1
|
Atiq MA, Balan J, Blackburn PR, Gross JM, Voss JS, Jin L, Fadra N, Davila JI, Pitel BA, Siqueira Parrilha Terra SB, Minn KT, Jackson RA, Hofich CD, Willkomm KS, Peterson BJ, Clausen SN, Rumilla KM, Gupta S, Lo YC, Ida CM, Molligan JF, Thangaiah JJ, Petersen MJ, Sukov WR, Guo R, Giannini C, Schoolmeester JK, Fritchie K, Inwards CY, Folpe AL, Oliveira AM, Torres-Mora J, Kipp BR, Halling KC. SARCP, a Clinical Next-Generation Sequencing Assay for the Detection of Gene Fusions in Sarcomas: A Description of the First 652 Cases. J Mol Diagn 2025; 27:74-95. [PMID: 39521244 DOI: 10.1016/j.jmoldx.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 10/11/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
An amplicon-based targeted next-generation sequencing (NGS) assay for the detection of gene fusions in sarcomas was developed, validated, and implemented. This assay can detect fusions in targeted regions of 138 genes and BCOR internal tandem duplications. This study reviews our experience with testing on the first 652 patients analyzed. Gene fusions were detected in 238 (36.5%) of 652 cases, including 83 distinct fusions in the 238 fusion-positive cases, 10 of which had not been previously described. Among the 238 fusion-positive cases, the results assisted in establishing a diagnosis for 137 (58%) cases, confirmed a suspected diagnosis in 66 (28%) cases, changed a suspected diagnosis in 25 (10%) cases, and were novel fusions with unknown clinical significance in 10 (4%) cases. Twenty-six cases had gene fusions (ALK, ROS1, NTRK1, NTRK3, and COL1A1::PDGFB) for which there are targetable therapies. BCOR internal tandem duplications were identified in 6 (1.2%) of 485 patients. Among the 138 genes in the panel, 66 were involved in one or more fusions, and 72 were not involved in any fusions. There was little overlap between the genes involved as 5'-partners (31 different genes) and 3'-partners (37 different genes). This study shows the clinical utility of a next-generation sequencing gene fusion detection assay for the diagnosis and treatment of sarcomas.
Collapse
Affiliation(s)
- Mazen A Atiq
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Jagadheshwar Balan
- Department of Quantitative Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Patrick R Blackburn
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - John M Gross
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Jesse S Voss
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Long Jin
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Numrah Fadra
- Department of Quantitative Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Jaime I Davila
- Department of Quantitative Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Beth A Pitel
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | | | - Kay T Minn
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Rory A Jackson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Christopher D Hofich
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Kurt S Willkomm
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Brenda J Peterson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Sydney N Clausen
- University of Minnesota Medical School, Duluth, Duluth, Minnesota
| | - Kandelaria M Rumilla
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Sounak Gupta
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Ying-Chun Lo
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Cris M Ida
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Jeremy F Molligan
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | | | - Matthew J Petersen
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - William R Sukov
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Ruifeng Guo
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Caterina Giannini
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | | | - Karen Fritchie
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Carrie Y Inwards
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Andrew L Folpe
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Andre M Oliveira
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Jorge Torres-Mora
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Benjamin R Kipp
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota.
| | - Kevin C Halling
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
2
|
Gandhi JS, Schneider T, Thangaiah JJ, Lauer SR, Gjeorgjievski SG, Baumhoer D, Folpe AL, Bahrami A. Myoepithelial Tumors of Bone With EWSR1::PBX3 Fusion: A Spectrum From Benign to Malignant. Mod Pathol 2024; 37:100514. [PMID: 38763423 DOI: 10.1016/j.modpat.2024.100514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/29/2024] [Accepted: 05/11/2024] [Indexed: 05/21/2024]
Abstract
The EWSR1::PBX3 fusion gene, commonly associated with cutaneous syncytial myoepitheliomas, is also found in myoepithelial tumors (METs) of bone and soft tissue. These tumors typically demonstrate benign histology and favorable outcomes. This study examines 6 previously unreported intraosseous METs harboring the EWSR1::PBX3 fusion, focusing on their histopathologic characteristics, immunophenotype, clinical and radiographic profiles, and patient outcomes. The cohort comprised 5 men and 1 woman, aged 25 to 65 years (median age: 31 years), with tumors located in the proximal tibia (3 cases), distal radius (2 cases), and ilium (1 case) and sizes between 3.2 and 12.2 cm (median size: 3.9 cm). Imaging showed osteolytic lesions with varying degrees of cortical involvement and soft tissue extension in 3 cases. Histologically, 4 tumors showed mainly uniform oval-to-spindled cells in syncytial or fascicular arrangements within a collagenous matrix, displaying either bland nuclear features or mild atypia, and low to slightly elevated mitotic activity (≤1 per 10 high-power fields in 3 cases and 6 per 10 high-power fields in 1), classifying them as benign or atypical METs. In contrast, 2 tumors exhibited pronounced nuclear atypia with ovoid, spindled, epithelioid and round cells, hyperchromatic nuclei, inconspicuous nucleoli, increased N/C ratios, high mitotic rates (17 and 19 per 10 high-power fields), and extensive necrosis. Both tumors behaved aggressively-one patient underwent amputation after neoadjuvant chemotherapy and radiation, and the other died within 7 months with the disease still present. Immunohistochemically, the tumors consistently expressed epithelial membrane antigen and S100 but lacked keratin (AE1/AE3) expression. Our study demonstrated that bone METs with EWSR1::PBX3 fusions encompass a histologic continuum from benign to malignant, with benign/atypical METs mirroring their cutaneous analogs in morphology, and malignant variants distinguished by heterogeneous cytologic and architectural features, pronounced nuclear atypia, and high mitotic rates.
Collapse
Affiliation(s)
- Jatin S Gandhi
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Thomas Schneider
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Judith J Thangaiah
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Scott R Lauer
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska
| | | | - Daniel Baumhoer
- Bone Tumor Reference Center, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland; Basel Research Centre for Child Health, Basel, Switzerland
| | - Andrew L Folpe
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Armita Bahrami
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia.
| |
Collapse
|
3
|
Yin X, Yang X, Wang S, Zhou J, Zhao M. SMARCB1/INI1-deficient epithelioid and myxoid neoplasms in paratesticular region: Expanding the clinicopathologic and molecular spectrum. Ann Diagn Pathol 2024; 68:152242. [PMID: 38039617 DOI: 10.1016/j.anndiagpath.2023.152242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023]
Abstract
SMARCB1/INI1-deficient soft tissue tumors with epithelioid and myxoid features are diverse and mainly include soft tissue myoepithelial tumor, extraskeletal myxoid chondrosarcoma, and the recently described myoepithelioma-like tumor of the vulvar region and myxoepithelioid tumor with chordoid features. Because of their overlapping features, the accurate diagnosis and classification of these tumors are often challenging. Herein, we report two unique cases of SMARCB1/INI1-deficient soft tissue neoplasm with epithelioid and myxoid features occurring in male paratesticular region. The first case was a 52-year-old man presented with an intermittent painful left paratesticular mass for 1 year. The second case was a 41-year-old man presented with a painless paratesticular mass on the right side for 3 months. Both patients underwent an orchiectomy. After 6 and 26 months of follow-up, both were alive with no evidence of recurrence or metastasis. In both cases, the tumor was relatively well-demarcated and showed monomorphic round to epithelioid cells arranged in a nested, trabecular, reticular, and corded pattern, setting in a myxohyalinized and vascularized matrix. The tumor cells showed relatively uniform round nuclei with vesicular chromatin and variably prominent nucleoli. No rhabdoid cells were identified. Mitoses numbered 3 and 2 per 10 high-power fields. Tumor necrosis or lymphovascular invasion was absent. Immunohistochemically, both tumors expressed epithelial membrane antigen (focal), calponin (focal), and CD99. SMARCB1/INI1 expression was deficient in both cases. In addition, case 1 diffusely expressed pan-cytokeratin, and case 2 diffusely expressed CD34 and synaptophysin. Molecular genetically, case 1 showed SMARCB1 homozygous deletion as detected by fluorescence in-situ hybridization (FISH), and case 2 demonstrated SMARCB1 copy number deletions by next-generation sequencing and SMARCB1 monoallelic deletion by FISH. Both cases lacked EWSR1 rearrangements by FISH. The overall clinicopathologic profiles of the two cases made it difficult to classify them as one of the established categories of SMARCB1/INI1-deficient mesenchymal tumors. Our study further expands the clinicopathologic and molecular spectrum of SMARCB1/INI1-deficient epithelioid and myxoid neoplasms and highlights the challenges to diagnose these tumors.
Collapse
Affiliation(s)
- Xiaona Yin
- Ningbo Clinical Pathology Diagnosis Center, Ningbo 315000, China
| | - Xiaoqun Yang
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Suying Wang
- Ningbo Clinical Pathology Diagnosis Center, Ningbo 315000, China
| | - Jue Zhou
- Ningbo Clinical Pathology Diagnosis Center, Ningbo 315000, China
| | - Ming Zhao
- Ningbo Clinical Pathology Diagnosis Center, Ningbo 315000, China.
| |
Collapse
|
4
|
Yin L, Shi C, He X, Qiu Y, Chen H, Chen M, Zhang Z, Chen Y, Zhou Y, Zhang H. NTRK-rearranged spindle cell neoplasms: a clinicopathological and molecular study of 13 cases with peculiar characteristics at one of the largest institutions in China. Pathology 2023; 55:362-374. [PMID: 36641377 DOI: 10.1016/j.pathol.2022.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/20/2022] [Accepted: 10/09/2022] [Indexed: 12/24/2022]
Abstract
NTRK-rearranged spindle cell neoplasms (NTRK-RSCNs) represent an emerging group of rare tumours defined using molecular means. To the best of our knowledge, there have been no large series of reports about this tumour in the Chinese population in English full-text articles. Herein, we present 13 NTRK-RSCNs with peculiar characteristics. Ten of the 13 (77%) patients were children without sex differences. The tumour locations included six trunks, four extremities, two recta, and one small bowel. The histological morphology included four lipofibromatosis-like neural tumour (LPF-NT)-like, eight malignant peripheral nerve sheath tumours (MPNST)/fibrosarcoma-like, and one extremely rare myxofibrosarcoma-like pattern. Immunohistochemically, all cases were CD34, pan-TRK and TRK-A positive, SOX-10 negative, and H3K27me3 intact. S-100 protein expression was identified in 11 of 13 (85%) cases. Genetically, NTRK1 rearrangements were considered positive (7/13, 54%) or suspicious for positivity (6/13, 46%) by fluorescence in situ hybridisation. Next-generation sequencing and Sanger sequencing confirmed NTRK1 fusions with a variety of partner genes, including five LMNA, three TPM3, one SQSTM1, three novel CPSF6, IGR (downstream PMVK), and GAS2L1 genes. Interestingly, the last tumour concurrently harboured a second EWSR1-PBX1 fusion, which has never been reported. Four patients developed local recurrence and two of them suffered metastasis. In our study, NTRK-RSCNs had peculiar fusions that displayed unusual or complicated clinicopathological features. Histological clues and IHC helped streamline a small subset of potential candidates. Although FISH is a powerful technology for identifying NTRK rearrangements, RNA-/DNA-based NGS is recommended for highly suspected cases in which FISH signal patterns are not discernible as classic positive patterns, particularly if targeted therapy is considered.
Collapse
Affiliation(s)
- Lijuan Yin
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Changle Shi
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xin He
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yan Qiu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huijiao Chen
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Min Chen
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhang Zhang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yihua Chen
- Department of Pathology, Chengdu Military General Hospital, Chengdu, Sichuan, China
| | - Yanyan Zhou
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hongying Zhang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
5
|
Ulici V, Hornick JL, Davis JL, Mehrotra S, Meis JM, Halling KC, Fletcher CD, Kao E, Folpe AL. "E-MGNET": Extra-Enteric Malignant Gastrointestinal Neuroectodermal Tumor- A Clinicopathological and Molecular Genetic Study of 11 Cases. Mod Pathol 2023; 36:100160. [PMID: 36934861 DOI: 10.1016/j.modpat.2023.100160] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/28/2023] [Accepted: 03/12/2023] [Indexed: 03/19/2023]
Abstract
Malignant gastrointestinal neuroectodermal tumors (MGNET), also known as "gastrointestinal clear cell sarcoma-like tumor", are very rare, aggressive sarcomas characterized by enteric location, distinctive pathologic features, and EWSR1/FUS::ATF1/CREB1 fusions. Despite identical genetics, the clinicopathologic features of MGNET are otherwise quite different from clear cell sarcoma of soft parts (CCS). Only exceptional extra-enteric MGNET (E-MGNET) have been reported. We report a series of 11 E-MGNET, the largest to date. Cases diagnosed as MGNET and occurring in non-intestinal locations were retrieved. Clinical follow-up was obtained. The tumors occurred in 3 males and 8 females (14-70 years of age, median 33 years) and involved the soft tissues of the neck (3), shoulder (1), buttock (2), orbit (1), and tongue/parapharyngeal space (1), the urinary bladder (1) and the falciform ligament/liver (1). Tumors showed morphologic features of enteric MGNET (small, relatively uniform, round to ovoid cells with round, regular nuclei containing small nucleoli, growing in multinodular and vaguely lobular patterns, with solid, pseudoalveolar and pseudopapillary architecture). Immunohistochemical results were: S100 protein (11/11), SOX10 (11/11), synaptophysin (3/10), CD56 (7/9), CD117 (3/9), DOG1 (0/4), ALK (4/8), chromogranin A (0/10), HMB45 (0/11), Melan-A (0/11), tyrosinase (0/4), MiTF (0/11). NGS results were: EWSR1::ATF1 (7 cases), EWSR1::CREB1 (3 cases) and EWSR1::PBX1 (1 case). The EWSR1::PBX1-positive tumor was similar to other cases, including osteoclast-like giant cells, and negative for myoepithelial markers. Clinical follow-up (range: 10 to 70 months; median 34 months) showed 4 patients dead of disease (10.5, 12, 25 and 64 months after diagnosis), 1 patient alive with extensive metastases (43 months after diagnosis), 1 patient alive with persistent local disease (11 months after diagnosis), and 4 alive without disease (10, 47, 53 and 70 months after diagnosis). One case is too recent for follow-up. The clinicopathologic and molecular genetic features of rare E-MGNET are essentially identical to those occurring in intestinal locations. Otherwise-typical E-MGNET may harbor EWSR1::PBX1, a finding previously unreported in this tumor type. As in enteric locations, the behavior of E-MGNET is aggressive, with metastases and/or death from disease in at least 50% of patients. E-MGNET should be distinguished from CCS and other tumors with similar fusions. ALK expression appears to be a common feature of tumors harboring EWSR1/FUS::ATF1/CREB1 fusion but is unlikely to predict therapeutic response to ALK inhibition. Future advances in our understanding of these unusual tumors will hopefully lead to improved nomenclature.
Collapse
Affiliation(s)
- Veronica Ulici
- Department of Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN
| | - Jason L Hornick
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Jessica L Davis
- Department of Pathology, University of Indiana, Indianapolis, IN
| | - Swati Mehrotra
- Department of Pathology and Laboratory Medicine, Loyola University Medical Center, Maywood, IL
| | - Jeanne M Meis
- Department of Anatomical Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Kevin C Halling
- Department of Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN
| | | | - Erica Kao
- Department of Pathology, Brooke Army Medical Center, San Antonio, TX
| | - Andrew L Folpe
- Department of Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN.
| |
Collapse
|
6
|
Cyrta J, Rosiene J, Bareja R, Kudman S, Al Zoughbi W, Motanagh S, Wilkes DC, Eng K, Zhang T, Sticca E, Mathew S, Rubin MA, Sboner A, Elemento O, Rubin BP, Imielinski M, Mosquera JM. Whole-genome characterization of myoepithelial carcinomas of the soft tissue. Cold Spring Harb Mol Case Stud 2022; 8:mcs.a006227. [PMID: 36577525 PMCID: PMC9808553 DOI: 10.1101/mcs.a006227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 10/28/2022] [Indexed: 12/30/2022] Open
Abstract
Myoepithelial carcinomas (MECs) of soft tissue are rare and aggressive tumors affecting young adults and children, but their molecular landscape has not been comprehensively explored through genome sequencing. Here, we present the whole-exome sequencing (WES), whole-genome sequencing (WGS), and RNA sequencing findings of two MECs. Patients 1 and 2 (P1, P2), both male, were diagnosed at 27 and 37 yr of age, respectively, with shoulder (P1) and inguinal (P2) soft tissue tumors. Both patients developed metastatic disease, and P2 died of disease. P1 tumor showed a rhabdoid cytomorphology and a complete loss of INI1 (SMARCB1) expression, associated with a homozygous SMARCB1 deletion. The tumor from P2 showed a clear cell/small cell morphology, retained INI1 expression and strong S100 positivity. By WES and WGS, tumors from both patients displayed low tumor mutation burdens, and no targetable alterations in cancer genes were detected. P2's tumor harbored an EWSR1::KLF15 rearrangement, whereas the tumor from P1 showed a novel ASCC2::GGNBP2 fusion. WGS evidenced a complex genomic event involving mainly Chromosomes 17 and 22 in the tumor from P1, which was consistent with chromoplexy. These findings are consistent with previous reports of EWSR1 rearrangements (50% of cases) in MECs and provide a genetic basis for the loss of SMARCB1 protein expression observed through immunohistochemistry in 10% of 40% of MEC cases. The lack of additional driver mutations in these tumors supports the hypothesis that these alterations are the key molecular events in MEC evolution. Furthermore, the presence of complex structural variant patterns, invisible to WES, highlights the novel biological insights that can be gained through the application of WGS to rare cancers.
Collapse
Affiliation(s)
- Joanna Cyrta
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York 10021, USA;,Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and New York Presbyterian, New York, New York 10021, USA
| | - Joel Rosiene
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and New York Presbyterian, New York, New York 10021, USA;,SUNY Downstate College of Medicine, Brooklyn, New York 11203, USA
| | - Rohan Bareja
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and New York Presbyterian, New York, New York 10021, USA;,Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York 10021, USA
| | - Sarah Kudman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York 10021, USA;,Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and New York Presbyterian, New York, New York 10021, USA
| | - Wael Al Zoughbi
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York 10021, USA;,Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and New York Presbyterian, New York, New York 10021, USA
| | - Samaneh Motanagh
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York 10021, USA;,Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and New York Presbyterian, New York, New York 10021, USA
| | - David C. Wilkes
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and New York Presbyterian, New York, New York 10021, USA
| | - Kenneth Eng
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and New York Presbyterian, New York, New York 10021, USA;,Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York 10021, USA
| | - Tuo Zhang
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and New York Presbyterian, New York, New York 10021, USA;,Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York 10021, USA
| | - Evan Sticca
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and New York Presbyterian, New York, New York 10021, USA;,Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York 10021, USA
| | - Susan Mathew
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York 10021, USA
| | - Mark A. Rubin
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York 10021, USA;,Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and New York Presbyterian, New York, New York 10021, USA
| | - Andrea Sboner
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York 10021, USA;,Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and New York Presbyterian, New York, New York 10021, USA;,Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York 10021, USA
| | - Olivier Elemento
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York 10021, USA;,Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and New York Presbyterian, New York, New York 10021, USA;,Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York 10021, USA
| | - Brian P. Rubin
- Department of Pathology, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Marcin Imielinski
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York 10021, USA;,Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and New York Presbyterian, New York, New York 10021, USA;,New York Genome Center, New York, New York 10013, USA
| | - Juan Miguel Mosquera
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York 10021, USA;,Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and New York Presbyterian, New York, New York 10021, USA;,New York Genome Center, New York, New York 10013, USA
| |
Collapse
|
7
|
Establishment of multiplex RT-PCR to detect fusion genes for the diagnosis of Ewing sarcoma. Diagn Pathol 2021; 16:102. [PMID: 34749732 PMCID: PMC8573982 DOI: 10.1186/s13000-021-01164-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/18/2021] [Indexed: 11/29/2022] Open
Abstract
Background Detection of the tumor-specific EWSR1/FUS-ETS fusion gene is essential to diagnose Ewing sarcoma. Reverse transcription–polymerase chain reaction (RT–PCR) and fluorescence in situ hybridization are commonly used to detect the fusion gene, and assays using next-generation sequencing have recently been reported. However, at least 28 fusion transcript variants have been reported, making rapid and accurate detection difficult. Methods We constructed two sets of multiplex PCR assays and evaluated their utility using cell lines and clinical samples. Results EWSR1/FUS-ETS was detected in five of six tumors by the first set, and in all six tumors by the second set. The fusion gene detected only by the latter was EWSR1-ERG, which completely lacked exon 7 of EWSR1. The fusion had a short N-terminal region of EWSR1 and showed pathologically atypical features. Conclusions We developed multiplex RT–PCR assays to detect EWSR1-ETS and FUS-ETS simultaneously. These assays will aid the rapid and accurate diagnosis of Ewing sarcoma. In addition, variants of EWSR1/FUS-ETS with a short N-terminal region that may have been previously missed can be easily detected. Supplementary Information The online version contains supplementary material available at 10.1186/s13000-021-01164-6.
Collapse
|
8
|
Thway K, Fisher C. Undifferentiated and dedifferentiated soft tissue neoplasms: Immunohistochemical surrogates for differential diagnosis. Semin Diagn Pathol 2021; 38:170-186. [PMID: 34602314 DOI: 10.1053/j.semdp.2021.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/14/2021] [Accepted: 09/27/2021] [Indexed: 12/23/2022]
Abstract
Undifferentiated soft tissue sarcomas (USTS) are described in the current World Health Organization Classification of Soft Tissue and Bone Tumours as those showing no identifiable line of differentiation when analyzed by presently available technologies. This is a markedly heterogeneous group, and the diagnosis of USTS remains one of exclusion. USTS can be divided into four morphologic subgroups: pleomorphic, spindle cell, round cell and epithelioid undifferentiated sarcomas, with this combined group accounting for up to 20% of all soft tissue sarcomas. As molecular advances enable the stratification of emerging genetic subsets within USTS, particularly within undifferentiated round cell sarcomas, other groups, particularly the category of undifferentiated pleomorphic sarcomas (UPS), still remain difficult to substratify and represent heterogeneous collections of neoplasms often representing the common morphologic endpoints of a variety of malignant tumors of various (mesenchymal and non-mesenchymal) lineages. However, recent molecular developments have also enabled the identification and correct classification of many tumors from various lines of differentiation that would previously have been bracketed under 'UPS'. This includes pleomorphic neoplasms and dedifferentiated neoplasms (the latter typically manifesting with an undifferentiated pleomorphic morphology) of mesenchymal (e.g. solitary fibrous tumor and gastrointestinal stromal tumor) and non-mesenchymal (e.g. melanoma and carcinoma) origin. The precise categorization of 'pleomorphic' or 'undifferentiated' neoplasms is critical for prognostication, as, for example, dedifferentiated liposarcoma typically behaves less aggressively than other pleomorphic sarcomas, and for management, including the potential for targeted therapies based on underlying recurrent molecular features. In this review we focus on undifferentiated and dedifferentiated pleomorphic and spindle cell neoplasms, summarizing their key genetic, morphologic and immunophenotypic features in the routine diagnostic setting, and the use of immunohistochemistry in their principal differential diagnosis, and highlight new developments and entities in the group of undifferentiated and dedifferentiated soft tissue sarcomas.
Collapse
Affiliation(s)
- Khin Thway
- Sarcoma Unit, Royal Marsden Hospital, London, SW3 6JJ, United Kingdom; Division of Molecular Pathology, The Institute of Cancer Research, 237 Fulham Rd, London, SW3 6JB, United Kingdom.
| | - Cyril Fisher
- Division of Molecular Pathology, The Institute of Cancer Research, 237 Fulham Rd, London, SW3 6JB, United Kingdom; Department of Pathology, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2GW, United Kingdom
| |
Collapse
|
9
|
Flucke U, van Noesel MM, Siozopoulou V, Creytens D, Tops BBJ, van Gorp JM, Hiemcke-Jiwa LS. EWSR1-The Most Common Rearranged Gene in Soft Tissue Lesions, Which Also Occurs in Different Bone Lesions: An Updated Review. Diagnostics (Basel) 2021; 11:diagnostics11061093. [PMID: 34203801 PMCID: PMC8232650 DOI: 10.3390/diagnostics11061093] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 01/09/2023] Open
Abstract
EWSR1 belongs to the FET family of RNA-binding proteins including also Fused in Sarcoma (FUS), and TATA-box binding protein Associated Factor 15 (TAF15). As consequence of the multifunctional role of EWSR1 leading to a high frequency of transcription of the chromosomal region where the gene is located, EWSR1 is exposed to aberrations such as rearrangements. Consecutive binding to other genes leads to chimeric proteins inducing oncogenesis. The other TET family members are homologous. With the advent of widely used modern molecular techniques during the last decades, it has become obvious that EWSR1 is involved in the development of diverse benign and malignant tumors with mesenchymal, neuroectodermal, and epithelial/myoepithelial features. As oncogenic transformation mediated by EWSR1-fusion proteins leads to such diverse tumor types, there must be a selection on the multipotent stem cell level. In this review, we will focus on the wide variety of soft tissue and bone entities, including benign and malignant lesions, harboring EWSR1 rearrangement. Fusion gene analysis is the diagnostic gold standard in most of these tumors. We present clinicopathologic, immunohistochemical, and molecular features and discuss differential diagnoses.
Collapse
Affiliation(s)
- Uta Flucke
- Department of Pathology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (M.M.v.N.); (B.B.J.T.); (L.S.H.-J.)
- Correspondence: ; Tel.: +31-24-36-14387; Fax: +31-24-36-68750
| | - Max M. van Noesel
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (M.M.v.N.); (B.B.J.T.); (L.S.H.-J.)
- Division Cancer & Imaging, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | | | - David Creytens
- Department of Pathology, Ghent University Hospital, Ghent University, 9000 Ghent, Belgium;
| | - Bastiaan B. J. Tops
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (M.M.v.N.); (B.B.J.T.); (L.S.H.-J.)
| | - Joost M. van Gorp
- Department of Pathology, St Antonius Hospital, 3435 CM Nieuwegein, The Netherlands;
| | - Laura S. Hiemcke-Jiwa
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (M.M.v.N.); (B.B.J.T.); (L.S.H.-J.)
| |
Collapse
|
10
|
Leckey BD, John I, Reyes-Múgica M, Naous R. EWSR1-ATF1 Fusion in a Myoepithelial Carcinoma of Soft Tissue With Small Round Cell Morphology: A Potential Diagnostic Pitfall. Pediatr Dev Pathol 2021; 24:258-263. [PMID: 33683984 DOI: 10.1177/1093526621998869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Myoepithelial tumors of soft tissue are rare mesenchymal neoplasms that overlap with their salivary gland and skin counterparts at both the histopathologic and molecular levels. EWSR1 gene rearrangements with various fusion partners represent a common genetic event in myoepithelial tumors of soft tissue, whether benign or malignant, and may prove useful as a diagnostic tool in difficult cases. However, the number of diagnostic entities with EWSR1 gene rearrangements has grown considerably in recent years, and there is significant morphologic and immunophenotypic overlap amongst this group, underscoring the importance of fusion testing to detect fusion partners that are characteristic of discrete diagnostic entities. Herein, we report a malignant myoepithelial tumor of soft tissue/myoepithelial carcinoma with an undifferentiated round cell morphology arising in a pediatric patient with a EWSR1-ATF1 gene fusion.
Collapse
Affiliation(s)
- Bruce D Leckey
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Ivy John
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Miguel Reyes-Múgica
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA.,Department of Pathology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA
| | - Rana Naous
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA
| |
Collapse
|
11
|
Kannan S, Lock I, Ozenberger BB, Jones KB. Genetic drivers and cells of origin in sarcomagenesis. J Pathol 2021; 254:474-493. [DOI: 10.1002/path.5617] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/01/2020] [Accepted: 01/06/2021] [Indexed: 02/06/2023]
Affiliation(s)
- Sarmishta Kannan
- Departments of Orthopaedics and Oncological Sciences Huntsman Cancer Institute, University of Utah School of Medicine Salt Lake City UT USA
| | - Ian Lock
- Departments of Orthopaedics and Oncological Sciences Huntsman Cancer Institute, University of Utah School of Medicine Salt Lake City UT USA
| | - Benjamin B Ozenberger
- Departments of Orthopaedics and Oncological Sciences Huntsman Cancer Institute, University of Utah School of Medicine Salt Lake City UT USA
| | - Kevin B Jones
- Departments of Orthopaedics and Oncological Sciences Huntsman Cancer Institute, University of Utah School of Medicine Salt Lake City UT USA
| |
Collapse
|
12
|
Nagel S, Pommerenke C, Meyer C, MacLeod RAF, Drexler HG. Establishment of the TALE-code reveals aberrantly activated homeobox gene PBX1 in Hodgkin lymphoma. PLoS One 2021; 16:e0246603. [PMID: 33539429 PMCID: PMC7861379 DOI: 10.1371/journal.pone.0246603] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/21/2021] [Indexed: 12/26/2022] Open
Abstract
Homeobox genes encode transcription factors which regulate basic processes in development and cell differentiation and are grouped into classes and subclasses according to sequence similarities. Here, we analyzed the activities of the 20 members strong TALE homeobox gene class in early hematopoiesis and in lymphopoiesis including developing and mature B-cells, T-cells, natural killer (NK)-cells and innate lymphoid cells (ILC). The resultant expression pattern comprised eleven genes and which we termed TALE-code enables discrimination of normal and aberrant activities of TALE homeobox genes in lymphoid malignancies. Subsequent expression analysis of TALE homeobox genes in public datasets of Hodgkin lymphoma (HL) patients revealed overexpression of IRX3, IRX4, MEIS1, MEIS3, PBX1, PBX4 and TGIF1. As paradigm we focused on PBX1 which was deregulated in about 17% HL patients. Normal PBX1 expression was restricted to hematopoietic stem cells and progenitors of T-cells and ILCs but absent in B-cells, reflecting its roles in stemness and early differentiation. HL cell line SUP-HD1 expressed enhanced PBX1 levels and served as an in vitro model to identify upstream regulators and downstream targets in this malignancy. Genomic studies of this cell line therein showed a gain of the PBX1 locus at 1q23 which may underlie its aberrant expression. Comparative expression profiling analyses of HL patients and cell lines followed by knockdown experiments revealed NFIB and TLX2 as target genes activated by PBX1. HOX proteins operate as cofactors of PBX1. Accordingly, our data showed that HOXB9 overexpressed in HL coactivated TLX2 but not NFIB while activating TNFRSF9 without PBX1. Further downstream analyses showed that TLX2 activated TBX15 which operated anti-apoptotically. Taken together, we discovered a lymphoid TALE-code and identified an aberrant network around deregulated TALE homeobox gene PBX1 which may disturb B-cell differentiation in HL by reactivation of progenitor-specific genes. These findings may provide the framework for future studies to exploit possible vulnerabilities of malignant cells in therapeutic scenarios.
Collapse
Affiliation(s)
- Stefan Nagel
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Claudia Pommerenke
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Corinna Meyer
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Roderick A. F. MacLeod
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Hans G. Drexler
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
13
|
Skálová A, Agaimy A, Vanecek T, Baněčková M, Laco J, Ptáková N, Šteiner P, Majewska H, Biernat W, Corcione L, Eis V, Koshyk O, Vondrák J, Michal M, Leivo I. Molecular Profiling of Clear Cell Myoepithelial Carcinoma of Salivary Glands With EWSR1 Rearrangement Identifies Frequent PLAG1 Gene Fusions But No EWSR1 Fusion Transcripts. Am J Surg Pathol 2021; 45:1-13. [PMID: 33027073 DOI: 10.1097/pas.0000000000001591] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Myoepithelial carcinoma of salivary glands is an underrecognized and challenging entity with a broad morphologic spectrum, including an EWSR1-rearranged clear cell variant. Myoepithelial carcinoma is generally aggressive with largely unknown genetic features. A retrospective review of Salivary Gland Tumor Registry in Pilsen searching for the key words "clear cell myoepithelial carcinoma," "hyalinizing clear cell," and "clear cell malignant myoepithelioma" yielded 94 clear cell myoepithelial carcinomas (CCMCs) for molecular analysis of EWSR1 rearrangement using fluorescence in situ hybridization (FISH). Tumors positive for EWSR1 gene rearrangement were tested by next-generation sequencing (NGS) using fusion-detecting panels. NGS results were confirmed by reverse-transcription polymerase chain reaction or by FISH. Twenty-six tumors originally diagnosed as CCMC (26/94, 27.6%) revealed split signals for EWSR1 by FISH. Six of these tumors (6/26, 23%) displayed amplification of the EWSR1 locus. Fifteen cases were analyzable by NGS, whereas 9 were not, and tissue was not available in 2 cases. None of the CCMCs with EWSR1 rearrangements detected by FISH had an EWSR1 fusion transcript. Fusion transcripts were detected in 6 cases (6/15, 40%), including LIFR-PLAG1 and CTNNB1-PLAG1, in 2 cases each, and CHCHD7-PLAG1 and EWSR1-ATF1 fusions were identified in 1 case each. Seven cases, including those with PLAG1 fusion, were positive for PLAG1 rearrangement by FISH, with notable exception of CHCHD7-PLAG1, which is an inversion not detectable by FISH. One single case with EWSR1-ATF1 fusion in NGS showed ATF1 gene rearrangement by FISH and was reclassified as clear cell carcinoma (CCC). In addition, another 4 cases revealed ATF1 rearrangement by FISH and were reclassified as CCC as well. Moreover, 12/68 (17%) CCMCs with intact EWSR1 gene were selected randomly and analyzed by NGS. PLAG1 fusions were found in 5 cases (5/12, 41.6%) with LIFR (2 cases), FGFR1 (2 cases), and CTNNB1 (1 case) as partner genes. Overall, PLAG1 gene rearrangements were detected in 10/38 (26%) tested cases. None of the tumors had SMARCB1 loss by immunohistochemistry as a possible explanation for the EWSR1 abnormalities in FISH. Novel findings in our NGS study suggest that EWSR1-FISH positive CCMC is a gene fusion-driven disease with frequent oncogenic PLAG1 fusions, including LIFR-PLAG1 and CTNNB1-PLAG1 in most cases. Productive EWSR1 fusions are found only in a minority of EWSR1-ATF1-rearranged cases, which were in part reclassifiable as CCCs. Detectable EWSR1-FISH abnormality in CCMCs without gene fusion perhaps represents a passenger mutation with minor or no oncologic effect.
Collapse
Affiliation(s)
- Alena Skálová
- Department of Pathology, Faculty of Medicine in Pilsen, Charles University
- Bioptic Laboratory Ltd
| | - Abbas Agaimy
- Department of Pathology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), University Hospital of Erlangen, Erlangen, Germany
| | - Tomas Vanecek
- Molecular and Genetic Laboratory, Bioptic Laboratory Ltd, Pilsen
| | - Martina Baněčková
- Department of Pathology, Faculty of Medicine in Pilsen, Charles University
- Bioptic Laboratory Ltd
| | - Jan Laco
- The Fingerland Department of Pathology, Charles University, Faculty of Medicine and University Hospital Hradec Kralove, Hradec Kralove
| | - Nikola Ptáková
- Molecular and Genetic Laboratory, Bioptic Laboratory Ltd, Pilsen
| | - Petr Šteiner
- Molecular and Genetic Laboratory, Bioptic Laboratory Ltd, Pilsen
| | - Hanna Majewska
- Department of Pathology, Warmia nad Mazury University, Olsztyn
| | - Wojciech Biernat
- Department of Pathology, Medical University of Gdansk, Gdansk, Poland
| | - Luigi Corcione
- Department of Pathology, University of Parma, Parma, Italy
| | - Václav Eis
- Department of Pathology, 3rd Faculty of Medicine, Charles University and Kralovske Vinohrady University Hospital, Prague
| | | | - Jan Vondrák
- Molecular and Genetic Laboratory, South Bohemian University, Ceske Budejovice, Czech Republic
| | - Michal Michal
- Department of Pathology, Faculty of Medicine in Pilsen, Charles University
| | - Ilmo Leivo
- Institute of Biomedicine, University of Turku
- Department of Pathology, Turku University Hospital, Turku, Finland
| |
Collapse
|
14
|
Rekhi B. Recent updates in the diagnosis of soft tissue tumors: Newly described tumor entities, newer immunohistochemical and genetic markers, concepts, including "inter-tumor relationships". INDIAN J PATHOL MICR 2021; 64:448-459. [PMID: 34341252 DOI: 10.4103/ijpm.ijpm_1361_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
During the last two decades, there have been significant strides in the diagnosis of soft tissue tumors, including identification of various tumor entities, newer immunohistochemical markers, and an increasing number of molecular signatures, defining certain tumors. Lately, there are certain emerging tumor entities, defined by their molecular features with an impact on treatment. At the same time, there is a certain degree of overlap in the expression of certain immunohistochemical antibody markers, as well as genetic markers, with certain gene rearrangements and chimeric fusions observed among completely different tumors. Moreover, a certain amount of clinicopathological, immunohistochemical, and molecular proximity has been unraveled among certain tumor types. Over the years, the World Health Organization (WHO) fascicles on tumors of soft tissue have succinctly brought out these aspects. The present review describes recent updates in the diagnosis of soft tissue tumors, including certain newly described tumor entities; emphasizing upon newer, specific immunohistochemical and molecular markers, along with concepts, regarding "intertumor relationships".
Collapse
Affiliation(s)
- Bharat Rekhi
- Department of Surgical Pathology, Tata Memorial Hospital, Homi Bhabha National Institute (HBNI), Mumbai, Maharashtra, India
| |
Collapse
|
15
|
Howitt BE, Folpe AL. Update on SWI/SNF-related gynecologic mesenchymal neoplasms: SMARCA4-deficient uterine sarcoma and SMARCB1-deficient vulvar neoplasms. Genes Chromosomes Cancer 2020; 60:190-209. [PMID: 33252159 DOI: 10.1002/gcc.22922] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 01/22/2023] Open
Abstract
Our knowledge regarding the role of genes encoding the chromatin remodeling switch/sucrose non-fermenting (SWI/SNF) complex in the initiation and progression of gynecologic malignancies continues to evolve. This review focuses on gynecologic tumors in which the sole or primary genetic alteration is in SMARCA4 or SMARCB1, two members of the SWI/SNF chromatin remodeling complex. In this review, we present a brief overview of the classical example of such tumors, ovarian small cell carcinoma of hypercalcemic type, and then a detailed review and update of SMARCB1-deficient and SMARCA4-deficient tumors of the uterus and vulva.
Collapse
Affiliation(s)
- Brooke E Howitt
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Andrew L Folpe
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
16
|
Panagopoulos I, Gorunova L, Andersen K, Lund-Iversen M, Lobmaier I, Micci F, Heim S. NDRG1-PLAG1 and TRPS1-PLAG1 Fusion Genes in Chondroid Syringoma. Cancer Genomics Proteomics 2020; 17:237-248. [PMID: 32345665 DOI: 10.21873/cgp.20184] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND/AIM Chondroid syringoma is a rare benign tumor emanating from sweat glands. Although rearrangements of the pleomorphic adenoma gene 1 (PLAG1) have been reported in such tumors, information on PLAG1 fusion genes is very limited. MATERIALS AND METHODS Cytogenetic, fluorescence in situ hybridization, RNA sequencing, array comparative genomic hybridization, reverse transcription polymerase chain reaction, and Sanger sequencing analyses were performed on two chondroid syringoma cases. RESULTS Both tumors had structural rearrangements of chromosome 8. An NDRG1-PLAG1 transcript was found in the first tumor in which exon 3 of PLAG1 was fused with exon 1 of NDRG1. A TRPS1-PLAG1 chimeric transcript was detected in the second chondroid syringoma in which exon 2 or exon 3 of PLAG1 was fused with exon 1 of TRPS1. CONCLUSION The NDRG1-PLAG1 and TRPS1-PLAG1 resemble other PLAG1 fusion genes inasmuch as the expression of PLAG1 comes under the control of the NDRG1 or TRPS1 promoter.
Collapse
Affiliation(s)
- Ioannis Panagopoulos
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Ludmila Gorunova
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Kristin Andersen
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Marius Lund-Iversen
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Ingvild Lobmaier
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Francesca Micci
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Sverre Heim
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
17
|
Segawa K, Sugita S, Aoyama T, Takenami T, Asanuma H, Kojima Y, Inayama Y, Hasegawa T. Myoepithelioma of soft tissue and bone, and myoepithelioma-like tumors of the vulvar region: Clinicopathological study of 15 cases by PLAG1 immunohistochemistry. Pathol Int 2020; 70:965-974. [PMID: 32940946 DOI: 10.1111/pin.13017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022]
Abstract
We demonstrated the clinicopathological findings of 13 myoepitheliomas of soft tissue and bone (MESTBs) and two myoepithelioma-like tumors of the vulvar region (MELTVRs), focusing on the association between nuclear atypia and clinical course, and the utility of immunohistochemistry (IHC) of pleomorphic adenoma gene 1 (PLAG1) for the pathological diagnosis of these tumors. Of the 13 MESTBs, eight, one and four cases exhibited mild, moderate and severe nuclear atypia, respectively. Two cases with venous invasion showed severe nuclear atypia and both died of advanced disease. Two MELTVR cases showed moderate nuclear atypia and had no evidence of disease after surgery. On IHC, 12 of 13 (92.3%) MESTBs showed PLAG1 immunoreactivity and none of the MELTVRs expressed PLAG1. In addition, MELTVRs showed loss of INI1 expression. In contrast, all MESTBs retained INI1 expression. Fluorescence in situ hybridization detected EWSR1, FUS and PLAG1 rearrangement in 5 (38.5%), 0 (0%) and 2 (15.4%) of the 13 MESTBs, respectively. No EWSR1, FUS and PLAG1 rearrangement were observed in the METLVRs. In conclusion, MESTBs with both severe nuclear atypia and venous invasion would be indicative of malignant potential. PLAG1 might be a useful IHC marker in MESTB diagnosis.
Collapse
Affiliation(s)
- Keiko Segawa
- Department of Surgical Pathology, Kushiro City General Hospital, Hokkaido, Japan
| | - Shintaro Sugita
- Department of Surgical Pathology, Sapporo Medical University, School of Medicine, Hokkaido, Japan
| | - Tomoyuki Aoyama
- Department of Surgical Pathology, Sapporo Medical University, School of Medicine, Hokkaido, Japan
| | - Tomoko Takenami
- Department of Surgical Pathology, Sapporo Medical University, School of Medicine, Hokkaido, Japan
| | - Hiroko Asanuma
- Department of Surgical Pathology, Sapporo Medical University, School of Medicine, Hokkaido, Japan
| | - Yui Kojima
- Department of Diagnostic Pathology, Yokohama Minami Kyosai Hospital, Kanagawa, Japan
| | - Yoshiaki Inayama
- Department of Diagnostic Pathology, Yokohama City University Medical Center, Kanagawa, Japan
| | - Tadashi Hasegawa
- Department of Surgical Pathology, Sapporo Medical University, School of Medicine, Hokkaido, Japan
| |
Collapse
|
18
|
Schaefer IM, Hornick JL. SWI/SNF complex-deficient soft tissue neoplasms: An update. Semin Diagn Pathol 2020; 38:222-231. [PMID: 32646614 DOI: 10.1053/j.semdp.2020.05.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/12/2020] [Accepted: 05/18/2020] [Indexed: 01/04/2023]
Abstract
The SWItch Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complex is a large multi-subunit protein assembly that orchestrates chromatin compaction and accessibility for gene transcription in an ATP-dependent manner. As a key epigenetic regulator, the SWI/SNF complex coordinates gene expression, cell proliferation and differentiation, and its biologic functions, in part, antagonize the polycomb repressive complex 2. The mammalian SWI/SNF complex consists of 15 subunits encoded by 29 genes, some of which are recurrently mutated in human cancers, in the germline or sporadic setting. Most SWI/SNF-deficient tumors share common "rhabdoid" cytomorphology. SMARCB1 (INI1) is the subunit most frequently inactivated in soft tissue neoplasms. Specifically, SMARCB1 deficiency is observed as the genetic hallmark in virtually all malignant rhabdoid tumors, and most cases of epithelioid sarcoma and poorly differentiated chordoma. In addition, subsets of myoepithelial carcinoma (10-40%), extraskeletal myxoid chondrosarcoma (20%), epithelioid schwannoma (40%), and epithelioid malignant peripheral nerve sheath tumor (70%) demonstrate SMARCB1 loss. The gene encoding the SS18 subunit is involved in the SS18-SSX rearrangement, which is pathognomonic of synovial sarcoma and indirectly inactivates SMARCB1. Finally, undifferentiated SMARCA4-deficient thoracic sarcomas are defined by SMARCA4 subunit inactivation, leading to SMARCA4 and SMARCA2 loss. Rarely, inactivation of alternate but biologically equivalent key regulators can substitute for canonical subunit deficiency, such as SMARCA4 inactivation in cases of SMARCB1-retained epithelioid sarcoma. This review briefly highlights SWI/SNF complex biologic functions and its roles in human cancer and provides a detailed update on recent advances in soft tissue neoplasms with canonical SWI/SNF complex deficiency, correlating morphologic, genomic, and immunohistochemical findings.
Collapse
Affiliation(s)
- Inga-Marie Schaefer
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Jason L Hornick
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
19
|
Pulmonary Myoepithelial Tumors With Exuberant Reactive Pneumocytes: Proposed Reclassification of So-called Pneumocytic Adenomyoepithelioma. Am J Surg Pathol 2020; 44:140-147. [PMID: 31567188 DOI: 10.1097/pas.0000000000001376] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Pneumocytic adenomyoepithelioma (PAM) was first described in 2007 and was included in the 2015 World Health Organization Classification of lung tumors as a variant of epithelial-myoepithelial tumor. This rare pulmonary neoplasm was reported to show both myoepithelial and duct-like components, with the latter exhibiting pneumocytic differentiation with TTF-1 expression. We present an index case and 6 additional retrospectively identified cases of pulmonary tumors with prototypical features of PAM. However, with additional clinicoradiologic, histologic, immunohistochemical and cytogenetic data, we were able to reclassify them as myoepithelial neoplasms-both primary and metastatic-with entrapped exuberantly hyperplastic alveolar structures lined by TTF-1 pneumocytes. We reviewed the available literature related to PAM and myoepithelial tumors. Our cases suggest that the entity referred to as PAM represents interstitial growth of myoepithelial neoplasms enticing marked proliferation of entrapped pneumocytes rather than a distinct biphasic neoplasm with pneumocytic differentiation.
Collapse
|
20
|
Cutaneous Syncytial Myoepithelioma Is Characterized by Recurrent EWSR1-PBX3 Fusions. Am J Surg Pathol 2020; 43:1349-1354. [PMID: 31135487 DOI: 10.1097/pas.0000000000001286] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cutaneous syncytial myoepithelioma (CSM) is a rare but distinctive benign variant in the family of myoepithelial neoplasms of skin and soft tissue. CSM has unique morphologic and immunohistochemical features, characterized by intradermal syncytial growth of spindled, ovoid, and histiocytoid cells and consistent staining for S-100 protein and EMA, and differs from other myoepithelial tumors by showing only infrequent keratin staining. Rearrangement of the EWSR1 gene is now known to occur in up to half of all skin and soft tissue myoepithelial tumors, with a wide family of documented fusion partners. In 2013, we reported frequent (80%) EWSR1 rearrangements in CSM, but were unable to identify the fusion partner using available studies at that time. After recent identification of an index case of CSM harboring an EWSR1-PBX3 fusion, we used a combination of targeted RNA sequencing and fluorescence in situ hybridization (FISH) studies to investigate the genetic features of a cohort of CSM. An EWSR1-PBX3 fusion was identified in all 13 cases successfully tested. RNA sequencing was successful in 8/13 cases, all of which were found to have identical breakpoints fusing exon 8 of EWSR1 to exon 5 of PBX3. FISH confirmed both EWSR1 and PBX3 rearrangements in 9/9 cases tested, which included 4 confirmed to have EWSR1-PBX3 fusion by RNA-Seq, 3 cases that failed RNA-Seq, and 2 cases examined by FISH alone. Two cases failed RNA sequencing but had no additional tissue remaining for FISH studies. Our findings demonstrate that EWSR1-PBX3 fusions occur in most (and possibly all) cases of CSM.
Collapse
|
21
|
Panagopoulos I, Gorunova L, Lund-Iversen M, Bassarova A, Heim S. Fusion of the Genes PHF1 and TFE3 in Malignant Chondroid Syringoma. Cancer Genomics Proteomics 2020; 16:345-351. [PMID: 31467228 DOI: 10.21873/cgp.20139] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND/AIM Malignant chondroid syringoma is a rare tumor of unknown pathogenesis. MATERIALS AND METHODS Genetic analyses were performed on a malignant chondroid syringoma. RESULTS G-banding analysis of short-term cultured tumor cells yielded the karyotype 46,Y,t(X;6)(p11;p21)[15]/46,XY[2]. RNA sequencing detected an in-frame fusion of PHF1 from 6p21 with TFE3 from Xp11, verified by RT-PCR and Sanger sequencing. Genomic PCR showed that the PHF1-TFE3 junction was identical to the fusion found by RNA sequencing and RT-PCR. CONCLUSION Malignant chondroid syringoma is genetically related to tumors with PHF1 rearrangements such as low-grade endometrial sarcoma and ossifying fibromyxoid tumor, but also with tumors having TFE3 rearrangements such as renal cell carcinoma, alveolar soft part sarcoma, PEComa, and epithelioid hemangioendothelioma. Further investigations on malignant chondroid syringomas are needed in order to determine whether genetic heterogeneity exists among them and the clinical impact of the PHF1-TFE3 fusion.
Collapse
Affiliation(s)
- Ioannis Panagopoulos
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Ludmila Gorunova
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | | | - Assia Bassarova
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Sverre Heim
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
22
|
Jo VY. Soft Tissue Special Issue: Myoepithelial Neoplasms of Soft Tissue: An Updated Review with Emphasis on Diagnostic Considerations in the Head and Neck. Head Neck Pathol 2020; 14:121-131. [PMID: 31950472 PMCID: PMC7021888 DOI: 10.1007/s12105-019-01109-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 11/29/2019] [Indexed: 01/21/2023]
Abstract
Primary myoepithelial neoplasms of soft tissue have been shown to be related to their salivary gland counterparts, with which they often share morphologic, immunophenotypic, and molecular genetic features, such as the presence of PLAG1 rearrangement in both soft tissue mixed tumor and salivary pleomorphic adenoma. However, important distinctions remain between soft tissue and salivary myoepithelial neoplasms, namely differing criteria for malignancy. This review provides an overview of the current understanding of the clinicopathologic and molecular features of soft tissue myoepithelial neoplasms, including discussion of the similarities and differences between soft tissue and salivary counterparts and relevant diagnostic issues specific to head and neck pathology practice.
Collapse
Affiliation(s)
- Vickie Y. Jo
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115 USA
| |
Collapse
|
23
|
Xu Y, Gao H, Gao JL. Myoepithelioma-like tumor of the vulvar region: a case report in China and review of the literature. Diagn Pathol 2020; 15:3. [PMID: 31915021 PMCID: PMC6950797 DOI: 10.1186/s13000-019-0923-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 12/27/2019] [Indexed: 01/30/2023] Open
Abstract
Background Myoepithelioma-like tumor of the vulvar region (MELTVR) is a recently described mesenchymal neoplasm which typically arising in vulvar regions of adult women. Case presentation Here we report a case of a 65-year-old woman who presented with a 6-year history of subcutaneous mass in the vulvar region. The mass had recently increased in size continuously. Histologically, the tumor cells had an epithelioid to spindled shape. Epithelioid tumor cells proliferated singly or in a loosely cohesive manner with myxoid areas, while spindled tumor cells grew in diffuse sheets or storiform arrangements mainly in nonmyxoid areas. Immunohistochemically, the tumor cells were positive for vimentin, epithelial membrane antigen, calponin, and were partially mild to moderate positive for estrogen receptor, but completely negative for S100 protein, glial fibrillary acidic protein, CD34, desmin, SMA and cytokeratin. INI1/SMARCB1 expression was deficient. EWSR1 and FUS genes were intact tested by fluorescence in situ hybridization analysis. Based on these findings, we diagnose this case as MELTVR. The patient remained relapse-free after the lesion was widely excised during 8 months follow-up. Conclusions This disease should be included in the differential diagnostic list of vulvar tumors with epithelioid to spindled morphology. Recognition of its histopathological features and immunohistochemical reactivity will help to understand the tumor better.
Collapse
Affiliation(s)
- Yan Xu
- Department of Pathology, East Hospital, Tongji University, 1800 Yuntai Road, Pudong New District, Shanghai, 200120, China.,Central Laboratory, East Hospital, Tongji University, Shanghai, China
| | - Hui Gao
- Department of Pathology, East Hospital, Tongji University, 1800 Yuntai Road, Pudong New District, Shanghai, 200120, China.,Central Laboratory, East Hospital, Tongji University, Shanghai, China
| | - Jin-Li Gao
- Department of Pathology, East Hospital, Tongji University, 1800 Yuntai Road, Pudong New District, Shanghai, 200120, China. .,Central Laboratory, East Hospital, Tongji University, Shanghai, China.
| |
Collapse
|
24
|
Komatsu M, Kawamoto T, Kanzawa M, Kawakami Y, Hara H, Akisue T, Kuroda R, Nakamura H, Hokka D, Jimbo N, Itoh T, Hirose T. A novel
EWSR1
‐
VGLL1
gene fusion in a soft tissue malignant myoepithelial tumor. Genes Chromosomes Cancer 2019; 59:249-254. [DOI: 10.1002/gcc.22823] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/01/2019] [Accepted: 11/04/2019] [Indexed: 01/06/2023] Open
Affiliation(s)
- Masato Komatsu
- Department of Diagnostic Pathology Kobe University Graduate School of Medicine Kobe Hyogo Prefecture Japan
| | - Teruya Kawamoto
- Department of Orthopedic Surgery Kobe University Graduate School of Medicine Kobe Hyogo Prefecture Japan
- Division of Orthopedic Surgery Kobe University International Clinical Cancer Research Center Kobe Hyogo Prefecture Japan
| | - Maki Kanzawa
- Department of Diagnostic Pathology Kobe University Graduate School of Medicine Kobe Hyogo Prefecture Japan
| | - Yohei Kawakami
- Department of Orthopedic Surgery Kobe University Graduate School of Medicine Kobe Hyogo Prefecture Japan
| | - Hitomi Hara
- Department of Orthopedic Surgery Kobe University Graduate School of Medicine Kobe Hyogo Prefecture Japan
| | - Toshihiro Akisue
- Department of Rehabilitation Science Kobe University Graduate School of Health Sciences Kobe Hyogo Prefecture Japan
| | - Ryosuke Kuroda
- Department of Orthopedic Surgery Kobe University Graduate School of Medicine Kobe Hyogo Prefecture Japan
| | - Hayate Nakamura
- Division of Thoracic Surgery, Department of Surgery Kobe University Graduate School of Medicine Kobe Hyogo Prefecture Japan
| | - Daisuke Hokka
- Division of Thoracic Surgery, Department of Surgery Kobe University Graduate School of Medicine Kobe Hyogo Prefecture Japan
| | - Naoe Jimbo
- Department of Diagnostic Pathology Kobe University Graduate School of Medicine Kobe Hyogo Prefecture Japan
| | - Tomoo Itoh
- Department of Diagnostic Pathology Kobe University Graduate School of Medicine Kobe Hyogo Prefecture Japan
| | - Takanori Hirose
- Department of Diagnostic Pathology Hyogo Cancer Center Akashi Hyogo Prefecture Japan
- Division of Pathology for Regional Communication Kobe University School of Medicine Kobe Hyogo Prefecture Japan
| |
Collapse
|
25
|
Bridge JA, Sumegi J, Druta M, Bui MM, Henderson-Jackson E, Linos K, Baker M, Walko CM, Millis S, Brohl AS. Clinical, pathological, and genomic features of EWSR1-PATZ1 fusion sarcoma. Mod Pathol 2019; 32:1593-1604. [PMID: 31189996 DOI: 10.1038/s41379-019-0301-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/18/2019] [Accepted: 05/21/2019] [Indexed: 01/12/2023]
Abstract
Molecular diagnostics of sarcoma subtypes commonly involve the identification of characteristic oncogenic fusions. EWSR1-PATZ1 is a rare fusion partnering in sarcoma, with few cases reported in the literature. In the current study, a series of 11 cases of EWSR1-PATZ1 fusion positive malignancies are described. EWSR1-PATZ1-related sarcomas occur across a wide age range and have a strong predilection for chest wall primary site. Secondary driver mutations in cell-cycle genes, and in particular CDKN2A (71%), are common in EWSR1-PATZ1 sarcomas in this series. In a subset of cases, an extended clinical and histopathological review was performed, as was confirmation and characterization of the fusion breakpoint revealing a novel intronic pseudoexon sequence insertion. Unified by a shared gene fusion, EWSR1-PATZ1 sarcomas otherwise appear to exhibit divergent morphology, a polyphenotypic immunoprofile, and variable clinical behavior posing challenges for precise classification.
Collapse
Affiliation(s)
- Julia A Bridge
- Division of Molecular Pathology, The Translational Genomics Research Institute/Ashion, Phoenix, AZ, USA. .,Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Janos Sumegi
- Division of Molecular Pathology, The Translational Genomics Research Institute/Ashion, Phoenix, AZ, USA.,Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mihaela Druta
- Sarcoma Department, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Marilyn M Bui
- Sarcoma Department, Moffitt Cancer Center and Research Institute, Tampa, FL, USA.,Department of Pathology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Evita Henderson-Jackson
- Sarcoma Department, Moffitt Cancer Center and Research Institute, Tampa, FL, USA.,Department of Pathology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Konstantinos Linos
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center and Geisel School of Medicine, Lebanon, NH, USA
| | - Michael Baker
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center and Geisel School of Medicine, Lebanon, NH, USA
| | - Christine M Walko
- Personalized Medicine Institute, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | | - Andrew S Brohl
- Sarcoma Department, Moffitt Cancer Center and Research Institute, Tampa, FL, USA.,Chemical Biology and Molecular Medicine Program, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
26
|
Abstract
Among the various genes that can be rearranged in soft tissue neoplasms associated with nonrandom chromosomal translocations, EWSR1 is the most frequent one to partner with other genes to generate recurrent fusion genes. This leads to a spectrum of clinically and pathologically diverse mesenchymal and nonmesenchymal neoplasms, variably manifesting as small round cell, spindle cell, clear cell or adipocytic tumors, or tumors with distinctive myxoid stroma. This review summarizes the growing list of mesenchymal neoplasms that are associated with EWSR1 gene rearrangements.
Collapse
Affiliation(s)
- Khin Thway
- Sarcoma Unit, Royal Marsden Hospital, The Royal Marsden NHS Foundation Trust, 203 Fulham Road, London SW3 6JJ, UK.
| | - Cyril Fisher
- Department of Musculoskeletal Pathology, Royal Orthopaedic Hospital NHS Foundation Trust, Robert Aitken Institute for Clinical Research, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
27
|
Bode-Lesniewska B, Fritz C, Exner GU, Wagner U, Fuchs B. EWSR1-NFATC2 and FUS-NFATC2 Gene Fusion-Associated Mesenchymal Tumors: Clinicopathologic Correlation and Literature Review. Sarcoma 2019; 2019:9386390. [PMID: 31049020 PMCID: PMC6458862 DOI: 10.1155/2019/9386390] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 03/10/2019] [Indexed: 11/28/2022] Open
Abstract
The spectrum of mesenchymal tumors associated with rearrangements of the EWSR1 gene has been growing in recent years due to progress in molecular detection techniques. Originally identified as the gene involved in the pathogenesis of Ewing sarcoma, the EWSR1 gene is now known to be rearranged in diverse clinical and histopathological entities. The NFATC2 gene is one of the many translocation partners of EWSR1 in gene fusions in a morphologically typical, albeit rare, subgroup of mesenchymal tumors. Little is known about the clinical characteristics of tumors containing NFATC2 gene rearrangements since most of the few reports published describe molecular rather than clinical aspects. In the current study, we report three patients with tumors carrying the EWSR1-NFATC2 gene translocation, including one rare primary tumor of soft tissues. Another patient with a benign-appearing bone tumor with a unique FUS-NFATC2 gene translocation is described. In various mesenchymal tumors (e.g., myxoid/round cell liposarcoma, low-grade fibromyxoid sarcoma, or angiomatoid fibrous histiocytoma), the FUS gene, as a member of the TET family, may be alternatively rearranged instead of the EWSR1 gene without any noticeable influence on the microscopical appearance or clinical outcome. This fact seems not to apply to mesenchymal tumors with the involvement of the NFATC2 gene because both in our experience and according to the extensive literature review, they have different properties on the morphological and molecular level. Both ESWSR1-NFATC2 and FUS-NFATC2 fusion-carrying tumors do not show microscopical or clinical features of Ewing sarcoma.
Collapse
Affiliation(s)
- Beata Bode-Lesniewska
- Institute of Pathology and Molecular Pathology, University Hospital, Zurich, Switzerland
| | - Christine Fritz
- Institute of Pathology and Molecular Pathology, University Hospital, Zurich, Switzerland
| | | | - Ulrich Wagner
- Institute of Pathology and Molecular Pathology, University Hospital, Zurich, Switzerland
| | - Bruno Fuchs
- Department of Plastic and Reconstructive Surgery, University Hospital, Zurich, Switzerland
- Department of Orthopedic Surgery, Cantonal Hospitals, Winterthur and Luzern, Switzerland
| |
Collapse
|
28
|
Prognostication in Mesenchymal Tumors: Can We Improve? Surg Pathol Clin 2019; 12:217-225. [PMID: 30709445 DOI: 10.1016/j.path.2018.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Prognostication in mesenchymal tumors can be challenging. They exhibit diverse, and sometimes overlapping, histologic features that are not always predictive of their true behavior. This article highlights examples of both traditional and emerging sarcoma biomarkers.
Collapse
|
29
|
Yun S, Kim SH, Cho HS, Choe G, Lee KS. EWSR1
-PBX3
fused myoepithelioma arising in metatarsal bone: Case report and review of the literature. Pathol Int 2019; 69:42-47. [DOI: 10.1111/pin.12746] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 11/05/2018] [Indexed: 11/27/2022]
Affiliation(s)
- Sumi Yun
- Department of Diagnostic Pathology; Samkwang Medical Laboratories; 57 Baumoe-ro 41-gil Seocho-gu Seoul 06742 Republic of Korea
| | - Se Hyun Kim
- Division of Hematology and Medical Oncology; Department of Internal Medicine; Seoul National University Bundang Hospital; 173-82 Gumi-ro, Bundang-gu Seongnam-si Gyeonggi-do 13620 Republic of Korea
| | - Hwan Seong Cho
- Department of Orthopaedic Surgery; Seoul National University Bundang Hospital; 173-82 Gumi-ro, Bundang-gu Seongnam-si Gyeonggi-13620 Republic of Korea
| | - Gheeyoung Choe
- Department of Pathology; Seoul National University Bundang Hospital; 173-82 Gumi-ro, Bundang-gu Seongnam-si Gyeonggi-do 13620 Republic of Korea
| | - Kyu Sang Lee
- Department of Pathology; Seoul National University Bundang Hospital; 173-82 Gumi-ro, Bundang-gu Seongnam-si Gyeonggi-do 13620 Republic of Korea
| |
Collapse
|
30
|
Shelly D, Balraam KV, Mishra P, Sharma I, Sampath KS, Bharadwaj R. Myoepithelial carcinoma of soft tissue: A report of two cases. JOURNAL OF CANCER RESEARCH AND PRACTICE 2019. [DOI: 10.4103/jcrp.jcrp_22_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
31
|
Mudhar HS, Prydal J, Rennie IG. Primary Myoepithelial Carcinoma of the Conjunctiva. Ocul Oncol Pathol 2018; 4:359-363. [PMID: 30574487 DOI: 10.1159/000486790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/22/2017] [Indexed: 11/19/2022] Open
Abstract
A 38-year-old female, otherwise fit and well, presented with a mass on her left medial bulbar conjunctiva that had been enlarging for several months. Examinations showed a fixed pinkish tumour, 9 mm in maximum extent, spanning from the plica to the medial limbus. The tumour was removed in toto. Histology revealed it to be a biphasic tumour composed of lobules and infiltrative cords within a sclerotic matrix. The cells were spindle-shaped to epithelioid, with nuclear atypia and occasional mitotic figures. The tumour was positive for smooth muscle actin, beta-catenin, and vimentin. All other markers of myoepithelial differentiation and cytokeratins were negative. Genetic analysis showed no evidence of EWSR1 or PLAG1 rearrangements. The light microscopic features and immunohistochemistry strongly supported a tumour with myoepithelial differentiation. The cellular atypia, mitotic activity, and infiltrative edges all pointed to myoepithelial carcinoma. Body imaging/screening showed no evidence of tumour elsewhere, supporting that the tumour was a primary of the conjunctiva. This is the first report of a myoepithelial tumour of the conjunctiva. The patient remains recurrence-free after 3 years of follow-up.
Collapse
Affiliation(s)
- Hardeep Singh Mudhar
- National Specialist Ophthalmic Pathology Service (NSOPS), Department of Histopathology, Royal Hallamshire Hospital, Sheffield, United Kingdom
| | - Jeremy Prydal
- Department of Ophthalmology, Leicester Royal Infirmary, Leicester, United Kingdom
| | - Ian G Rennie
- Department of Ophthalmology and Orthoptics, University of Sheffield, Royal Hallamshire Hospital, Sheffield, United Kingdom
| |
Collapse
|
32
|
Abstract
Soft tissue neoplasms are diagnostically challenging, although many advances in ancillary testing now enable accurate classification of fine-needle aspiration biopsies by detection of characteristic immunophenotypes (including protein correlates of molecular alterations) and molecular features. Although there are many useful diagnostic immunohistochemical markers and molecular assays, their diagnostic utility relies on correlation with clinical and morphologic features, judicious application, and appropriate interpretation because no single test is perfectly sensitive or specific. This review discusses applications of ancillary testing for commonly encountered soft tissue neoplasms in cytopathologic practice in the context of a pattern-based approach.
Collapse
Affiliation(s)
- Vickie Y Jo
- Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA.
| |
Collapse
|
33
|
Lam SW, Cleton-Jansen AM, Cleven AHG, Ruano D, van Wezel T, Szuhai K, Bovée JVMG. Molecular Analysis of Gene Fusions in Bone and Soft Tissue Tumors by Anchored Multiplex PCR-Based Targeted Next-Generation Sequencing. J Mol Diagn 2018; 20:653-663. [PMID: 30139549 DOI: 10.1016/j.jmoldx.2018.05.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/03/2018] [Accepted: 05/15/2018] [Indexed: 02/07/2023] Open
Abstract
Molecular assays for translocation detection in bone and soft tissue tumors have gradually been incorporated into routine diagnostics. However, conventional methods such as fluorescence in situ hybridization (FISH) and reverse transcriptase-PCR come with several drawbacks. In this study, the applicability of a novel technique termed anchored multiplex PCR (AMP) for next-generation sequencing (NGS), using the Archer FusionPlex Sarcoma kit, aimed at 26 genes, was evaluated and compared with FISH and reverse transcriptase-PCR. In case of discrepant results, further analysis occurred with a third independent technique. Eighty-one samples were subjected to AMP-based targeted NGS, and 86% (n = 70) were successfully conducted and were either fusion positive (n = 48) or fusion negative, but met all criteria for good quality (n = 22). A concordance of 90% was found between NGS and conventional techniques. AMP-based targeted NGS showed superior results, as in four cases reverse transcriptase-PCR and FISH were false negative. Moreover, because the assay targets one partner of a gene fusion, novel or rare fusion partners can be identified. Indeed, it revealed COL1A1 and SEC31A as novel fusion partners for USP6 in nodular fasciitis. Despite the fact that fusions involving genes outside the selectively captured region cannot be detected and false-negative results due to poor quality samples can be encountered, this method has demonstrated excellent diagnostic utility for translocation detection in sarcomas.
Collapse
Affiliation(s)
- Suk Wai Lam
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Arjen H G Cleven
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Dina Ruano
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Tom van Wezel
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Karoly Szuhai
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Judith V M G Bovée
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
34
|
Cohen JN, Sabnis AJ, Krings G, Cho SJ, Horvai AE, Davis JL. EWSR1-NFATC2 gene fusion in a soft tissue tumor with epithelioid round cell morphology and abundant stroma: a case report and review of the literature. Hum Pathol 2018; 81:281-290. [PMID: 29626598 DOI: 10.1016/j.humpath.2018.03.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/06/2018] [Accepted: 03/16/2018] [Indexed: 12/28/2022]
Abstract
Mesenchymal round cell tumors are a diverse group of neoplasms defined by primitive, often high-grade cytomorphology. The most common molecular alterations detected in these tumors are gene rearrangements involving EWSR1 to one of many fusion partners. Rare EWSR1-NFATC2 gene rearrangements, corresponding to a t(20;22) gene translocation, have been described in mesenchymal tumors with clear round cell morphology and a predilection for the skeleton. We present a case of a tumor harboring the EWSR1-NFATC2 gene fusion arising in the subcutaneous tissue of a young woman. The tumor exhibited corded and trabecular architecture of epithelioid cells within abundant myxoid and fibrous stroma. The cells showed strong immunoreactivity for NKX2.2, variable CD99, keratin, and epithelial membrane antigen, but were negative for S100 and myoepithelial markers. Importantly, similar to previously reported cases, the clinical course was more indolent than that of Ewing sarcoma. This case highlights the distinctive clinicopathological characteristics of EWSR1-NFATC2 gene fusion-associated neoplasms that distinguish them from Ewing sarcoma.
Collapse
Affiliation(s)
- Jarish N Cohen
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94158
| | - Amit J Sabnis
- Department of Pediatrics, Division of Hematology-Oncology, University of California, San Francisco, San Francisco, CA 94158
| | - Gregor Krings
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94158; Clinical Cancer Genomics Laboratory, University of California, San Francisco, San Francisco, CA 94158
| | - Soo-Jin Cho
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94158
| | - Andrew E Horvai
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94158
| | - Jessica L Davis
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94158; Department of Pathology, Oregon Health & Science University, Portland, OR 97239.
| |
Collapse
|
35
|
Case Reports in Oncological Medicine Myoepithelioma: A New Rearrangement Involving the LPP Locus in a Case of Multiple Bone and Soft Tissue Lesions. Case Rep Oncol Med 2018; 2018:3512847. [PMID: 29992069 PMCID: PMC5848058 DOI: 10.1155/2018/3512847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 12/10/2017] [Indexed: 01/24/2023] Open
Abstract
We report a case of multiple myoepithelioma with synchronous bone and soft tissue tumors, associated with a new genomic alteration of the LPP locus. The lesions occurred in the foot by presenting one lump in the plantar soft tissue, and three lesions were detected in the calcaneus and in the navicular bone. All tumors showed the double immunophenotype of epithelial markers and S100 protein expression. No rearrangement of the EWSR1 and FUS loci was detected as reported in myoepitheliomas. However, molecular karyotyping detected an unbalanced rearrangement of the LPP locus, not involving the HMGA2 locus, which is the most frequent translocation partner observed in benign mesenchymal tumors such as lipomas (of soft tissue as well as parosteal) and pulmonary chondroid hamartoma.
Collapse
|
36
|
Development and Evaluation of a Pan-Sarcoma Fusion Gene Detection Assay Using the NanoString nCounter Platform. J Mol Diagn 2018; 20:63-77. [DOI: 10.1016/j.jmoldx.2017.09.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/02/2017] [Accepted: 09/22/2017] [Indexed: 01/12/2023] Open
|
37
|
Wong KS, Jo VY. Cytologic diagnosis of round cell sarcomas in the era of ancillary testing: an updated review. J Am Soc Cytopathol 2018; 7:119-132. [PMID: 31043308 DOI: 10.1016/j.jasc.2017.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 11/29/2017] [Accepted: 12/11/2017] [Indexed: 10/18/2022]
Abstract
Round cell sarcomas constitute a large proportion of "small round blue cell tumors," which encompass a broad differential diagnosis and can be difficult to distinguish on cytomorphologic grounds alone. Numerous pathogenetic insights and advances in ancillary testing in soft tissue pathology over the last several decades have made accurate classification of soft tissue neoplasms increasingly feasible. Immunohistochemistry and genetic/molecular testing can now be performed on all cytologic preparations, including unstained smears, needle rinses, cell blocks, and liquid-based preparations, and this has greatly increased our diagnostic abilities. Nevertheless, there remain numerous diagnostic challenges, including variable sensitivity and specificity of available immunohistochemical markers, overlapping immunophenotypes between entities, and "promiscuity" of genetic alterations such as EWSR1 rearrangements, present in a multitude of tumor types. Herein we provide a review on the cytologic, immunohistochemical, and genetic features of the more frequently encountered round cell sarcomas, as well as recently described entities, with an emphasis on diagnostic pitfalls and judicious use of ancillary studies.
Collapse
Affiliation(s)
- Kristine S Wong
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Vickie Y Jo
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
38
|
Thway K, Noujaim J, Thomas DM, Fisher C, Jones RL. Myoepithelial Carcinoma of the Paracecal Mesentery: Aggressive Behavior of a Rare Neoplasm at an Unusual Anatomic Site. Rare Tumors 2017; 9:6504. [PMID: 28458787 PMCID: PMC5379233 DOI: 10.4081/rt.2017.6504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 07/30/2016] [Accepted: 08/03/2016] [Indexed: 11/23/2022] Open
Abstract
Myoepithelial tumors of the soft tissues represent a rare group of neoplasms that vary in their clinical behavior, pathologic features and genetics. They are histopathologically typified by a myoepithelial immunohistochemical phenotype, of expression of one or more epithelial markers, S100 protein and smooth muscle actin. Because of their rarity and occurrence over a wide age range and at a variety of anatomic sites, they can be difficult to diagnose due to the lack of familiarity by physicians, which is compounded by their spectrum of histologic features and morphologic overlap with several other neoplasms. Recent genetic insights have aided classification, and it is increasingly understood that soft tissue myoepithelial neoplasms can be stratified into two distinct morphologic and genetic subgroups. We describe a case of a 44-year-old man who was diagnosed with a primary myoepithelial neoplasm of the paracecal mesentery, which showed aggressive local recurrence after four years. The tumor was composed of cords of ovoid cells within chondromyxoid stroma, and displayed a characteristic pancytokeratin, S100 protein and smooth muscle actin-positive myoepithelial immunoprofile. Primary myoepithelioma has not been previously described at this site, and this case highlights this varied family of tumors, emphasizes the need to consider myoepithelial tumor in the differential diagnoses of carcinoma variants occurring in the bowel or mesentery, and also adds to the number of reported myoepithelial neoplasms showing markedly aggressive behavior.
Collapse
Affiliation(s)
- Khin Thway
- Sarcoma Unit, Royal Marsden NHS Foundation Trust, London
| | | | - D Michael Thomas
- Department of Cellular Pathology, Maidstone and Tunbridge Wells NHS Trust, Kent, UK
| | - Cyril Fisher
- Sarcoma Unit, Royal Marsden NHS Foundation Trust, London
| | - Robin L Jones
- Sarcoma Unit, Royal Marsden NHS Foundation Trust, London
| |
Collapse
|
39
|
Applications of molecular testing in surgical pathology of the head and neck. Mod Pathol 2017; 30:S104-S111. [PMID: 28060367 DOI: 10.1038/modpathol.2016.192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/12/2016] [Accepted: 10/12/2016] [Indexed: 12/15/2022]
Abstract
Molecular testing in routine surgical pathology is becoming an important component of the workup of many different types of tumors. In fact, in some organ systems, guidelines now suggest that the standard of care is to obtain specific molecular panels for tumor classification and/or therapeutic planning. In the head and neck, clinically applicable molecular tests are not as abundant as in other organ systems. Most current head and neck biomarkers are utilized for diagnosis rather than as companion diagnostic tests to predict therapeutic response. As the number of potential molecular biomarker assays increases and cost pressures escalate, the pathologist must be able to navigate the molecular testing pathways. This review explores scenarios in which molecular testing might be beneficial and cost-effective in head and neck pathology.
Collapse
|
40
|
Refinements in Sarcoma Classification in the Current 2013 World Health Organization Classification of Tumours of Soft Tissue and Bone. Surg Oncol Clin N Am 2016; 25:621-43. [PMID: 27591490 DOI: 10.1016/j.soc.2016.05.001] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The fourth edition of the World Health Organization (WHO) Classification of Tumours of Soft Tissue and Bone was published in February 2013. The 2013 WHO volume provides an updated classification scheme and reproducible diagnostic criteria, which are based on recent clinicopathologic studies and genetic and molecular data that facilitated refined definition of established tumor types, recognition of novel entities, and the development of novel diagnostic markers. This article reviews updates and changes in the classification of bone and soft tissue tumors from the 2002 volume.
Collapse
|
41
|
Zou Y, Billings SD. Myxoid cutaneous tumors: a review. J Cutan Pathol 2016; 43:903-18. [DOI: 10.1111/cup.12749] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 02/16/2016] [Accepted: 04/05/2016] [Indexed: 01/16/2023]
Affiliation(s)
- Youran Zou
- Department of PathologyCleveland Clinic Cleveland OH USA
| | | |
Collapse
|
42
|
Thoracic Myoepithelial Tumors: A Pathologic and Molecular Study of 8 Cases With Review of the Literature. Am J Surg Pathol 2016; 40:212-23. [PMID: 26645726 DOI: 10.1097/pas.0000000000000560] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Thoracic myoepithelial tumors (MTs) are a rare group of tumors showing predominant or exclusive myoepithelial differentiation. They are poorly characterized from both a morphologic and genetic standpoint, in particular features that separate benign from malignant behavior. We examined the histologic and immunohistochemical features of 8 primary thoracic MTs and performed fluorescence in situ hybridization for EWSR1, FUS, PLAG1, and HMGA2, as well as several partner genes. Half (4/8) of the MTs occurred in large airways, and 3 had infiltrative borders. All cases showed immunoreactivity for epithelial markers, in conjunction with S100 protein or myogenic markers. MTs showed morphologic characteristics analogous to MTs at other sites, with no tumors having ductal differentiation. Necrosis and/or lymphovascular invasion was present in 5 cases, with mitotic activity ranging from 0 to 6 mitoses/2 mm² (mean 1). Metastases occurred in 2 cases, and no patients died of disease. Gene rearrangements were identified in half of the cases, with EWSR1-PBX1, EWSR1-ZNF444, and FUS-KLF17 fusions identified in 1 case each and 1 case having EWSR1 rearrangement with no partner identified. No cases were found to have HMGA2 or PLAG1 abnormalities. Compared with fusion-negative tumors, fusion-positive tumors tended to occur in patients who were younger (50 vs. 58 y), female (1:3 vs. 3:1 male:female ratio), and demonstrated predominantly spindle and clear cell morphology. Using a combined data set of our case series with 16 cases from the literature, poor prognosis was significantly correlated with metastases (P=0.003), necrosis (P=0.027), and ≥5 mitoses/2 mm²/10 high-power field (P=0.005). In summary, we identify a subset of thoracic MTs harboring rearrangements in EWSR1 or FUS, and our data suggest that necrosis and increased mitotic activity correlate with aggressive clinical behavior.
Collapse
|
43
|
Mourtzoukou D, Zaidi S, Jones RL, Fisher C, Thway K. Soft Tissue Myoepithelial Carcinoma Metastatic to the Cecum: Highlighting an Unusual Metastatic Pattern and the Need for Diagnostic Awareness. Rare Tumors 2016; 8:6086. [PMID: 27134707 PMCID: PMC4827644 DOI: 10.4081/rt.2016.6086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 10/25/2015] [Accepted: 10/25/2015] [Indexed: 11/23/2022] Open
Abstract
Myoepithelial neoplasms of the soft tissues are a rare, heterogeneous group of tumors for which classification continues to evolve. While well defined within salivary glands, they can also arise in viscera and soft tissues, where diagnosis is challenging due to the lack of clinical and pathological familiarity. We present the case of a 36 year old man with myoepithelial carcinoma arising as a primary tumor within the soft tissues of the neck, which metastasized to the cecum, causing intussusception. This spindle cell neoplasm showed the classic S100 protein, smooth muscle actin and pancytokeratin-positive immunoprofile. Metastasis of myoepithelial carcinoma to the cecum has not been previously described, and coupled with the spindle cell morphology, may cause significant diagnostic difficulty in the absence of clinical familiarity, particularly as there is morphologic overlap with spindle cell neoplasms arising more commonly in gastrointestinal sites, including gastrointestinal stromal tumor, leiomyosarcoma and sarcomatoid carcinoma.
Collapse
Affiliation(s)
| | - Shane Zaidi
- Sarcoma Unit, Royal Marsden Hospital , London, UK
| | | | - Cyril Fisher
- Sarcoma Unit, Royal Marsden Hospital , London, UK
| | - Khin Thway
- Sarcoma Unit, Royal Marsden Hospital , London, UK
| |
Collapse
|
44
|
Chebib I, Jo VY. Round cell sarcoma withCIC-DUX4gene fusion: Discussion of the distinctive cytomorphologic, immunohistochemical, and molecular features in the differential diagnosis of round cell tumors. Cancer Cytopathol 2016; 124:350-61. [DOI: 10.1002/cncy.21685] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/07/2015] [Accepted: 12/09/2015] [Indexed: 12/15/2022]
Affiliation(s)
- Ivan Chebib
- Department of Pathology, Brigham and Women's Hospital; Harvard Medical School; Boston Massachusetts
| | - Vickie Y. Jo
- James Homer Wright Pathology Laboratories, Massachusetts General Hospital; Harvard Medical School; Boston Massachusetts
| |
Collapse
|
45
|
Abstract
Epithelioid sarcoma (ES) is a rare, aggressive soft-tissue neoplasm of uncertain differentiation, characterized by nodular aggregates of epithelioid cells, which are immunoreactive to cytokeratins (CKs) and epithelial membrane antigen, and often for CD34. It has a propensity for multifocal disease at presentation, local recurrence, and regional metastasis. These are aggressive neoplasms with particularly poor prognosis after regional or distant metastatic disease, for which surgical resection is still the mainstay of treatment, and options for patients with metastatic disease remain undefined. There are 2 distinct variants: classic ES, which typically presents as a subcutaneous or deep dermal mass in the distal extremities of young adults and comprises nodular distributions of relatively uniform epithelioid cells with central necrosis, and the proximal variant, which has a predilection for proximal limbs and limb girdles and the midline of the trunk, which is composed of sheets of larger, more atypical cells with variable rhabdoid morphology. Both classic and proximal-type ESs are associated with the loss of SMARCB1/INI1 protein expression, but appear otherwise molecularly relatively heterogeneous. We review classic and proximal-type ES, discussing morphology, immunohistochemical and genetic findings, the differential diagnosis, and the future potential for targeted therapies.
Collapse
|
46
|
Abstract
Pulmonary salivary gland-type tumors (SGT) comprise a very small proportion of primary lung neoplasms. The most common tumors among this group are mucoepidermoid carcinoma and adenoid cystic carcinoma. Contrary to the head and neck region, benign SGT such as pleomorphic adenomas are exceedingly rare in the pulmonary system. More recently, 2 additional SGT, namely hyalinizing clear cell carcinoma and salivary duct-like carcinoma were recognized as primary lung tumors expanding the spectrum of SGT that have been described to originate in the tracheobronchial system. Primary pulmonary SGT must be clinically excluded from metastatic salivary gland neoplasms as their morphology is indistinguishable from that of their salivary gland counterparts. Little is known about the clinical behavior and best treatment approach for these unusual tumors. In this review, we provide a comprehensive summary of primary pulmonary SGT with particular emphasis on morphologic characteristics and latest developments in terms of immunohistochemical and molecular techniques.
Collapse
|
47
|
Mertens F, Antonescu CR, Mitelman F. Gene fusions in soft tissue tumors: Recurrent and overlapping pathogenetic themes. Genes Chromosomes Cancer 2015; 55:291-310. [PMID: 26684580 DOI: 10.1002/gcc.22335] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 11/01/2015] [Accepted: 11/01/2015] [Indexed: 12/21/2022] Open
Abstract
Gene fusions have been described in approximately one-third of soft tissue tumors (STT); of the 142 different fusions that have been reported, more than half are recurrent in the same histologic subtype. These gene fusions constitute pivotal driver mutations, and detailed studies of their cellular effects have provided important knowledge about pathogenetic mechanisms in STT. Furthermore, most fusions are strongly associated with a particular histotype, serving as ideal molecular diagnostic markers. In recent years, it has also become apparent that some chimeric proteins, directly or indirectly, constitute excellent treatment targets, making the detection of gene fusions in STT ever more important. Indeed, pharmacological treatment of STT displaying fusions that activate protein kinases, such as ALK and ROS1, or growth factors, such as PDGFB, is already in clinical use. However, the vast majority (52/78) of recurrent gene fusions create structurally altered and/or deregulated transcription factors, and a small but growing subset develops through rearranged chromatin regulators. The present review provides an overview of the spectrum of currently recognized gene fusions in STT, and, on the basis of the protein class involved, the mechanisms by which they exert their oncogenic effect are discussed.
Collapse
Affiliation(s)
- Fredrik Mertens
- Department of Clinical Genetics, University and Regional Laboratories, Lund University, Lund, Sweden
| | | | - Felix Mitelman
- Department of Clinical Genetics, University and Regional Laboratories, Lund University, Lund, Sweden
| |
Collapse
|
48
|
Wang G, Tucker T, Ng TL, Villamil CF, Hayes MM. Fine-needle aspiration of soft tissue myoepithelioma. Diagn Cytopathol 2015; 44:152-5. [PMID: 26644362 DOI: 10.1002/dc.23399] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 11/09/2015] [Accepted: 11/15/2015] [Indexed: 11/07/2022]
Abstract
Soft tissue myoepithelioma is a rare neoplasm composed of myoepithelial cells. We describe the cytologic features of a soft tissue myoepithelioma arising in the right lower chest wall in a 65-year-old woman. The fine-needle aspiration (FNA) smears showed round to oval, spindle, epithelioid, and plasmacytoid cells in the myxoid background. The nuclei were uniform, round to ovoid, with finely distributed chromatin and eosinophilic or pale cytoplasm, and resembled lobular carcinoma of breast. Ultrasound guided core biopsy showed the tumor cells had bland cytologic features, arranged in small cords, nests, and dissociated single cells, with no glandular differentiation or breast tissue seen. The tumor cells demonstrated immunoreactivity for cytokeratin (AE1/AE3) and glial fibrillary acidic protein, but were negative for estrogen receptor. Fluorescence in situ hybridization demonstrated the EWSR1 rearrangement, confirming the diagnosis of myoepithelioma.
Collapse
Affiliation(s)
- Gang Wang
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tracy Tucker
- Department of Pathology, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
- Department of Pathology, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Tony L Ng
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pathology, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Carlos F Villamil
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pathology, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Malcolm M Hayes
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pathology, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| |
Collapse
|
49
|
Schneider N, Fisher C, Thway K. Ossifying fibromyxoid tumor: morphology, genetics, and differential diagnosis. Ann Diagn Pathol 2015; 20:52-8. [PMID: 26732302 DOI: 10.1016/j.anndiagpath.2015.11.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 11/30/2015] [Indexed: 01/17/2023]
Abstract
Ossifying fibromyxoid tumor (OFMT) is a soft tissue neoplasm of uncertain differentiation and intermediate (rarely metastasizing) biologic potential, with typical morphologic features, of an encapsulated, lobulated tumor comprising uniform polygonal cells within fibromyxoid stroma, which is surrounded by or contains metaplastic bone, classically as a peripheral rim of lamellar bone. Ossifying fibromyxoid tumor can arise at almost any site, although most frequently occurs within the extremities and trunk. Although most behave in a benign fashion, tumors can rarely show atypical or malignant features. It is now established that OFMTs represent translocation-associated tumors, with up to 85% associated with recurrent gene rearrangements, mostly involving the PHF1 gene (including in typical, atypical, and malignant neoplasms), with EP400-PHF1 in approximately 40% of tumors, and ZC3H7B-BCOR, MEAF6-PHF1, and EPC1-PHF1 fusions also described. Correct diagnosis is clinically important to ensure correct treatment and prognostication, both to avoid overdiagnosing OFMT as a malignant neoplasm such as osteosarcoma and also because of the propensity for aggressive behavior in a small number of OFMT. We review OFMT, with emphasis on the morphologic spectrum, recent molecular genetic findings, and the differential diagnosis.
Collapse
Affiliation(s)
- Nina Schneider
- Sarcoma Unit, Royal Marsden Hospital, London, United Kingdom
| | - Cyril Fisher
- Sarcoma Unit, Royal Marsden Hospital, London, United Kingdom
| | - Khin Thway
- Sarcoma Unit, Royal Marsden Hospital, London, United Kingdom.
| |
Collapse
|
50
|
Vroobel K, Gonzalez D, Wren D, Thompson L, Swansbury J, Fisher C, Thway K. Ancillary molecular analysis in the diagnosis of soft tissue tumours: reassessment of its utility at a specialist centre. J Clin Pathol 2015; 69:505-10. [DOI: 10.1136/jclinpath-2015-203380] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 10/23/2015] [Indexed: 12/13/2022]
Abstract
AimsThe histological diagnosis of soft tissue tumours (STTs) can be difficult, sometimes requiring a combination of morphology, immunophenotype and ancillary molecular tests. Many STTs are associated with characteristic genetic aberrations that can be assessed using fluorescence in situ hybridisation (FISH), reverse transcription-PCR (RT-PCR) or mutational analysis. We have previously assessed the practicality and sensitivity of using these modalities as part of the routine diagnosis of STT in paraffin-embedded material and now revisit the subject in light of further experience in this field.Methods200 consecutive cases from 2013 that had undergone FISH, RT-PCR or mutational analysis were assessed to evaluate their diagnostic utility compared with preliminary histological assessment.Results218 FISH, 91 RT-PCR and 43 mutational analysis tests were performed. Compared with the previous study, FISH for MDM2 amplification in possible well-differentiated/dedifferentiated liposarcomas, and mutational analysis for assessing KIT, PDGFR and BRAF mutations made up a large proportion of the workload (107 and 43 tests, respectively). As in the previous study, alveolar rhabdomyosarcoma showed the best FISH:RT-PCR concordance. Unlike previously, RT-PCR showed marginally higher sensitivity than FISH (78.9% and 76.9%), while continuing to demonstrate higher specificity (90.9% and 84.3%). RT-PCR again showed an increased failure rate (5.5%; 1% for FISH).ConclusionsWe demonstrate the continuing utility of RT-PCR and FISH for STT diagnosis, and that each has advantages in specific contexts. These ancillary molecular tests are important tools in both defining and excluding diagnoses of STT, which is crucial in determining prognosis and guiding appropriate management.
Collapse
|