1
|
Huang X, Wang X, Sun Y, Xie X, Xiao L, Xu Y, Yan Q, Xu X, Li L, Xu W, Weng W, Wu W, Xie X, Dai C, Diao Y. Effective Reduction of Transgene-Specific Immune Response With rAAV Vectors Co-Expressing miRNA-UL112-5p or ERAP1 shRNA. J Cell Mol Med 2025; 29:e70308. [PMID: 39823241 PMCID: PMC11740984 DOI: 10.1111/jcmm.70308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/25/2024] [Accepted: 12/10/2024] [Indexed: 01/19/2025] Open
Abstract
Recombinant adeno-associated virus (rAAV) has emerged as one of the best gene delivery vectors for human gene therapy in vivo. However, the clinical efficacy of rAAV gene therapy is often hindered by the host immune response against its transgene products. Endoplasmic reticulum aminopeptidase 1 (ERAP1) is specialised to process peptides presented by class I molecules of major histocompatibility complex. Therefore, we hypothesise that modulation of the ERAP1 activity in rAAV transduced cells may be favoured to evade immune response against transgene products. In this study, we incorporated either miRNA-UL112-5p or ERAP1 shRNA into rAAV vectors expressing full-length ovalbumin (OVA) as a model antigen, and evaluated their effects for antigen presentation, cellular and humour immune response induced by OVA expression. The results indicated that silencing ERAP1 using miR-UL112-5p or ERAP1 shRNA did not affect the expression of OVA in cells, but inhibited the processing and presentation of OVA antigen peptide SIINFEKL in antigen presenting cells (APCs). Moreover, the rAAV vector co-expressing ERAP1 shRNA maintains stable and high expression of OVA in vivo, while simultaneously suppressing the humoral immunity of OVA. In addition, experimental results demonstrated that rAAV vectors incorporated ERAP1 shRNA efficiently repress costimulatory signals in dendritic cells (DCs), significantly attenuated the cytotoxic T-cell response, allowed for sustained transgene expression and reduced clearance of transduced muscle cells in mice. Moreover, our study suggested that the incorporation of miRNA-UL112-5p or ERAP1 shRNA into rAAV vectors effectively reduced transgene products induced immune response. The proposed method may potentially be applied in clinics to deliver therapeutic proteins safely and efficiently.
Collapse
Affiliation(s)
- Xiaoping Huang
- College of Chemical Engineering and Materials SciencesQuanzhou Normal UniversityQuanzhouChina
- Institute of Molecular MedicineHuaqiao UniversityQuanzhouChina
| | - Xiao Wang
- Institute of Molecular MedicineHuaqiao UniversityQuanzhouChina
| | - Yaqi Sun
- College of Chemical Engineering and Materials SciencesQuanzhou Normal UniversityQuanzhouChina
| | - Xinrui Xie
- College of Chemical Engineering and Materials SciencesQuanzhou Normal UniversityQuanzhouChina
| | - Luming Xiao
- College of Chemical Engineering and Materials SciencesQuanzhou Normal UniversityQuanzhouChina
| | - Yihang Xu
- College of Chemical Engineering and Materials SciencesQuanzhou Normal UniversityQuanzhouChina
| | - Qiongshi Yan
- College of Chemical Engineering and Materials SciencesQuanzhou Normal UniversityQuanzhouChina
| | - Xianxiang Xu
- Institute of Molecular MedicineHuaqiao UniversityQuanzhouChina
| | - Ling Li
- Institute of Molecular MedicineHuaqiao UniversityQuanzhouChina
| | - Wentao Xu
- College of Chemical Engineering and Materials SciencesQuanzhou Normal UniversityQuanzhouChina
| | - Wenting Weng
- College of Chemical Engineering and Materials SciencesQuanzhou Normal UniversityQuanzhouChina
| | - Wenlin Wu
- College of Marine and Food ScienceQuanzhou Normal UniversityQuanzhouChina
- Fujian Province Key Laboratory for the Development of Bioactive Material From Marine AlgaeQuanzhouChina
| | - Xiaolan Xie
- College of Chemical Engineering and Materials SciencesQuanzhou Normal UniversityQuanzhouChina
| | - Congjie Dai
- College of Marine and Food ScienceQuanzhou Normal UniversityQuanzhouChina
- Fujian Province Key Laboratory for the Development of Bioactive Material From Marine AlgaeQuanzhouChina
| | - Yong Diao
- Institute of Molecular MedicineHuaqiao UniversityQuanzhouChina
| |
Collapse
|
2
|
Naskar S, Sriraman N, Sarkar A, Mahajan N, Sarkar K. Tumor antigen presentation and the associated signal transduction during carcinogenesis. Pathol Res Pract 2024; 261:155485. [PMID: 39088877 DOI: 10.1016/j.prp.2024.155485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/03/2024]
Abstract
Numerous developments have been achieved in the study and treatment of cancer throughout the decades that it has been common. After decades of research, about 100 different kinds of cancer have been found, each with unique subgroups within certain organs. This has significantly expanded our understanding of the illness. A mix of genetic, environmental, and behavioral variables contribute to the complicated and diverse process of cancer formation. Mutations, or changes in the DNA sequence, are crucial to the development of cancer. These mutations have the ability to downregulate the expression and function of Major Histocompatibility Complex class I (MHC I) and MHCII receptors, as well as activate oncogenes and inactivate tumor suppressor genes. Cancer cells use this tactic to avoid being recognized by cytotoxic CD8+T lymphocytes, which causes issues with antigen presentation and processing. This review goes into great length into the PI3K pathway, changes to MHC I, and positive impacts of tsMHC-II on disease-free survival and overall survival and the involvement of dendritic cells (DCs) in different tumor microenvironments. The vital functions that the PI3K pathway and its link to the mTOR pathway are highlighted and difficulties in developing effective cancer targeted therapies and feedback systems has also been mentioned, where resistance mechanisms include RAS-mediated oncogenic changes and active PI3K signalling.
Collapse
Affiliation(s)
- Sohom Naskar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Nawaneetan Sriraman
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Ankita Sarkar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Nitika Mahajan
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Koustav Sarkar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India.
| |
Collapse
|
3
|
Fougiaxis V, He B, Khan T, Vatinel R, Koutroumpa NM, Afantitis A, Lesire L, Sierocki P, Deprez B, Deprez-Poulain R. ERAP Inhibitors in Autoimmunity and Immuno-Oncology: Medicinal Chemistry Insights. J Med Chem 2024; 67:11597-11621. [PMID: 39011823 DOI: 10.1021/acs.jmedchem.4c00840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Endoplasmic reticulum aminopeptidases ERAP1 and 2 are intracellular aminopeptidases that trim antigenic precursors and generate antigens presented by major histocompatibility complex class I (MHC-I) molecules. They thus modulate the antigenic repertoire and drive the adaptive immune response. ERAPs are considered as emerging targets for precision immuno-oncology or for the treatment of autoimmune diseases, in particular MHC-I-opathies. This perspective covers the structural and biological characterization of ERAP, their relevance to these diseases and the ongoing research on small-molecule inhibitors. We describe the chemical and pharmacological space explored by medicinal chemists to exploit the potential of these targets given their localization, biological functions, and family depth. Specific emphasis is put on the binding mode, potency, selectivity, and physchem properties of inhibitors featuring diverse scaffolds. The discussion provides valuable insights for the future development of ERAP inhibitors and analysis of persisting challenges for the translation for clinical applications.
Collapse
Affiliation(s)
- Vasileios Fougiaxis
- U1177 - Drugs and Molecules for Living Systems, Univ. Lille, Inserm, Institut Pasteur de Lille, F-59000 Lille, France
| | - Ben He
- U1177 - Drugs and Molecules for Living Systems, Univ. Lille, Inserm, Institut Pasteur de Lille, F-59000 Lille, France
| | - Tuhina Khan
- U1177 - Drugs and Molecules for Living Systems, Univ. Lille, Inserm, Institut Pasteur de Lille, F-59000 Lille, France
- European Genomic Institute for Diabetes, EGID, University of Lille, F-59000 Lille, France
| | - Rodolphe Vatinel
- U1177 - Drugs and Molecules for Living Systems, Univ. Lille, Inserm, Institut Pasteur de Lille, F-59000 Lille, France
| | | | | | - Laetitia Lesire
- U1177 - Drugs and Molecules for Living Systems, Univ. Lille, Inserm, Institut Pasteur de Lille, F-59000 Lille, France
- European Genomic Institute for Diabetes, EGID, University of Lille, F-59000 Lille, France
| | - Pierre Sierocki
- U1177 - Drugs and Molecules for Living Systems, Univ. Lille, Inserm, Institut Pasteur de Lille, F-59000 Lille, France
- European Genomic Institute for Diabetes, EGID, University of Lille, F-59000 Lille, France
| | - Benoit Deprez
- U1177 - Drugs and Molecules for Living Systems, Univ. Lille, Inserm, Institut Pasteur de Lille, F-59000 Lille, France
- European Genomic Institute for Diabetes, EGID, University of Lille, F-59000 Lille, France
| | - Rebecca Deprez-Poulain
- U1177 - Drugs and Molecules for Living Systems, Univ. Lille, Inserm, Institut Pasteur de Lille, F-59000 Lille, France
- European Genomic Institute for Diabetes, EGID, University of Lille, F-59000 Lille, France
| |
Collapse
|
4
|
Pagadala M, Sears TJ, Wu VH, Pérez-Guijarro E, Kim H, Castro A, Talwar JV, Gonzalez-Colin C, Cao S, Schmiedel BJ, Goudarzi S, Kirani D, Au J, Zhang T, Landi T, Salem RM, Morris GP, Harismendy O, Patel SP, Alexandrov LB, Mesirov JP, Zanetti M, Day CP, Fan CC, Thompson WK, Merlino G, Gutkind JS, Vijayanand P, Carter H. Germline modifiers of the tumor immune microenvironment implicate drivers of cancer risk and immunotherapy response. Nat Commun 2023; 14:2744. [PMID: 37173324 PMCID: PMC10182072 DOI: 10.1038/s41467-023-38271-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
With the continued promise of immunotherapy for treating cancer, understanding how host genetics contributes to the tumor immune microenvironment (TIME) is essential to tailoring cancer screening and treatment strategies. Here, we study 1084 eQTLs affecting the TIME found through analysis of The Cancer Genome Atlas and literature curation. These TIME eQTLs are enriched in areas of active transcription, and associate with gene expression in specific immune cell subsets, such as macrophages and dendritic cells. Polygenic score models built with TIME eQTLs reproducibly stratify cancer risk, survival and immune checkpoint blockade (ICB) response across independent cohorts. To assess whether an eQTL-informed approach could reveal potential cancer immunotherapy targets, we inhibit CTSS, a gene implicated by cancer risk and ICB response-associated polygenic models; CTSS inhibition results in slowed tumor growth and extended survival in vivo. These results validate the potential of integrating germline variation and TIME characteristics for uncovering potential targets for immunotherapy.
Collapse
Affiliation(s)
- Meghana Pagadala
- Biomedical Sciences Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Timothy J Sears
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Victoria H Wu
- Department of Pharmacology, UCSD Moores Cancer Center, La Jolla, CA, 92093, USA
| | - Eva Pérez-Guijarro
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Hyo Kim
- Undergraduate Bioengineering Program, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Andrea Castro
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - James V Talwar
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, 92093, USA
| | | | - Steven Cao
- Division of Epidemiology, Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA, 92093, USA
| | | | | | - Divya Kirani
- Undergraduate Biology and Bioinformatics Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jessica Au
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Rany M Salem
- Division of Epidemiology, Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA, 92093, USA
| | - Gerald P Morris
- Department of Pathology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Olivier Harismendy
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, 92093, USA
- Division of Biomedical Informatics, Department of Medicine, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA
| | - Sandip Pravin Patel
- Center for Personalized Cancer Therapy, Division of Hematology and Oncology, UC San Diego Moores Cancer Center, San Diego, CA, 92037, USA
| | - Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jill P Mesirov
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Medicine, Division of Medical Genetics, University of California San Diego, La Jolla, CA, 92093, USA
| | - Maurizio Zanetti
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
- The Laboratory of Immunology and Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Chi-Ping Day
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Chun Chieh Fan
- Center for Population Neuroscience and Genetics, Laureate Institute for Brain Research, Tulsa, OK, 74136, USA
- Department of Radiology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Wesley K Thompson
- Division of Biostatistics, Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA, 92093, USA
| | - Glenn Merlino
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - J Silvio Gutkind
- Department of Pharmacology, UCSD Moores Cancer Center, La Jolla, CA, 92093, USA
| | | | - Hannah Carter
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA.
- Department of Medicine, Division of Medical Genetics, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
5
|
Craig DJ, Bailey MM, Noe OB, Williams KK, Stanbery L, Hamouda DM, Nemunaitis JJ. Subclonal landscape of cancer drives resistance to immune therapy. Cancer Treat Res Commun 2022; 30:100507. [PMID: 35007928 DOI: 10.1016/j.ctarc.2021.100507] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 02/06/2023]
Abstract
Tumor mutation burden (TMB) is often used as a biomarker for immunogenicity and prerequisite for immune checkpoint inhibitor (ICI) therapy. However, it is becoming increasingly evident that not all tumors with high TMB respond to ICIs as expected. It has been shown that the ability of T-cells to infiltrate the tumor microenvironment and elicit a specific immune response is dependent not only on the TMB, but also on intra-tumor heterogeneity and the fraction of low-frequency subclonal mutations that make up the tumor. High intra-tumor heterogeneity leads to inefficient recognition of tumor neoantigens by T-cells due to their diluted frequency and spatial heterogeneity. Clinical studies have shown that tumors with a high degree of intra-tumor heterogeneity respond poorly to ICI therapy, and previous cytotoxic treatment may increase the intra-tumor heterogeneity and render second-line ICI therapy less effective. This paper reviews the role of ICI therapy when following chemotherapy or radiation to determine if they may be better suited as first-line therapy in patients with high TMB, low intra-tumor heterogeneity, and high PD-1, PD-L1, or CTLA-4 expression.
Collapse
Affiliation(s)
- Daniel J Craig
- University of Toledo Medical Center, Toledo, OH, 43614, USA
| | | | - Olivia B Noe
- University of Toledo Medical Center, Toledo, OH, 43614, USA
| | | | | | | | | |
Collapse
|
6
|
Maben Z, Arya R, Georgiadis D, Stratikos E, Stern LJ. Conformational dynamics linked to domain closure and substrate binding explain the ERAP1 allosteric regulation mechanism. Nat Commun 2021; 12:5302. [PMID: 34489420 PMCID: PMC8421391 DOI: 10.1038/s41467-021-25564-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 08/10/2021] [Indexed: 11/27/2022] Open
Abstract
The endoplasmic-reticulum aminopeptidase ERAP1 processes antigenic peptides for loading on MHC-I proteins and recognition by CD8 T cells as they survey the body for infection and malignancy. Crystal structures have revealed ERAP1 in either open or closed conformations, but whether these occur in solution and are involved in catalysis is not clear. Here, we assess ERAP1 conformational states in solution in the presence of substrates, allosteric activators, and inhibitors by small-angle X-ray scattering. We also characterize changes in protein conformation by X-ray crystallography, and we localize alternate C-terminal binding sites by chemical crosslinking. Structural and enzymatic data suggest that the structural reconfigurations of ERAP1 active site are physically linked to domain closure and are promoted by binding of long peptide substrates. These results clarify steps required for ERAP1 catalysis, demonstrate the importance of conformational dynamics within the catalytic cycle, and provide a mechanism for the observed allosteric regulation and Lys/Arg528 polymorphism disease association.
Collapse
Affiliation(s)
- Zachary Maben
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Richa Arya
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Dimitris Georgiadis
- Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Efstratios Stratikos
- Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Lawrence J Stern
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
7
|
Wiśniewski A, Sobczyński M, Pawełczyk K, Porębska I, Jasek M, Wagner M, Niepiekło-Miniewska W, Kowal A, Dubis J, Jędruchniewicz N, Kuśnierczyk P. Polymorphisms of Antigen-Presenting Machinery Genes in Non-Small Cell Lung Cancer: Different Impact on Disease Risk and Clinical Parameters in Smokers and Never-Smokers. Front Immunol 2021; 12:664474. [PMID: 34149699 PMCID: PMC8212834 DOI: 10.3389/fimmu.2021.664474] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/05/2021] [Indexed: 12/25/2022] Open
Abstract
Lung cancer is strongly associated with cigarette smoking; nevertheless some never-smokers develop cancer. Immune eradication of cancer cells is dependent on polymorphisms of HLA class I molecules and antigen-processing machinery (APM) components. We have already published highly significant associations of single nucleotide polymorphisms (SNPs) of the ERAP1 gene with non-small cell lung cancer (NSCLC) in Chinese, but not in Polish populations. However, the smoking status of participants was not known in the previous study. Here, we compared the distribution of APM polymorphic variants in larger cohorts of Polish patients with NSCLC and controls, stratified according to their smoking status. We found significant but opposite associations in never-smokers and in smokers of all tested SNPs (rs26653, rs2287987, rs30187, and rs27044) but one (rs26618) in ERAP1. No significant associations were seen in other genes. Haplotype analysis indicated that the distribution of many ERAP1/2 haplotypes is opposite, depending on smoking status. Additionally, haplotypic combination of low activity ERAP1 and the lack of an active form of ERAP2 seems to favor the disease in never-smokers. We also revealed interesting associations of some APM polymorphisms with: age at diagnosis (ERAP1 rs26653), disease stage (ERAP1 rs27044, PSMB9 rs17587), overall survival (ERAP1 rs30187), and response to chemotherapy (ERAP1 rs27044). The results presented here may suggest the important role for ERAP1 in the anti-cancer response, which is different in smokers versus never-smokers, depending to some extent on the presence of ERAP2, and affecting NSCLC clinical course.
Collapse
Affiliation(s)
- Andrzej Wiśniewski
- Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Maciej Sobczyński
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Konrad Pawełczyk
- Department and Clinic of Thoracic Surgery, Wrocław Medical University, Wrocław, Poland
| | - Irena Porębska
- Department of Pulmonology and Lung Oncology, Wrocław Medical University, Wrocław, Poland
| | - Monika Jasek
- Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Marta Wagner
- Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Wanda Niepiekło-Miniewska
- Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Aneta Kowal
- Department of Pulmonology and Lung Oncology, Wrocław Medical University, Wrocław, Poland
| | - Joanna Dubis
- Research and Development Centre, Regional Specialist Hospital in Wrocław, Wrocław, Poland
| | - Natalia Jędruchniewicz
- Research and Development Centre, Regional Specialist Hospital in Wrocław, Wrocław, Poland
| | - Piotr Kuśnierczyk
- Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
8
|
Mpakali A, Stratikos E. The Role of Antigen Processing and Presentation in Cancer and the Efficacy of Immune Checkpoint Inhibitor Immunotherapy. Cancers (Basel) 2021; 13:E134. [PMID: 33406696 PMCID: PMC7796214 DOI: 10.3390/cancers13010134] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 02/07/2023] Open
Abstract
Recent clinical successes of cancer immunotherapy using immune checkpoint inhibitors (ICIs) are rapidly changing the landscape of cancer treatment. Regardless of initial impressive clinical results though, the therapeutic benefit of ICIs appears to be limited to a subset of patients and tumor types. Recent analyses have revealed that the potency of ICI therapies depends on the efficient presentation of tumor-specific antigens by cancer cells and professional antigen presenting cells. Here, we review current knowledge on the role of antigen presentation in cancer. We focus on intracellular antigen processing and presentation by Major Histocompatibility class I (MHCI) molecules and how it can affect cancer immune evasion. Finally, we discuss the pharmacological tractability of manipulating intracellular antigen processing as a complementary approach to enhance tumor immunogenicity and the effectiveness of ICI immunotherapy.
Collapse
Affiliation(s)
- Anastasia Mpakali
- National Centre for Scientific Research Demokritos, Agia Paraskevi, 15341 Athens, Greece
| | - Efstratios Stratikos
- National Centre for Scientific Research Demokritos, Agia Paraskevi, 15341 Athens, Greece
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15784 Athens, Greece
| |
Collapse
|
9
|
Polymorphisms in Processing and Antigen Presentation-Related Genes and Their Association with Host Susceptibility to Influenza A/H1N1 2009 Pandemic in a Mexican Mestizo Population. Viruses 2020; 12:v12111224. [PMID: 33138079 PMCID: PMC7692058 DOI: 10.3390/v12111224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/21/2020] [Accepted: 10/24/2020] [Indexed: 12/14/2022] Open
Abstract
(1) Background: The influenza A/H1N1 pdm09 virus rapidly spread throughout the world. Despite the inflammatory and virus-degradation pathways described in the pathogenesis of influenza A virus (IAV) infection, little is known about the role of the single nucleotide polymorphisms (SNPs) in the genes involved in the processing and antigenic presentation-related mechanisms. (2) Methods: In this case-control study, we evaluated 17 SNPs in five genes (TAP1, TAP2, TAPBP, PSMB8, and PSMB9). One hundred and twenty-eight patients with influenza A/H1N1 infection (INF-P) and 111 healthy contacts (HC) were included; all of them are Mexican mestizo. (3) Results: In allele and genotype comparison, the rs241433/C allele (TAP2), as well as AG haplotype (rs3763365 and rs4148882), are associated with reduced risk for influenza A/H1N1 infection (p < 0.05). On the other hand, the rs2071888G allele (TAPBP) and GG haplotype (rs3763365 and rs9276810) are associated with a higher risk for influenza A/H1N1 infection. In addition, after adjustment for covariates, the association to a reduced risk for influenza A/H1N1 infection remains with rs241433/C allele (p < 0.0001, OR = 0.24, 95% CI = 0.13-0.43), and the association with TAPBP is also maintained with the G allele (p = 0.0095, OR = 1.89, 95% CI = 1.17-3.06) and GG genotype models (p < 0.05, OR = 2.18, 95% CI = 1.27-3.74). (4) Conclusion: The rs241433/C allele and AC genotype (TAP2) and the AG haplotype are associated with a reduced risk for influenza A/H1N1 infection. In addition, the rs2071888/G allele and GG genotype (TAPBP) and the GG haplotype are associated with a higher risk for developing influenza A/H1N1 infection in a Mexican mestizo population.
Collapse
|
10
|
Jee B, Yadav R, Pankaj S, Shahi SK. Immunology of HPV-mediated cervical cancer: current understanding. Int Rev Immunol 2020; 40:359-378. [PMID: 32853049 DOI: 10.1080/08830185.2020.1811859] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Human papilloma virus (HPV) has emerged as a primary cause of cervical cancer worldwide. HPV is a relatively small (55 nm in diameter) and non-enveloped virus containing approximately 8 kb long double stranded circular DNA genome. To date, 228 genotypes of HPV have been identified. Although all HPV infections do not lead to the development of malignancy of cervix, only persistent infection of high-risk types of HPV (mainly with HPV16 and HPV18) results in the disease. In addition, the immunity of the patients also acts as a key determinant in the carcinogenesis. Since, no HPV type specific medication is available for the patient suffering with cervical cancer, hence, a deep understanding of the disease etiology may be vital for developing an effective strategy for its prevention and management. From the immunological perspectives, the entire mechanisms of disease progression still remain unclear despite continuous efforts. In the present review, the recent developments in immunology of HPV-mediated cervix carcinoma were discussed. At the end, the prevention of disease using HPV type specific recombinant vaccines was also highlighted.
Collapse
Affiliation(s)
- Babban Jee
- Department of Health Research, Ministry of Health and Family Welfare, Government of India, New Delhi, India
| | - Renu Yadav
- Department of Biotechnology, Acharya Nagarjuna University, Guntur, India
| | - Sangeeta Pankaj
- Department of Gynecological Oncology, Regional Cancer Centre, Indira Gandhi Institute of Medical Sciences, Patna, India
| | - Shivendra Kumar Shahi
- Department of Microbiology, Indira Gandhi Institute of Medical Sciences, Patna, India
| |
Collapse
|
11
|
Li C, Li Y, Yan Z, Dai S, Liu S, Wang X, Wang J, Zhang X, Shi L, Yao Y. Polymorphisms in endoplasmic reticulum aminopeptidase genes are associated with cervical cancer risk in a Chinese Han population. BMC Cancer 2020; 20:341. [PMID: 32321463 PMCID: PMC7178719 DOI: 10.1186/s12885-020-06832-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/06/2020] [Indexed: 12/23/2022] Open
Abstract
Background Antigen-processing machinery molecules play crucial roles in infectious diseases and cancers. Studies have shown that polymorphisms in endoplasmic reticulum aminopeptidase (ERAP) genes can influence the enzymatic activity of ERAP proteins and are associated with the risk of diseases. In the current study, we evaluated the influence of ERAP gene (ERAP1 and ERAP2) polymorphisms on susceptibility to cervical intraepithelial neoplasia (CIN) and cervical cancer. Methods Six single nucleotide polymorphisms (SNPs) in ERAP1 and 5 SNPs in ERAP2 were selected and genotyped in 556 CIN patients, 1072 cervical cancer patients, and 1262 healthy control individuals. Candidate SNPs were genotyped using SNaPshot assay. And the association of these SNPs with CIN and cervical cancer was analysed. Results The results showed that allelic and genotypic frequencies of rs26653 in ERAP1 were significantly different between cervical cancer and control groups (P = 0.001 and 0.004). The allelic frequencies of rs27044 in ERAP1 and rs2287988 in ERAP2 were significantly different between control and cervical cancer groups (P = 0.003 and 0.004). Inheritance model analysis showed that genotypes of rs27044, rs26618, rs26653 and rs2287988 SNPs may be associated with the risk of cervical cancer (P = 0.003, 0.004, 0.001 and 0.002). Additionally, haplotype analysis results showed that the ERAP1 haplotype, rs27044C-rs30187T-rs26618T-rs26653G-rs3734016C, was associated with a lower risk of cervical cancer (P = 0.001). The ERAP2 haplotypes rs2549782G- rs2548538A-rs2248374A-rs2287988G-rs1056893T (P = 0.009 and 0.006) and rs2549782T-rs2548538T-rs2248374G-rs2287988A-rs1056893T (P = 0.003 and 0.009) might be associated with cervical cancer and the development from CIN to cervical cancer. Conclusion Our results indicated that rs27044, rs26618 and rs26653 in ERAP1 and rs2287988 in ERAP2 influenced susceptibility to cervical cancer.
Collapse
Affiliation(s)
- Chuanyin Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China
| | - Yaheng Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China
| | - Zhiling Yan
- Department of Gynaecologic Oncology, The 3rd Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
| | - Shuying Dai
- School of Basic Medical Science, Kunming Medical University, Kunming, 650500, China
| | - Shuyuan Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China
| | - Xia Wang
- Department of Gynaecologic Oncology, The 3rd Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
| | - Jun Wang
- Department of Gynaecologic Oncology, The 3rd Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
| | - Xinwen Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China
| | - Li Shi
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China.
| | - Yufeng Yao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China.
| |
Collapse
|
12
|
Reeves E, Islam Y, James E. ERAP1: a potential therapeutic target for a myriad of diseases. Expert Opin Ther Targets 2020; 24:535-544. [PMID: 32249641 DOI: 10.1080/14728222.2020.1751821] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Endoplasmic Reticulum Aminopeptidase 1 (ERAP1) is a key regulator of the peptide repertoire displayed by Major Histocompatibility Complex I (MHC I) to circulating CD8 + T cells and NK cells. Studies have highlighted the essential requirement for the generation of stable peptide MHC I in regulating both innate and adaptive immune responses in health and disease.Areas covered: We review the role of ERAP1 in peptide trimming of N-terminally extended precursors that enter the ER, before loading on to MHC I, and the consequence of loss or downregulation of this activity. Polymorphisms in ERAP1 form multiple combinations (allotypes) within the population, and we discuss the contribution of this ERAP1 variation, and expression, on disease pathogenesis, including the resulting effect on both innate and adaptive immunity. We consider the current efforts to design inhibitors based on approaches using rational design and small molecule screening, and the potential effect of pharmacological modulation on the treatment of autoimmunity and cancer.Expert opinion: ERAP1 is fundamental for the regulation of immune responses, through generation of the presented peptide repertoire at the cell surface. Modulation of ERAP1 function, through design of inhibitors, may serve as a vital tool for changing immune responses in disease.
Collapse
Affiliation(s)
- Emma Reeves
- Centre for Cancer Immunology, Faculty of Medicine, University Hospital Southampton, Southampton, UK.,Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Yasmin Islam
- Centre for Cancer Immunology, Faculty of Medicine, University Hospital Southampton, Southampton, UK
| | - Edward James
- Centre for Cancer Immunology, Faculty of Medicine, University Hospital Southampton, Southampton, UK.,Institute for Life Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
13
|
Saulle I, Vicentini C, Clerici M, Biasin M. An Overview on ERAP Roles in Infectious Diseases. Cells 2020; 9:E720. [PMID: 32183384 PMCID: PMC7140696 DOI: 10.3390/cells9030720] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/12/2022] Open
Abstract
Endoplasmic reticulum (ER) aminopeptidases ERAP1 and ERAP2 (ERAPs) are crucial enzymes shaping the major histocompatibility complex I (MHC I) immunopeptidome. In the ER, these enzymes cooperate in trimming the N-terminal residues from precursors peptides, so as to generate optimal-length antigens to fit into the MHC class I groove. Alteration or loss of ERAPs function significantly modify the repertoire of antigens presented by MHC I molecules, severely affecting the activation of both NK and CD8+ T cells. It is, therefore, conceivable that variations affecting the presentation of pathogen-derived antigens might result in an inadequate immune response and onset of disease. After the first evidence showing that ERAP1-deficient mice are not able to control Toxoplasma gondii infection, a number of studies have demonstrated that ERAPs are control factors for several infectious organisms. In this review we describe how susceptibility, development, and progression of some infectious diseases may be affected by different ERAPs variants, whose mechanism of action could be exploited for the setting of specific therapeutic approaches.
Collapse
Affiliation(s)
- Irma Saulle
- Cattedra di Immunologia, Dipartimento di Scienze Biomediche e Cliniche L. Sacco”, Università degli Studi di Milano, 20157 Milan, Italy; (C.V.); (M.B.)
- Cattedra di Immunologia, Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti Università degli Studi di Milano, 20122 Milan, Italy;
| | - Chiara Vicentini
- Cattedra di Immunologia, Dipartimento di Scienze Biomediche e Cliniche L. Sacco”, Università degli Studi di Milano, 20157 Milan, Italy; (C.V.); (M.B.)
| | - Mario Clerici
- Cattedra di Immunologia, Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti Università degli Studi di Milano, 20122 Milan, Italy;
- IRCCS Fondazione Don Carlo Gnocchi, 20157 Milan, Italy
| | - Mara Biasin
- Cattedra di Immunologia, Dipartimento di Scienze Biomediche e Cliniche L. Sacco”, Università degli Studi di Milano, 20157 Milan, Italy; (C.V.); (M.B.)
| |
Collapse
|
14
|
Babaie F, Hosseinzadeh R, Ebrazeh M, Seyfizadeh N, Aslani S, Salimi S, Hemmatzadeh M, Azizi G, Jadidi-Niaragh F, Mohammadi H. The roles of ERAP1 and ERAP2 in autoimmunity and cancer immunity: New insights and perspective. Mol Immunol 2020; 121:7-19. [PMID: 32135401 DOI: 10.1016/j.molimm.2020.02.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 02/06/2023]
Abstract
Autoimmunity and cancer affect millions worldwide and both, in principal, result from dysregulated immune responses. There are many well-known molecules involved in immunological process playing as a double-edged sword, by which associating autoimmune diseases and cancer. In this regard, Endoplasmic reticulum aminopeptidases (ERAP) 1, which belongs to the M1 family of aminopeptidases, plays a central role as a "molecular ruler", proteolyzing of N-terminal of the antigenic peptides before their loading onto HLA-I molecules for antigen presentation in the Endoplasmic Reticulum (ER). Several genome-wide association studies (GWAS) highlighted the significance of ERAP1 and ERAP2 in autoimmune diseases, including Ankylosing spondylitis, Psoriasis, Bechet's disease, and Birdshot chorioretinopathy, as well as in cancers. The expression of ERAP1/2 is mostly altered in different cancers compared to normal cells, but how this affects anti-cancer immune responses and cancer growth has been little explored. Recent studies on the immunological outcomes and the catalytic functions of ERAP1 and ERAP2 have provided a better understanding of their potential pathogenetic role in autoimmunity and cancer. In this review, we summarize the role of ERAP1 and ERAP2 in the autoimmune diseases and cancer immunity based on the recent advances in GWAS studies.
Collapse
Affiliation(s)
- Farhad Babaie
- Department of Immunology and Genetic, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran; Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Ramin Hosseinzadeh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Ebrazeh
- Department of Biology, Bonab Branch, Islamic Azad University, Bonab, Iran
| | - Narges Seyfizadeh
- Department of Medical Oncology, National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Saeed Aslani
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Soraya Salimi
- Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Maryam Hemmatzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Farhad Jadidi-Niaragh
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran; Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
15
|
HLA Class I Antigen Processing Machinery Defects in Cancer Cells-Frequency, Functional Significance, and Clinical Relevance with Special Emphasis on Their Role in T Cell-Based Immunotherapy of Malignant Disease. Methods Mol Biol 2020; 2055:325-350. [PMID: 31502159 DOI: 10.1007/978-1-4939-9773-2_15] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
MHC class I antigen abnormalities have been shown to be one of the major immune escape mechanisms murine and human cancer cells utilize to avoid recognition and destruction by host immune system. This mechanism has clinical relevance, since it is associated with poor prognosis and/or reduced patients' survival in many types of malignant diseases. The recent impressive clinical responses to T cell-based immunotherapies triggered by checkpoint inhibitors have rekindled tumor immunologists and clinical oncologists' interest in the analysis of the human leukocyte antigen (HLA) class I antigen processing machinery (APM) expression and function in malignant cells. Abnormalities in the expression, regulation and/or function of components of this machinery have been associated with the development of resistances to T cell-based immunotherapies. In this review, following the description of the human leukocyte antigen (HLA) class I APM organization and function, the information related to the frequency of defects in HLA class I APM component expression in various types of cancer and the underlying molecular mechanisms is summarized. Then the impact of these defects on clinical response to T cell-based immunotherapies and strategies to revert this immune escape process are discussed.
Collapse
|
16
|
Maben Z, Arya R, Rane D, An WF, Metkar S, Hickey M, Bender S, Ali A, Nguyen TT, Evnouchidou I, Schilling R, Stratikos E, Golden J, Stern LJ. Discovery of Selective Inhibitors of Endoplasmic Reticulum Aminopeptidase 1. J Med Chem 2019; 63:103-121. [PMID: 31841350 DOI: 10.1021/acs.jmedchem.9b00293] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
ERAP1 is an endoplasmic reticulum-resident zinc aminopeptidase that plays an important role in the immune system by trimming peptides for loading onto major histocompatibility complex proteins. Here, we report discovery of the first inhibitors selective for ERAP1 over its paralogues ERAP2 and IRAP. Compound 1 (N-(N-(2-(1H-indol-3-yl)ethyl)carbamimidoyl)-2,5-difluorobenzenesulfonamide) and compound 2 (1-(1-(4-acetylpiperazine-1-carbonyl)cyclohexyl)-3-(p-tolyl)urea) are competitive inhibitors of ERAP1 aminopeptidase activity. Compound 3 (4-methoxy-3-(N-(2-(piperidin-1-yl)-5-(trifluoromethyl)phenyl)sulfamoyl)benzoic acid) allosterically activates ERAP1's hydrolysis of fluorogenic and chromogenic amino acid substrates but competitively inhibits its activity toward a nonamer peptide representative of physiological substrates. Compounds 2 and 3 inhibit antigen presentation in a cellular assay. Compound 3 displays higher potency for an ERAP1 variant associated with increased risk of autoimmune disease. These inhibitors provide mechanistic insights into the determinants of specificity for ERAP1, ERAP2, and IRAP and offer a new therapeutic approach of specifically inhibiting ERAP1 activity in vivo.
Collapse
Affiliation(s)
| | | | - Digamber Rane
- Kansas University Specialized Chemistry Center , Lawrence , Kansas 66047 , United States
| | - W Frank An
- Broad Institute of MIT and Harvard , Cambridge , Massachusetts 02142 , United States
| | - Shailesh Metkar
- Broad Institute of MIT and Harvard , Cambridge , Massachusetts 02142 , United States
| | - Marc Hickey
- Broad Institute of MIT and Harvard , Cambridge , Massachusetts 02142 , United States
| | - Samantha Bender
- Broad Institute of MIT and Harvard , Cambridge , Massachusetts 02142 , United States
| | | | | | - Irini Evnouchidou
- National Centre for Scientific Research Demokritos , Agia Paraskevi, Athens 15341 , Greece
| | - Roger Schilling
- Broad Institute of MIT and Harvard , Cambridge , Massachusetts 02142 , United States
| | - Efstratios Stratikos
- National Centre for Scientific Research Demokritos , Agia Paraskevi, Athens 15341 , Greece
| | - Jennifer Golden
- Kansas University Specialized Chemistry Center , Lawrence , Kansas 66047 , United States
| | | |
Collapse
|
17
|
Georgiadis D, Mpakali A, Koumantou D, Stratikos E. Inhibitors of ER Aminopeptidase 1 and 2: From Design to Clinical Application. Curr Med Chem 2019; 26:2715-2729. [PMID: 29446724 DOI: 10.2174/0929867325666180214111849] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/04/2018] [Accepted: 01/31/2018] [Indexed: 12/19/2022]
Abstract
Endoplasmic Reticulum aminopeptidase 1 and 2 are two homologous enzymes that help generate peptide ligands for presentation by Major Histocompatibility Class I molecules. Their enzymatic activity influences the antigenic peptide repertoire and indirectly controls adaptive immune responses. Accumulating evidence suggests that these two enzymes are tractable targets for the regulation of immune responses with possible applications ranging from cancer immunotherapy to treating inflammatory autoimmune diseases. Here, we review the state-of-the-art in the development of inhibitors of ERAP1 and ERAP2 as well as their potential and limitations for clinical applications.
Collapse
Affiliation(s)
- Dimitris Georgiadis
- Department of Chemistry, National and Kapodistrian University of Athens, Zografou, 15771, Athens, Greece
| | - Anastasia Mpakali
- National Center for Scientific Research Demokritos, Agia Paraskevi, 15341, Greece
| | - Despoina Koumantou
- National Center for Scientific Research Demokritos, Agia Paraskevi, 15341, Greece
| | - Efstratios Stratikos
- National Center for Scientific Research Demokritos, Agia Paraskevi, 15341, Greece
| |
Collapse
|
18
|
D’Alicandro V, Romania P, Melaiu O, Fruci D. Role of genetic variations on MHC class I antigen-processing genes in human cancer and viral-mediated diseases. Mol Immunol 2019; 113:11-15. [DOI: 10.1016/j.molimm.2018.03.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 01/11/2018] [Accepted: 03/29/2018] [Indexed: 01/09/2023]
|
19
|
Alam A, Taye N, Patel S, Thube M, Mullick J, Shah VK, Pant R, Roychowdhury T, Banerjee N, Chatterjee S, Bhattacharya R, Roy R, Mukhopadhyay A, Mogare D, Chattopadhyay S. SMAR1 favors immunosurveillance of cancer cells by modulating calnexin and MHC I expression. Neoplasia 2019; 21:945-962. [PMID: 31422285 PMCID: PMC6706529 DOI: 10.1016/j.neo.2019.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/17/2019] [Indexed: 01/17/2023] Open
Abstract
Down-regulation or loss of MHC class I expression is a major mechanism used by cancer cells to evade immunosurveillance and increase their oncogenic potential. MHC I mediated antigen presentation is a complex regulatory process, controlled by antigen processing machinery (APM) dictating immune response. Transcriptional regulation of the APM that can modulate gene expression profile and their correlation to MHC I mediated antigen presentation in cancer cells remain enigmatic. Here, we reveal that Scaffold/Matrix-Associated Region 1- binding protein (SMAR1), positively regulates MHC I surface expression by down-regulating calnexin, an important component of antigen processing machinery (APM) in cancer cells. SMAR1, a bonafide MAR binding protein acts as a transcriptional repressor of several oncogenes. It is down-regulated in higher grades of cancers either through proteasomal degradation or through loss of heterozygosity (LOH) at the Chr.16q24.3 locus where the human homolog of SMAR1 (BANP) has been mapped. It binds to a short MAR region of the calnexin promoter forming a repressor complex in association with GATA2 and HDAC1. A reverse correlation between SMAR1 and calnexin was thus observed in SMAR1-LOH cells and also in tissues from breast cancer patients. To further extrapolate our findings, influenza A (H1N1) virus infection assay was performed. Upon viral infection, the levels of SMAR1 significantly increased resulting in reduced calnexin expression and increased MHC I presentation. Taken together, our observations establish that increased expression of SMAR1 in cancers can positively regulate MHC I surface expression thereby leading to higher chances of tumor regression and elimination of cancer cells.
Collapse
Affiliation(s)
- Aftab Alam
- National Centre for Cell Science, Pune, Maharashtra, India
| | - Nandaraj Taye
- National Centre for Cell Science, Pune, Maharashtra, India
| | - Sonal Patel
- National Centre for Cell Science, Pune, Maharashtra, India
| | - Milind Thube
- ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - Jayati Mullick
- ICMR-National Institute of Virology, Pune, Maharashtra, India
| | | | - Richa Pant
- National Centre for Cell Science, Pune, Maharashtra, India
| | | | | | | | | | - Rini Roy
- Netaji Subhas Chandra Bose Cancer Research Institute, Kolkata, India
| | | | - Devraj Mogare
- National Centre for Cell Science, Pune, Maharashtra, India
| | - Samit Chattopadhyay
- National Centre for Cell Science, Pune, Maharashtra, India; Indian Institute of Chemical Biology, Kolkata, India.
| |
Collapse
|
20
|
Koumantou D, Barnea E, Martin-Esteban A, Maben Z, Papakyriakou A, Mpakali A, Kokkala P, Pratsinis H, Georgiadis D, Stern LJ, Admon A, Stratikos E. Editing the immunopeptidome of melanoma cells using a potent inhibitor of endoplasmic reticulum aminopeptidase 1 (ERAP1). Cancer Immunol Immunother 2019; 68:1245-1261. [PMID: 31222486 PMCID: PMC6684451 DOI: 10.1007/s00262-019-02358-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 06/11/2019] [Indexed: 12/19/2022]
Abstract
The efficacy of cancer immunotherapy, including treatment with immune-checkpoint inhibitors, often is limited by ineffective presentation of antigenic peptides that elicit T-cell-mediated anti-tumor cytotoxic responses. Manipulation of antigen presentation pathways is an emerging approach for enhancing the immunogenicity of tumors in immunotherapy settings. ER aminopeptidase 1 (ERAP1) is an intracellular enzyme that trims peptides as part of the system that generates peptides for binding to MHC class I molecules (MHC-I). We hypothesized that pharmacological inhibition of ERAP1 in cells could regulate the cellular immunopeptidome. To test this hypothesis, we treated A375 melanoma cells with a recently developed potent ERAP1 inhibitor and analyzed the presented MHC-I peptide repertoire by isolating MHC-I, eluting bound peptides, and identifying them using capillary chromatography and tandem mass spectrometry (LC-MS/MS). Although the inhibitor did not reduce cell-surface MHC-I expression, it induced qualitative and quantitative changes in the presented peptidomes. Specifically, inhibitor treatment altered presentation of about half of the total 3204 identified peptides, including about one third of the peptides predicted to bind tightly to MHC-I. Inhibitor treatment altered the length distribution of eluted peptides without change in the basic binding motifs. Surprisingly, inhibitor treatment enhanced the average predicted MHC-I binding affinity, by reducing presentation of sub-optimal long peptides and increasing presentation of many high-affinity 9-12mers, suggesting that baseline ERAP1 activity in this cell line is destructive for many potential epitopes. Our results suggest that chemical inhibition of ERAP1 may be a viable approach for manipulating the immunopeptidome of cancer.
Collapse
MESH Headings
- Aminopeptidases/antagonists & inhibitors
- Aminopeptidases/metabolism
- Antigen Presentation
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/metabolism
- Antineoplastic Agents/pharmacology
- Cancer Vaccines/immunology
- Cell Line, Tumor
- Cytotoxicity, Immunologic
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/metabolism
- HLA Antigens/metabolism
- Histocompatibility Antigens Class I/metabolism
- Humans
- Immunogenicity, Vaccine
- Immunotherapy/methods
- Lymphocyte Activation
- Melanoma/drug therapy
- Minor Histocompatibility Antigens/metabolism
- Molecular Targeted Therapy
- Peptides/genetics
- Peptides/immunology
- Peptides/metabolism
- Protease Inhibitors/pharmacology
- Protein Binding
- T-Lymphocytes, Cytotoxic/immunology
Collapse
Affiliation(s)
- Despoina Koumantou
- National Centre for Scientific Research Demokritos, Patriarchou Gregoriou and Neapoleos 27, Agia Paraskevi, 15341, Athens, Greece
| | - Eilon Barnea
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Adrian Martin-Esteban
- Centro de Biologia Molecular Severo Ochoa (Consejo Superior de Investigaciones Cientificas, Universidad Autonoma), Madrid, Spain
| | - Zachary Maben
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Athanasios Papakyriakou
- National Centre for Scientific Research Demokritos, Patriarchou Gregoriou and Neapoleos 27, Agia Paraskevi, 15341, Athens, Greece
| | - Anastasia Mpakali
- National Centre for Scientific Research Demokritos, Patriarchou Gregoriou and Neapoleos 27, Agia Paraskevi, 15341, Athens, Greece
| | - Paraskevi Kokkala
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Harris Pratsinis
- National Centre for Scientific Research Demokritos, Patriarchou Gregoriou and Neapoleos 27, Agia Paraskevi, 15341, Athens, Greece
| | - Dimitris Georgiadis
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Lawrence J Stern
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Arie Admon
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Efstratios Stratikos
- National Centre for Scientific Research Demokritos, Patriarchou Gregoriou and Neapoleos 27, Agia Paraskevi, 15341, Athens, Greece.
| |
Collapse
|
21
|
Reeves E, Wood O, Ottensmeier CH, King EV, Thomas GJ, Elliott T, James E. HPV Epitope Processing Differences Correlate with ERAP1 Allotype and Extent of CD8 + T-cell Tumor Infiltration in OPSCC. Cancer Immunol Res 2019; 7:1202-1213. [PMID: 31151965 PMCID: PMC6640044 DOI: 10.1158/2326-6066.cir-18-0498] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 02/15/2019] [Accepted: 05/09/2019] [Indexed: 12/11/2022]
Abstract
Presence of tumor-infiltrating lymphocytes (TIL) predicts survival in many cancer types. In HPV-driven cancers, cervical and oropharyngeal squamous cell carcinomas (CSCC and OPSCC, respectively), numbers of infiltrating T cells, particularly CD8+ T cells, and presentation of HPV E6/E7 epitopes are associated with improved prognosis. Endoplasmic reticulum aminopeptidase 1 (ERAP1) regulates the presented peptide repertoire, trimming peptide precursors prior to MHC I loading. ERAP1 is polymorphic, and allotypic variation of ERAP1 enzyme activity has an impact on the presented peptide repertoire. Individual SNPs are associated with incidence and outcome in a number of diseases, including CSCC. Here, we highlight the requirement for ERAP1 in the generation of HPV E6/E7 epitopes and show that the functional activity of ERAP1 allotype combinations identified in OPSCC correlate with tumor-infiltrating CD8+ T-cell (CD8)/TIL (CD8/TIL) status of the tumor. Functional analyses revealed that ERAP1 allotype combinations associated with CD8/TILlow tumors have a reduced capacity to generate both a model antigen SIINFEHL and the HPV-16 E782-90 epitope LLMGTLGIV from N-terminally extended precursor peptides. In contrast, ERAP1 allotypes from CD8/TILhigh tumors generated the epitopes efficiently. These data reveal that ERAP1 function correlates with CD8/TIL numbers and, by implication, prognosis, suggesting that the presentation of HPV-16 epitopes at the cell surface, resulting in an anti-HPV T-cell response, may depend on the ERAP1 allotype combinations expressed within an individual.
Collapse
Affiliation(s)
- Emma Reeves
- Centre for Cancer Immunology, University of Southampton Faculty of Medicine, University Hospital Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Oliver Wood
- Centre for Cancer Immunology, University of Southampton Faculty of Medicine, University Hospital Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Christian H Ottensmeier
- Centre for Cancer Immunology, University of Southampton Faculty of Medicine, University Hospital Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Emma V King
- Centre for Cancer Immunology, University of Southampton Faculty of Medicine, University Hospital Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Gareth J Thomas
- Centre for Cancer Immunology, University of Southampton Faculty of Medicine, University Hospital Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Tim Elliott
- Centre for Cancer Immunology, University of Southampton Faculty of Medicine, University Hospital Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Edward James
- Centre for Cancer Immunology, University of Southampton Faculty of Medicine, University Hospital Southampton, Southampton, United Kingdom.
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
22
|
Liu R, Ma Y, Chen X. Quantitative assessment of the association between TAP2 rs241447 polymorphism and cancer risk. J Cell Biochem 2019; 120:15867-15873. [PMID: 31074096 DOI: 10.1002/jcb.28857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 02/05/2019] [Accepted: 02/14/2019] [Indexed: 12/24/2022]
Abstract
The findings regarding the relation of transporter associated with antigen processing (TAP) to cancer risk have been inconsistent. The aim of this study was to comprehensively evaluate the association between TAP2 rs241447 polymorphism and cancer susceptibility. A meta-analysis of nine investigations with 2800 cases and 1620 controls was conducted to gain a better understanding of the effect of TAP2 rs241447 polymorphism on cancer risk. Odds ratios (ORs) with 95% confidence intervals (CIs) were used to evaluate the strength of the correlation between TAP2 gene polymorphism and cancer susceptibility. The pooled results from TAP2 rs241447 polymorphism showed a decreased risk of cancer in two dominant genetic models (GG + AG vs AA: OR = 0.86, 95% CI, 0.75-0.99; AG vs AA: OR = 0.85, 95% CI, 0.73-0.99). From the subgroup analysis, decreased cancer susceptibility was found in Caucasians (GG + AG vs AA: OR = 0.82, 95% CI, 0.68-0.99), especially among the subgroup of cervical carcinoma (GG + AG vs AA: OR = 0.82, 95% CI, 0.69-0.96; AG vs AA: OR = 0.83, 95% CI, 0.70-0.99). Overall, the results suggest that TAP2 rs241447 polymorphism contributes to decreased cancer susceptibility.
Collapse
Affiliation(s)
- Rongzeng Liu
- Department of Immunology, Medical College, Henan University of Science and Technology, Luoyang, China
| | - Yan Ma
- Network Information Center, Children's Hospital of Kaifeng City, Kaifeng, China
| | - Xiafei Chen
- Network Information Center, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
23
|
Compagnone M, Cifaldi L, Fruci D. Regulation of ERAP1 and ERAP2 genes and their disfunction in human cancer. Hum Immunol 2019; 80:318-324. [PMID: 30825518 DOI: 10.1016/j.humimm.2019.02.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/01/2019] [Accepted: 02/26/2019] [Indexed: 12/18/2022]
Abstract
The endoplasmic reticulum (ER) aminopeptidases ERAP1 and ERAP2 are two multifunctional enzymes playing an important role in the biological processes requiring trimming of substrates, including the generation of major histocompatibility complex (MHC) class I binding peptides. In the absence of ERAP enzymes, the cells exhibit a different pool of peptides on their surface which can promote both NK and CD8+ T cell-mediated immune responses. The expression of ERAP1 and ERAP2 is frequently altered in tumors, as compared to their normal counterparts, but how this affects tumor growth and anti-tumor immune responses has been little investigated. This review will provide an overview of current knowledge on transcriptional and post-transcriptional regulations of ERAP enzymes, and will discuss the contribution of recent studies to our understanding of ERAP1 and ERAP2 role in cancer immunity.
Collapse
Affiliation(s)
- Mirco Compagnone
- Paediatric Haematology/Oncology Department, Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy
| | - Loredana Cifaldi
- Academic Department of Pediatrics (DPUO), Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy
| | - Doriana Fruci
- Paediatric Haematology/Oncology Department, Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy.
| |
Collapse
|
24
|
Yao Y, Liu N, Zhou Z, Shi L. Influence of ERAP1 and ERAP2 gene polymorphisms on disease susceptibility in different populations. Hum Immunol 2019; 80:325-334. [PMID: 30797823 DOI: 10.1016/j.humimm.2019.02.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/14/2019] [Accepted: 02/21/2019] [Indexed: 02/07/2023]
Abstract
The endoplasmic reticulum aminopeptidases (ERAPs), ERAP1 and ERAP2, makes a role in shaping the HLA class I peptidome by trimming peptides to the optimal size in MHC-class I-mediated antigen presentation and educating the immune system to differentiate between self-derived and foreign antigens. Association studies have shown that genetic variations in ERAP1 and ERAP2 genes increase susceptibility to autoimmune diseases, infectious diseases, and cancers. Both ERAP1 and ERAP2 genes exhibit diverse polymorphisms in different populations, which may influence their susceptibly to the aforementioned diseases. In this article, we review the distribution of ERAP1 and ERAP2 gene polymorphisms in various populations; discuss the risk or protective influence of these gene polymorphisms in autoimmune diseases, infectious diseases, and cancers; and highlight how ERAP genetic variations can influence disease associations.
Collapse
Affiliation(s)
- Yufeng Yao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming 650118, China
| | - Nannan Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
| | - Ziyun Zhou
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
| | - Li Shi
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming 650118, China.
| |
Collapse
|
25
|
The role of polymorphic ERAP1 in autoinflammatory disease. Biosci Rep 2018; 38:BSR20171503. [PMID: 30054427 PMCID: PMC6131210 DOI: 10.1042/bsr20171503] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/19/2018] [Accepted: 07/23/2018] [Indexed: 01/29/2023] Open
Abstract
Autoimmune and autoinflammatory conditions represent a group of disorders characterized by self-directed tissue damage due to aberrant changes in innate and adaptive immune responses. These disorders possess widely varying clinical phenotypes and etiology; however, they share a number of similarities in genetic associations and environmental influences. Whilst the pathogenic mechanisms of disease remain poorly understood, genome wide association studies (GWAS) have implicated a number of genetic loci that are shared between several autoimmune and autoinflammatory conditions. Association of particular HLA alleles with disease susceptibility represents one of the strongest genetic associations. Furthermore, recent GWAS findings reveal strong associations with single nucleotide polymorphisms in the endoplasmic reticulum aminopeptidase 1 (ERAP1) gene and susceptibility to a number of these HLA-associated conditions. ERAP1 plays a major role in regulating the repertoire of peptides presented on HLA class I alleles at the cell surface, with the presence of single nucleotide polymorphisms in ERAP1 having a significant impact on peptide processing function and the repertoire of peptides presented. The impact of this dysfunctional peptide generation on CD8+ T-cell responses has been proposed as a mechanism of pathogenesis diseases where HLA and ERAP1 are associated. More recently, studies have highlighted a role for ERAP1 in innate immune-mediated pathways involved in inflammatory responses. Here, we discuss the role of polymorphic ERAP1 in various immune cell functions, and in the context of autoimmune and autoinflammatory disease pathogenesis.
Collapse
|
26
|
Next Generation Cancer Vaccines-Make It Personal! Vaccines (Basel) 2018; 6:vaccines6030052. [PMID: 30096953 PMCID: PMC6161279 DOI: 10.3390/vaccines6030052] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/23/2018] [Accepted: 08/07/2018] [Indexed: 12/30/2022] Open
Abstract
Dramatic success in cancer immunotherapy has been achieved over the last decade with the introduction of checkpoint inhibitors, leading to response rates higher than with chemotherapy in certain cancer types. These responses are often restricted to cancers that have a high mutational burden and show pre-existing T-cell infiltrates. Despite extensive efforts, therapeutic vaccines have been mostly unsuccessful in the clinic. With the introduction of next generation sequencing, the identification of individual mutations is possible, enabling the production of personalized cancer vaccines. Combining immune check point inhibitors to overcome the immunosuppressive microenvironment and personalized cancer vaccines for directing the host immune system against the chosen antigens might be a promising treatment strategy.
Collapse
|
27
|
Paladini F, Fiorillo MT, Vitulano C, Tedeschi V, Piga M, Cauli A, Mathieu A, Sorrentino R. An allelic variant in the intergenic region between ERAP1 and ERAP2 correlates with an inverse expression of the two genes. Sci Rep 2018; 8:10398. [PMID: 29991817 PMCID: PMC6039459 DOI: 10.1038/s41598-018-28799-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 06/19/2018] [Indexed: 01/12/2023] Open
Abstract
The Endoplasmatic Reticulum Aminopeptidases ERAP1 and ERAP2 are implicated in a variety of immune and non-immune functions. Most studies however have focused on their role in shaping the HLA class I peptidome by trimming peptides to the optimal size. Genome Wide Association Studies highlighted non-synonymous polymorphisms in their coding regions as associated with several immune mediated diseases. The two genes lie contiguous and oppositely oriented on the 5q15 chromosomal region. Very little is known about the transcriptional regulation and the quantitative variations of these enzymes. Here, we correlated the level of transcripts and proteins of the two aminopeptidases in B-lymphoblastoid cell lines from 44 donors harbouring allelic variants in the intergenic region between ERAP1 and ERAP2. We found that the presence of a G instead of an A at SNP rs75862629 in the ERAP2 gene promoter strongly influences the expression of the two ERAPs with a down-modulation of ERAP2 coupled with a significant higher expression of ERAP1. We therefore show here for the first time a coordinated quantitative regulation of the two ERAP genes, which can be relevant for the setting of specific therapeutic approaches.
Collapse
Affiliation(s)
- Fabiana Paladini
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University, Rome, Italy.
| | - Maria Teresa Fiorillo
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University, Rome, Italy
| | - Carolina Vitulano
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University, Rome, Italy
| | - Valentina Tedeschi
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University, Rome, Italy
| | - Matteo Piga
- Rheumatology Unit, University Clinic and AOU of Cagliari, Cagliari, Italy
| | - Alberto Cauli
- Rheumatology Unit, University Clinic and AOU of Cagliari, Cagliari, Italy
| | - Alessandro Mathieu
- Rheumatology Unit, University Clinic and AOU of Cagliari, Cagliari, Italy
| | - Rosa Sorrentino
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University, Rome, Italy.
| |
Collapse
|
28
|
Steinbach A, Riemer AB. Immune evasion mechanisms of human papillomavirus: An update. Int J Cancer 2017; 142:224-229. [PMID: 28865151 DOI: 10.1002/ijc.31027] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/04/2017] [Indexed: 12/16/2022]
Abstract
Human papillomavirus (HPV) is the most frequently sexually transmitted agent in the world. It can cause cervical and other anogenital malignancies, and oropharyngeal cancer. HPV has the unique ability to persist in the host's epithelium for a long time-longer than most viruses do-which is necessary to complete its replication cycle. To this end, HPV has developed a variety of immune evasion mechanisms, which unfortunately also favor the progression of the disease from infection to chronic dysplasia and eventually to cancer. This article summarizes the current knowledge about HPV immune evasion strategies. A special emphasis lies in HPV-mediated changes of the antigen processing machinery, which is generating epitopes for T cells and contributes to the detectability of infected cells.
Collapse
Affiliation(s)
- Alina Steinbach
- Immunotherapy & Immunoprevention, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Molecular Vaccine Design, German Center for Infection Research, Partner Site Heidelberg, Heidelberg, Germany
| | - Angelika B Riemer
- Immunotherapy & Immunoprevention, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Molecular Vaccine Design, German Center for Infection Research, Partner Site Heidelberg, Heidelberg, Germany
| |
Collapse
|
29
|
Papakyriakou A, Stratikos E. The Role of Conformational Dynamics in Antigen Trimming by Intracellular Aminopeptidases. Front Immunol 2017; 8:946. [PMID: 28824657 PMCID: PMC5545687 DOI: 10.3389/fimmu.2017.00946] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/24/2017] [Indexed: 11/13/2022] Open
Abstract
Antigenic peptides presented by the major histocompatibility complex class I (MHC-I) molecules for recognition by cytotoxic T-lymphocytes are processed by members of the oxytocinase sub-family of M1 aminopeptidases ERAP1, ERAP2, and IRAP. These three homologous zinc metallopeptidases trim N-terminally extended precursor antigenic peptides down to the correct length for loading onto the MHC-I but can also destroy some antigenic peptides by over-trimming, therefore, influencing the antigenic peptide repertoire and immunodominance hierarchy. Polymorphic variation has been found to affect their trimming function and predispose to human disease in complex and poorly understood patterns. Structural and biochemical analysis have pointed toward a complicated trimming mechanism that involves a major conformational transition during each catalytic cycle. Here, we provide an overview of current knowledge on the structure and mechanism of action of those enzymes with a focus on the proposed key role of conformational dynamics in their function.
Collapse
Affiliation(s)
- Athanasios Papakyriakou
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, United Kingdom.,National Centre for Scientific Research "Demokritos", Athens, Greece
| | | |
Collapse
|
30
|
Capietto AH, Jhunjhunwala S, Delamarre L. Characterizing neoantigens for personalized cancer immunotherapy. Curr Opin Immunol 2017; 46:58-65. [PMID: 28478383 DOI: 10.1016/j.coi.2017.04.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 04/17/2017] [Indexed: 12/18/2022]
Abstract
Somatic mutations can generate neoantigens that are presented on MHC molecules and drive effective T cells responses against cancer. Mutation load in cancer patients predicts response to immune checkpoint blockade therapy. Additionally, vaccination targeting neoantigens controls established tumor growth in preclinical models. These recent findings led to a renewed interest in the field of cancer vaccines and the development of antigen-targeted cancer immunotherapies. However, targeting neoantigens is challenging, as most mutations are unique to each cancer patient. In addition, only a small fraction of the mutations are immunogenic and therefore their accurate prediction is critical. In this review, we discuss the properties of neoantigens that influence their immunogenicity, along with questions that remain to be addressed in order to improve prediction algorithms.
Collapse
|
31
|
Reeves E, James E. Tumour and placenta establishment: The importance of antigen processing and presentation. Placenta 2017; 56:34-39. [PMID: 28274545 DOI: 10.1016/j.placenta.2017.02.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/24/2017] [Accepted: 02/27/2017] [Indexed: 12/14/2022]
Abstract
Classical and non-classical MHC class I (MHC I) molecules displayed at the cell surface are essential for the induction of innate and adaptive immune responses. Classical MHC I present endogenously derived peptides to CD8+ T cells for immunosurveillance of infected or malignant cells. By contrast, non-classical MHC I, in particular HLA-G, also display peptides, but primarily act as immunomodulatory ligands for the innate immune response and are an important component for extravillous trophoblast invasion to form the placenta in pregnancy. Endoplasmic Reticulum AminoPeptidase 1 (ERAP1), which trims peptides in the ER to generate ligands for MHC I loading, is a key regulator of the peptide repertoire and has a significant impact on the formation of stable MHC I at the cell surface. ERAP1 also plays a role in angiogenesis, cell cycle progression and migration, events that are shared between tumour cells and placenta formation. Here we discuss the similarities between tumour and extravillous trophoblast cells in their immune modulatory, invasion, migration and proliferation properties in the context of ERAP1 and its role in establishment of solid tumours and placenta formation.
Collapse
Affiliation(s)
- Emma Reeves
- Cancer Sciences Unit, Somers Cancer Research Building, Mailpoint 824, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK; Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Edward James
- Cancer Sciences Unit, Somers Cancer Research Building, Mailpoint 824, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK; Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK.
| |
Collapse
|
32
|
Cervical Carcinogenesis and Immune Response Gene Polymorphisms: A Review. J Immunol Res 2017; 2017:8913860. [PMID: 28280748 PMCID: PMC5322437 DOI: 10.1155/2017/8913860] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 11/28/2016] [Accepted: 12/18/2016] [Indexed: 12/13/2022] Open
Abstract
The local immune response is considered a key determinant in cervical carcinogenesis after persistent infection with oncogenic, high-risk human papillomavirus (HPV) infections. Genetic variation in various immune response genes has been shown to influence risk of developing cervical cancer, as well as progression and survival among cervical cancer patients. We reviewed the literature on associations of immunogenetic single nucleotide polymorphism, allele, genotype, and haplotype distributions with risk and progression of cervical cancer. Studies on HLA and KIR gene polymorphisms were excluded due to the abundance on literature on that subject. We show that multiple genes and loci are associated with variation in risk of cervical cancer. Rather than one single gene being responsible for cervical carcinogenesis, we postulate that variations in the different immune response genes lead to subtle differences in the effectiveness of the antiviral and antitumour immune responses, ultimately leading to differences in risk of developing cervical cancer and progressive disease after HPV infection.
Collapse
|
33
|
Yao Y, Wiśniewski A, Ma Q, Kowal A, Porębska I, Pawełczyk K, Yu J, Dubis J, Żuk N, Li Y, Shi L, Kuśnierczyk P. Single Nucleotide Polymorphisms of the ERAP1 Gene and Risk of NSCLC: A Comparison of Genetically Distant Populations, Chinese and Caucasian. Arch Immunol Ther Exp (Warsz) 2017; 64:117-122. [PMID: 28083613 PMCID: PMC5334393 DOI: 10.1007/s00005-016-0436-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 10/18/2016] [Indexed: 11/30/2022]
Abstract
An effective cytotoxic immune response to neoplastic cells requires efficient presentation of antigenic peptides to T lymphocytes by HLA class I (HLA-I) molecules. The HLA-I-bound peptide repertoire depends on antigen-processing machinery molecules. Aminopeptidase residing in endoplasmic reticulum 1 (ERAP1) trims peptides to the optimal length for HLA-I binding. Single nucleotide polymorphisms (SNPs) in the ERAP1 gene result in changes in aminopeptidase activity and specificity. This may affect susceptibility to cancer. However, non-small cell lung carcinoma (NSCLC) has not been studied in this respect. We compared genotype and haplotype frequencies of four coding, nonsynonymous ERAP1 SNPs, rs26653G > C, rs26618T > C, rs30187C > T, and rs27044C > G, in NSCLC occurring in two genetically distant populations, Chinese and Poles. We found associations of all four SNPs with NSCLC in Chinese but not in Poles. The differences in ERAP1-NSCLC associations might be explained by highly significant differences in SNP genotype frequencies between Chinese and Poles (except for rs26618). In accordance with this, the most frequent ERAP1 haplotypes were distributed differently in cases versus controls in Chinese, but not in Poles. Our findings add to the differences between Orientals and Caucasians in genetics of disease susceptibility.
Collapse
Affiliation(s)
- Yufeng Yao
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Disease, Institute of Medical Biology, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Kunming, Yunnan, China
| | - Andrzej Wiśniewski
- Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Qiangli Ma
- Department of Thoracic Surgery, The No. 3 Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Aneta Kowal
- Department and Clinic of Pulmonology and Lung Cancer, Wrocław Medical University, Wrocław, Poland
| | - Irena Porębska
- Department and Clinic of Pulmonology and Lung Cancer, Wrocław Medical University, Wrocław, Poland
| | - Konrad Pawełczyk
- Department and Clinic of Thoracic Surgery, Wrocław Medical University, Wrocław, Poland
| | - Jiankun Yu
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Disease, Institute of Medical Biology, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Kunming, Yunnan, China
| | - Joanna Dubis
- Research and Development Centre, Regional Specialist Hospital in Wrocław, Wrocław, Poland
| | - Natalia Żuk
- Research and Development Centre, Regional Specialist Hospital in Wrocław, Wrocław, Poland
| | - Yingfu Li
- Department of Geriatrics, The No. 1 Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Li Shi
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Disease, Institute of Medical Biology, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Kunming, Yunnan, China.
| | - Piotr Kuśnierczyk
- Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland.
| |
Collapse
|
34
|
Reeves E, James E. Antigen processing and immune regulation in the response to tumours. Immunology 2016; 150:16-24. [PMID: 27658710 DOI: 10.1111/imm.12675] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 09/18/2016] [Accepted: 09/19/2016] [Indexed: 12/12/2022] Open
Abstract
The MHC class I and II antigen processing and presentation pathways display peptides to circulating CD8+ cytotoxic and CD4+ helper T cells respectively to enable pathogens and transformed cells to be identified. Once detected, T cells become activated and either directly kill the infected / transformed cells (CD8+ cytotoxic T lymphocytes) or orchestrate the activation of the adaptive immune response (CD4+ T cells). The immune surveillance of transformed/tumour cells drives alteration of the antigen processing and presentation pathways to evade detection and hence the immune response. Evasion of the immune response is a significant event tumour development and considered one of the hallmarks of cancer. To avoid immune recognition, tumours employ a multitude of strategies with most resulting in a down-regulation of the MHC class I expression at the cell surface, significantly impairing the ability of CD8+ cytotoxic T lymphocytes to recognize the tumour. Alteration of the expression of key players in antigen processing not only affects MHC class I expression but also significantly alters the repertoire of peptides being presented. These modified peptide repertoires may serve to further reduce the presentation of tumour-specific/associated antigenic epitopes to aid immune evasion and tumour progression. Here we review the modifications to the antigen processing and presentation pathway in tumours and how it affects the anti-tumour immune response, considering the role of tumour-infiltrating cell populations and highlighting possible future therapeutic targets.
Collapse
Affiliation(s)
- Emma Reeves
- Cancer Sciences Unit, Southampton General Hospital, Southampton, UK.,Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Edward James
- Cancer Sciences Unit, Southampton General Hospital, Southampton, UK.,Institute for Life Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
35
|
Textor A, Schmidt K, Kloetzel PM, Weißbrich B, Perez C, Charo J, Anders K, Sidney J, Sette A, Schumacher TNM, Keller C, Busch DH, Seifert U, Blankenstein T. Preventing tumor escape by targeting a post-proteasomal trimming independent epitope. J Exp Med 2016; 213:2333-2348. [PMID: 27697836 PMCID: PMC5068242 DOI: 10.1084/jem.20160636] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 08/31/2016] [Indexed: 02/05/2023] Open
Abstract
Blankenstein and colleagues describe a novel strategy to avoid tumor escape from adoptive T cell therapy. Adoptive T cell therapy (ATT) can achieve regression of large tumors in mice and humans; however, tumors frequently recur. High target peptide-major histocompatibility complex-I (pMHC) affinity and T cell receptor (TCR)-pMHC affinity are thought to be critical to preventing relapse. Here, we show that targeting two epitopes of the same antigen in the same cancer cells via monospecific T cells, which have similar pMHC and pMHC-TCR affinity, results in eradication of large, established tumors when targeting the apparently subdominant but not the dominant epitope. Only the escape but not the rejection epitope required postproteasomal trimming, which was regulated by IFN-γ, allowing IFN-γ–unresponsive cancer variants to evade. The data describe a novel immune escape mechanism and better define suitable target epitopes for ATT.
Collapse
Affiliation(s)
- Ana Textor
- Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Karin Schmidt
- Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany.,Institute for Biochemistry, Charité, Campus Mitte, 10117 Berlin, Germany
| | - Peter-M Kloetzel
- Institute for Biochemistry, Charité, Campus Mitte, 10117 Berlin, Germany.,Berlin Institute of Health, 10117 Berlin, Germany
| | - Bianca Weißbrich
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University, 81675 Munich, Germany
| | - Cynthia Perez
- Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Jehad Charo
- Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Kathleen Anders
- Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | - John Sidney
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Ton N M Schumacher
- The Division of Immunology, The Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
| | - Christin Keller
- Institute for Biochemistry, Charité, Campus Mitte, 10117 Berlin, Germany
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University, 81675 Munich, Germany
| | - Ulrike Seifert
- Institute for Biochemistry, Charité, Campus Mitte, 10117 Berlin, Germany.,Institute for Molecular and Clinical Immunology, Otto-von-Guericke-Universität, 39120 Magdeburg, Germany.,Friedrich Loeffler Institute of Medical Microbiology, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Thomas Blankenstein
- Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany .,Berlin Institute of Health, 10117 Berlin, Germany.,Institute of Immunology, Charité, Campus Buch, 13125 Berlin, Germany
| |
Collapse
|
36
|
Polymorphisms in ERAP1 and ERAP2 are shared by Caninae and segregate within and between random- and pure-breeds of dogs. Vet Immunol Immunopathol 2016; 179:46-57. [PMID: 27590425 DOI: 10.1016/j.vetimm.2016.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/03/2016] [Accepted: 08/04/2016] [Indexed: 01/01/2023]
Abstract
Specific polymorphisms in the endoplasmic reticulum amino peptidase genes ERAP1 and ERAP2, when present with certain MHC class receptor types, have been associated with increased risk for specific cancers, infectious diseases and autoimmune disorders in humans. This increased risk has been linked to distinct polymorphisms in both ERAPs and MHC class I receptors that affect the way cell-generated peptides are screened for antigenicity. The incidence of cancer, infectious disease and autoimmune disorders differ greatly among pure breeds of dogs as it does in humans and it is possible that this heightened susceptibility is also due to specific polymorphisms in ERAP1 and ERAP2. In order to determine if such polymorphisms exist, the ERAP1 and ERAP2 genes of 10 dogs of nine diverse breeds were sequenced and SNPs causing synonymous or non-synonymous amino acid changes, deletions or insertions were identified. Eight ERAP1 and 10 ERAP2 SNPs were used to create a Sequenom MassARRAY iPLEX based test panel which defined 24 ERAP1, 36 ERAP2 and 128 ERAP1/2 haplotypes. The prevalence of these haplotypes was then measured among dog, wolf, coyote, jackal and red fox populations. Some haplotypes were species specific, while others were shared across species, especially between dog, wolf, coyote and jackal. The prevalence of these haplotypes was then compared among various canid populations, and in particular between various populations of random- and pure-bred dogs. Human-directed positive selection has led to loss of ERAP diversity and segregation of certain haplotypes among various dog breeds. A phylogenetic tree generated from 45 of the most common ERAP1/2 haplotypes demonstrated three distinct clades, all of which were rooted with haplotypes either shared among species or specific to contemporary dogs, coyote and wolf.
Collapse
|
37
|
Nucleic acid tool enzymes-aided signal amplification strategy for biochemical analysis: status and challenges. Anal Bioanal Chem 2015; 408:2793-811. [DOI: 10.1007/s00216-015-9240-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/13/2015] [Accepted: 12/01/2015] [Indexed: 11/27/2022]
|
38
|
Emma R, Edward J. The Role of Endoplasmic Reticulum Aminopeptidase 1 Biology in Immune Evasion by Tumours. ACTA ACUST UNITED AC 2015. [DOI: 10.17352/jvi.000007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
39
|
Yousaf N, Low WY, Onipinla A, Mein C, Caulfield M, Munroe PB, Chernajovsky Y. Differences between disease-associated endoplasmic reticulum aminopeptidase 1 (ERAP1) isoforms in cellular expression, interactions with tumour necrosis factor receptor 1 (TNF-R1) and regulation by cytokines. Clin Exp Immunol 2015; 180:289-304. [PMID: 25545008 DOI: 10.1111/cei.12575] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2014] [Indexed: 01/28/2023] Open
Abstract
Endoplasmic reticulum aminopeptidase 1 (ERAP1) processes peptides for major histocompatibility complex (MHC) class I presentation and promotes cytokine receptor ectodomain shedding. These known functions of ERAP1 may explain its genetic association with several autoimmune inflammatory diseases. In this study, we identified four novel alternatively spliced variants of ERAP1 mRNA, designated as ΔExon-11, ΔExon-13, ΔExon-14 and ΔExon-15. We also observed a rapid and differential modulation of ERAP1 mRNA levels and spliced variants in different cell types pretreated with lipopolysaccharide (LPS). We have studied three full-length allelic forms of ERAP1 (R127-K528, P127-K528, P127-R528) and one spliced variant (ΔExon-11) and assessed their interactions with tumour necrosis factor receptor 1 (TNF-R1) in transfected cells. We observed variation in cellular expression of different ERAP1 isoforms, with R127-K528 being expressed at a much lower level. Furthermore, the cellular expression of full-length P127-K528 and ΔExon-11 spliced variant was enhanced significantly when co-transfected with TNF-R1. Isoforms P127-K528, P127-R528 and ΔExon-11 spliced variant associated with TNF-R1, and this interaction occurred in a region within the first 10 exons of ERAP1. Supernatant-derived vesicles from transfected cells contained the full-length and ectodomain form of soluble TNF-R1, as well as carrying the full-length ERAP1 isoforms. We observed marginal differences between TNF-R1 ectodomain levels when co-expressed with individual ERAP1 isoforms, and treatment of transfected cells with tumour necrosis factor (TNF), interleukin (IL)-1β and IL-10 exerted variable effects on TNF-R1 ectodomain cleavage. Our data suggest that ERAP1 isoforms may exhibit differential biological properties and inflammatory mediators could play critical roles in modulating ERAP1 expression, leading to altered functional activities of this enzyme.
Collapse
Affiliation(s)
- N Yousaf
- Bone and Joint Research Unit, Queen Mary University of London, London, UK
| | | | | | | | | | | | | |
Collapse
|
40
|
Molecular backgrounds of ERAP1 downregulation in cervical carcinoma. Anal Cell Pathol (Amst) 2015; 2015:367837. [PMID: 26146606 PMCID: PMC4471254 DOI: 10.1155/2015/367837] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 05/28/2015] [Indexed: 01/07/2023] Open
Abstract
The antigen processing machinery (APM) plays an important role in immune recognition of virally infected and transformed cells. Defective expression of the APM component ERAP1 is associated with progression and poor clinical outcome in cervical carcinoma. However, the underlying mechanisms of ERAP1 protein downregulation remain to be established. We investigated ERAP1 mRNA expression levels in 14 patients with established ERAP1 protein downregulation. To further examine the possible pretranscriptional mechanisms of ERAP1 downregulation, ERAP1 DNA mutation status was analyzed alongside existing data on various single nucleotide polymorphisms. Moreover, loss of heterozygosity at various loci in the ERAP1 gene was investigated. In cases with ERAP1 protein downregulation, ERAP1 mRNA quantities were found to be significantly lower than in a cohort with normal ERAP1 protein expression (P = 0.001). Loss of heterozygosity was demonstrated to occur in up to 50% of tumors with ERAP1 downregulation. Our data indicate that ERAP1 downregulation is associated with loss of heterozygosity. These data provide the first insight into in vivo mechanisms of ERAP1 downregulation in cervical carcinoma.
Collapse
|
41
|
Massink MPG, Kooi IE, van Mil SE, Jordanova ES, Ameziane N, Dorsman JC, van Beek DM, van der Voorn JP, Sie D, Ylstra B, van Deurzen CHM, Martens JW, Smid M, Sieuwerts AM, de Weerd V, Foekens JA, van den Ouweland AMW, van Dyk E, Nederlof PM, Waisfisz Q, Meijers-Heijboer H. Proper genomic profiling of (BRCA1-mutated) basal-like breast carcinomas requires prior removal of tumor infiltrating lymphocytes. Mol Oncol 2015; 9:877-88. [PMID: 25616998 PMCID: PMC5528776 DOI: 10.1016/j.molonc.2014.12.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 12/20/2014] [Accepted: 12/27/2014] [Indexed: 01/02/2023] Open
Abstract
INTRODUCTION BRCA1-mutated breast carcinomas may have distinct biological features, suggesting the involvement of specific oncogenic pathways in tumor development. The identification of genomic aberrations characteristic for BRCA1-mutated breast carcinomas could lead to a better understanding of BRCA1-associated oncogenic events and could prove valuable in clinical testing for BRCA1-involvement in patients. METHODS For this purpose, genomic and gene expression profiles of basal-like BRCA1-mutated breast tumors (n = 27) were compared with basal-like familial BRCAX (non-BRCA1/2/CHEK2*1100delC) tumors (n = 14) in a familial cohort of 120 breast carcinomas. RESULTS Genome wide copy number profiles of the BRCA1-mutated breast carcinomas in our data appeared heterogeneous. Gene expression analyses identified varying amounts of tumor infiltrating lymphocytes (TILs) as a major cause for this heterogeneity. Indeed, selecting tumors with relative low amounts of TILs, resulted in the identification of three known but also five previously unrecognized BRCA1-associated copy number aberrations. Moreover, these aberrations occurred with high frequencies in the BRCA1-mutated tumor samples. Using these regions it was possible to discriminate BRCA1-mutated from BRCAX breast carcinomas, and they were validated in two independent cohorts. To further substantiate our findings, we used flow cytometry to isolate cancer cells from formalin-fixed, paraffin-embedded, BRCA1-mutated triple negative breast carcinomas with estimated TIL percentages of 40% and higher. Genomic profiles of sorted and unsorted fractions were compared by shallow whole genome sequencing and confirm our findings. CONCLUSION This study shows that genomic profiling of in particular basal-like, and thus BRCA1-mutated, breast carcinomas is severely affected by the presence of high numbers of TILs. Previous reports on genomic profiling of BRCA1-mutated breast carcinomas have largely neglected this. Therefore, our findings have direct consequences on the interpretation of published genomic data. Also, these findings could prove valuable in light of currently used genomic tools for assessing BRCA1-involvement in breast cancer patients and pathogenicity assessment of BRCA1 variants of unknown significance. The BRCA1-associated genomic aberrations identified in this study provide possible leads to a better understanding of BRCA1-associated oncogenesis.
Collapse
Affiliation(s)
- Maarten P G Massink
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands.
| | - Irsan E Kooi
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands.
| | - Saskia E van Mil
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands.
| | - Ekaterina S Jordanova
- Department of Obstetrics and Gynaecology, Center for Gynaecologic Oncology, VU University Medical Center, Amsterdam, The Netherlands.
| | - Najim Ameziane
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands.
| | - Josephine C Dorsman
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands.
| | - Daphne M van Beek
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands.
| | | | - Daoud Sie
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands.
| | - Bauke Ylstra
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands.
| | - Carolien H M van Deurzen
- Department of Pathology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - John W Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Marcel Smid
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Anieta M Sieuwerts
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Vanja de Weerd
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - John A Foekens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Ans M W van den Ouweland
- Department of Clinical Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Ewald van Dyk
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Petra M Nederlof
- Department of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Quinten Waisfisz
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands.
| | - Hanne Meijers-Heijboer
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
42
|
Fruci D, Romania P, D'Alicandro V, Locatelli F. Endoplasmic reticulum aminopeptidase 1 function and its pathogenic role in regulating innate and adaptive immunity in cancer and major histocompatibility complex class I-associated autoimmune diseases. ACTA ACUST UNITED AC 2015; 84:177-86. [PMID: 25066018 DOI: 10.1111/tan.12410] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Major histocompatibility complex (MHC) class I molecules present antigenic peptides on the cell surface to alert natural killer (NK) cells and CD8(+) T cells for the presence of abnormal intracellular events, such as virus infection or malignant transformation. The generation of antigenic peptides is a multistep process that ends with the trimming of N-terminal extensions in the endoplasmic reticulum (ER) by aminopeptidases ERAP1 and ERAP2. Recent studies have highlighted the potential role of ERAP1 in reprogramming the immunogenicity of tumor cells in order to elicit innate and adaptive antitumor immune responses, and in conferring susceptibility to autoimmune diseases in predisposed individuals. In this review, we will provide an overview of the current knowledge about the role of ERAP1 in MHC class I antigen processing and how its manipulation may constitute a promising tool for cancer immunotherapy and treatment of MHC class I-associated autoimmune diseases.
Collapse
Affiliation(s)
- D Fruci
- Paediatric Haematology/Oncology Department, IRCCS, Ospedale Pediatrico Bambino Gesù, 00165, Rome, Italy
| | | | | | | |
Collapse
|
43
|
Mehta AM, Spaans VM, Mahendra NB, Osse EM, Vet JNI, Purwoto G, Surya IGD, Cornian S, Peters AA, Fleuren GJ, Jordanova ES. Differences in genetic variation in antigen-processing machinery components and association with cervical carcinoma risk in two Indonesian populations. Immunogenetics 2015; 67:267-75. [PMID: 25796583 PMCID: PMC4427632 DOI: 10.1007/s00251-015-0834-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 03/06/2015] [Indexed: 01/25/2023]
Abstract
Genetic variation of antigen-processing machinery (APM) components has been shown to be associated with cervical carcinoma risk and outcome in a genetically homogeneous Dutch population. However, the role of APM component single nucleotide polymorphisms (SNPs) in genetically heterogeneous populations with different distributions of human papillomavirus (HPV) subtypes remains unclear. Eleven non-synonymous, coding SNPs in the TAP1, TAP2, LMP2, LMP7 and ERAP1 genes were genotyped in cervical carcinoma patients and healthy controls from two distinct Indonesian populations (Balinese and Javanese). Individual genotype and allele distributions were investigated using single-marker analysis, and combined SNP effects were assessed by haplotype construction and haplotype interaction analysis. Allele distribution patterns in Bali and Java differed in relation to cervical carcinoma risk, with four ERAP1 SNPs and one TAP2 SNP in the Javanese population showing significant association with cervical carcinoma risk, while in the Balinese population, only one TAP2 SNP showed this association. Multimarker analysis demonstrated that in the Javanese patients, one specific haplotype, consisting of the ERAP1-575 locus on chromosome 5 and the TAP2-379 and TAP2-651 loci on chromosome 6, was significantly associated with cervical carcinoma risk (global P = 0.008); no significant haplotype associations were found in the Balinese population. These data indicate not only that genetic variation in APM component genes is associated with cervical carcinoma risk in Indonesia but also that the patterns of association differ depending on background genetic composition and possibly on differences in HPV type distribution.
Collapse
Affiliation(s)
- Akash M. Mehta
- Department of Surgical Oncology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Vivian M. Spaans
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Gynecology, Leiden University Medical Center, Leiden, The Netherlands
| | - Nyoman Bayu Mahendra
- Department of Gynecology and Obstetrics, Prima Medika Hospital, Denpasar, Bali Indonesia
| | - Elisabeth M. Osse
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jessica N. I. Vet
- Department of Gynecology, Leiden University Medical Center, Leiden, The Netherlands
| | - Gatot Purwoto
- Department of Gynecology, Universitas Indonesia, Jakarta, Indonesia
| | - I. G. D. Surya
- Department of Gynecology, Universitas Udayana, Bali, Indonesia
| | - Santoso Cornian
- Department of Anatomy, Universitas Indonesia, Jakarta, Indonesia
| | - Alexander A. Peters
- Department of Gynecology, Leiden University Medical Center, Leiden, The Netherlands
| | - Gert J. Fleuren
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
44
|
Stratikos E, Stamogiannos A, Zervoudi E, Fruci D. A role for naturally occurring alleles of endoplasmic reticulum aminopeptidases in tumor immunity and cancer pre-disposition. Front Oncol 2014; 4:363. [PMID: 25566501 PMCID: PMC4271575 DOI: 10.3389/fonc.2014.00363] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 11/28/2014] [Indexed: 01/29/2023] Open
Abstract
Endoplasmic reticulum aminopeptidase 1 and 2 (ERAP1 and ERAP2) are key components on the pathway that generates antigenic epitopes for presentation to cytotoxic T-lymphocytes (CTLs). Coding single nucleotide polymorphisms (SNPs) in these enzymes have been associated with pre-disposition to several major human diseases including inflammatory diseases with autoimmune etiology, viral infections, and virally induced cancer. The function of these enzymes has been demonstrated to affect CTL and natural killer cell responses toward healthy and malignant cells as well as the production of inflammatory cytokines. Recent studies have demonstrated that SNPs in ERAP1 and ERAP2 can affect their ability to generate or destroy antigenic epitopes and define the immunopeptidome. In this review, we examine the potential role of these enzymes and their polymorphic states on the generation of cytotoxic responses toward malignantly transformed cells. Given the current state-of-the-art, it is possible that polymorphic variation in these enzymes may contribute to the individual’s pre-disposition to cancer through altered generation or destruction of tumor antigens that can facilitate tumor immune evasion.
Collapse
Affiliation(s)
| | | | - Efthalia Zervoudi
- National Center for Scientific Research Demokritos , Athens , Greece
| | - Doriana Fruci
- Department of Paediatric Haematology/Oncology, IRCCS, Ospedale Pediatrico Bambino Gesù , Rome , Italy
| |
Collapse
|
45
|
Abstract
The endoplasmic reticulum aminopeptidase 1 (ERAP1) performs a major role in antigen processing, trimming N-terminally extended peptides to the final epitope for presentation by major histocompatibility complex class I molecules. Recent genome-wide association studies have identified single nucleotide polymorphisms (SNPs) within ERAP1 as being associated with disease, in particular ankylosing spondylitis (AS). AS is a polygenic chronic inflammatory disease with a strong genetic link to HLA-B27 known for over 40 years. The association of ERAP1 SNPs with AS susceptibility is only observed in HLA-B27-positive individuals, which intersect on the antigen processing pathway. Recent evidence examining the trimming activity of polymorphic ERAP1 highlights its role in generating peptides for loading onto and stabilizing HLA-B27, and the consequent alterations in the interaction of specific NK cell receptors, and the activation of the unfolded protein response as important in the mechanism of disease pathogenesis. Here, we discuss the recent genetic association findings linking ERAP1 SNPs with AS disease susceptibility and the effect of these variants on ERAP1 function, highlighting mechanisms by which AS may arise. The identification of these functional variants of ERAP1 may lead to better stratification of AS patients by providing a diagnostic tool and a potential therapeutic target.
Collapse
Affiliation(s)
- Emma Reeves
- Cancer Sciences Unit, Somers Cancer Research Building, Southampton General Hospital, Mailpoint 824, Tremona Road, Southampton, SO16 6YD, UK
| | | | | | | |
Collapse
|
46
|
Genetic associations and functional characterization of M1 aminopeptidases and immune-mediated diseases. Genes Immun 2014; 15:521-7. [PMID: 25142031 DOI: 10.1038/gene.2014.46] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 06/03/2014] [Indexed: 01/11/2023]
Abstract
Endosplasmic reticulum aminopeptidase 1 (ERAP1), endoplasmic reticulum aminopeptidase 2 (ERAP2) and puromycin-sensitive aminopeptidase (NPEPPS) are key zinc metallopeptidases that belong to the oxytocinase subfamily of M1 aminopeptidase family. NPEPPS catalyzes the processing of proteosome-derived peptide repertoire followed by trimming of antigenic peptides by ERAP1 and ERAP2 for presentation on major histocompatibility complex (MHC) Class I molecules. A series of genome-wide association studies have demonstrated associations of these aminopeptidases with a range of immune-mediated diseases such as ankylosing spondylitis, psoriasis, Behçet's disease, inflammatory bowel disease and type I diabetes, and significantly, genetic interaction between some aminopeptidases and HLA Class I loci with which these diseases are strongly associated. In this review, we highlight the current state of understanding of the genetic associations of this class of genes, their functional role in disease, and potential as therapeutic targets.
Collapse
|
47
|
Evnouchidou I, Weimershaus M, Saveanu L, van Endert P. ERAP1-ERAP2 dimerization increases peptide-trimming efficiency. THE JOURNAL OF IMMUNOLOGY 2014; 193:901-8. [PMID: 24928998 DOI: 10.4049/jimmunol.1302855] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The endoplasmic reticulum aminopeptidases (ERAP)1 and ERAP2 play a critical role in the production of final epitopes presented by MHC class I molecules. Formation of heterodimers by ERAP1 and ERAP2 has been proposed to facilitate trimming of epitope precursor peptides, but the effects of dimerization on ERAP function remain unknown. In this study, we produced stabilized ERAP1-ERAP2 heterodimers and found that they produced several mature epitopes more efficiently than a mix of the two enzymes unable to dimerize. Physical interaction with ERAP2 changes basic enzymatic parameters of ERAP1 and improves its substrate-binding affinity. Thus, by bringing the two enzymes in proximity and by producing allosteric effects on ERAP1, dimerization of ERAP1/2 creates complexes with superior peptide-trimming efficacy. Such complexes are likely to enhance Ag presentation by cells displaying coordinated expression of the two enzymes.
Collapse
Affiliation(s)
- Irini Evnouchidou
- INSERM Unité 1151, 75015 Paris, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8253, 75015 Paris, France; and Faculté de Medicine, Université Paris Descartes, Sorbonne Paris Cité, 75015 Paris, France
| | - Mirjana Weimershaus
- INSERM Unité 1151, 75015 Paris, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8253, 75015 Paris, France; and Faculté de Medicine, Université Paris Descartes, Sorbonne Paris Cité, 75015 Paris, France
| | - Loredana Saveanu
- INSERM Unité 1151, 75015 Paris, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8253, 75015 Paris, France; and Faculté de Medicine, Université Paris Descartes, Sorbonne Paris Cité, 75015 Paris, France
| | - Peter van Endert
- INSERM Unité 1151, 75015 Paris, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8253, 75015 Paris, France; and Faculté de Medicine, Université Paris Descartes, Sorbonne Paris Cité, 75015 Paris, France
| |
Collapse
|
48
|
Wang B, Niu D, Lai L, Ren EC. p53 increases MHC class I expression by upregulating the endoplasmic reticulum aminopeptidase ERAP1. Nat Commun 2014; 4:2359. [PMID: 23965983 PMCID: PMC3759077 DOI: 10.1038/ncomms3359] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 07/26/2013] [Indexed: 12/24/2022] Open
Abstract
The p53 tumour suppressor has an important role in cancer cells. Here we show that p53 regulates expression of major histocompatibility complex I on the cell surface. We show that the tumour cell line HCT116, which lacks p53 exhibits significantly lower major histocompatibility complex I expression than its wild-type counterpart. Using a combination of chromatin immunoprecipitation sequencing and gene expression analysis, we demonstrate that p53 upregulates expression of endoplasmic reticulum aminopeptidase 1 by binding to its cognate response element in the ERAP1 gene. Silencing of p53 decreases endoplasmic reticulum aminopeptidase 1 protein levels and therefore major histocompatibility complex I expression. We further show that this mechanism operates in A549 cells infected with H1N1 influenza virus, in which H1N1 activates p53, leading to endoplasmic reticulum aminopeptidase 1 upregulation and a corresponding increase in major histocompatibility complex I expression. Our study suggests a previously unrecognized link between p53 function and the immunosurveillance of cancer and infection. The protein p53 is an important tumour suppressor. Here Wang et al. show that p53 can induce expression of MHC class I on the cell surface by promoting expression of the aminopeptidase ERAP1, and that this mechanism operates in cancer cells as well as those infected with influenza virus.
Collapse
Affiliation(s)
- Bei Wang
- Singapore Immunology Network, A*STAR, 8A Biomedical Grove, Singapore 138648, Singapore
| | | | | | | |
Collapse
|
49
|
Hitzerd SM, Verbrugge SE, Ossenkoppele G, Jansen G, Peters GJ. Positioning of aminopeptidase inhibitors in next generation cancer therapy. Amino Acids 2014; 46:793-808. [PMID: 24385243 DOI: 10.1007/s00726-013-1648-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 12/12/2013] [Indexed: 12/13/2022]
Abstract
Aminopeptidases represent a class of (zinc) metalloenzymes that catalyze the cleavage of amino acids nearby the N-terminus of polypeptides, resulting in hydrolysis of peptide bonds. Aminopeptidases operate downstream of the ubiquitin-proteasome pathway and are implicated in the final step of intracellular protein degradation either by trimming proteasome-generated peptides for antigen presentation or full hydrolysis into free amino acids for recycling in renewed protein synthesis. This review focuses on the function and subcellular location of five key aminopeptidases (aminopeptidase N, leucine aminopeptidase, puromycin-sensitive aminopeptidase, leukotriene A4 hydrolase and endoplasmic reticulum aminopeptidase 1/2) and their association with different diseases, in particular cancer and their current position as target for therapeutic intervention by aminopeptidase inhibitors. Historically, bestatin was the first prototypical aminopeptidase inhibitor that entered the clinic 35 years ago and is still used for the treatment of lung cancer. More recently, new generation aminopeptidase inhibitors became available, including the aminopeptidase inhibitor prodrug tosedostat, which is currently tested in phase II clinical trials for acute myeloid leukemia. Beyond bestatin and tosedostat, medicinal chemistry has emerged with additional series of potential aminopeptidases inhibitors which are still in an early phase of (pre)clinical investigations. The expanded knowledge of the unique mechanism of action of aminopeptidases has revived interest in aminopeptidase inhibitors for drug combination regimens in anti-cancer treatment. In this context, this review will discuss relevant features and mechanisms of action of aminopeptidases and will also elaborate on factors contributing to aminopeptidase inhibitor efficacy and/or loss of efficacy due to drug resistance-related phenomena. Together, a growing body of data point to aminopeptidase inhibitors as attractive tools for combination chemotherapy, hence their implementation may be a step forward in a new era of personalized treatment of cancer patients.
Collapse
Affiliation(s)
- Sarina M Hitzerd
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, Rm 1.42, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
50
|
Ye S, Mao Y, Guo Y, Zhang S. Enzyme-based signal amplification of surface-enhanced Raman scattering in cancer-biomarker detection. Trends Analyt Chem 2014. [DOI: 10.1016/j.trac.2013.12.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|