1
|
Krushkal J, Jensen TL, Wright G, Zhao Y. Allelic expression patterns of imprinted and non-imprinted genes in cancer cell lines from multiple histologies. Clin Epigenetics 2025; 17:83. [PMID: 40414875 DOI: 10.1186/s13148-025-01883-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 04/11/2025] [Indexed: 05/27/2025] Open
Abstract
BACKGROUND Imprinted genes are epigenetically regulated in normal tissues to follow monoallelic expression according to the parent of origin of each allele. Some of these patterns are dysregulated in cancer. RESULTS We developed a novel computational multi-omic pipeline to evaluate monoallelic and biallelic expression patterns based on matched RNA-seq expression data, whole-exome sequencing information, and copy number data. We analyzed allelic expression of the entire genes, individual isoforms, and each exon of 59,283 autosomal protein-coding and ncRNA genes, with a focus on 94 genes previously reported to be imprinted. We analyzed 108 cell lines from 9 different tumor histologies using molecular data from the DepMap Portal for the Cancer Cell Line Encyclopedia. Allelic expression patterns of imprinted genes and isoforms in tumor cells were variable. We also identified additional genes and isoforms with predominantly monoallelic expression due to a variety of potential mechanisms. We provide a novel public dataset of transcriptome-wide allelic expression patterns in cell lines from diverse tumor categories, which can serve as a resource for future cancer studies. We examined associations of in vitro cell line response to antitumor agents and repurposed drugs with allelic patterns and overall levels of isoform expression of imprinted genes and of additional genes with predominantly monoallelic expression. Drug response was associated with isoform expression patterns of multiple imprinted genes including CPA4, DGCR6, DNMT1, GNAS, GRB10, H19, NAA60, OSBPL5, PHACTR2, and ZFAT, predominantly monoallelically expressed MAP2K5 and BCLAF1, and additional predominantly monoallelically expressed genes. Multiple associations may be related to mechanisms of drug activity, including associations between the response to the DNA damaging agents and allelic expression of ZFAT, CDC27, and BCLAF1 isoforms, and the response to inhibitors of multiple signaling pathways with expression patterns of GNAS isoforms. CONCLUSIONS Tumor cells have a range of monoallelic and biallelic expression patterns in both imprinted and non-imprinted genes and are likely affected by the complex interplay among changes in allelic expression, sequence variants, copy number changes, and expression changes of biologically important genes. Multiple isoform-specific patterns of allelic expression were associated with drug response, indicating complex mechanisms of cancer chemoresistance.
Collapse
Affiliation(s)
- Julia Krushkal
- Division of Cancer Treatment and Diagnosis, Biometric Research Program, National Cancer Institute, 9609 Medical Center Dr., Rockville, MD, 20850, USA.
| | | | - George Wright
- Division of Cancer Treatment and Diagnosis, Biometric Research Program, National Cancer Institute, 9609 Medical Center Dr., Rockville, MD, 20850, USA
| | - Yingdong Zhao
- Division of Cancer Treatment and Diagnosis, Biometric Research Program, National Cancer Institute, 9609 Medical Center Dr., Rockville, MD, 20850, USA
| |
Collapse
|
2
|
Xie G, Si Q, Zhang G, Fan Y, Li Q, Leng P, Qiao F, Liang S, Yu R, Wang Y. The role of imprinting genes' loss of imprints in cancers and their clinical implications. Front Oncol 2024; 14:1365474. [PMID: 38812777 PMCID: PMC11133587 DOI: 10.3389/fonc.2024.1365474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/23/2024] [Indexed: 05/31/2024] Open
Abstract
Genomic imprinting plays an important role in the growth and development of mammals. When the original imprint status of these genes is lost, known as loss of imprinting (LOI), it may affect growth, neurocognitive development, metabolism, and even tumor susceptibility. The LOI of imprint genes has gradually been found not only as an early event in tumorigenesis, but also to be involved in progression. More than 120 imprinted genes had been identified in humans. In this review, we summarized the most studied LOI of two gene clusters and 13 single genes in cancers. We focused on the roles they played, that is, as growth suppressors and anti-apoptosis agents, sustaining proliferative signaling or inducing angiogenesis; the molecular pathways they regulated; and especially their clinical significance. It is notable that 12 combined forms of multi-genes' LOI, 3 of which have already been used as diagnostic models, achieved good sensitivity, specificity, and accuracy. In addition, the methods used for LOI detection in existing research are classified into detection of biallelic expression (BAE), differentially methylated regions (DMRs), methylation, and single-nucleotide polymorphisms (SNPs). These all indicated that the detection of imprinting genes' LOI has potential clinical significance in cancer diagnosis, treatment, and prognosis.
Collapse
Affiliation(s)
- Guojing Xie
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qin Si
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guangjie Zhang
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Clinical Laboratory, Chengdu Fifth People’s Hospital, Chengdu, China
| | - Yu Fan
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Sichuan Key Laboratory of Medical Molecular Testing, Chengdu, China
| | - Qinghua Li
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ping Leng
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Sichuan Key Laboratory of Medical Molecular Testing, Chengdu, China
| | - Fengling Qiao
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Sichuan Key Laboratory of Medical Molecular Testing, Chengdu, China
| | - Simin Liang
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rong Yu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Sichuan Key Laboratory of Medical Molecular Testing, Chengdu, China
| | - Yingshuang Wang
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Sichuan Key Laboratory of Medical Molecular Testing, Chengdu, China
| |
Collapse
|
3
|
Nirgude S, Naveh NSS, Kavari SL, Traxler EM, Kalish JM. Cancer predisposition signaling in Beckwith-Wiedemann Syndrome drives Wilms tumor development. Br J Cancer 2024; 130:638-650. [PMID: 38142265 PMCID: PMC10876704 DOI: 10.1038/s41416-023-02538-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/25/2023] [Accepted: 12/01/2023] [Indexed: 12/25/2023] Open
Abstract
BACKGROUND Wilms tumor (WT) exhibits structural and epigenetic changes at chromosome 11p15, which also cause Beckwith-Wiedemann Syndrome (BWS). Children diagnosed with BWS have increased risk for WT. The aim of this study is to identify the molecular signaling signatures in BWS driving these tumors. METHODS We performed whole exome sequencing, methylation array analysis, and gene expression analysis on BWS-WT samples. Our data were compared to publicly available nonBWS data. We categorized WT from BWS and nonBWS patients by assessment of 11p15 methylation status and defined 5 groups- control kidney, BWS-nontumor kidney, BWS-WT, normal-11p15 nonBWS-WT, altered-11p15 nonBWS-WT. RESULTS BWS-WT samples showed single nucleotide variants in BCORL1, ASXL1, ATM and AXL but absence of recurrent gene mutations associated with sporadic WT. We defined a narrow methylation range stratifying nonBWS-WT samples. BWS-WT and altered-11p15 nonBWS-WT showed enrichment of common and unique molecular signatures based on global differential methylation and gene expression analysis. CTNNB1 overexpression and broad range of interactions were seen in the BWS-WT interactome study. CONCLUSION While WT predisposition in BWS is well-established, as are 11p15 alterations in nonBWS-WT, this study focused on stratifying tumor genomics by 11p15 status. Further investigation of our findings may identify novel therapeutic targets in WT oncogenesis.
Collapse
Affiliation(s)
- Snehal Nirgude
- Division of Human Genetics and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Natali S Sobel Naveh
- Division of Human Genetics and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Sanam L Kavari
- Division of Human Genetics and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Emily M Traxler
- Division of Human Genetics and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Jennifer M Kalish
- Division of Human Genetics and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
- Departments of Pediatrics and Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
4
|
Scalia P, Williams SJ, Fujita-Yamaguchi Y. Human IGF2 Gene Epigenetic and Transcriptional Regulation: At the Core of Developmental Growth and Tumorigenic Behavior. Biomedicines 2023; 11:1655. [PMID: 37371750 DOI: 10.3390/biomedicines11061655] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Regulation of the human IGF2 gene displays multiple layers of control, which secures a genetically and epigenetically predetermined gene expression pattern throughout embryonal growth and postnatal life. These predominantly nuclear regulatory mechanisms converge on the function of the IGF2-H19 gene cluster on Chromosome 11 and ultimately affect IGF2 gene expression. Deregulation of such control checkpoints leads to the enhancement of IGF2 gene transcription and/or transcript stabilization, ultimately leading to IGF-II peptide overproduction. This type of anomaly is responsible for the effects observed in terms of both abnormal fetal growth and increased cell proliferation, typically observed in pediatric overgrowth syndromes and cancer. We performed a review of relevant experimental work on the mechanisms affecting the human IGF2 gene at the epigenetic, transcriptional and transcript regulatory levels. The result of our work, indeed, provides a wider and diversified scenario for IGF2 gene activation than previously envisioned by shedding new light on its extended regulation. Overall, we focused on the functional integration between the epigenetic and genetic machinery driving its overexpression in overgrowth syndromes and malignancy, independently of the underlying presence of loss of imprinting (LOI). The molecular landscape provided at last strengthens the role of IGF2 in cancer initiation, progression and malignant phenotype maintenance. Finally, this review suggests potential actionable targets for IGF2 gene- and regulatory protein target-degradation therapies.
Collapse
Key Words
- (IGF2/H19) IG-DMR, intergenic differentially methylated region
- BWS, Beckwith–Wiedemann syndrome
- CCD, centrally conserved domain
- CNV, copy number variation
- CTCF, CCCTC binding factor
- DMD, differentially methylated domain
- DMR, differentially methylated region
- GOM, gain of methylation
- ICR1, imprinting control region 1
- IGF-II, insulin-like growth factor-2 peptide
- IGF2, insulin-like growth factor 2 gene
- LOI, loss of imprinting
- LOM, loss of methylation
- MOI, maintenance of imprinting
- SRS, Silver Russel Syndrome
- TF: transcription factor
- UPD, uniparental disomy
- WT1, Wilms Tumor protein 1
- mRNA transcript
- p0–p4: IGF2 promoters 0–4
Collapse
Affiliation(s)
- Pierluigi Scalia
- ISOPROG-Somatolink EPFP Research Network, Philadelphia, PA 19102, USA, and 93100 Caltanissetta, Italy
- Sbarro Cancer Institute for Cancer Research and Molecular Medicine, CST, Biology Department, Temple University, Philadelphia, PA 19122, USA
| | - Stephen J Williams
- ISOPROG-Somatolink EPFP Research Network, Philadelphia, PA 19102, USA, and 93100 Caltanissetta, Italy
- Sbarro Cancer Institute for Cancer Research and Molecular Medicine, CST, Biology Department, Temple University, Philadelphia, PA 19122, USA
| | - Yoko Fujita-Yamaguchi
- Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
5
|
Krushkal J, Vural S, Jensen TL, Wright G, Zhao Y. Increased copy number of imprinted genes in the chromosomal region 20q11-q13.32 is associated with resistance to antitumor agents in cancer cell lines. Clin Epigenetics 2022; 14:161. [PMID: 36461044 PMCID: PMC9716673 DOI: 10.1186/s13148-022-01368-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 10/31/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Parent of origin-specific allelic expression of imprinted genes is epigenetically controlled. In cancer, imprinted genes undergo both genomic and epigenomic alterations, including frequent copy number changes. We investigated whether copy number loss or gain of imprinted genes in cancer cell lines is associated with response to chemotherapy treatment. RESULTS We analyzed 198 human imprinted genes including protein-coding genes and noncoding RNA genes using data from tumor cell lines from the Cancer Cell Line Encyclopedia and Genomics of Drug Sensitivity in Cancer datasets. We examined whether copy number of the imprinted genes in 35 different genome locations was associated with response to cancer drug treatment. We also analyzed associations of pretreatment expression and DNA methylation of imprinted genes with drug response. Higher copy number of BLCAP, GNAS, NNAT, GNAS-AS1, HM13, MIR296, MIR298, and PSIMCT-1 in the chromosomal region 20q11-q13.32 was associated with resistance to multiple antitumor agents. Increased expression of BLCAP and HM13 was also associated with drug resistance, whereas higher methylation of gene regions of BLCAP, NNAT, SGK2, and GNAS was associated with drug sensitivity. While expression and methylation of imprinted genes in several other chromosomal regions was also associated with drug response and many imprinted genes in different chromosomal locations showed a considerable copy number variation, only imprinted genes at 20q11-q13.32 had a consistent association of their copy number with drug response. Copy number values among the imprinted genes in the 20q11-q13.32 region were strongly correlated. They were also correlated with the copy number of cancer-related non-imprinted genes MYBL2, AURKA, and ZNF217 in that chromosomal region. Expression of genes at 20q11-q13.32 was associated with ex vivo drug response in primary tumor samples from the Beat AML 1.0 acute myeloid leukemia patient cohort. Association of the increased copy number of the 20q11-q13.32 region with drug resistance may be complex and could involve multiple genes. CONCLUSIONS Copy number of imprinted and non-imprinted genes in the chromosomal region 20q11-q13.32 was associated with cancer drug resistance. The genes in this chromosomal region may have a modulating effect on tumor response to chemotherapy.
Collapse
Affiliation(s)
- Julia Krushkal
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, 9609 Medical Center Dr, Rockville, MD, 20850, USA.
| | - Suleyman Vural
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, 9609 Medical Center Dr, Rockville, MD, 20850, USA.,Marie-Josee and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | | | - George Wright
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, 9609 Medical Center Dr, Rockville, MD, 20850, USA
| | - Yingdong Zhao
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, 9609 Medical Center Dr, Rockville, MD, 20850, USA
| |
Collapse
|
6
|
Bitaraf M, Mahmanzar M, Zafari N, Mohammadpour H, Vasei M, Moradi Matin L, Kajbafzadeh AM, Majidi Zolbin M. The potential key genes and pathways associated with Wilms tumor in quest of proper candidates for diagnostic and therapeutic purposes. Sci Rep 2022; 12:17906. [PMID: 36284226 PMCID: PMC9596724 DOI: 10.1038/s41598-022-22925-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 10/20/2022] [Indexed: 01/20/2023] Open
Abstract
To designate the probable most important differentially expressed genes and genetic pathways in Wilms tumor and assess their expression and diagnostic potential by RT-PCR and statistical analysis. Systematic review of the literature and various bioinformatics analysis was carried out to gather and narrow down data. The expression of end-resulting genes was compared in Wilms tumor and normal tissue samples using RT-PCR. Statistical tests reported the diagnostic accuracy of genes and their correlation with clinicopathological features. Four genes including CDH1, NCAM1, EGF, and IGF2 were designated. The panel combining them has 100% sensitivity and specificity in differentiating tumors from normal tissue. Eight pathways, most involved in cell-cell and cell-basal matrix junction interactions, were found to be associated with disease pathogenesis. The suggested genes should undergo further evaluation to be validated as diagnostic biomarkers. Further research on the eight proposed pathways is recommended.
Collapse
Affiliation(s)
- Masoud Bitaraf
- grid.411705.60000 0001 0166 0922Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children’s Medical Center, Tehran University of Medical Sciences, No. 62, Dr. Qarib’s St, Keshavarz Blvd, Tehran, 14194 33151 Iran
| | - Mohammadamin Mahmanzar
- grid.411705.60000 0001 0166 0922Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children’s Medical Center, Tehran University of Medical Sciences, No. 62, Dr. Qarib’s St, Keshavarz Blvd, Tehran, 14194 33151 Iran ,grid.46072.370000 0004 0612 7950Department of Bioinformatics, Kish International Campus, University of Tehran, Kish, Iran
| | - Narges Zafari
- grid.411705.60000 0001 0166 0922Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hadiseh Mohammadpour
- grid.411705.60000 0001 0166 0922Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Vasei
- grid.415646.40000 0004 0612 6034 Cell Therapy Based Research Center, Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Leyla Moradi Matin
- grid.411705.60000 0001 0166 0922Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children’s Medical Center, Tehran University of Medical Sciences, No. 62, Dr. Qarib’s St, Keshavarz Blvd, Tehran, 14194 33151 Iran
| | - Abdol-Mohammad Kajbafzadeh
- grid.411705.60000 0001 0166 0922Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children’s Medical Center, Tehran University of Medical Sciences, No. 62, Dr. Qarib’s St, Keshavarz Blvd, Tehran, 14194 33151 Iran
| | - Masoumeh Majidi Zolbin
- grid.411705.60000 0001 0166 0922Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children’s Medical Center, Tehran University of Medical Sciences, No. 62, Dr. Qarib’s St, Keshavarz Blvd, Tehran, 14194 33151 Iran
| |
Collapse
|
7
|
Haruta M, Arai Y, Okita H, Tanaka Y, Takimoto T, Kamijo T, Oue T, Souzaki R, Taguchi T, Kuwahara Y, Chin M, Nakadate H, Hiyama E, Ishida Y, Koshinaga T, Kaneko Y. Frequent breakpoints of focal deletion and uniparental disomy in 22q11.1 or 11.2 segmental duplication region reveal distinct tumorigenesis in rhabdoid tumor of the kidney. Genes Chromosomes Cancer 2021; 60:546-558. [PMID: 33896058 DOI: 10.1002/gcc.22952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 11/10/2022] Open
Abstract
SMARCB1 is mutated in most rhabdoid tumors (RTs) developing in the kidney (RTK) and various other organs. Focal deletions found in patients with 22q11.2 deletion syndrome show breakpoints within clusters of segmental duplications (SDs), and those in some RTs show breakpoints in the 22q11-q12 region. SDs are known to cause focal deletion mediated by non-allelic homologous recombination. The present study identified SMARCB1 alterations in all 30 RTKs, using SNP array CGH, MLPA, and sequence analyses. Twenty-eight tumors had a total of 51 breakpoints forming focal 22q deletion and/or uniparental disomy (22qUPD), and the other two had compound mutation with no breakpoints in 22q. Twenty-four (47.1%) of the 51 breakpoints were within SDs, and occurred in 16 (53.3%) of the 30 tumors. The association of breakpoints with SDs was found not only in focal deletion, but also in 22qUPD, indicating that SDs mediate the first and second hits (focal deletion) and the second hit (22qUPD) of SMARCB1 alteration. Of the 51 breakpoints, 14 were recurrent, and 10 of the 14 were within SDs, suggesting the presence of hotspots in the 22q11.2 region. One recurrent breakpoint outside SDs resided in SMARCB1, suggesting inactivation of the gene by out-of-frame fusion. The association between SDs and focal deletion has been reported in two other types of cancer. RTKs may be the third example of SD-associated tumors. Thus, the present study indicated that RTKs exploit genomic instability in the 22q11.1-11.2 SDs region, and 22qUPD caused by mitotic recombination may also be mediated by SDs.
Collapse
Affiliation(s)
- Masayuki Haruta
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan
| | - Yasuhito Arai
- Cancer Genomics Division, National Cancer Center Research Institute, Tokyo, Japan
| | - Hajime Okita
- Division of Diagnostic Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Yukichi Tanaka
- Department of Pathology, Kanagawa Children's Medical Center, Yokohama, Kanagawa, Japan
| | - Tetsuya Takimoto
- Department of Childhood Cancer Data Management, Childhood Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Takehiko Kamijo
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan
| | - Takaharu Oue
- Department of Pediatric Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Ryota Souzaki
- Department of Pediatric Surgery, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoaki Taguchi
- Department of Pediatric Surgery, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasumichi Kuwahara
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Motoaki Chin
- Department of Pediatrics, Nihon University School of Medicine, Tokyo, Japan
| | - Hisaya Nakadate
- Division of Hematology, National Center for Child Health and Development, Tokyo, Japan
| | - Eiso Hiyama
- Department of Pediatric Surgery, Hiroshima University Hospital, Hiroshima, Japan
| | - Yasushi Ishida
- Pediatric Medical Center, Ehime Prefectural Central Hospital, Matsuyama, Ehime, Japan
| | - Tsugumichi Koshinaga
- Department of Pediatric Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Yasuhiko Kaneko
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan
| |
Collapse
|
8
|
Kashevarova AA, Skryabin NA, Nikitina TV, Lopatkina ME, Sazhenova EA, Zhigalina DI, Savchenko RR, Lebedev IN. Ontogenetic Pleiotropy of Genes Involved in CNVs in Human Spontaneous Abortions. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419100065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Sato Y, Haruta M, Kaneko Y, Nakasato Y, Kurosawa H, Yoshihara S. Paternally inherited WT1 mutation plus uniparental disomy of 11p may be an essential mechanism for development of WT1-mutated familial Wilms tumor. Pediatr Blood Cancer 2019; 66:e27442. [PMID: 30221469 DOI: 10.1002/pbc.27442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/12/2018] [Accepted: 08/13/2018] [Indexed: 11/05/2022]
Affiliation(s)
- Yuya Sato
- Department of Pediatrics, Dokkyo Medical University School of Medicine, Mibu, Tochigi, Japan
| | - Masayuki Haruta
- Department of Cancer Diagnosis, Research Institute for Clinical Oncology, Saitama Cancer Center, Ina, Saitama, Japan
| | - Yasuhiko Kaneko
- Department of Cancer Diagnosis, Research Institute for Clinical Oncology, Saitama Cancer Center, Ina, Saitama, Japan
| | - Yoshimasa Nakasato
- Department of Anatomic and Diagnostic Pathology, Dokkyo Medical University School of Medicine, Mibu, Tochigi, Japan
| | - Hidemitsu Kurosawa
- Department of Pediatrics, Dokkyo Medical University School of Medicine, Mibu, Tochigi, Japan
| | - Shigemi Yoshihara
- Department of Pediatrics, Dokkyo Medical University School of Medicine, Mibu, Tochigi, Japan
| |
Collapse
|
10
|
WT1 expression is increased in primary fibroblasts derived from Dupuytren's disease tissues. J Cell Commun Signal 2015; 9:347-52. [PMID: 26123754 DOI: 10.1007/s12079-015-0293-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 04/16/2015] [Indexed: 11/27/2022] Open
Abstract
Dupuytren's disease (DD) is a fibroproliferative and contractile fibrosis of the palmar fascia that, like all other heritable fibroses, is currently incurable. While DD is invariably benign, it exhibits some molecular similarities to malignant tumours, including increased levels of ß-catenin, onco-fetal fibronectin, periostin and insulin-like growth factor (IGF)-II. To gain additional insights into the pathogenesis of DD, we have assessed the expression of WT1, encoding Wilm's tumour 1, an established tumour biomarker that is syntenic with IGF2, the gene encoding IGF-II in humans. We found that WT1 expression is robustly and consistently up regulated in primary fibroblasts derived from the fibrotic palmar fascia of patients with DD (DD cells), whereas syngeneic fibroblasts derived from the macroscopically unaffected palmar fascia in these patients and allogeneic fibroblasts derived from normal palmar fascia exhibited very low or undetectable WT1 transcript levels. WT1 immunoreactivity was evident in a subset of cells in the fibrotic palmar fascia of patients with DD, but not in macroscopically unaffected palmar fascia. These findings identify WT1 expression as a novel biomarker of fibrotic palmar fascia and are consistent with the hypothesis that the pathogeneses of DD and malignant tumours have molecular similarities.
Collapse
|
11
|
Kaneko Y, Okita H, Haruta M, Arai Y, Oue T, Tanaka Y, Horie H, Hinotsu S, Koshinaga T, Yoneda A, Ohtsuka Y, Taguchi T, Fukuzawa M. A high incidence of WT1 abnormality in bilateral Wilms tumours in Japan, and the penetrance rates in children with WT1 germline mutation. Br J Cancer 2015; 112:1121-33. [PMID: 25688735 PMCID: PMC4366886 DOI: 10.1038/bjc.2015.13] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/24/2014] [Accepted: 12/31/2014] [Indexed: 01/22/2023] Open
Abstract
Background: Bilateral Wilms tumours (BWTs) occur by germline mutation of various predisposing genes; one of which is WT1 whose abnormality was reported in 17–38% of BWTs in Caucasians, whereas no such studies have been conducted in East-Asians. Carriers with WT1 mutations are increasing because of improved survival. Methods: Statuses of WT1 and IGF2 were examined in 45 BWTs from 31 patients with WT1 sequencing and SNP array-based genomic analyses. The penetrance rates were estimated in WT1-mutant familial Wilms tumours collected from the present and previous studies. Results: We detected WT1 abnormalities in 25 (81%) of 31 patients and two families, which were included in the penetrance rate analysis of familial Wilms tumour. Of 35 BWTs from the 25 patients, 31 had small homozygous WT1 mutations and uniparental disomy of IGF2, while 4 had large 11p13 deletions with the retention of 11p heterozygosity. The penetrance rate was 100% if children inherited small WT1 mutations from their fathers, and 67% if inherited the mutations from their mothers, or inherited or had de novo 11p13 deletions irrespective of parental origin (P=0.057). Conclusions: The high incidence of WT1 abnormalities in Japanese BWTs sharply contrasts with the lower incidence in Caucasian counterparts, and the penetrance rates should be clarified for genetic counselling of survivors with WT1 mutations.
Collapse
Affiliation(s)
- Y Kaneko
- 1] Department of Cancer Diagnosis, Research Institute for Clinical Oncology, Saitama Cancer Center, Ina, Saitama 362-0806, Japan [2] Japan Wilms Tumor Study Group (JWiTS), Itabashi-Ku, Tokyo 173-8610, Japan
| | - H Okita
- Japan Wilms Tumor Study Group (JWiTS), Itabashi-Ku, Tokyo 173-8610, Japan
| | - M Haruta
- 1] Department of Cancer Diagnosis, Research Institute for Clinical Oncology, Saitama Cancer Center, Ina, Saitama 362-0806, Japan [2] Japan Wilms Tumor Study Group (JWiTS), Itabashi-Ku, Tokyo 173-8610, Japan
| | - Y Arai
- Division of Cancer Genomics, National Cancer Center Research Institute, Chuo-Ku, Tokyo 104-0045, Japan
| | - T Oue
- Japan Wilms Tumor Study Group (JWiTS), Itabashi-Ku, Tokyo 173-8610, Japan
| | - Y Tanaka
- Japan Wilms Tumor Study Group (JWiTS), Itabashi-Ku, Tokyo 173-8610, Japan
| | - H Horie
- Japan Wilms Tumor Study Group (JWiTS), Itabashi-Ku, Tokyo 173-8610, Japan
| | - S Hinotsu
- Japan Wilms Tumor Study Group (JWiTS), Itabashi-Ku, Tokyo 173-8610, Japan
| | - T Koshinaga
- Japan Wilms Tumor Study Group (JWiTS), Itabashi-Ku, Tokyo 173-8610, Japan
| | - A Yoneda
- Japan Wilms Tumor Study Group (JWiTS), Itabashi-Ku, Tokyo 173-8610, Japan
| | - Y Ohtsuka
- Japan Wilms Tumor Study Group (JWiTS), Itabashi-Ku, Tokyo 173-8610, Japan
| | - T Taguchi
- Japan Wilms Tumor Study Group (JWiTS), Itabashi-Ku, Tokyo 173-8610, Japan
| | - M Fukuzawa
- Japan Wilms Tumor Study Group (JWiTS), Itabashi-Ku, Tokyo 173-8610, Japan
| |
Collapse
|
12
|
Maschietto M, Charlton J, Perotti D, Radice P, Geller JI, Pritchard-Jones K, Weeks M. The IGF signalling pathway in Wilms tumours--a report from the ENCCA Renal Tumours Biology-driven drug development workshop. Oncotarget 2014; 5:8014-26. [PMID: 25478630 PMCID: PMC4226664 DOI: 10.18632/oncotarget.2485] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 09/15/2014] [Indexed: 12/13/2022] Open
Abstract
It is hypothesised that Wilms tumour (WT) results from aberrant renal development due to its embryonic morphology, associated undifferentiated precursor lesions (termed nephrogenic rests) and embryonic kidney-like chromatin and gene expression profiles. From the study of overgrowth syndrome-associated WT, germline dysregulation was identified in the imprinted region at 11p15 affecting imprinted genes IGF2 and H19. This is also detected in ~70% sporadic cases, making this the most common somatic molecular aberration in WT. This review summarises the critical discussion at an international workshop held under the auspices of The European Network for Cancer Research in Children and Adolescents (ENCCA) consortium, where the potential for drug development to target IGF2 and the WT epigenome was debated. Here, we consider current cancer treatments which include targeting the IGF pathway and the use of methylation agents alone or in combination with other drugs in clinical trials of paediatric cancers. Finally, we discuss the possibility of the use of these drugs to treat patients with WT.
Collapse
Affiliation(s)
- Mariana Maschietto
- Cancer Section, Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Jocelyn Charlton
- Cancer Section, Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Daniela Perotti
- Molecular Bases of Genetic Risk and Genetic Testing Unit, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Paolo Radice
- Molecular Bases of Genetic Risk and Genetic Testing Unit, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - James I Geller
- UC department of paediatrics, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
| | - Kathy Pritchard-Jones
- Cancer Section, Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Mark Weeks
- Cancer Section, Institute of Child Health, University College London, London WC1N 1EH, UK
| |
Collapse
|
13
|
Tian F, Yourek G, Shi X, Yang Y. The development of Wilms tumor: from WT1 and microRNA to animal models. Biochim Biophys Acta Rev Cancer 2014; 1846:180-7. [PMID: 25018051 DOI: 10.1016/j.bbcan.2014.07.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 07/04/2014] [Accepted: 07/07/2014] [Indexed: 01/01/2023]
Abstract
Wilms tumor recapitulates the development of the kidney and represents a unique opportunity to understand the relationship between normal and tumor development. This has been illustrated by the findings that mutations of Wnt/β-catenin pathway-related WT1, β-catenin, and WTX together account for about one-third of Wilms tumor cases. While intense efforts are being made to explore the genetic basis of the other two-thirds of tumor cases, it is worth noting that, epigenetic changes, particularly the loss of imprinting of the DNA region encoding the major fetal growth factor IGF2, which results in its biallelic over-expression, are closely associated with the development of many Wilms tumors. Recent investigations also revealed that mutations of Drosha and Dicer, the RNases required for miRNA generation, and Dis3L2, the 3'-5' exonuclease that normally degrades miRNAs and mRNAs, could cause predisposition to Wilms tumors, demonstrating that miRNA can play a pivotal role in Wilms tumor development. Interestingly, Lin28, a direct target of miRNA let-7 and potent regulator of stem cell self-renewal and differentiation, is significantly elevated in some Wilms tumors, and enforced expression of Lin28 during kidney development could induce Wilms tumor. With the success in establishing mice nephroblastoma models through over-expressing IGF2 and deleting WT1, and advances in understanding the ENU-induced rat model, we are now able to explore the molecular and cellular mechanisms induced by these genetic, epigenetic, and miRNA alterations in animal models to understand the development of Wilms tumor. These animal models may also serve as valuable systems to assess new treatment targets and strategies for Wilms tumor.
Collapse
Affiliation(s)
- Fang Tian
- Department of Pathophysiology, School of Basic Medicine, Zhengzhou University, Zhengzhou, Henan, PR China
| | | | - Xiaolei Shi
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, PR China
| | - Yili Yang
- Center for Translational Medicine, Changzheng Hospital, Second Military Medical University, Shanghai, PR China.
| |
Collapse
|
14
|
Oue T, Koshinaga T, Okita H, Kaneko Y, Hinotsu S, Fukuzawa M. Bilateral Wilms tumors treated according to the Japan Wilms Tumor Study Group protocol. Pediatr Blood Cancer 2014; 61:1184-9. [PMID: 24623612 DOI: 10.1002/pbc.24979] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 01/17/2014] [Indexed: 01/25/2023]
Abstract
BACKGROUND The introduction of multimodal therapy has improved the survival rate of bilateral Wilms tumors (BWT); however, the results are still not satisfactory in terms of the renal preservation. To establish a new treatment strategy for BWT, we reviewed the results of the cases registered in the Japan Wilms Tumor Study Group (JWiTS). PROCEDURE This analysis concerned patients with synchronous BWT registered in the JWiTS between 1996 and 2011. In these patients, the management of BWT included initial tumor resection or biopsy followed by chemotherapy. The details of the treatments and outcomes were analyzed. RESULTS Among the 355 cases registered in the JWiTS database, 31 (8.7%) had BWT. They were 16 males and 15 females with a mean age of 15.5 months. Preoperative chemotherapy was performed in 24 cases. Bilateral nephron-sparing surgery (NSS) was achieved in 10 of 28 cases (36%). All of the cases were of favorable nephroblastoma without anaplasia, and a WT1 mutation was detected in 21 of the 27 cases (78%) examined. The 5-year overall survival was 92.6%; however, 10 children (40%) developed impaired renal function and three of them developed renal failure. CONCLUSIONS The long-term survival rates for patients with synchronous BWT have improved. However, more than half of patients receive nephrectomy. The protocol should be changed to improve the rate of preservation of the renal parenchyma. Preoperative chemotherapy should be performed to shrink the tumors in every case, and subsequent NSS should be carried out after a central imaging evaluation.
Collapse
Affiliation(s)
- Takaharu Oue
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Takada M, Higuchi T, Tozuka K, Takei H, Haruta M, Watanabe J, Kasai F, Inoue K, Kurosumi M, Miyazaki M, Sato-Otsubo A, Ogawa S, Kaneko Y. Alterations of the genes involved in the PI3K and estrogen-receptor pathways influence outcome in human epidermal growth factor receptor 2-positive and hormone receptor-positive breast cancer patients treated with trastuzumab-containing neoadjuvant chemotherapy. BMC Cancer 2013; 13:241. [PMID: 23679233 PMCID: PMC3663661 DOI: 10.1186/1471-2407-13-241] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 05/13/2013] [Indexed: 01/24/2023] Open
Abstract
Background Chemotherapy with trastuzumab is widely used for patients with human epidermal growth factor receptor 2-positive (HER2+) breast cancer, but a significant number of patients with the tumor fail to respond, or relapse. The mechanisms of recurrence and biomarkers that indicate the response to the chemotherapy and outcome are not fully investigated. Methods Genomic alterations were analyzed using single-nucleotide polymorphism arrays in 46 HER2 immunohistochemistry (IHC) 3+ or 2+/fluorescent in situ hybridization (FISH)+ breast cancers that were treated with neoadjuvant chemotherapy with paclitaxel, cyclophosphamid, epirubicin, fluorouracil, and trastuzumab. Patients were classified into two groups based on presence or absence of alterations of 65 cancer-associated genes, and the two groups were further classified into four groups based on genomic HER2 copy numbers or hormone receptor status (HR+/−). Pathological complete response (pCR) and relapse-free survival (RFS) rates were compared between any two of the groups. Results and discussion The pCR rate was 54% in 37 patients, and the RFS rate at 3 years was 72% (95% CI, 0.55-0.89) in 42 patients. The analysis disclosed 8 tumors with nonamplified HER2 and 38 tumors with HER2 amplification, indicating the presence of discordance in tumors diagnosed using current HER2 testing. The 8 patients showed more difficulty in achieving pCR (P=0.019), more frequent relapse (P=0.018), and more frequent alterations of genes in the PI3K pathway (P=0.009) than the patients with HER2 amplification. The alterations of the PI3K and estrogen receptor (ER) pathway genes generally indicated worse RFS rates. The prognostic significance of the alterations was shown in patients with a HR+ tumor, but not in patients with a HR- tumor when divided. Alterations of the PI3K and ER pathway genes found in patients with a HR+ tumor with poor outcome suggested that crosstalk between the two pathways may be involved in resistance to the current chemotherapy with trastuzumab. Conclusions We recommend FISH analysis as a primary HER2 testing because patients with IHC 2+/3+ and nonamplified HER2 had poor outcome. We also support concurrent use of trastuzumab, lapatinib, and cytotoxic and anti-hormonal agents for patients having HR+ tumors with alterations of the PI3K and ER pathway genes.
Collapse
Affiliation(s)
- Mamoru Takada
- Department of Cancer Diagnosis, Research Institute for Clinical Oncology, Saitama Cancer Center, 818 Komuro, Ina, Saitama, 362-0806, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Beristain E, Vicente MA, Guerra I, Gutiérrez-Corres FB, Garin I, Perez de Nanclares G. Disomy as the genetic underlying mechanisms of loss of heterozigosity in SDHD-paragangliomas. J Clin Endocrinol Metab 2013; 98:E1012-6. [PMID: 23493432 DOI: 10.1210/jc.2012-4083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Succinate dehydrogenase complex, subunit D (SDHD) mutations cause pheochromocytoma/paraganglioma syndrome. SDHD, located at chromosome 11q23, shows a parent-of-origin effect because the disease is observed almost exclusively when the mutation is transmitted from the father, although some cases of maternal transmission have been reported. Several hypotheses have been proposed for this peculiar inheritance pattern, but the underlying mechanisms have not yet been clearly elucidated. OBJECTIVE The objective of the study was to explain the parent-of-origin effect in a family, mainly affected by paternally transmitted paragangliomas, and with a maternally transmitted renal tumor. PATIENTS Peripheral blood DNA from 15 carriers and 7 tumor DNA samples from SDHD-p.Trp5* carriers were studied. METHODS We conducted mutation genotyping and microsatellite marker analysis in germline and tumor DNA and methylation status analysis in tumor DNA by methylation-specific multiplex ligation-dependent probe amplification. RESULTS Mutation genotyping and microsatellite marker analysis demonstrated loss of heterozygosity of the wild-type allele (maternal) in all studied tumors, except the renal tumor, which lost the mutated allele (maternal), and the prostate tumor, which had no loss of heterozygosity. The methylation-specific multiplex ligation-dependent probe amplification demonstrated that the methylation profile corresponded exclusively to the paternal chromosome without genomic loss, suggesting paternal uniparental disomy as the mechanism underlying the parent-of-origin effect in this SDHD family. CONCLUSIONS The paternal uniparental disomy involves the loss of maternally imprinted cell cycle regulators and the overexpression of paternally imprinted growth activators, leading to tumorigenesis in this syndrome.
Collapse
Affiliation(s)
- Elena Beristain
- Molecular (Epi)Genetics Laboratory, Planta-2, Hospital Universitario Araba-Txagorritxu, C/José Atxotegui s/n, 01009 Vitoria-Gasteiz, Spain
| | | | | | | | | | | |
Collapse
|
17
|
Clinically relevant subsets identified by gene expression patterns support a revised ontogenic model of Wilms tumor: a Children's Oncology Group Study. Neoplasia 2013; 14:742-56. [PMID: 22952427 DOI: 10.1593/neo.12714] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 06/28/2012] [Accepted: 07/04/2012] [Indexed: 01/23/2023] Open
Abstract
Wilms tumors (WT) have provided broad insights into the interface between development and tumorigenesis. Further understanding is confounded by their genetic, histologic, and clinical heterogeneity, the basis of which remains largely unknown. We evaluated 224 WT for global gene expression patterns; WT1, CTNNB1, and WTX mutation; and 11p15 copy number and methylation patterns. Five subsets were identified showing distinct differences in their pathologic and clinical features: these findings were validated in 100 additional WT. The gene expression pattern of each subset was compared with published gene expression profiles during normal renal development. A novel subset of epithelial WT in infants lacked WT1, CTNNB1, and WTX mutations and nephrogenic rests and displayed a gene expression pattern of the postinduction nephron, and none recurred. Three subsets were characterized by a low expression of WT1 and intralobar nephrogenic rests. These differed in their frequency of WT1 and CTNNB1 mutations, in their age, in their relapse rate, and in their expression similarities with the intermediate mesoderm versus the metanephric mesenchyme. The largest subset was characterized by biallelic methylation of the imprint control region 1, a gene expression profile of the metanephric mesenchyme, and both interlunar and perilobar nephrogenic rests. These data provide a biologic explanation for the clinical and pathologic heterogeneity seen within WT and enable the future development of subset-specific therapeutic strategies. Further, these data support a revision of the current model of WT ontogeny, which allows for an interplay between the type of initiating event and the developmental stage in which it occurs.
Collapse
|
18
|
Abstract
BACKGROUND The differentiation between a giant fibroadenoma and a phyllodes tumor can be a precarious diagnostic task. However, the distinction between the 2 lesions is important to make, especially since the latter can be malignant and consequently the prognoses differ. PROCEDURE We used various genetic approaches to study a breast tumor showing features of both entities in a 10-year-old girl with a congenital cerebral malformation and diabetes mellitus. RESULTS Cytogenetic analysis of cultured tumor cells from 3 different samples revealed a hyperdiploid karyotype: 50-54,XX,+5,+13,+17,+18,+19,+20,+21. High-resolution single nucleotide polymorphism array analysis not only confirmed the trisomies, but also revealed uniparental disomy (UPD) for chromosomes 10, 11, and 22. A consequence of UPD11 was a homozygous deletion in chromosome band 11p15 affecting the PARVA gene; this gene was hemizygously lost in constitutional DNA. Extended analysis of the family revealed that the deletion was inherited, but it did not segregate with breast tumors or congenital malformations. CONCLUSIONS Combined with the literature data, the findings in the present case strongly suggest that biphasic tumors with high hyperdiploid karyotypes constitute a distinct clinicomorphologic subgroup of benign breast tumors, being particularly common among young children.
Collapse
|
19
|
Ichikawa M, Arai Y, Haruta M, Furukawa S, Ariga T, Kajii T, Kaneko Y. Meiosis error and subsequent genetic and epigenetic alterations invoke the malignant transformation of germ cell tumor. Genes Chromosomes Cancer 2012; 52:274-86. [DOI: 10.1002/gcc.22027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 10/07/2012] [Indexed: 11/07/2022] Open
|
20
|
Ohshima J, Haruta M, Fujiwara Y, Watanabe N, Arai Y, Ariga T, Okita H, Koshinaga T, Oue T, Hinotsu S, Nakadate H, Horie H, Fukuzawa M, Kaneko Y. Methylation of the RASSF1A promoter is predictive of poor outcome among patients with Wilms tumor. Pediatr Blood Cancer 2012; 59:499-505. [PMID: 22457227 DOI: 10.1002/pbc.24093] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 01/05/2012] [Indexed: 01/27/2023]
Abstract
BACKGROUND Wilms tumor (WT) has a survival rate of 90% following multimodality therapy. Nevertheless, there are some groups of patients with event-free survival rates less than 75%. In addition to clinical prognostic factors, loss of heterozygosity at 1p and/or 16q has been used to determine treatment intensity. However, the incidence of this abnormality is low, and new biomarkers are still needed. PROCEDURE We analyzed methylation status of three tumor suppressor genes; Ras-association domain family 1 protein, isoform A (RASSF1A), DCR2, and CASP8, in 84 WTs using conventional methylation-specific PCR (cMSP), and the results were correlated with outcome. Furthermore, we analyzed the methylation status of RASSF1A by quantitative MSP (qMSP) in 171 WTs, and evaluated clinical and genetic differences between the methylated and unmethylated tumors. RESULTS RASSF1A was the most frequently methylated gene identified by cMSP, and associated with a poor outcome. Patients with a RASSF1A-methylated tumor had shorter overall and event-free survival periods (P = 0.043 and 0.018, respectively), when a cut-off value of 7% by qMSP was used. The methylation was more frequent in tumors of older children than younger children (P < 0.001), and in advanced-stage tumors than early stage tumors (P = 0.001). However, multivariate analysis could not confirm the prognostic significance of RASSF1A methylation, possibly because of a small number of advanced stage tumors examined. RASSF1A methylation was correlated with LOH at 1p and/or 16q (P = 0.017), but not with WT1 abnormality, suggesting the methylation and LOH to involve the same tumorigenic pathway. CONCLUSIONS The methylation status of RASSF1A might be a novel biomarker to predict outcome of WT patients.
Collapse
Affiliation(s)
- Junjiro Ohshima
- Research Institute for Clinical Oncology, Saitama Cancer Center, Ina, Saitama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Haruta M, Arai Y, Watanabe N, Fujiwara Y, Honda S, Ohshima J, Kasai F, Nakadate H, Horie H, Okita H, Hata JI, Fukuzawa M, Kaneko Y. Different incidences of epigenetic but not genetic abnormalities between Wilms tumors in Japanese and Caucasian children. Cancer Sci 2012; 103:1129-35. [PMID: 22409817 DOI: 10.1111/j.1349-7006.2012.02269.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 02/28/2012] [Accepted: 03/07/2012] [Indexed: 11/27/2022] Open
Abstract
Epidemiological studies show that the incidence of Wilms tumor (WT) in East-Asian children is half of that in Caucasian children. Abnormalities of WT1, CTNNB1, WTX, and IGF2 were reported to be involved in Wilms tumorigenesis in Caucasians, although none of the studies simultaneously evaluated the four genes. WTX forms the β-catenin degradation complex; however, the relationship between WTX abnormality and CTNNB1 mutation was uncertain in WTs. We examined abnormalities of the four genes in 114 Japanese with WTs to clarify the relationship between genetic and epigenetic factors and the incidence of WTs. We found that abnormalities of WTX and CTNNB1 were mutually exclusive, and that although CTNNB1 mutation was frequent in WTs with WT1 abnormality, but rare in WTs without, the incidences of WTX abnormality were similar between WTs with or without WT1 abnormality. These findings were consistent with those reported in Caucasian populations, and indicate multiple roles of WTX abnormality. Abnormalities of WT1, WTX and CTNNB1, and loss of IGF2 imprinting (LOI) were detected in 31.6%, 22.8%, 26.3%, and 21.1% of the 114 WTs, respectively. When we selected 101 sporadic WTs, the incidences of WT1, CTNNB1, or WTX abnormality were generally comparable between the two populations, whereas the incidence of IGF2 LOI was lower in Japanese than that of IGF2 LOI reported in Caucasians (P = 0.04). This is the first comprehensive study of the four genes, and the results supported the hypothesis that the lower incidence of IGF2 LOI contributes to the lower incidence of WTs in Japanese children.
Collapse
Affiliation(s)
- Masayuki Haruta
- Department of Cancer Diagnosis, Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Zin R, Pham K, Ashleigh M, Ravine D, Waring P, Charles A. SNP-based arrays complement classic cytogenetics in the detection of chromosomal aberrations in Wilms’ tumor. Cancer Genet 2012; 205:80-93. [DOI: 10.1016/j.cancergen.2011.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Revised: 12/09/2011] [Accepted: 12/16/2011] [Indexed: 12/11/2022]
|
23
|
Abstract
Wilms' tumour (WT) is an embryonal cancer of childhood and is thought to be derived from embryonic kidney precursor cells. The Knudson two hit model was initially thought to occur in WT, but findings emerging from genetic and cytogenetic studies in the past two decades have implicated several genetic events. Recent techniques in genetic analysis have improved our ability to characterise changes in genes involved in WT which include WT1, CTNNB1, IGF2 and WTX. These genetic events have not only provided insight into the pathobiology of this malignancy, but the recognition of these candidate genes may offer potential targets for novel therapies. In this review, we will provide an overview of the pathological, genetic and cytogenetic characteristics of WT.
Collapse
|
24
|
Sugawara W, Arai Y, Kasai F, Fujiwara Y, Haruta M, Hosaka R, Nishida K, Kurosumi M, Kobayashi Y, Akagi K, Kaneko Y. Association of germline or somatic TP53 missense mutation with oncogene amplification in tumors developed in patients with Li-Fraumeni or Li-Fraumeni-like syndrome. Genes Chromosomes Cancer 2011; 50:535-45. [DOI: 10.1002/gcc.20878] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 03/18/2011] [Indexed: 11/11/2022] Open
|
25
|
Abstract
Genes identified as being mutated in Wilms' tumour include TP53, a classic tumour suppressor gene (TSG); CTNNB1 (encoding β-catenin), a classic oncogene; WTX, which accumulating data indicate is a TSG; and WT1, which is inactivated in some Wilms' tumours, similar to a TSG. However, WT1 does not always conform to the TSG label, and some data indicate that WT1 enhances cell survival and proliferation, like an oncogene. Is WT1 a chameleon, functioning as either a TSG or an oncogene, depending on cellular context? Are these labels even appropriate for describing and understanding the function of WT1?
Collapse
Affiliation(s)
- Vicki Huff
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| |
Collapse
|
26
|
Hu Q, Gao F, Tian W, Ruteshouser EC, Wang Y, Lazar A, Stewart J, Strong LC, Behringer RR, Huff V. Wt1 ablation and Igf2 upregulation in mice result in Wilms tumors with elevated ERK1/2 phosphorylation. J Clin Invest 2011; 121:174-83. [PMID: 21123950 PMCID: PMC3007149 DOI: 10.1172/jci43772] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 10/06/2010] [Indexed: 01/13/2023] Open
Abstract
Wilms tumor (WT) is a genetically heterogeneous childhood kidney tumor. Several genetic alterations have been identified in WT patients, including inactivating mutations in WT1 and loss of heterozygosity or loss of imprinting at 11p15, which results in biallelic expression of IGF2. However, the mechanisms by which one or a combination of genetic alterations results in tumorigenesis has remained challenging to determine, given the lack of a mouse model of WT. Here, we engineered mice to sustain mosaic, somatic ablation of Wt1 and constitutional Igf2 upregulation, mimicking a subset of human tumors. Mice with this combination of genetic alterations developed tumors at an early age. Mechanistically, Wt1 ablation blocked mesenchyme differentiation, and increased Igf2 expression upregulated ERK1/2 phosphorylation. Importantly, a subset of human tumors similarly displayed upregulation of ERK1/2 phosphorylation, which suggests ERK signaling might contribute to WT development. Thus, we have generated a biologically relevant mouse model of WT and defined one combination of driver alterations for WT. This mouse model will provide a powerful tool to study the biology of WT initiation and progression and to investigate therapeutic strategies for cancers with IGF pathway dysregulation.
Collapse
Affiliation(s)
- Qianghua Hu
- Department of Genetics,
Department of Experimental Therapeutics, and
Department of Pathology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA.
Graduate Program in Genes and Development and
Graduate Program in Human Molecular Genetics, UT-Houston Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Fei Gao
- Department of Genetics,
Department of Experimental Therapeutics, and
Department of Pathology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA.
Graduate Program in Genes and Development and
Graduate Program in Human Molecular Genetics, UT-Houston Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Weihua Tian
- Department of Genetics,
Department of Experimental Therapeutics, and
Department of Pathology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA.
Graduate Program in Genes and Development and
Graduate Program in Human Molecular Genetics, UT-Houston Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - E. Cristy Ruteshouser
- Department of Genetics,
Department of Experimental Therapeutics, and
Department of Pathology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA.
Graduate Program in Genes and Development and
Graduate Program in Human Molecular Genetics, UT-Houston Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Yaqing Wang
- Department of Genetics,
Department of Experimental Therapeutics, and
Department of Pathology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA.
Graduate Program in Genes and Development and
Graduate Program in Human Molecular Genetics, UT-Houston Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Alexander Lazar
- Department of Genetics,
Department of Experimental Therapeutics, and
Department of Pathology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA.
Graduate Program in Genes and Development and
Graduate Program in Human Molecular Genetics, UT-Houston Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - John Stewart
- Department of Genetics,
Department of Experimental Therapeutics, and
Department of Pathology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA.
Graduate Program in Genes and Development and
Graduate Program in Human Molecular Genetics, UT-Houston Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Louise C. Strong
- Department of Genetics,
Department of Experimental Therapeutics, and
Department of Pathology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA.
Graduate Program in Genes and Development and
Graduate Program in Human Molecular Genetics, UT-Houston Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Richard R. Behringer
- Department of Genetics,
Department of Experimental Therapeutics, and
Department of Pathology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA.
Graduate Program in Genes and Development and
Graduate Program in Human Molecular Genetics, UT-Houston Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Vicki Huff
- Department of Genetics,
Department of Experimental Therapeutics, and
Department of Pathology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA.
Graduate Program in Genes and Development and
Graduate Program in Human Molecular Genetics, UT-Houston Graduate School of Biomedical Sciences, Houston, Texas, USA
| |
Collapse
|
27
|
Blish KR, Clausen KA, Hawkins GA, Garvin AJ, Willingham MC, Turner JC, Torti FM, Torti SV. Loss of heterozygosity and SOSTDC1 in adult and pediatric renal tumors. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2010; 29:147. [PMID: 21080955 PMCID: PMC3002326 DOI: 10.1186/1756-9966-29-147] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 11/16/2010] [Indexed: 11/10/2022]
Abstract
Background Deletions within the short arm of chromosome 7 are observed in approximately 25% of adult and 10% of Wilms pediatric renal tumors. Within Wilms tumors, the region of interest has been delineated to a 2-Mb minimal region that includes ten known genes. Two of these ten candidate genes, SOSTDC1 and MEOX2, are particularly relevant to tumor development and maintenance. This finding, coupled with evidence that SOSTDC1 is frequently downregulated in adult renal cancer and regulates both Wingless-Int (Wnt)- and bone morphogenetic protein (BMP)-induced signaling, points to a role for SOSTDC1 as a potential tumor suppressor. Methods To investigate this hypothesis, we interrogated the Oncomine database to examine the SOSTDC1 levels in adult renal clear cell tumors and pediatric Wilms tumors. We then performed single nucleotide polymorphism (SNP) and sequencing analyses of SOSTDC1 in 25 pediatric and 36 adult renal tumors. Immunohistochemical staining of patient samples was utilized to examine the impact of SOSTDC1 genetic aberrations on SOSTDC1 protein levels and signaling. Results Within the Oncomine database, we found that SOSTDC1 levels were reduced in adult renal clear cell tumors and pediatric Wilms tumors. Through SNP and sequencing analyses of 25 Wilms tumors, we identified four with loss of heterozygosity (LOH) at 7p and three that affected SOSTDC1. Of 36 adult renal cancers, we found five with LOH at 7p, two of which affected SOSTDC1. Immunohistochemical analysis of SOSTDC1 protein levels within these tumors did not reveal a relationship between these instances of SOSTDC1 LOH and SOSTDC1 protein levels. Moreover, we could not discern any impact of these genetic alterations on Wnt signaling as measured by altered beta-catenin levels or localization. Conclusions This study shows that genetic aberrations near SOSTDC1 are not uncommon in renal cancer, and occur in adult as well as pediatric renal tumors. These observations of SOSTDC1 LOH, however, did not correspond with changes in SOSTDC1 protein levels or signaling regulation. Although our conclusions are limited by sample size, we suggest that an alternative mechanism such as epigenetic silencing of SOSTDC1 may be a key contributor to the reduced SOSTDC1 mRNA and protein levels observed in renal cancer.
Collapse
Affiliation(s)
- Kimberly R Blish
- Department of Cancer Biology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Arai Y, Honda S, Haruta M, Kasai F, Fujiwara Y, Ohshima J, Sasaki F, Nakagawara A, Horie H, Yamaoka H, Hiyama E, Kaneko Y. Genome-wide analysis of allelic imbalances reveals 4q deletions as a poor prognostic factor and MDM4 amplification at 1q32.1 in hepatoblastoma. Genes Chromosomes Cancer 2010; 49:596-609. [PMID: 20461752 DOI: 10.1002/gcc.20770] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In a single-nucleotide polymorphism array-based analysis of 56 hepatoblastoma (HB) tumors, allelic imbalances were detected in 37 tumors (66%). Chromosome gains were found in 1q (28 tumors), 2q (24), 6p (8), 8q (8), 17q (6), and 20pq (10), and losses in 1p (6), 4q (9), and 16q (4). Fine mapping delineated the shortest overlapping region (SOR) of gains at 1q32.1 (1.3 Mb) and 2q24.2-q24.3 (4.8 Mb), and losses at 4q34.3-q35.2 (8.7 Mb) and 4q32.3 (1.6 Mb). Uniparental disomy of 11pter-11p15.4 (IGF2) and loss of 11pter-p14.1 were found in 11 and 2 tumors, respectively. Expression of HTATIP2 (11p15.1) was absent in 9 of 20 tumors. Amplification was identified in four tumors at 1q32.1, where the candidate oncogene MDM4 is located. In the 4q32.3-SRO, ANXA10S, a variant of the candidate tumor suppressor ANXA10, showed no expression in 19 of 24 tumors. Sequence analysis of ANXA10S identified a missense mutation (E36K, c.106G>A) in a HB cell line. Multivariate analysis revealed that both 4q deletion and RASSF1A methylation (relative risks: 4.21 and 7.55, respectively) are independent prognostic factors. Our results indicate that allelic imbalances and gene expression patterns provide possible diagnostic and prognostic markers, as well as therapeutic targets in a subset of HB.
Collapse
Affiliation(s)
- Yasuhito Arai
- Cancer Genomics Project, National Cancer Center Research Institute, Chuo-Ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Cheng YW, Idrees K, Shattock R, Khan SA, Zeng Z, Brennan CW, Paty P, Barany F. Loss of imprinting and marked gene elevation are 2 forms of aberrant IGF2 expression in colorectal cancer. Int J Cancer 2010; 127:568-77. [PMID: 19957330 DOI: 10.1002/ijc.25086] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Loss of imprinting (LOI) of insulin-like growth factor 2 (IGF2) is a common event in many cancers and typically activates the maternally silenced allele. The resulting biallelic IGF2 expression correlates strongly with the hypomethylation of a differentially methylated region (DMR) near its promoter. It has also been shown that IGF2 undergoes overexpression in human malignancies; nevertheless, this phenomenon and its link to aberrant DMR methylation have not been reported in colorectal cancer (CRC). The aim of this study was to determine the relationship between IGF2 LOI, overexpression and DMR hypomethylation in CRC. By analyzing IGF2 and H19 methylation in 97 primary CRC and 64 matched normal colorectal tissues, we have shown a significant correlation between IGF2 LOI and DMR hypomethylation of IGF2 and H19. Additionally, when analyzing Affymetrix expression data of 167 primary CRC tumors and 32 normal tissues, 15% of tumors showed marked IGF2 elevation. We further investigated if substantially elevated IGF2 levels were linked to IGF2 or H19 hypomethylation, but found no significant correlation. However, we demonstrated that noticeable IGF2 overexpression, rather than LOI, negatively correlated with CRC microsatellite instability. These observations indicate that IGF2 expression, particularly when transcribed at significantly high levels, is a result of mechanisms unrelated to LOI. Our results suggest that IGF2 participates in CRC tumorigenesis through 2 different forms of aberrant gene expression.
Collapse
Affiliation(s)
- Yu-Wei Cheng
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
After the completion of the human genome, a need was identified by scientists to look for a functional map of the human genome. Epigenomics provided functional characteristics of genes identified in the genome. Epigenetics is the alteration in gene expression (function) without changing the nucleotide sequence. Both activation and inactivation of cancer-associated genes can occur by epigenetic mechanisms. The major players in epigenetic mechanisms of gene regulation are DNA methylation, histone deacetylation, chromatin remodeling, small noncoding RNA expression and gene imprinting. In the last few years, epigenetic mechanisms have been studied in a number of tumor types and epigenetic markers have been identified that are suitable for cancer detection, diagnosis, follow-up of treatment and screening high-risk populations. One interesting aspect of epigenetics is the reactivation of genes by successful reversion of some epigenetic changes using chemicals. The reversibility of epigenetic aberrations has made them attractive targets for cancer treatment with modulators that demethylate DNA and inhibit histone deacetylases, leading to the reactivation of silenced genes. In this article, we have described the current status of this powerful science and discussed the challenges in the clinical fields where epigenetic approaches in cancer are applied.
Collapse
Affiliation(s)
- Hirendra Nath Banerjee
- Department of Biology, Campus Box 930, Elizabeth City State University, 1704 Weeksville Road, Elizabeth City, NC 27909, USA.
| | | |
Collapse
|
31
|
Veronese A, Lupini L, Consiglio J, Visone R, Ferracin M, Fornari F, Zanesi N, Alder H, D'Elia G, Gramantieri L, Bolondi L, Lanza G, Querzoli P, Angioni A, Croce CM, Negrini M. Oncogenic role of miR-483-3p at the IGF2/483 locus. Cancer Res 2010; 70:3140-9. [PMID: 20388800 DOI: 10.1158/0008-5472.can-09-4456] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
hsa-mir-483 is located within intron 2 of the IGF2 locus. We found that the mature microRNA (miRNA) miR-483-3p is overexpressed in 100% of Wilms' tumors. In addition, colon, breast, and liver cancers exhibit high or even extremely high levels of miR-483-3p in approximately 30% of the cases. A coregulation with IGF2 mRNA was detected, although some tumors exhibited high expression of miR-483-3p without a concomitant increase of IGF2. These findings suggested that miR-483-3p could cooperate with IGF2 or act as an autonomous oncogene. Indeed, here we prove that an anti-miRNA oligonucleotide against miR-483-3p could inhibit the miRNAs without affecting IGF2 mRNA and it could suppress tumorigenicity of HepG2 cells, a cell line that overexpresses miR-483-3p and IGF2. Conversely, no antitumor effect was elicited by inhibition of IGF2. The oncogenic mechanism of miR-483-3p was at least partially clarified by the finding that it could modulate the proapoptotic protein BBC3/PUMA and miR-483-3p enforced expression could protect cells from apoptosis. Our results indicate that miR-483-3p could function as an antiapoptotic oncogene in various human cancers and reveal a new, potentially important target for anticancer therapy.
Collapse
Affiliation(s)
- Angelo Veronese
- Dipartimento di Medicina Sperimentale e Diagnostica, Università di Ferrara, Ferrara, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Williams RD, Al-Saadi R, Chagtai T, Popov S, Messahel B, Sebire N, Gessler M, Wegert J, Graf N, Leuschner I, Hubank M, Jones C, Vujanic G, Pritchard-Jones K. Subtype-specific FBXW7 mutation and MYCN copy number gain in Wilms' tumor. Clin Cancer Res 2010; 16:2036-45. [PMID: 20332316 PMCID: PMC5122447 DOI: 10.1158/1078-0432.ccr-09-2890] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PURPOSE Wilms' tumor (WT), the most common pediatric renal malignancy, is associated with mutations in several well-characterized genes, most notably WT1, CTNNB1, WTX, and TP53. However, the majority of cases do not harbor mutations in these genes. We hypothesized that additional drivers of tumor behavior would be contained within areas of consistent genomic copy number change, especially those associated with the WT risk groups defined by the International Society of Paediatric Oncology (SIOP). EXPERIMENTAL DESIGN We analyzed high-resolution (Affymetrix 250K single nucleotide polymorphism array) genomic copy number profiles of over 100 tumors from selected risk groups treated under the SIOP protocols, further characterizing genes of interest by sequencing, Multiplex Ligation-dependent Probe Amplification, or fluorescence in situ hybridization. RESULTS We identified FBXW7, an E3 ubiquitin ligase component, as a novel Wilms' tumor gene, mutated or deleted in approximately 4% of tumors examined. Strikingly, 3 of 14 (21%) of tumors with epithelial type histology after neoadjuvant chemotherapy had FBXW7 aberrations, whereas a fourth WT patient had germline mutations in both FBXW7 and WT1. We also showed that MYCN copy number gain, detected in 9 of 104 (8.7%) of cases, is relatively common in WT and significantly more so in tumors of the high risk diffuse anaplastic subtype (6 of 19, 32%). CONCLUSIONS Because MYCN is itself a target of FBXW7-mediated ubiquitination and degradation, these results suggest that a common pathway is dysregulated by different mechanisms in various WT subtypes. Emerging therapies that target MYCN, which is amplified in several other pediatric cancers, may therefore be of value in high risk Wilms' tumor.
Collapse
Affiliation(s)
- Richard D Williams
- Section of Paediatric Oncology, Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG
| | - Reem Al-Saadi
- Section of Paediatric Oncology, Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG
| | - Tasnim Chagtai
- Section of Paediatric Oncology, Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG
| | - Sergey Popov
- Section of Paediatric Oncology, Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG
| | - Boo Messahel
- Section of Paediatric Oncology, Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG
| | - Neil Sebire
- UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Manfred Gessler
- University of Wuerzburg, Biocenter, Developmental Biochemistry, Am Hubland, 97074 Wuerzburg, Germany
| | - Jenny Wegert
- University of Wuerzburg, Biocenter, Developmental Biochemistry, Am Hubland, 97074 Wuerzburg, Germany
| | - Norbert Graf
- University Hospital of the Saarland, D-66421 Homburg, Germany
| | - Ivo Leuschner
- Institute of Pathology, University Hospital of Schleswig-Holstein, Campus Kiel, Michaelisstrasse 11, D-24105 Kiel, Germany
| | - Mike Hubank
- UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Chris Jones
- Section of Paediatric Oncology, Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG
| | - Gordan Vujanic
- Department of Pathology, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Kathy Pritchard-Jones
- Section of Paediatric Oncology, Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG
| |
Collapse
|
33
|
Ohshima J, Haruta M, Arai Y, Kasai F, Fujiwara Y, Ariga T, Okita H, Fukuzawa M, Hata JI, Horie H, Kaneko Y. Two candidate tumor suppressor genes, MEOX2 and SOSTDC1, identified in a 7p21 homozygous deletion region in a Wilms tumor. Genes Chromosomes Cancer 2009; 48:1037-50. [PMID: 19760604 DOI: 10.1002/gcc.20705] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A SNP-based array analysis of 100 Wilms tumors (WT) from 97 patients identified 7p alterations (hemizygous and homozygous deletions and uniparental disomy) in nine tumors. The homozygous deletion (HD) region of 7p21 found in one tumor partially overlapped with another HD region reported previously, and was narrowed down to a 2.1-Mb region. Based on an expression analysis of 10 genes located in the HD region in 3 WT lines and previous studies on tumorigenic roles of MEOX2 and SOSTDC1, we further analyzed these two genes. Sequencing showed no mutation in MEOX2, but two missense mutations (L50F and Q129L) in SOSTDC1 in four tumors; L50F in two tumors was of germline origin. Expression levels (0, 1+ and 2+) of MEOX2 were lower in four tumors with 7p alterations than in 18 tumors with no 7p alterations (P = 0.017), and those of SOSTDC1 tended to be lower in five tumors with 7p alterations or SOSTDC1 mutation than in 17 tumors with no 7p alterations or SOSTDC1 mutation (P = 0.056). There were no significant differences in clinical characteristics between nine patients with 7p alterations and 88 patients with no 7p alterations; however, there was a difference in the status of IGF2 (uniparental disomy, loss of imprinting, or retention of imprinting) between the two patient groups (P = 0.028). Losses of MEOX2 and SOSTDC1 may accelerate angiogenesis and augment signals in the Wnt pathway, respectively. Both genes may be prime candidates for 7p tumor suppressor genes, which may have a role in the progression of Wilms tumorigenesis.
Collapse
Affiliation(s)
- Junjiro Ohshima
- Research Institute for Clinical Oncology, Saitama Cancer Center, Ina, Saitama, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Oue T, Fukuzawa M, Okita H, Mugishima H, Horie H, Hata JI, Saito M, Nozaki M, Chin M, Nakadate H, Hinotsu S, Koshinaga T, Kaneko Y, Kitano Y, Tanaka Y. Outcome of pediatric renal tumor treated using the Japan Wilms Tumor Study-1 (JWiTS-1) protocol: a report from the JWiTS group. Pediatr Surg Int 2009; 25:923-9. [PMID: 19701757 DOI: 10.1007/s00383-009-2449-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE In 1996, the Japan Wilms Tumor Study (JWiTS) group was founded to elucidate the efficacy and safety of the regimen established by the National Wilms Tumor Study (NWTS) group in the USA, and a multicenter cooperative study (JWiTS-1) was started in Japan. This report reviews the results of JWiTS-1. METHODS A total of 307 patients with malignant renal tumor were enrolled in the JWiTS-1 study between 1996 and 2005. Central pathological diagnosis and follow-up data were available in 210 cases. The protocol regimens were similar to the NWTS-5 regimens. Clinical stage was classified according to the Japanese Staging System. RESULTS Five-year overall survival (OS) rate was 91.1% for nephroblastoma, 72.9% for clear cell sarcoma of the kidney (CCSK), and 22.2% for rhabdoid tumor of the kidney (RTK). In the nephroblastoma patients, 5-year OS was 90.5% for stage I disease, 92.2% for stage II, 90.9% for stage III, 86.7% for stage IV, and 78.7% for stage V. CONCLUSIONS The OS of patients in the JWiTS-1 study were comparable with the results of other multicenter studies in the USA and Europe. The outcome for patients with nephroblastoma and CCSK was fair. In contrast, the cure rate for those with RTK was not satisfactory. New treatment strategies are needed for patients with RTK.
Collapse
Affiliation(s)
- Takaharu Oue
- Division of Pediatric Surgery, Department of Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Oliva J, Bardag-Gorce F, French BA, Li J, French SW. The regulation of non-coding RNA expression in the liver of mice fed DDC. Exp Mol Pathol 2009; 87:12-9. [PMID: 19362547 PMCID: PMC2885145 DOI: 10.1016/j.yexmp.2009.03.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Accepted: 03/30/2009] [Indexed: 12/13/2022]
Abstract
Mallory-Denk bodies (MDBs) are found in the liver of patients with alcoholic and chronic nonalcoholic liver disease, and hepatocellular carcinoma (HCC). Diethyl 1,4-dihydro-2,4,6,-trimethyl-3,5-pyridinedicarboxylate (DDC) is used as a model to induce the formation of MDBs in mouse liver. Previous studies in this laboratory showed that DDC induced epigenetic modifications in DNA and histones. The combination of these modifications changes the phenotype of the MDB forming hepatocytes, as indicated by the marker FAT10. These epigenetic modifications are partially prevented by adding to the diet S-adenosylmethionine (SAMe) or betaine, both methyl donors. The expression of three imprinted ncRNA genes was found to change in MDB forming hepatocytes, which is the subject of this report. NcRNA expression was quantitated by real-time PCR and RNA FISH in liver sections. Microarray analysis showed that the expression of three ncRNAs was regulated by DDC: up regulation of H19, antisense Igf2r (AIR), and down regulation of GTL2 (also called MEG3). S-adenosylmethionine (SAMe) feeding prevented these changes. Betaine, another methyl group donor, prevented only H19 and AIR up regulation induced by DDC, on microarrays. The results of the SAMe and betaine groups were confirmed by real-time PCR, except for AIR expression. After 1 month of drug withdrawal, the expression of the three ncRNAs tended toward control levels of expression. Liver tumors that developed also showed up regulation of H19 and AIR. The RNA FISH approach showed that the MDB forming cells' phenotype changed the level of expression of AIR, H19 and GTL2, compared to the surrounding cells. Furthermore, over expression of H19 and AIR was demonstrated in tumors formed in mice withdrawn for 9 months. The dysregulation of ncRNA in MDB forming liver cells has been observed for the first time in drug-primed mice associated with liver preneoplastic foci and tumors.
Collapse
Affiliation(s)
- Joan Oliva
- Department of Pathology, Harbor-UCLA Medical Center, Torrance, CA 90509, USA.
| | | | | | | | | |
Collapse
|
36
|
Furukawa S, Haruta M, Arai Y, Honda S, Ohshima J, Sugawara W, Kageyama Y, Higashi Y, Nishida K, Tsunematsu Y, Nakadate H, Ishii M, Kaneko Y. Yolk sac tumor but not seminoma or teratoma is associated with abnormal epigenetic reprogramming pathway and shows frequent hypermethylation of various tumor suppressor genes. Cancer Sci 2009; 100:698-708. [PMID: 19245437 PMCID: PMC11159010 DOI: 10.1111/j.1349-7006.2009.01102.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Revised: 12/25/2008] [Accepted: 12/28/2008] [Indexed: 01/13/2023] Open
Abstract
Germ cell tumors (GCTs) are thought to arise from primordial germ cells (PGCs) that undergo epigenetic reprogramming: erasure of the somatic imprint in the genital ridge, and re-establishment of the sex-specific imprint at gametogenesis in the developing gonad. Previous studies suggested that GCTs show epigenetic patterns reflecting the reprogramming process of PGCs; however, epigenetic alterations of imprinted genes and their relationship with the methylation status of tumor suppressor genes (TSGs) have not been comprehensively studied. We analyzed the methylation status of the H19 and SNRPN differential methylated regions (DMRs) and the promoter region of 17 TSGs, and the expression status of H19, IGF2 and SNRPN in 45 GCTs, and found that 25 and 20 were in the normal and abnormal reprogramming pathways, respectively, defined on the basis of the methylation status of the two DMRs and the anatomical tumor site. The methylation pattern of the H19 and SNRPN DMRs was total erasure in seminomas, mostly physiological in teratomas, and various in yolk sac tumors. There were no correlations between the methylation status of the H19 DMR and mono- or biallelic expression of H19 or IGF2. Furthermore, we found that yolk sac tumors had a higher number of methylated TSGs than seminomas (P < 0.001) teratomas (P = 0.004) or other childhood tumors. While TSG methylation was known to have prognostic implications in various cancers, it did not affect the outcomes of patients with yolk sac tumor, suggesting that mechanisms of TSG methylation may be different between yolk sac tumor and other cancers.
Collapse
Affiliation(s)
- Shinsuke Furukawa
- Department of Cancer Diagnosis, Research Institute for Clinical Oncology, Saitama Cancer Center, 818 Komuro, Ina, Saitama 362-0806, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Tuna M, Knuutila S, Mills GB. Uniparental disomy in cancer. Trends Mol Med 2009; 15:120-8. [PMID: 19246245 DOI: 10.1016/j.molmed.2009.01.005] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 01/06/2009] [Accepted: 01/06/2009] [Indexed: 02/03/2023]
Abstract
Uniparental disomy (UPD) results when both copies of a chromosome pair originate from one parent. In humans, this might result in developmental disease or cancer due to either the production of homozygosity (caused by mutated or methylated genes or by microRNA sequences) or an aberrant pattern of imprinting. Constitutional UPD is associated with meiotic errors, resulting in developmental diseases, whereas acquired UPD probably occurs as a result of a mitotic error in somatic cells, which can be an important step in cancer development and progression. This review summarizes the mechanisms underlying UPD and their emerging association with cancer.
Collapse
Affiliation(s)
- Musaffe Tuna
- Department of Cancer Genetics, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| | | | | |
Collapse
|
38
|
Loss of imprinting of IGF2 correlates with hypermethylation of the H19 differentially methylated region in hepatoblastoma. Br J Cancer 2008; 99:1891-9. [PMID: 19034281 PMCID: PMC2600691 DOI: 10.1038/sj.bjc.6604754] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
IGF2, a maternally imprinted foetal growth factor gene, is implicated in many childhood tumours including hepatoblastoma (HB); however, the genetic and epigenetic alterations have not comprehensively been studied. We analysed the methylation status of the H19 differentially methylated region (DMR), loss of heterozygosity (LOH) and allelic expression of IGF2 in 54 HB tumours, and found that 12 tumours (22%) with LOH, 9 (17%) with loss of imprinting (LOI) and 33 (61%) with retention of imprinting (ROI). Biallelic and monoallelic IGF2 expressions correlated with hypermethylation and normal methylation of H19 DMR, respectively, in two tumours with LOI and seven tumours with ROI. Quantitative RT–PCR analysis showed minimal expression of H19 mRNA and substantial expression of IGF2 mRNA in tumours with LOH or LOI, and substantial expression of both H19 and IGF2 mRNAs in tumours with ROI. Increased IGF2 expression with predominant embryonic P3 transcript was found in the majority of HBs with ROI and foetal livers. In contrast to the earlier reports, our findings suggest that the disruption of the enhancer competition model reported in Wilms' tumour may also occur in HB. Both frequencies of LOH and LOI seem to be lower in HB than in Wilms' tumour, reflecting the different tissue origins.
Collapse
|