 5p have been observed in clinically aggressive gastrointestinal stromal tumors, whereas the driving oncogenes on 5p remain to be characterized. We used an integrative genomic and functional approach to identify amplified oncogenes on 5p and to evaluate the relevance of AMACR amplification at 5p13.3 and its overexpression in gastrointestinal stromal tumors. Thirty-seven tumor samples, imatinib-sensitive GIST882 cell line, and imatinib-resistant GIST48 cell line were analyzed for DNA imbalances using array-based genomic profiling. Forty-one fresh tumor samples of various risk categories were enriched for pure tumor cells by laser capture microdissection and quantified for AMACR mRNA expression. AMACR-specific fluorescence in situ hybridization and immunohistochemistry were both informative in tissue microarray sections of 350 independent primary gastrointestinal stromal tumors, including 213 cases with confirmed KIT /PDGFRA genotypes. To assess the oncogenic functions of AMACR, GIST882 and GIST48 cell lines were stably silenced against their endogenous AMACR expression. In 59% of cases featuring 5p gains, two major amplicons encompassed discontinuous chromosomal regions that were differentially overrepresented in high-risk cases, including the one harboring the mRNA-upregulated AMACR gene. Gene amplification was detected in 19.7% of cases (69/350) and strongly related to protein overexpression (p<0.001), although 52% of AMACR-overexpressing cases exhibited no amplification. Both gene amplification and protein overexpression were significantly associated with epithelioid histology, larger size, increased mitoses, higher risk levels, and unfavorable genotypes (all p≦0.03). They were also independently predictive of decreased disease-free survival (overexpression, p<0.001; amplification, p=0.020) in the multivariate analysis. Concomitant with downregulated cyclin D1, cyclin E, and CDK4, AMACR knockdown suppressed cell proliferation and induced G1-phase arrest, but did not affect apoptosis in both GIST882 and GIST48 cells. In conclusion, AMACR amplification is a mechanism driving increased mRNA and protein expression and conferring aggressiveness through heightened cell proliferation in gastrointestinal stromal tumors.
Collapse
Affiliation(s)
- Chien-Feng Li
- Department of Pathology, Chi-Mei Medical Center, Tainan, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
- Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Li-Tzong Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
- Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Internal Medicine and Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Institutes of Molecular Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jui Lan
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Fong-Fu Chou
- Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ching-Yih Lin
- Department of Tourism Management, Southern Taiwan University of Science and Technology, Tainan, Taiwan
- Department of Internal Medicine, Chi-Mei Medical Center, Tainan, Taiwan
| | - Yen-Yang Chen
- Division of Oncology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Tzu-Ju Chen
- Department of Pathology, Chi-Mei Medical Center, Tainan, Taiwan
| | - Shau-Hsuan Li
- Division of Oncology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shih-Chen Yu
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Fu-Ming Fang
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hui-Chun Tai
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan
| | - Hsuan-Ying Huang
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
19
|
Corless CL. Gastrointestinal stromal tumors: what do we know now? Mod Pathol 2014; 27 Suppl 1:S1-16. [PMID: 24384849 DOI: 10.1038/modpathol.2013.173] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 06/15/2013] [Accepted: 06/17/2013] [Indexed: 12/15/2022]
Abstract
Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors of the GI tract, arising from the interstitial cells of Cajal, primarily in the stomach and small intestine. They manifest a wide range of morphologies, from spindle cell to epithelioid, but are immunopositive for KIT (CD117) and/or DOG1 in essentially all cases. Although most tumors are localized at presentation, up to half will recur in the abdomen or spread to the liver. The growth of most GISTs is driven by oncogenic mutations in either of two receptor tyrosine kinases: KIT (75% of cases) or PDGFRA (10%). Treatment with tyrosine kinase inhibitors (TKIs) such as imatinib, sunitinib, and regorafenib is effective in controlling unresectable disease; however, drug resistance caused by secondary KIT or PDGFRA mutations eventually develops in 90% of cases. Adjuvant therapy with imatinib is commonly used to reduce the likelihood of disease recurrence after primary surgery, and for this reason assessing the prognosis of newly resected tumors is one of the most important roles for pathologists. Approximately 15% of GISTs are negative for mutations in KIT and PDGFRA. Recent studies of these so-called wild-type GISTs have uncovered a number of other oncogenic drivers, including mutations in neurofibromatosis type I, RAS genes, BRAF, and subunits of the succinate dehydrogenase complex. Routine genotyping is strongly recommended for optimal management of GISTs, as the type and dose of TKI used for treatment is dependent on the mutation identified.
Collapse
Affiliation(s)
- Christopher L Corless
- Department of Pathology (L471) and Knight Diagnostic Laboratories, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
20
|
Schaefer IM, Delfs C, Cameron S, Gunawan B, Agaimy A, Ghadimi BM, Haller F. Chromosomal aberrations in primary PDGFRA-mutated gastrointestinal stromal tumors. Hum Pathol 2013; 45:85-97. [PMID: 24157063 DOI: 10.1016/j.humpath.2013.05.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 05/21/2013] [Accepted: 05/21/2013] [Indexed: 01/08/2023]
Abstract
Approximately 15% of gastrointestinal stromal tumors (GISTs) harbor mutations in the platelet-derived growth factor receptor α (PDGFRA) gene. Chromosomal aberrations play a crucial role in tumor progression and correlate with clinical behavior. Imbalances, particularly in PDGFRA-mutated GISTs, have not yet been evaluated in larger series. We analyzed 53 PDGFRA-mutated GISTs (including 2 with corresponding metastases) for chromosomal imbalances by conventional comparative genomic hybridization and compared them with a historical collective of 122 KIT-mutated GISTs. PDGFRA exon 18 mutations (91% of cases) and exon 12 mutations (9% of cases) correlated significantly with gastric and intestinal sites, respectively. The most common aberrations were identical to those found in KIT-mutated GISTs, with -14q in 70%, -1p in 28%, and -22q in 17% of cases. Overall, there were significantly fewer chromosomal aberrations compared with KIT-mutated GISTs, with a mean of 2.8 (0.6 gains, 2.1 losses) aberrations per tumor. There was a statistically significant association of more than 5 chromosomal imbalances with intermediate/high-risk categories. Regarding specific chromosomal aberrations, -9p, -13q, and -22q correlated with intermediate/high risk, and -1p and +8q with poorer survival, although progression occurred in only 2 cases. Altogether, PDGFRA-mutated GISTs display the same chromosomal aberrations as KIT-mutated GISTs, although they have a lower degree of chromosomal instability in line with their generally favorable outcome.
Collapse
Affiliation(s)
- Inga-Marie Schaefer
- Department of Pathology, University Medical Center Göttingen, Robert-Koch-Straße 40, Göttingen D-37075, Germany.
| | | | | | | | | | | | | |
Collapse
|
21
|
Lee EJ, Kang G, Kang SW, Jang KT, Lee J, Park JO, Park CK, Sohn TS, Kim S, Kim KM. GSTT1 copy number gain and ZNF overexpression are predictors of poor response to imatinib in gastrointestinal stromal tumors. PLoS One 2013; 8:e77219. [PMID: 24124608 PMCID: PMC3790698 DOI: 10.1371/journal.pone.0077219] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 09/01/2013] [Indexed: 01/25/2023] Open
Abstract
Oncogenic mutations in gastrointestinal stromal tumors (GISTs) predict prognosis and therapeutic responses to imatinib. In wild-type GISTs, the tumor-initiating events are still unknown, and wild-type GISTs are resistant to imatinib therapy. We performed an association study between copy number alterations (CNAs) identified from array CGH and gene expression analyses results for four wild-type GISTs and an imatinib-resistant PDGFRA D842V mutant GIST, and compared the results to those obtained from 27 GISTs with KIT mutations. All wild-type GISTs had multiple CNAs, and CNAs in 1p and 22q that harbor the SDHB and GSTT1 genes, respectively, correlated well with expression levels of these genes. mRNA expression levels of all SDH gene subunits were significantly lower (P≤0.041), whereas mRNA expression levels of VEGF (P=0.025), IGF1R (P=0.026), and ZNFs (P<0.05) were significantly higher in GISTs with wild-type/PDGFRA D842V mutations than GISTs with KIT mutations. qRT-PCR validation of the GSTT1 results in this cohort and 11 additional malignant GISTs showed a significant increase in the frequency of GSTT1 CN gain and increased mRNA expression of GSTT1 in wild-type/PDGFRA D842V GISTs than KIT-mutant GISTs (P=0.033). Surprisingly, all four malignant GISTs with KIT exon 11 deletion mutations with primary resistance to imatinib had an increased GSTT1 CN and mRNA expression level of GSTT1. Increased mRNA expression of GSTT1 and ZNF could be predictors of a poor response to imatinib. Our integrative approach reveals that for patients with wild-type (or imatinib-resistant) GISTs, attempts to target VEGFRs and IGF1R may be reasonable options.
Collapse
Affiliation(s)
- Eui Jin Lee
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Guhyun Kang
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Department of Pathology, Sanggye Paik Hospital, Inje University College of Medicine, Seoul, Korea
| | - Shin Woo Kang
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Department of Mathematics, Korea University, Seoul, Korea
| | - Kee-Taek Jang
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jeeyun Lee
- Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Joon Oh Park
- Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Cheol Keun Park
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Tae Sung Sohn
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sung Kim
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyoung-Mee Kim
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- * E-mail:
| |
Collapse
|
22
|
Schoppmann SF, Vinatzer U, Popitsch N, Mittlböck M, Liebmann-Reindl S, Jomrich G, Streubel B, Birner P. Novel Clinically Relevant Genes in Gastrointestinal Stromal Tumors Identified by Exome Sequencing. Clin Cancer Res 2013; 19:5329-39. [DOI: 10.1158/1078-0432.ccr-12-3863] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Rutkowski P, Przybył J, Zdzienicki M. Extended adjuvant therapy with imatinib in patients with gastrointestinal stromal tumors : recommendations for patient selection, risk assessment, and molecular response monitoring. Mol Diagn Ther 2013; 17:9-19. [PMID: 23355099 PMCID: PMC3565084 DOI: 10.1007/s40291-013-0018-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
On the basis of the recently published results of a clinical trial comparing 12 and 36 months of imatinib in adjuvant therapy for gastrointestinal stromal tumors (GISTs), which demonstrated clinical benefit of longer imatinib treatment in terms of delaying recurrences and improving overall survival, both the US Food and Drug Administration and the European Medicines Agency have updated their recommendations and approved 36 months of imatinib treatment in patients with v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog (KIT)-positive GISTs (also known as CD117-positive GISTs) at high risk of recurrence after surgical resection of a primary tumor. This article discusses patient selection criteria for extended adjuvant therapy with imatinib, different classifications of risk of recurrence, and assessment of the response to therapy.
Collapse
Affiliation(s)
- Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie Memorial Cancer Centre and Institute of Oncology, Roentgena 5, 02-781, Warsaw, Poland.
| | | | | |
Collapse
|
24
|
Belinsky MG, Rink L, von Mehren M. Succinate dehydrogenase deficiency in pediatric and adult gastrointestinal stromal tumors. Front Oncol 2013; 3:117. [PMID: 23730622 PMCID: PMC3656383 DOI: 10.3389/fonc.2013.00117] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 04/26/2013] [Indexed: 12/18/2022] Open
Abstract
Gastrointestinal stromal tumors (GISTs) in adults are generally driven by somatic gain-of-function mutations in KIT or PDGFRA, and biological therapies targeted to these receptor tyrosine kinases comprise part of the treatment regimen for metastatic and inoperable GISTs. A minority (10-15%) of GISTs in adults, along with ∼85% of pediatric GISTs, lacks oncogenic mutations in KIT and PDGFRA. Not surprisingly these wild type (WT) GISTs respond poorly to kinase inhibitor therapy. A subset of WT GISTs shares a set of distinguishing clinical and pathological features, and a flurry of recent reports has convincingly demonstrated shared molecular characteristics. These GISTs have a distinct transcriptional profile including over-expression of the insulin-like growth factor-1 receptor, and exhibit deficiency in the succinate dehydrogenase (SDH) enzyme complex. The latter is often but not always linked to bi-allelic inactivation of SDH subunit genes, particularly SDHA. This review will summarize the molecular, pathological, and clinical connections that link this group of SDH-deficient neoplasms, and offer a view toward understanding the underlying biology of the disease and the therapeutic challenges implicit to this biology.
Collapse
Affiliation(s)
- Martin G. Belinsky
- Department of Medical Oncology, Fox Chase Cancer CenterPhiladelphia, PA, USA
| | - Lori Rink
- Department of Medical Oncology, Fox Chase Cancer CenterPhiladelphia, PA, USA
| | - Margaret von Mehren
- Department of Medical Oncology, Fox Chase Cancer CenterPhiladelphia, PA, USA
| |
Collapse
|
25
|
Tao Y, Guo Y, Liu W, Zhang J, Li X, Shen L, Ru Y, Xue Y, Zheng J, Liu X, Zhang J, Yao L. AKT inhibitor suppresses hyperthermia-induced Ndrg2 phosphorylation in gastric cancer cells. Braz J Med Biol Res 2013; 46:394-404. [PMID: 23558861 PMCID: PMC3854405 DOI: 10.1590/1414-431x20122211] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 10/30/2012] [Indexed: 11/22/2022] Open
Abstract
Hyperthermia is one of the most effective adjuvant treatments for various cancers
with few side effects. However, the underlying molecular mechanisms still are not
known. N-myc downstream-regulated gene 2 (NDRG2), a tumor
suppressor, has been shown to be involved in diverse cellular stresses including
hypoxia, lipotoxicity, etc. In addition, Ndrg2 has been reported to be related to
progression of gastric cancer. In the current study, our data showed that the
apoptosis rate of MKN28 cells increased relatively rapidly to 13.4% by 24 h after
treatment with hyperthermia (42°C for 1 h) compared to 5.1% in control cells (P <
0.05). Nevertheless, there was no obvious change in the expression level of total
Ndrg2 during this process. Further investigation demonstrated that the relative
phosphorylation levels of Ndrg2 at Ser332, Thr348 increased up to 3.2- and 1.9-fold
(hyperthermia group vs control group) at 3 h in MKN28 cells,
respectively (P < 0.05). We also found that heat treatment significantly increased
AKT phosphorylation. AKT inhibitor VIII (10 µM) decreased the phosphorylation level
of Ndrg2 induced by hyperthermia. Accordingly, the apoptosis rate rose significantly
in MKN28 cells (16.4%) treated with a combination of AKT inhibitor VIII and
hyperthermia compared to that (6.8%) of cells treated with hyperthermia alone (P <
0.05). Taken together, these data demonstrated that Ndrg2 phosphorylation could be
induced by hyperthermia in an AKT-dependent manner in gastric cancer cells.
Furthermore, AKT inhibitor VIII suppressed Ndrg2 phosphorylation and rendered gastric
cancer cells susceptible to apoptosis induced by hyperthermia.
Collapse
Affiliation(s)
- Yurong Tao
- Department of Oncology, State Key Discipline of Cell Biology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Chang X, Li Z, Ma J, Deng P, Zhang S, Zhi Y, Chen J, Dai D. DNA methylation of NDRG2 in gastric cancer and its clinical significance. Dig Dis Sci 2013; 58:715-23. [PMID: 23010743 DOI: 10.1007/s10620-012-2393-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 08/28/2012] [Indexed: 12/13/2022]
Abstract
BACKGROUND Gastric cancer is one of the most common digestive malignancies worldwide. N-myc downstream-regulated gene 2 (NDRG2) is a differentiation-related gene that is considered to be a metastasis suppressor gene. In this study, we examined the expression and DNA methylation of NDRG2 in gastric cancer cell lines and tissues, as well as its clinical significance. METHODS Six gastric cancer cell lines and 42 paired normal and gastric cancer tissue samples were used to assess NDRG2 mRNA expression using RT-PCR. NDRG2 DNA methylation status was evaluated by methylation-specific PCR (MSP) in gastric cancer cell lines and tissues. The suppression of NDRG2 in BGC823 cells by siRNA transfection was utilized to detect the role of NDRG2 in gastric cancer progression. RESULTS NDRG2 mRNA was down-regulated in gastric cancer cell lines and tissues, and its expression was just related to lymph node metastasis (p = 0.032). MSP showed methylation of NDRG2 in 54.0 % (47/87) of primary gastric cancer specimens and in 20.0 % (16/80) of corresponding nonmalignant gastric tissues. NDRG2 methylation was related to depth of tumor invasion, Borrmann classification and TNM stage (p < 0.05). Upon treatment with 5-aza-2'-deoxycytidine and trichostatin A, NDRG2 expression was upregulated in HGC27 cells, and demethylation of the highly metastatic cell line, MKN45, inhibited cell invasion. Furthermore, the suppression of NDRG2 by siRNA transfection enhanced BGC823 cells invasion. CONCLUSIONS Our results suggest that the aberrant methylation of NDRG2 may be mainly responsible for its downregulation in gastric cancer, and may play an important role in the metastasis of gastric cancer.
Collapse
Affiliation(s)
- Xiaojing Chang
- Department of Gastrointestinal Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Lagarde P, Pérot G, Kauffmann A, Brulard C, Dapremont V, Hostein I, Neuville A, Wozniak A, Sciot R, Schöffski P, Aurias A, Coindre JM, Debiec-Rychter M, Chibon F. Mitotic checkpoints and chromosome instability are strong predictors of clinical outcome in gastrointestinal stromal tumors. Clin Cancer Res 2011; 18:826-38. [PMID: 22167411 DOI: 10.1158/1078-0432.ccr-11-1610] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PURPOSE The importance of KIT and PDGFRA mutations in the oncogenesis of gastrointestinal stromal tumors (GIST) is well established, but the genetic basis of GIST metastasis is poorly understood. We recently published a 67 gene expression prognostic signature related to genome complexity (CINSARC for Complexity INdex in SARComas) and asked whether it could predict outcome in GISTs. EXPERIMENTAL DESIGN We carried out genome and expression profiling on 67 primary untreated GISTs. RESULTS We show and validate here that it can predict metastasis in a new data set of 67 primary untreated GISTs. The gene whose expression was most strongly associated with metastasis was AURKA, but the AURKA locus was not amplified. Instead, we identified deletion of the p16 (CDKN2A) and retinoblastoma (RB1) genes as likely causal events leading to increased AURKA and CINSARC gene expression, to chromosome rearrangement, and ultimately to metastasis. On the basis of these findings, we established a Genomic Index that integrates the number and type of DNA copy number alterations. This index is a strong prognostic factor in GISTs. We show that CINSARC class, AURKA expression, and Genomic Index all outperform the Armed Forces Institute of Pathology (AFIP) grading system in determining the prognosis of patients with GISTs. Interestingly, these signatures can identify poor prognosis patients in the group classified as intermediate-risk by the AFIP classification. CONCLUSIONS We propose that a high Genomic Index determined by comparative genomic hybridization from formalin-fixed, paraffin-embedded samples could be used to identify AFIP intermediate-risk patients who would benefit from imatinib therapy.
Collapse
Affiliation(s)
- Pauline Lagarde
- INSERM U916: Genetics and Biology of Sarcomas, Paris Cedex, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Gastrointestinal stromal tumours (GISTs) are a paradigm for the development of personalized treatment for cancer patients. The nearly simultaneous discovery of a biomarker that is reflective of their origin and the presence of gain-of-function kinase mutations in these tumours set the stage for more accurate diagnosis and the development of kinase inhibitor therapy. Subsequent studies of genotype and phenotype have led to a molecular classification of GIST and to treatment optimization on the basis of molecular subtype. The study of drug-resistant tumours has advanced our understanding of kinase biology, enabling the development of novel kinase inhibitors. Further improvements in GIST treatment may require targeting GIST stem cell populations and/or additional genomic events.
Collapse
Affiliation(s)
- Christopher L Corless
- Knight Cancer Institute, Division of Haematology & Oncology, and Department of Pathology, Portland VA Medical Center and Oregon Health & Science University, Portland, OR 97239, USA
| | | | | |
Collapse
|
29
|
Morganella S, Pagnotta SM, Ceccarelli M. Finding recurrent copy number alterations preserving within-sample homogeneity. ACTA ACUST UNITED AC 2011; 27:2949-56. [PMID: 21873327 DOI: 10.1093/bioinformatics/btr488] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
MOTIVATION Copy number alterations (CNAs) represent an important component of genetic variation and play a significant role in many human diseases. Development of array comparative genomic hybridization (aCGH) technology has made it possible to identify CNAs. Identification of recurrent CNAs represents the first fundamental step to provide a list of genomic regions which form the basis for further biological investigations. The main problem in recurrent CNAs discovery is related to the need to distinguish between functional changes and random events without pathological relevance. Within-sample homogeneity represents a common feature of copy number profile in cancer, so it can be used as additional source of information to increase the accuracy of the results. Although several algorithms aimed at the identification of recurrent CNAs have been proposed, no attempt of a comprehensive comparison of different approaches has yet been published. RESULTS We propose a new approach, called Genomic Analysis of Important Alterations (GAIA), to find recurrent CNAs where a statistical hypothesis framework is extended to take into account within-sample homogeneity. Statistical significance and within-sample homogeneity are combined into an iterative procedure to extract the regions that likely are involved in functional changes. Results show that GAIA represents a valid alternative to other proposed approaches. In addition, we perform an accurate comparison by using two real aCGH datasets and a carefully planned simulation study. AVAILABILITY GAIA has been implemented as R/Bioconductor package. It can be downloaded from the following page http://bioinformatics.biogem.it/download/gaia. CONTACT ceccarelli@unisannio.it; morganella@unisannio.it. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Sandro Morganella
- Department of Science, University of Sannio, 82100, Benevento, Italy.
| | | | | |
Collapse
|
30
|
Nannini M, Biasco G, Maleddu A, Pantaleo MA. New molecular targets beyond KIT and PDGFRA in gastrointestinal stromal tumors: present and future. Expert Opin Ther Targets 2011; 15:803-15. [DOI: 10.1517/14728222.2011.566215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
31
|
Setoguchi T, Kikuchi H, Yamamoto M, Baba M, Ohta M, Kamiya K, Tanaka T, Baba S, Goto-Inoue N, Setou M, Sasaki T, Mori H, Sugimura H, Konno H. Microarray analysis identifies versican and CD9 as potent prognostic markers in gastric gastrointestinal stromal tumors. Cancer Sci 2011; 102:883-889. [PMID: 21244575 PMCID: PMC11159159 DOI: 10.1111/j.1349-7006.2011.01872.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 01/06/2011] [Accepted: 01/08/2011] [Indexed: 01/08/2023] Open
Abstract
Although the main cause of gastrointestinal stromal tumor (GIST) is gain-of-function mutations in the c-kit gene in the interstitial cells of Cajal, concomitant genetic or epigenetic changes other than c-kit appear to occur in the development of metastasis. We sought to identify the genes involved in the metastatic process of gastric GIST. Microarray analysis was performed to compare gene expressions between three gastric GIST and four metastatic liver GIST. Expression levels were higher for 165 genes and lower for 146 genes in metastatic liver GIST. The upregulation of five oncogenes and downregulation of four tumor suppressor genes including versican and CD9 were confirmed by quantitative reverse transcriptional PCR. Immunohistochemistry in 117 GIST revealed that protein levels of versican and CD9 were higher and lower, respectively, in metastatic GIST. High expression of versican and low expression of CD9 in 104 primary gastric GIST correlated with poor disease-free survival (P = 0.0078 and P = 0.0018). In addition to the c-kit gene mutation, genetic or epigenetic changes other than c-kit play important roles in the metastatic process. In particular, versican and CD9 are potential prognostic markers in gastric GIST.
Collapse
Affiliation(s)
- Tomohiko Setoguchi
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Hwang J, Kim Y, Kang HB, Jaroszewski L, Deacon AM, Lee H, Choi WC, Kim KJ, Kim CH, Kang BS, Lee JO, Oh TK, Kim JW, Wilson IA, Kim MH. Crystal structure of the human N-Myc downstream-regulated gene 2 protein provides insight into its role as a tumor suppressor. J Biol Chem 2011; 286:12450-60. [PMID: 21247902 PMCID: PMC3069448 DOI: 10.1074/jbc.m110.170803] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Considerable attention has recently been paid to the N-Myc downstream-regulated gene (NDRG) family because of its potential as a tumor suppressor in many human cancers. Primary amino acid sequence information suggests that the NDRG family proteins may belong to the α/β-hydrolase (ABH) superfamily; however, their functional role has not yet been determined. Here, we present the crystal structures of the human and mouse NDRG2 proteins determined at 2.0 and 1.7 Å resolution, respectively. Both NDRG2 proteins show remarkable structural similarity to the ABH superfamily, despite limited sequence similarity. Structural analysis suggests that NDRG2 is a nonenzymatic member of the ABH superfamily, because it lacks the catalytic signature residues and has an occluded substrate-binding site. Several conserved structural features suggest NDRG may be involved in molecular interactions. Mutagenesis data based on the structural analysis support a crucial role for helix α6 in the suppression of TCF/β-catenin signaling in the tumorigenesis of human colorectal cancer, via a molecular interaction.
Collapse
Affiliation(s)
- Jungwon Hwang
- Division of Biosystems Research, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Igarashi S, Suzuki H, Niinuma T, Shimizu H, Nojima M, Iwaki H, Nobuoka T, Nishida T, Miyazaki Y, Takamaru H, Yamamoto E, Yamamoto H, Tokino T, Hasegawa T, Hirata K, Imai K, Toyota M, Shinomura Y. A novel correlation between LINE-1 hypomethylation and the malignancy of gastrointestinal stromal tumors. Clin Cancer Res 2010; 16:5114-23. [PMID: 20978145 DOI: 10.1158/1078-0432.ccr-10-0581] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE Gastrointestinal stromal tumors (GIST) are the most important mesenchymal tumors of the gastrointestinal tract. The vast majority of GISTs exhibit activating mutations of KIT or PDGFRA, but epigenetic alteration of GISTs is largely unknown. In this study, we aimed to clarify the involvement of DNA methylation in GIST malignancy. EXPERIMENTAL DESIGN A total of 106 GIST specimens were studied. Levels of LINE-1 methylation were analyzed using bisulfite pyrosequencing. In addition, methylation of three other repetitive sequences (Alu Yb8, Satellite-α, and NBL2) was similarly analyzed, and CpG island hypermethylation was analyzed using MethyLight. Array-based comparative genomic hybridization (array CGH) was carried out in 25 GIST specimens. RESULTS LINE-1 hypomethylation was significantly correlated with risk, and high-risk GISTs exhibited significantly lower levels of LINE-1 methylation than low-risk (61.3% versus 53.2%; P = 0.001) or intermediate-risk GISTs (60.8% versus 53.2%; P = 0.002). Hypomethylation of Satellite-α and NBL2 was also observed in high-risk GISTs. By contrast, promoter hypermethylation was relatively infrequent (CDH1, 11.2%; MLH1, 9.8%; SFRP1, 1.2%; SFRP2, 11.0%; CHFR, 9.8%; APC, 6.1%; CDKN2A, 0%; RASSF1A, 0%; RASSF2, 0%) and did not correlate with LINE-1 methylation or risk. Array CGH analysis revealed a significant correlation between LINE-1 hypomethylation and chromosomal aberrations. CONCLUSIONS Our data suggest that LINE-1 hypomethylation correlates significantly with the aggressiveness of GISTs and that LINE-1 methylation could be a useful marker for risk assessment. Hypomethylation may increase the malignant potential of GISTs by inducing accumulation of chromosomal aberrations.
Collapse
Affiliation(s)
- Shinichi Igarashi
- First Department of Internal Medicine, Sapporo Medical University, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Astolfi A, Nannini M, Pantaleo MA, Di Battista M, Heinrich MC, Santini D, Catena F, Corless CL, Maleddu A, Saponara M, Lolli C, Di Scioscio V, Formica S, Biasco G. A molecular portrait of gastrointestinal stromal tumors: an integrative analysis of gene expression profiling and high-resolution genomic copy number. J Transl Med 2010; 90:1285-94. [PMID: 20548289 DOI: 10.1038/labinvest.2010.110] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
In addition to KIT and PDGFRA mutations, sequential accumulation of other genetic events is involved in the development and progression of gastrointestinal stromal tumors (GISTs). Until recently, the significance of these other alterations has not been thoroughly investigated. We report the first study that integrates gene expression profiling and high-resolution genomic copy number analyses in GIST. Fresh tissue specimens from 25 patients with GIST were collected, and gene expression profiling and high-resolution genomic copy number analyses were performed, using Affymetrix U133Plus and SNP array 6.0. We found that all 21 mutant GIST patients showed both macroscopic cytogenetic alterations and cryptic microdeletions or amplifications, whereas 75% (three of four) of wild-type patients with GIST did not show genomic imbalances. The most frequently observed chromosomal alterations in patients with mutant GIST included 14q complete or partial deletion (17 of 25), 1p deletion (14 of 25) and 22q deletion (10 of 25). Genetic targets of the chromosomal aberrations were selected by integrated analysis of copy number and gene expression data. We detected the involvement of known oncogenes and tumor suppressors including KRAS in chr 12p amplification and KIF1B, PPM1A, NF2 in chr 1p, 14q and 22p deletions, respectively. The genomic segment most frequently altered in mutated samples was the 14q23.1 region, which contains potentially novel tumor suppressors, including DAAM1, RTN1 and DACT1. siRNA-mediated RTN1 downregulation showed evidence for the potential role in GIST pathogenesis. The combination of gene expression profiling and high-resolution genomic copy number analysis offers a detailed molecular portrait of GISTs, providing an essential comprehensive knowledge necessary to guide the discovery of novel target genes involved in tumor development and progression.
Collapse
Affiliation(s)
- Annalisa Astolfi
- Interdepartmental Centre for Cancer Research G. Prodi, University of Bologna, Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Melotte V, Qu X, Ongenaert M, van Criekinge W, de Bruïne AP, Baldwin HS, van Engeland M. The N-myc downstream regulated gene (NDRG) family: diverse functions, multiple applications. FASEB J 2010; 24:4153-66. [PMID: 20667976 DOI: 10.1096/fj.09-151464] [Citation(s) in RCA: 230] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The N-myc downstream regulated gene (NDRG) family of proteins consists of 4 members, NDRG1-4, which are well conserved through evolution. The first member to be discovered and responsible for the family name was NDRG1, because its expression is repressed by the proto-oncogenes MYCN and MYC. All family members are characterized by an α/β hydrolase-fold motif; however, the precise molecular and cellular function of these family members has not been fully elucidated. Although the exact function of NDRG family members has not been clearly elucidated, emerging evidence suggests that mutations in these genes are associated with diverse neurological and electrophysiological syndromes. In addition, aberrant expression as well as tumor suppressor and oncogenic functions affecting key hallmarks of carcinogenesis such as cell proliferation, differentiation, migration, invasion, and stress response have been reported for several of the NDRG proteins. In this review, we summarize the current literature on the NDRG family members concerning their structure, origin, and tissue distribution. In addition, we review the current knowledge regarding the regulation and signaling of the NDRG family members in development and normal physiology. Finally, their role in disease and potential clinical applications (their role as detection or prognostic markers) are discussed.
Collapse
Affiliation(s)
- Veerle Melotte
- Department of Pathology, School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
36
|
Silva M, Veiga I, Ribeiro FR, Vieira J, Pinto C, Pinheiro M, Mesquita B, Santos C, Soares M, Dinis J, Santos L, Lopes P, Afonso M, Lopes C, Teixeira MR. Chromosome copy number changes carry prognostic information independent of KIT/PDGFRA point mutations in gastrointestinal stromal tumors. BMC Med 2010; 8:26. [PMID: 20470368 PMCID: PMC2876987 DOI: 10.1186/1741-7015-8-26] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 05/14/2010] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Oncogenic point mutations in KIT or PDGFRA are recognized as the primary events responsible for the pathogenesis of most gastrointestinal stromal tumors (GIST), but additional genomic alterations are frequent and presumably required for tumor progression. The relative contribution of such alterations for the biology and clinical behavior of GIST, however, remains elusive. METHODS In the present study, somatic mutations in KIT and PDGFRA were evaluated by direct sequencing analysis in a consecutive series of 80 GIST patients. For a subset of 29 tumors, comparative genomic hybridization was additionally used to screen for chromosome copy number aberrations. Genotype and genomic findings were cross-tabulated and compared with available clinical and follow-up data. RESULTS We report an overall mutation frequency of 87.5%, with 76.25% of the tumors showing alterations in KIT and 11.25% in PDGFRA. Secondary KIT mutations were additionally found in two of four samples obtained after imatinib treatment. Chromosomal imbalances were detected in 25 out of 29 tumors (86%), namely losses at 14q (88% of abnormal cases), 22q (44%), 1p (44%), and 15q (36%), and gains at 1q (16%) and 12q (20%). In addition to clinico-pathological high-risk groups, patients with KIT mutations, genomic complexity, genomic gains and deletions at either 1p or 22q showed a significantly shorter disease-free survival. Furthermore, genomic complexity was the best predictor of disease progression in multivariate analysis. CONCLUSIONS In addition to KIT/PDGFRA mutational status, our findings indicate that secondary chromosomal changes contribute significantly to tumor development and progression of GIST and that genomic complexity carries independent prognostic value that complements clinico-pathological and genotype information.
Collapse
Affiliation(s)
- Mara Silva
- Department of Genetics, Portuguese Oncology Institute - Porto, Rua Dr, António Bernardino Almeida, 4200-072 Porto, Portugal
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Choi HJ, Lee H, Kim H, Kwon JE, Kang HJ, You KT, Rhee H, Noh SH, Paik YK, Hyung WJ, Kim H. MicroRNA expression profile of gastrointestinal stromal tumors is distinguished by 14q loss and anatomic site. Int J Cancer 2010; 126:1640-50. [PMID: 19795448 DOI: 10.1002/ijc.24897] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
MicroRNAs are known to regulate gene expression. Although unique microRNA expression profiles have been reported in several tumors, little is known about microRNA expression profiles in GISTs. To evaluate the relationship between microRNA expression and clinicopathologic findings of GISTs, we analyzed the microRNA expression profiles of GISTs. We used fresh frozen tissues from 20 GISTs and analyzed KIT and PDGFRA mutations and chromosomal loss status. MicroRNA expression was analyzed using a microRNA chip containing 470 microRNAs. Using unsupervised hierarchical clustering analysis, we found four distinct microRNA expression patterns in our 20 GISTs. Six GISTs that did not have 14q loss formed a separate cluster. In the 14 GISTs with 14q loss, 5 small bowel GISTs formed a separate cluster and the remaining 9 GISTs could be divided into two groups according to frequent chromosomal losses and tumor risk. We found 73 microRNAs that were significantly down-regulated in the GISTs with 14q loss; 38 of these microRNAs are encoded on 14q. We also found many microRNAs that were down-regulated in small bowel and high-risk group GISTs. Most of the microRNAs down-regulated in the high-risk group and small bowel GISTs are known to be involved in tumor progression, specifically by stimulating mitogen-activated protein kinase (MAPK) and the cell cycle. The microRNA expression patterns of GISTs are closely related to the status of 14q loss, anatomic site, and tumor risk. These findings suggest that microRNA expression patterns can differentiate several subsets of GISTs.
Collapse
Affiliation(s)
- Hee-Jung Choi
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Huang HY, Li SH, Yu SC, Chou FF, Tzeng CC, Hu TH, Uen YH, Tian YF, Wang YH, Fang FM, Huang WW, Wei YC, Wu JM, Li CF. Homozygous deletion of MTAP gene as a poor prognosticator in gastrointestinal stromal tumors. Clin Cancer Res 2009; 15:6963-6972. [PMID: 19887491 DOI: 10.1158/1078-0432.ccr-09-1511] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Chromosome 9 is frequently deleted in high-risk gastrointestinal stromal tumors (GISTs), whereas its specific tumor suppressor genes (TSGs) are less understood. We did an integrative study of MTAP gene at 9p21 to analyze its implication in GISTs. EXPERIMENTAL DESIGN To search TSGs on chromosome 9, we used ultrahigh-resolution array comparative genomic hybridization to profile DNA copy number alterations of 22 GISTs, with special attention to MTAP gene. MTAP immunoexpression was assessable for 306 independent GISTs on tissue microarrays, with 146 cases analyzed for MTAP homozygous deletion, 181 for mutations of KIT and PDGFRA receptor tyrosine kinase genes, and 7 for MTAP hypermethylation. RESULTS Array comparative genomic hybridization identified 11 candidate TSGs on 9p and six on 9q. MTAP and/or CDKN2A/CDKN2B at 9p21.3 were deleted in one intermediate-risk (11%) and seven high-risk (70%) GISTs with two cases homozygously codeleted at both loci. MTAP homozygous deletion, present in 25 of 146 cases, was highly associated with larger size and higher mitotic rate, Ki-67 index, and risk level (all P < 0.01) but not with receptor tyrosine kinase genotypes. Whereas MTAP homozygous deletion correlated with MTAP protein loss (P < 0.001), 7 of 30 GISTs without MTAP expression did not show homozygous deletion, including three MTAP-hypermethylated cases. MTAP homozygous deletion was univariately predictive of decreased disease-free survival (P < 0.0001) and remained multivariately independent (P = 0.0369, hazard ratio = 2.166), together with high-risk category (P < 0.0001), Ki-67 index >5% (P = 0.0106), and nongastric location (P = 0.0416). CONCLUSIONS MTAP homozygous deletion, the predominant mechanism to deplete protein expression, is present in 17% of GISTs. It correlates with important prognosticators and independently predicts worse outcomes, highlighting the role in disease progression.
Collapse
Affiliation(s)
- Hsuan-Ying Huang
- Departments of Pathology, Surgery, and Radiation Oncology, and Divisions of Oncology and Gastroenterology, Department of Internal Medicine, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Belinsky MG, Skorobogatko YV, Rink L, Pei J, Cai KQ, Vanderveer LA, Riddell D, Merkel E, Tarn C, Eisenberg BL, von Mehren M, Testa JR, Godwin AK. High density DNA array analysis reveals distinct genomic profiles in a subset of gastrointestinal stromal tumors. Genes Chromosomes Cancer 2009; 48:886-96. [PMID: 19585585 DOI: 10.1002/gcc.20689] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Gastrointestinal stromal tumors (GISTs) generally harbor activating mutations in KIT or platelet-derived growth facter receptor (PDGFRA). Mutations in these receptor tyrosine kinases lead to dysregulation of downstream signaling pathways that contribute to GIST pathogenesis. GISTs with KIT or PDGFRA mutations also undergo secondary cytogenetic alterations that may indicate the involvement of additional genes important in tumor progression. Approximately 10-15% of adult and 85% of pediatric GISTs do not have mutations in KIT or in PDGFRA. Most mutant adult GISTs display large-scale genomic alterations, but little is known about the mutation-negative tumors. Using genome-wide DNA arrays, we investigated genomic imbalances in a set of 31 GISTs, including 10 KIT/PDGFRA mutation-negative tumors from nine adults and one pediatric case and 21 mutant tumors. Although all 21 mutant GISTs exhibited multiple copy number aberrations, notably losses, eight of the 10 KIT/PDGFRA mutation-negative GISTs exhibited few or no genomic alterations. One KIT/PDGFRA mutation-negative tumor exhibiting numerous genomic changes was found to harbor an alternate activating mutation, in the serine-threonine kinase BRAF. The only other mutation-negative GIST with significant chromosomal imbalances was a recurrent metastatic tumor found to harbor a homozygous deletion in chromosome arm 9p. Similar findings in several KIT-mutant GISTs identified a minimal overlapping region of deletion of approximately 0.28 Mbp in 9p21.3 that includes only the CDKN2A/2B genes, which encode inhibitors of cell-cycle kinases. These results suggest that GISTs without activating kinase mutations, whether pediatric or adult, generally exhibit a much lower level of cytogenetic progression than that observed in mutant GISTs.
Collapse
Affiliation(s)
- Martin G Belinsky
- Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA 19111-2497, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Agaimy A, Haller F, Gunawan B, Wünsch PH, Füzesi L. Distinct biphasic histomorphological pattern in gastrointestinal stromal tumours (GISTs) with common primary mutations but divergent molecular cytogenetic progression. Histopathology 2009; 54:295-302. [PMID: 19236505 DOI: 10.1111/j.1365-2559.2008.03214.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AIMS The morphological diversity of gastrointestinal stromal tumours (GISTs) is well appreciated. The aim of this study was to shed light on the molecular pathogenesis of GISTs displaying a distinct biphasic histomorphological pattern, which is poorly understood. METHODS AND RESULTS Six biphasic gastric GISTs (four high, one intermediate and one low risk for aggressive behaviour) were studied by histological, immunohistochemical, molecular and comparative genomic hybridization methods. The different tumour components were designated as primary and secondary compartments, based on cellularity and mitotic index. In addition, metastases from two patients were analysed separately. According to the classification of Miettinen et al., four biphasic histomorphological patterns were seen: (i) sclerosing spindle cell/dyscohesive or paraganglioma-like epithelioid (n = 2); (ii) sarcomatous spindle cell/pleomorphic sarcomatous spindle cell (n = 1); (iii) sarcomatous spindle cell/sarcomatous epithelioid (n = 2); and (iv) sclerosing epithelioid/hypercellular epithelioid/sarcomatous epithelioid (n = 1) morphology. In each case, both tumour compartments revealed the same KIT (n = 5) or platelet-derived growth factor receptor-alpha (n = 1) mutation, as well as common chromosomal imbalances reflecting their common clonal origin. Additional chromosomal imbalances were detected in the secondary tumour compartments and their respective metastases. CONCLUSIONS Our results indicate that the intratumoral phenotypic diversity in GIST reflects histomorphological progression, which is associated with higher chromosomal instability, irrespective of the primary mutation.
Collapse
Affiliation(s)
- Abbas Agaimy
- Institute of Pathology, Nürnberg Clinic Centre, Nürnberg, Germany.
| | | | | | | | | |
Collapse
|
41
|
Deletions of chromosome 1p and 15q are associated with aggressiveness of gastrointestinal stromal tumors. J Formos Med Assoc 2009; 108:28-37. [PMID: 19181605 DOI: 10.1016/s0929-6646(09)60029-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND/PURPOSE Site-dependent profiles of chromosome imbalances (CIs) have been reported in gastrointestinal stromal tumors (GISTs). However, the role of specific CIs in association with metastasis is not clear. METHODS Thirteen resected liver metastatic GISTs, including seven from the stomach and six from the small intestine, were analyzed using comparative genomic hybridization (CGH). The CIs associated with metastatic risk were assessed by comparing them with those identified in our previous study of 25 primary GISTs, including 14 from the stomach and 11 from the small intestine. RESULTS Synchronous detection of liver metastasis was found more often in patients with intestinal than gastric GIST (5/6 vs. 2/7, p = 0.048). When compared with the primary tumors, the CI profile of liver metastases was similar in the intestinal group, but became more complex in the gastric group. Deletions of chromosomes 1p and 15q were very common (> 80%) in primary and metastatic tumors of the intestinal group, and exhibited a trend towards increase in the metastatic tumors of the gastric group. Both groups had a doubling in the frequency of 22q deletion in the liver metastases, which was not significantly different. Other CIs, including 9p deletion, increased significantly in the liver metastases of the gastric group, but not in the intestinal group. CONCLUSION Our results, together with clinical findings, indicated a CGH profile associated with the intrinsic aggressiveness of the GISTs. Deletion of 1p and 15q play a critical role in the acquisition of aggressiveness during early GIST development.
Collapse
|
42
|
Yang J, Du X, Lazar AJF, Pollock R, Hunt K, Chen K, Hao X, Trent J, Zhang W. Genetic aberrations of gastrointestinal stromal tumors. Cancer 2008; 113:1532-43. [PMID: 18671247 PMCID: PMC2651090 DOI: 10.1002/cncr.23778] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Gastrointestinal stromal tumor (GIST) is the most common mesenchymal neoplasm in the gastrointestinal tract and is associated with mutations of the KIT or PDGFRA gene. In addition, other genetic events are believed to be involved in GIST tumorigenesis. Cytogenetic aberrations associated with these tumors thus far described include loss of 1p, 13q, 14q, or 15q, loss of heterozygosity of 22q, numeric chromosomal imbalances, and nuclear/mitochondrial microsatellite instability. Molecular genetic aberrations include loss of heterozygosity of p16(INK4A) and p14(ARF), methylation of p15(INK4B), homozygous loss of the Hox11L1 gene, and amplification of C-MYC, MDM2, EGFR1, and CCND1. GISTs in patients with neurofibromatosis type 1 appear to lack the KIT and PDGFRA mutations characteristic of GISTs and may have a different pathogenetic mechanism. Gene mutations of KIT or PDGFRA are critical in GISTs, because the aberrant versions not only are correlated with the specific cell morphology, histologic phenotype, metastasis, and prognosis, but also are the targets of therapy with imatinib and other agents. Furthermore, specific mutations in KIT and PDGFR appear to lead to differential drug sensitivity and may in the future guide selection of tyrosine kinase inhibitors. Activation of the receptor tyrosine kinases involves a signal transduction pathway whose components (mitogen-activated protein kinase, AKT, phosphoinositide 3-kinase, mammalian target of rapamycin, and RAS) are also possible targets of inhibition. A new paradigm of classification, integrating the standard clinical and pathological criteria with molecular aberrations, may permit personalized prognosis and treatment.
Collapse
Affiliation(s)
- Jilong Yang
- Department of Bone and Soft Tissue Tumors, Tianjin Cancer Hospital and Institute, Tianjin Medical University, Tianjin, 30060, China
| | - Xiaoling Du
- Department of Diagnostics, Tianjin Medical University, Tianjin, 30060, China
| | - Alexander J. F. Lazar
- Department of Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
- Sarcoma Research Center, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Raphael Pollock
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
- Sarcoma Research Center, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Kelly Hunt
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Kexin Chen
- Department of Epidemiology and Biostatistics, Tianjin Cancer Hospital and Institute, Tianjin Medical University, Tianjin, 30060, China
| | - Xishan Hao
- Department of Bone and Soft Tissue Tumors, Tianjin Cancer Hospital and Institute, Tianjin Medical University, Tianjin, 30060, China
- Department of Epidemiology and Biostatistics, Tianjin Cancer Hospital and Institute, Tianjin Medical University, Tianjin, 30060, China
- Department of Diagnostics, Tianjin Medical University, Tianjin, 30060, China
| | - Jonathan Trent
- Department of Sarcoma Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
- Sarcoma Research Center, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Wei Zhang
- Department of Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
43
|
Yao L, Zhang J, Liu X. NDRG2: a Myc-repressed gene involved in cancer and cell stress. Acta Biochim Biophys Sin (Shanghai) 2008; 40:625-35. [PMID: 18604454 DOI: 10.1111/j.1745-7270.2008.00434.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
As a master switch for cell proliferation and differentiation, Myc exerts its biological functions mainly through transcriptional regulation of its target genes, which are involved in cells?interaction and communication with their external environment. The N-myc downstream-regulated gene (NDRG) family is composed of NDRG1, NDRG2, NDRG3 and NDRG4, which are important in cell proliferation and differentiation. This review summarizes the recent studies on the structure, tissue distribution and functions of NDRG2 that try to show its significance in studying cancer and its therapeutic potential.
Collapse
Affiliation(s)
- Libo Yao
- The Institute of Molecular Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an 710032, China.
| | | | | |
Collapse
|
44
|
Saito K, Sakurai S, Sano T, Sakamoto K, Asao T, Hosoya Y, Nakajima T, Kuwano H. Aberrant methylation status of known methylation-sensitive CpG islands in gastrointestinal stromal tumors without any correlation to the state of c-kit and PDGFRA gene mutations and their malignancy. Cancer Sci 2008; 99:253-9. [PMID: 18271923 PMCID: PMC11158695 DOI: 10.1111/j.1349-7006.2007.00682.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
To identify additional alterations to c-kit or platelet-derived growth factor receptor alpha (PDGFRA) genes in gastrointestinal stromal tumors (GIST), we investigated the methylation status of nine known methylation-sensitive CpG islands (p15, p16, p73, 0-6-methylguanine-DNA methyltransferase, E-cadherin, mutL homolog 1, colon cancer nonpolyposis type 2 (escherichia), methylated in tumors [MINT]1, MINT2, and MINT31), and compared the results with the malignant potential and gain-of-function mutation types of GIST. Thirty-five GIST (c-kit mutations in 25 cases, PDGFRA mutations in seven cases, and lacking either mutation in three cases) were subjected to methylation-specific polymerase chain reaction to detect the methylation status of the nine methylation-sensitive CpG islands. Aberrant DNA methylation of these loci was found in 94% of all GIST. The rates of DNA methylation at each locus were as follows: hMLH1, 60%; MINT2, 51%; MGMT, 49%; p73, 49%; p16, 20%; E-cadherin, 14%; MINT1, 9%; p15, 6%; and MINT31, 0%. CpG islands methylator phenotype, which was defined as methylation involving more than three gene promoters, was found in 57% of GIST with c-kit or PDGFRA gene mutations. According to the risk categories, CpG islands methylator phenotype was present in 55% of low-risk GIST, and in 58% of high-risk GIST. Our results suggested that in addition to c-kit or PDGFRA mutations, the aberrant methylation of CpG islands, especially of mismatch-repair genes, may have a role in the tumorigenesis of GIST.
Collapse
Affiliation(s)
- Kana Saito
- Departments of General Surgical Science, Graduate School of Medicine, Gunma University, 3-39-22, Showa-machi, Maebashi, Gunma 371-8511, Japan
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Haller F, Löbke C, Ruschhaupt M, Cameron S, Schulten HJ, Schwager S, von Heydebreck A, Gunawan B, Langer C, Ramadori G, Sültmann H, Poustka A, Korf U, Füzesi L. Loss of 9p leads to p16INK4A down-regulation and enables RB/E2F1-dependent cell cycle promotion in gastrointestinal stromal tumours (GISTs). J Pathol 2008; 215:253-62. [PMID: 18438954 DOI: 10.1002/path.2352] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- F Haller
- Department of Pathology, Georg August University, Göttingen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Genetic alterations are a key feature of cancer cells and typically target biological processes and pathways that contribute to cancer pathogenesis. Array-based comparative genomic hybridization (aCGH) has provided a wealth of new information on copy number changes in cancer on a genome-wide level and aCGH data have also been utilized in cancer classification. More importantly, aCGH analyses have allowed highly accurate localization of specific genetic alterations that, for example, are associated with tumor progression, therapy response, or patient outcome. The genes involved in these aberrations are likely to contribute to cancer pathogenesis, and the high-resolution mapping by aCGH greatly facilitates the subsequent identification of these cancer-associated genes.
Collapse
Affiliation(s)
- Anne Kallioniemi
- Laboratory of Cancer Genetics, Tampere University Hospital and Institute of Medical Technology, University of Tampere, Biokatu 6, Tampere FI-33014, Finland.
| |
Collapse
|