1
|
Jin L, Yang Z, Tang W, Yu P, Chen R, Xu Y, Zhang J. The evolving landscape of genetic biomarkers for immunotherapy in primary and metastatic breast cancer. Front Oncol 2025; 15:1522262. [PMID: 40182039 PMCID: PMC11966456 DOI: 10.3389/fonc.2025.1522262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/30/2025] [Indexed: 04/05/2025] Open
Abstract
Background Major advances have been achieved in the characterization of primary breast cancer genomic profiles. Limited information is available on the genomic profile of tumors originating from different metastatic locations in recurrent/metastatic (R/M) breast cancer, especially in Asian patients. This study aims to decipher the mutational profiles of primary and R/M breast cancer in Chinese patients using next-generation sequencing. Methods A total of 563 breast cancer patients were enrolled, and 590 tumor tissues and matched peripheral blood samples were collected and subjected to targeted sequencing with a panel of 1,021 cancer-related genes. The mutation spectrum, DNA damage response (DDR) genes, commonly altered signal pathways, and immunotherapy-related markers were compared between primary and R/M breast cancer. The molecular differences between our cohort and the Memorial Sloan Kettering Cancer Center (MSKCC) dataset were also explored. Results A total of 361 samples from primary and 229 samples from R/M breast cancer were analyzed. BRCA2, ATRX, and ATM were more frequently observed in R/M lesions among the 36 DDR genes. An ESR1 mutation and PD-L1 and PD-L2 amplification were enriched in R/M breast cancer (all p<0.05). Compared with the MSKCC dataset, we recruited more patients diagnosed at age 50 or younger and more patients with triple-negative breast cancer (TNBC) subtypes. The TNBC patients in our dataset had a higher percentage of PD-L1 amplification in metastasis tumors (p<0.05). Conclusions This study revealed the distinctive mutational features of primary and R/M tumors in Chinese breast cancer patients, which are different from those from Western countries. The enrichment of PD-L1 amplification in metastatic TNBC indicates the necessity to re-biopsy metastatic tumors for immunotherapy.
Collapse
Affiliation(s)
- Liang Jin
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zijian Yang
- Department of Breast and Thyroid Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Wei Tang
- Department of Breast Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Pengli Yu
- Medical Department, Geneplus-Beijing, Beijing, China
| | - Rongrong Chen
- Medical Department, Geneplus-Beijing, Beijing, China
| | - Yan Xu
- Department of Breast and Thyroid Surgery, Daping Hospital, Army Military Medical University, Chongqing, China
| | - Jun Zhang
- Department of Thyroid and Breast Surgery, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, China
| |
Collapse
|
2
|
Basu A, Xuan Z. p21 Waf1/Cip1 Is a Novel Downstream Target of 40S Ribosomal S6 Kinase 2. Cancers (Basel) 2024; 16:3783. [PMID: 39594738 PMCID: PMC11592183 DOI: 10.3390/cancers16223783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objectives: The ribosomal S6 kinase 2 (S6K2) acts downstream of the mechanistic target of rapamycin complex 1 and is a homolog of S6K1 but little is known about its downstream effectors. The objective of this study was to use an unbiased transcriptome profiling to uncover how S6K2 promotes breast cancer cell survival. Methods: RNA-Seq analysis was performed to identify novel S6K2 targets. Cells were transfected with siRNAs or plasmids containing genes of interest. Western blot analyses were performed to quantify total and phosphorylated proteins. Apoptosis was monitored by treating cells with different concentrations of doxorubicin. Results: Silencing of S6K2, but not S6K1, decreased p21 in MCF-7 and T47D breast cancer cells. Knockdown of Akt1 but not Akt2 decreased p21 in MCF-7 cells whereas both Akt1 and Akt2 knockdown attenuated p21 in T47D cells. While Akt1 overexpression enhanced p21 and partially reversed the effect of S6K2 deficiency on p21 downregulation in MCF-7 cells, it had little effect in T47D cells. S6K2 knockdown increased JUN mRNA and knockdown of cJun enhanced p21. Low concentrations of doxorubicin increased, and high concentrations decreased p21 levels in T47D cells. Silencing of S6K2 or p21 sensitized T47D cells to doxorubicin via c-Jun N-terminal kinase (JNK)-mediated downregulation of Mcl-1. Conclusions: S6K2 knockdown enhanced doxorubicin-induced apoptosis by downregulating the cell cycle inhibitor p21 and the anti-apoptotic protein Mcl-1 via Akt and/or JNK.
Collapse
Affiliation(s)
- Alakananda Basu
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Zhenyu Xuan
- Department of Biological Sciences, Center for Systems Biology, University of Texas at Dallas, Richardson, TX 75080, USA;
| |
Collapse
|
3
|
Marin A, Morales F, Walbaum B. Fibroblast growth factor receptor signaling in estrogen receptor-positive breast cancer: mechanisms and role in endocrine resistance. Front Oncol 2024; 14:1406951. [PMID: 39040443 PMCID: PMC11260626 DOI: 10.3389/fonc.2024.1406951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/25/2024] [Indexed: 07/24/2024] Open
Abstract
Fibroblast Growth Factor Receptors (FGFRs) play a significant role in Estrogen Receptor-positive (ER+) breast cancer by contributing to tumorigenesis and endocrine resistance. This review explores the structure, signaling pathways, and implications of FGFRs, particularly FGFR1, FGFR2, FGFR3, and FGFR4, in ER+ breast cancer. FGFR1 is frequently amplified, especially in aggressive Luminal B-like tumors, and its amplification is associated with poor prognosis and treatment resistance. The co-amplification of FGFR1 with oncogenes like EIF4EBP1 and NSD3 complicates its role as a standalone oncogenic driver. FGFR2 amplification, though less common, is critical in hormone receptor regulation, driving proliferation and treatment resistance. FGFR3 and FGFR4 also contribute to endocrine resistance through various mechanisms, including the activation of alternate signaling pathways like PI3K/AKT/mTOR and RAS/RAF/MEK/ERK. Endocrine resistance remains a major clinical challenge, with around 70% of breast cancers initially hormone receptor positive. Despite the success of CDK 4/6 inhibitors in combination with endocrine therapy (ET), resistance often develops, necessitating new treatment strategies. FGFR inhibitors have shown potential in preclinical studies, but clinical trials have yielded limited success due to off-target toxicities and lack of predictive biomarkers. Current clinical trials, including those evaluating FGFR inhibitors like erdafitinib, lucitanib, and dovitinib, have demonstrated mixed outcomes, underscoring the complexity of FGFR signaling in breast cancer. The interplay between FGFR and other signaling pathways highlights the need for comprehensive molecular profiling and personalized treatment approaches. Future research should focus on identifying robust biomarkers and developing combination therapies to enhance the efficacy of FGFR-targeted treatments. In conclusion, targeting FGFR signaling in ER+ breast cancer presents both challenges and opportunities. A deeper understanding of the molecular mechanisms and resistance pathways is crucial for the successful integration of FGFR inhibitors into clinical practice, aiming to improve outcomes for patients with endocrine-resistant breast cancer.
Collapse
Affiliation(s)
- Arnaldo Marin
- Doctoral Program in Medical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
- Oncology Program, Faculty of Medicine, University of Chile, Santiago, Chile
- Department of Basic and Clinical Oncology, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Fernanda Morales
- Department of Basic and Clinical Oncology, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Benjamín Walbaum
- Medical Oncology Department, Hospital Clinic, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Department of Hematology-Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
4
|
Ma Q, Yang Y, Chen S, Cheng H, Gong P, Hao J. Ribosomal protein S6 kinase 2 (RPS6KB2) is a potential immunotherapeutic target for cancer that upregulates proinflammatory cytokines. Mol Biol Rep 2024; 51:229. [PMID: 38281249 DOI: 10.1007/s11033-023-09134-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 12/08/2023] [Indexed: 01/30/2024]
Abstract
BACKGROUND Cancer is still a leading cause of mortality. Over the years, cancer therapy has undergone significant advances driven by advancements in science and technology. A promising area of drug discovery in this field involves the development of therapeutic targets for cancer treatment. The urgent need to identify new pharmacological targets arises from the impact of tumor resistance on the effectiveness of current medications. Specifically, the RPS6KB2 gene on chromosome 11 has been implicated in cell cycle regulation and exhibits higher expression levels in tumor tissue. Given this association, there is a potential for this gene to serve as a target for cancer treatment. METHODS We conducted an analysis using the GTEx, TCGA, and CCLE databases to explore the relationship between RPS6KB2 and immune infiltration, the tumor microenvironment (TME), microsatellite instability (MSI), and more. Cell proliferation was assessed using EDU detection, while cell invasion and migration were evaluated via wound healing and Transwell assays. Additionally, western blot analysis was employed to measure expression of Bax, Bcl-2, MMP2, MMP9, PCNA, and proinflammatory factors. RESULTS Through data analysis and molecular biology methods, our study carefully examined the potential role of RPS6KB2 in cancer therapy. The data revealed that RPS6KB2 is aberrantly expressed in most cancers and is associated with poor prognosis. Further analysis indicated its involvement in cancer cell apoptosis and migration, as well as its role in cancer immune processes. We validated the significance of RPS6KB2 in hepatocellular carcinoma (HCC), highlighting its capacity to upregulate proinflammatory cytokines. CONCLUSION Our research indicates that RPS6KB2 is a prognostic biomarker associated with immune infiltration in cancer that can affect antitumor immunity by increasing secretion of proinflammatory factors, providing a potential drug target for cancer treatment.
Collapse
Affiliation(s)
- Qiang Ma
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yipin Yang
- The First Clinical Medical College of Anhui Medical University, Hefei, China
| | - Shuwen Chen
- The First Clinical Medical College of Anhui Medical University, Hefei, China
| | - Hao Cheng
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Peng Gong
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Jiqing Hao
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
5
|
Kothapalli KSD, Park HG, Kothapalli NSL, Brenna JT. FADS2 function at the major cancer hotspot 11q13 locus alters fatty acid metabolism in cancer. Prog Lipid Res 2023; 92:101242. [PMID: 37597812 DOI: 10.1016/j.plipres.2023.101242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/31/2023] [Accepted: 08/15/2023] [Indexed: 08/21/2023]
Abstract
Dysregulation of fatty acid metabolism and de novo lipogenesis is a key driver of several cancer types through highly unsaturated fatty acid (HUFA) signaling precursors such as arachidonic acid. The human chromosome 11q13 locus has long been established as the most frequently amplified in a variety of human cancers. The fatty acid desaturase genes (FADS1, FADS2 and FADS3) responsible for HUFA biosynthesis localize to the 11q12-13.1 region. FADS2 activity is promiscuous, catalyzing biosynthesis of several unsaturated fatty acids by Δ6, Δ8, and Δ4 desaturation. Our main aim here is to review known and putative consequences of FADS2 dysregulation due to effects on the 11q13 locus potentially driving various cancer types. FADS2 silencing causes synthesis of sciadonic acid (5Z,11Z,14Z-20:3) in MCF7 cells and breast cancer in vivo. 5Z,11Z,14Z-20:3 is structurally identical to arachidonic acid (5Z,8Z,11Z,14Z-20:4) except it lacks the internal Δ8 double bond required for prostaglandin and leukotriene synthesis, among other eicosanoids. Palmitic acid has substrate specificity for both SCD and FADS2. Melanoma, prostate, liver and lung cancer cells insensitive to SCD inhibition show increased FADS2 activity and sapienic acid biosynthesis. Elevated serum mead acid levels found in hepatocellular carcinoma patients suggest an unsatisfied demand for arachidonic acid. FADS2 circular RNAs are at high levels in colorectal and lung cancer tissues. FADS2 circular RNAs are associated with shorter overall survival in colorectal cancer patients. The evidence thusfar supports an effort for future research on the role of FADS2 as a tumor suppressor in a range of neoplastic disorders.
Collapse
Affiliation(s)
- Kumar S D Kothapalli
- Dell Pediatric Research Institute, Dell Medical School and Department of Nutritional Sciences, The University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX 78723, USA.
| | - Hui Gyu Park
- Dell Pediatric Research Institute, Dell Medical School and Department of Nutritional Sciences, The University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX 78723, USA
| | | | - J Thomas Brenna
- Dell Pediatric Research Institute, Dell Medical School and Department of Nutritional Sciences, The University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX 78723, USA.
| |
Collapse
|
6
|
Veth TS, Francavilla C, Heck AJR, Altelaar M. Elucidating Fibroblast Growth Factor-Induced Kinome Dynamics Using Targeted Mass Spectrometry and Dynamic Modeling. Mol Cell Proteomics 2023; 22:100594. [PMID: 37328066 PMCID: PMC10368922 DOI: 10.1016/j.mcpro.2023.100594] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/02/2023] [Accepted: 06/12/2023] [Indexed: 06/18/2023] Open
Abstract
Fibroblast growth factors (FGFs) are paracrine or endocrine signaling proteins that, activated by their ligands, elicit a wide range of health and disease-related processes, such as cell proliferation and the epithelial-to-mesenchymal transition. The detailed molecular pathway dynamics that coordinate these responses have remained to be determined. To elucidate these, we stimulated MCF-7 breast cancer cells with either FGF2, FGF3, FGF4, FGF10, or FGF19. Following activation of the receptor, we quantified the kinase activity dynamics of 44 kinases using a targeted mass spectrometry assay. Our system-wide kinase activity data, supplemented with (phospho)proteomics data, reveal ligand-dependent distinct pathway dynamics, elucidate the involvement of not earlier reported kinases such as MARK, and revise some of the pathway effects on biological outcomes. In addition, logic-based dynamic modeling of the kinome dynamics further verifies the biological goodness-of-fit of the predicted models and reveals BRAF-driven activation upon FGF2 treatment and ARAF-driven activation upon FGF4 treatment.
Collapse
Affiliation(s)
- Tim S Veth
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Chiara Francavilla
- Division of Molecular and Cellular Function, School of Biological Science, and Manchester Breast Centre, Manchester Cancer Research Centre, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, Manchester, UK
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands.
| |
Collapse
|
7
|
Eukaryotic translation initiation factor 4E binding protein 1 (EIF4EBP1) expression in glioblastoma is driven by ETS1- and MYBL2-dependent transcriptional activation. Cell Death Dis 2022; 8:91. [PMID: 35228525 PMCID: PMC8885828 DOI: 10.1038/s41420-022-00883-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/04/2022] [Accepted: 02/10/2022] [Indexed: 12/13/2022]
Abstract
Eukaryotic translation initiation factor 4E binding protein 1 (EIF4EBP1) encodes the 4EBP1 protein, a negative regulator of mRNA translation and a substrate of the mechanistic target of rapamycin (mTOR), whose function and relevance in cancer is still under debate. Here, we analyzed EIF4EBP1 expression in different glioma patient cohorts and investigated its mode of transcriptional regulation in glioblastoma cells. We verified that EIF4EBP1 mRNA is overexpressed in malignant gliomas, including isocitrate dehydrogenase (IDH)-wildtype glioblastomas, relative to non-neoplastic brain tissue in multiple publically available datasets. Our analyses revealed that EIF4EBP1 overexpression in malignant gliomas is neither due to gene amplification nor to altered DNA methylation, but rather results from aberrant transcriptional activation by distinct transcription factors. We found seven transcription factor candidates co-expressed with EIF4EBP1 in gliomas and bound to the EIF4EBP1 promoter, as revealed by chromatin immunoprecipitation (ChIP)-sequencing data. We investigated the ability of these candidates to activate the EIF4EBP1 promoter using luciferase reporter assays, which supported four transcription factors as candidate EIF4EBP1 regulators, namely MYBL2, ETS1, HIF-1A, and E2F6. Finally, by employing transient knock-down experiments to repress either of these transcription factors, we identified MYBL2 and ETS1 as the relevant transcriptional drivers of enhanced EIF4EBP1 expression in malignant glioma cells. Taken together, our findings confirm enhanced expression of EIF4EBP1 in malignant gliomas relative to non-neoplastic brain tissue and characterize the underlying molecular pathomechanisms.
Collapse
|
8
|
Zhang X, Su K, Liu Y, Zhu D, Pan Y, Ke X, Qu Y. Small Molecule Palmatine Targeting Musashi-2 in Colorectal Cancer. Front Pharmacol 2022; 12:793449. [PMID: 35153752 PMCID: PMC8830500 DOI: 10.3389/fphar.2021.793449] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/09/2021] [Indexed: 11/13/2022] Open
Abstract
Musashi-2 (MSI2) is an evolutionally conserved RNA-binding protein and recently considered as an attractive therapeutic target in a wide spectrum of malignancies. However, MSI2-engaged mRNAs are not well profiled, and no MSI2-dependent antagonist is available so far. In the study, we created MSI2 knockout cancer cells and demonstrated that MSI2 is required for the survival of colorectal cancer HCT116 cells but not non-small cell lung cancer A549 cells. In addition, the global profiling of the transcriptome and proteomics of MSI2 knockout colorectal cells revealed 38 candidate MSI2-targeted genes. In a loss–rescue screening, palmatine was identified as a functional MSI2 antagonist inhibiting the MSI2-dependent growth of colorectal cancer cells. Finally, we confirmed that palmatine is directly bound to MSI2 at its C-terminal. Our findings not only indicated MSI2 as a promising therapeutic target of colorectal cancer but also provided a small molecule palmatine as a direct and functional MSI2 antagonist for cancer therapy.
Collapse
Affiliation(s)
- Xue Zhang
- Shanghai Frontiers Science Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kaiyan Su
- Shanghai Frontiers Science Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yifan Liu
- Shanghai Frontiers Science Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Darong Zhu
- Shanghai Frontiers Science Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuting Pan
- Shanghai Frontiers Science Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xisong Ke
- Shanghai Frontiers Science Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Xisong Ke, ; Yi Qu,
| | - Yi Qu
- Shanghai Frontiers Science Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Xisong Ke, ; Yi Qu,
| |
Collapse
|
9
|
Voutsadakis IA. Biomarkers of everolimus efficacy in breast cancer therapy. J Oncol Pharm Pract 2022; 28:945-959. [PMID: 35018844 DOI: 10.1177/10781552211073673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Everolimus is an inhibitor of serine/ threonine kinase mTOR. The drug is approved for the treatment of metastatic ER positive, HER2 negative breast cancers and benefits a subset of patients with these breast cancers in combination with hormonal therapies. Despite extensive efforts, no additional predictive biomarkers to guide therapeutic decisions for everolimus have been introduced in clinical practice. DATA SOURCES This paper discusses predictive biomarkers for everolimus efficacy in breast cancer. A search of the medline and web of science databases was performed using the words "everolimus" and "biomarkers". References of retrieved articles were manually scanned for additional relevant articles. DATA SUMMARY Everolimus benefits a subset of patients with metastatic ER positive, HER2 negative breast cancers in combination with hormonal therapies. Despite extensive efforts no additional predictive biomarkers to guide therapeutic decisions for everolimus therapy have been confirmed for use in clinical practice. However, promising biomarker leads for everolimus efficacy in breast cancer have been suggested and include expression of proteins in the mTOR pathway in ER positive, HER2 negative breast cancers. In HER2 positive cancers PIK3CA mutations, and PTEN expression loss are prognostic. Other clinical predictive biomarkers with more limited data include characteristics derived from whole genome sequencing, subsets of circulating leukocytes and changes in Standardized Uptake Values (SUV) of Positron Emission Tomography (PET) scans. CONCLUSIONS Putative predictive biomarkers for everolimus efficacy in breast cancer patients, both genomic and clinical, deserve further study and could lead to a better selection of responsive patients.
Collapse
Affiliation(s)
- Ioannis A Voutsadakis
- Algoma District Cancer Program, 10066Sault Area Hospital, Sault Ste. Marie, Ontario, Canada, and Section of Internal Medicine, Division of Clinical Sciences, Northern Ontario School of Medicine, Sudbury, Ontario, Canada
| |
Collapse
|
10
|
Sánchez-Guixé M, Hierro C, Jiménez J, Viaplana C, Villacampa G, Monelli E, Brasó-Maristany F, Ogbah Z, Parés M, Guzmán M, Grueso J, Rodriguez O, Oliveira M, Azaro A, Garralda E, Tabernero J, Casanovas O, Scaltriti M, Prat A, Dienstmann R, Nuciforo P, Saura C, Graupera M, Vivancos A, Rodon J, Serra V. High FGFR1-4 mRNA expression levels correlate with response to selective FGFR inhibitors in breast cancer. Clin Cancer Res 2021; 28:137-149. [PMID: 34593528 DOI: 10.1158/1078-0432.ccr-21-1810] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/02/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE FGFR1 amplification (FGFR1amp) is recurrent in metastatic breast cancer (BC) and is associated with resistance to endocrine therapy (ET) and CDK4/6 inhibitors (CDK4/6i). Multi-tyrosine kinase inhibitors (MTKI) and selective pan-FGFR inhibitors (FGFRi) are being developed for FGFR1amp BC. High-level FGFR amplification and protein expression by IHC have identified BC responders to FGFRi or MTKI, respectively. EXPERIMENTAL DESIGN Here, we used preclinical models and patient samples to identify predictive biomarkers to these drugs. We evaluated the antitumor activity of an FGFRi and an MTKI in a collection of seventeen BC patient-derived xenografts (PDXs) harboring amplification in FGFR1/2/3/4 and in ten patients receiving either an FGFRi/MTKI. mRNA levels were measured on FFPE tumor samples using two commercial strategies. Proliferation and angiogenesis were evaluated by detecting Ki-67 and CD31 in viable areas by immunofluorescence. RESULTS High FGFR1-4 mRNA levels but not copy number alteration (CNA) associated with FGFRi response. Treatment with MTKI showed higher response rates than with FGFRi (86% vs 53%), regardless of the FGFR1-4 mRNA levels. FGFR-addicted PDXs exhibited an antiproliferative response to either FGFRi or MTKI, and PDXs exclusively sensitive to MTKI exhibited an additional anti-angiogenic response. Consistently, clinical benefit of MTKI was not associated with high FGFR1-4 mRNA levels and it was observed in patients previously treated with anti-angiogenic drugs. CONCLUSION Tailored therapy with FGFRi in molecularly-selected metastatic BC based on high FGFR1-4 mRNA levels warrants prospective validation in luminal BC CDK4/6i-resistant patients and in TNBC patients without targeted therapeutic options.
Collapse
Affiliation(s)
| | - Cinta Hierro
- Department of Medical Oncology, Vall d'Hebron University Hospital. Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - José Jiménez
- Molecular Pathology, Vall d'Hebron Institute of Oncology
| | - Cristina Viaplana
- Oncology Data Science Group, Vall d'Hebron Institute of Oncology (VHIO)
| | | | - Erika Monelli
- Angiogenesis Unit, Institut d'Investigació Biomèdica de Bellvitge
| | | | - Zighereda Ogbah
- Cancer Genomic Group, Vall Hebron Institute of Oncology (VHIO)
| | - Mireia Parés
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology
| | - Marta Guzmán
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology
| | - Judit Grueso
- Experimental Therapeutics Laboratory, Vall d'Hebron Institute of Oncology (VHIO)
| | - Olga Rodriguez
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology
| | - Mafalda Oliveira
- Medical Oncology, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO)
| | - Analía Azaro
- Molecular Therapeutics Research Unit, Oncology Department, Vall d'Hebron University Hospital
| | | | - Josep Tabernero
- Medical Oncology Department, Vall d'Hebron University Hospital
| | | | | | - Aleix Prat
- Department of Medical Oncology, Hospital Clinic de Barcelona
| | - Rodrigo Dienstmann
- Medical Oncology - Oncology Data Science, Vall d'Hebron Institute of Oncology
| | - Paolo Nuciforo
- Molecular Oncology, Vall d'Hebron Institute of Oncology (VHIO)
| | - Cristina Saura
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron University Hospital, Medical Oncology Department; SOLTI Breast Cancer Research Group
| | - Mariona Graupera
- ProCURE, Oncobell Program, Institut d�'Investigació Biomèdica de Bellvitge
| | - Ana Vivancos
- Cancer Genomic Group, Vall d'Hebron Institute of Oncology (VHIO)
| | - Jordi Rodon
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center
| | - Violeta Serra
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology (VHIO)
| |
Collapse
|
11
|
Park HG, Kim JH, Dancer AN, Kothapalli KS, Brenna JT. The aromatase inhibitor letrozole restores FADS2 function in ER+ MCF7 human breast cancer cells. Prostaglandins Leukot Essent Fatty Acids 2021; 171:102312. [PMID: 34303883 DOI: 10.1016/j.plefa.2021.102312] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 12/26/2022]
Abstract
PURPOSE Plasticity in fatty acid metabolism is increasingly recognized as a major feature influencing cancer progression and efficacy of treatments. Estrogen receptor positive MCF7 human breast cancer cells have long been known to have no FADS2-mediated Δ6-desaturase activity. Our objective was to examine the effect of estrogen and the "antiestrogen" aromatase inhibitor letrozole, on Δ5- and Δ6-desaturase synthesized fatty acids in vitro. METHODS Eicosa-11,14-dienoic acid (20:2n-6), a known substrate for both FADS1 and FADS2, was used as a sentinel of relative FADS2 and FADS1 activity. MCF7 cells and four additional estrogen responsive wild type cell lines (HepG2, SK-N-SH, Y79 and Caco2) were studied. FAME were quantified by GC-FID and structures identified by GCCACI-MS/MS. RESULTS In all five cell lines, estrogen caused a dose dependent decrease in sciadonic acid (5,11,14-20:3, ScA) via apparent inhibition of FADS1 activity, and had no effect on FADS2 catalyzed synthesis of dihomo-gamma linolenic acid (8,11,14-20:3; DGLA). In MCF7 cells, letrozole caused a dose dependent increase in FADS2-catalyzed DGLA synthesis, which plateaued in SK-N-SH cells. CONCLUSION Letrozole restores Δ6-desaturase mediated synthesis of the anti-inflammatory PGE1-precursor DGLA in vitro and is the first endocrine-active agent to have opposing effects on FADS1 and FADS2 catalyzed activities.
Collapse
Affiliation(s)
- Hui Gyu Park
- Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX, 78723, USA
| | - Jae Hun Kim
- Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX, 78723, USA
| | - Andrew N Dancer
- Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX, 78723, USA
| | - Kumar S Kothapalli
- Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX, 78723, USA
| | - J Thomas Brenna
- Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX, 78723, USA.
| |
Collapse
|
12
|
Alboushi L, Hackett AP, Naeli P, Bakhti M, Jafarnejad SM. Multifaceted control of mRNA translation machinery in cancer. Cell Signal 2021; 84:110037. [PMID: 33975011 DOI: 10.1016/j.cellsig.2021.110037] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 05/06/2021] [Indexed: 12/15/2022]
Abstract
The mRNA translation machinery is tightly regulated through several, at times overlapping, mechanisms that modulate its efficiency and accuracy. Due to their fast rate of growth and metabolism, cancer cells require an excessive amount of mRNA translation and protein synthesis. However, unfavorable conditions, such as hypoxia, amino acid starvation, and oxidative stress, which are abundant in cancer, as well as many anti-cancer treatments inhibit mRNA translation. Cancer cells adapt to the various internal and environmental stresses by employing specialised transcript-specific translation to survive and gain a proliferative advantage. We will highlight the major signaling pathways and mechanisms of translation that regulate the global or mRNA-specific translation in response to the intra- or extra-cellular signals and stresses that are key components in the process of tumourigenesis.
Collapse
Affiliation(s)
- Lilas Alboushi
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Angela P Hackett
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Parisa Naeli
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Mostafa Bakhti
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Seyed Mehdi Jafarnejad
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK.
| |
Collapse
|
13
|
Xiao W, Zhang G, Chen B, Chen X, Wen L, Lai J, Li X, Li M, Liu H, Liu J, Han-Zhang H, Lizaso A, Liao N. Characterization of Frequently Mutated Cancer Genes and Tumor Mutation Burden in Chinese Breast Cancer. Front Oncol 2021; 11:618767. [PMID: 33968723 PMCID: PMC8096980 DOI: 10.3389/fonc.2021.618767] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 03/18/2021] [Indexed: 01/21/2023] Open
Abstract
Objectives Various genomic alterations and genomic signatures, including ERBB2 amplification, mutations in PIK3CA, AKT1, and ESR1, and tumor mutational burden (TMB), have become important biomarkers for treatment selection in breast cancer (BC). This study aimed to investigate the mutational features of Chinese early-stage BC patients. Methods Tumors and matched blood samples collected from 589 Chinese patients with early-stage BC were sequenced using a commercial gene panel consisting of 520 cancer-related genes to analyze all types of genomic alterations and estimate the TMB status. Results A total of 18 genes were found to be more frequently mutated (P<0.05) or amplified (P<0.05) in stage T3-4 tumors as compared with T1-2 tumors. A total of 18 genes were found to be differentially mutated (P<0.05) or amplified (P<0.05) in patients with lymph node metastasis than those without lymph node metastasis. Younger patients (≤35 years) were more frequently identified with mutations or gene amplifications in eleven genes (P<0.05). TMB >10mutations/Mb were found in 5.7% of our cohort. Although the TMB was similar for various molecular subtypes between our cohort and the BC cohort of The Cancer Genome Atlas (TCGA) study, the TMB were statistically different for HR+/HER-, HR+/HER2+, and triple-negative subtypes between our cohort and African Americans in the TCGA study. As compared to the TCGA BC cohort, our cohort had a much earlier median age of diagnosis (48 vs. 58 years, P<0.001), and had significantly lower frequency of triple-negative subtype (11.5% vs. 18.4%, P<0.001) and invasive lobular BC (2.4% vs. 19.0%, P<0.001). Further subgroup analyses revealed that mutation rates in various genes including TP53, ERBB2, and PIK3CA were distinct for patients who were younger (≤35 years), had triple-negative or invasive lobular BC in our cohort than in the TCGA cohort. Conclusions This study revealed distinct mutational features of various molecular subtypes of early-stage BC among Chinese patients. Moreover, we provide new insights into the differences in early-stage BC between the East and West.
Collapse
Affiliation(s)
- Weikai Xiao
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Guochun Zhang
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Bo Chen
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiaoqing Chen
- Department of Breast, Foshan Women and Children Hospital, Foshan, China
| | - Lingzhu Wen
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jianguo Lai
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xuerui Li
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Min Li
- Burning Rock Biotech, Guangzhou, China
| | - Hao Liu
- Burning Rock Biotech, Guangzhou, China
| | - Jing Liu
- Burning Rock Biotech, Guangzhou, China
| | | | | | - Ning Liao
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
14
|
Bofin AM, Ytterhus B, Klæstad E, Valla M. FGFR1 copy number in breast cancer: associations with proliferation, histopathological grade and molecular subtypes. J Clin Pathol 2021; 75:459-464. [PMID: 33753561 DOI: 10.1136/jclinpath-2021-207456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/23/2022]
Abstract
AIMS FGFR1 is located on 8p11.23 and regulates cell proliferation and survival. Increased copy number of FGFR1 is found in several cancers including cancer of the breast. ZNF703 is located close to FGFR1 at 8p11-12 and is frequently expressed in the luminal B subtype of breast cancer. Using tissue samples from a well-described cohort of patients with breast cancer with long-term follow-up, we studied associations between FGFR1 copy number in primary breast cancer tumours and axillary lymph node metastases, and proliferation status, molecular subtype and prognosis. Furthermore, we studied associations between copy number increase of FGFR1 and copy number of ZNF703. METHODS We used fluorescence in situ hybridisation for FGFR1 and the chromosome 8 centromere applied to tissue microarray sections from a series of 534 breast cancer cases. RESULTS We found increased copy number (≥4) of FGFR1 in 74 (13.9%) of tumours. Only 6 of the 74 cases with increased copy number were non-luminal. Increased FGFR1 copy number was significantly associated with high Ki-67 status, high mitotic count and high histopathological grade, but not with prognosis. Forty-two (7.9%) cases had mean copy number ≥6. Thirty of these showed ZNF708 copy number ≥6. CONCLUSIONS Our results show that FGFR1 copy number increase is largely found among luminal subtypes of breast cancer, particularly luminal B (HER2-). It is frequently accompanied by increased copy number of ZNF703. FGFR1 copy number increase is associated with high histopathological grade and high proliferation. However, we did not discover an association with prognosis.
Collapse
Affiliation(s)
- Anna M Bofin
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Borgny Ytterhus
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Elise Klæstad
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Marit Valla
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Pathology, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
15
|
Voutsadakis IA. Amplification of 8p11.23 in cancers and the role of amplicon genes. Life Sci 2020; 264:118729. [PMID: 33166592 DOI: 10.1016/j.lfs.2020.118729] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/31/2020] [Accepted: 11/04/2020] [Indexed: 02/08/2023]
Abstract
Copy number alterations are widespread in cancer genomes and are part of the genomic instability underlying the pathogenesis of neoplastic diseases. Recurrent copy number alterations of specific chromosomal loci may result in gains of oncogenes or losses of tumor suppressor genes and become entrenched in the genomic framework of certain types of cancers. The locus at chromosome 8p11.23 presents recurrent amplifications most commonly in squamous lung carcinomas, breast cancers, squamous esophageal carcinomas, and urothelial carcinomas. Amplification is rare in other cancers. The amplified segment involves several described oncogenes that may promote cancer cell survival and proliferation, as well as less well characterized genes that could also contribute to neoplastic processes. Genes proposed to be "drivers" in 8p11.23 amplifications include ZNF703, FGFR1 and PLPP5. Additional genes in the locus that could be functionally important in neoplastic networks include co-chaperone BAG4, lysine methyltransferase NSD3, ASH2L, a member of another methyltransferase complex, MLL and the mRNA processing and translation regulators LSM1 and EIF4EBP1. In this paper, genes located in the amplified segment of 8p11.23 will be examined for their role in cancer and data arguing for their importance for cancers with the amplification will be presented.
Collapse
Affiliation(s)
- Ioannis A Voutsadakis
- Algoma District Cancer Program, Sault Area Hospital, Sault Ste. Marie, Ontario, Canada; Section of Internal Medicine, Division of Clinical Sciences, Northern Ontario School of Medicine, Sudbury, Ontario, Canada.
| |
Collapse
|
16
|
Kothapalli KSD, Park HG, Brenna JT. Polyunsaturated fatty acid biosynthesis pathway and genetics. implications for interindividual variability in prothrombotic, inflammatory conditions such as COVID-19 ✰,✰✰,★,★★. Prostaglandins Leukot Essent Fatty Acids 2020; 162:102183. [PMID: 33038834 PMCID: PMC7527828 DOI: 10.1016/j.plefa.2020.102183] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/29/2020] [Accepted: 09/29/2020] [Indexed: 12/15/2022]
Abstract
COVID-19 symptoms vary from silence to rapid death, the latter mediated by both a cytokine storm and a thrombotic storm. SARS-CoV (2003) induces Cox-2, catalyzing the synthesis, from highly unsaturated fatty acids (HUFA), of eicosanoids and docosanoids that mediate both inflammation and thrombosis. HUFA balance between arachidonic acid (AA) and other HUFA is a likely determinant of net signaling to induce a healthy or runaway physiological response. AA levels are determined by a non-protein coding regulatory polymorphisms that mostly affect the expression of FADS1, located in the FADS gene cluster on chromosome 11. Major and minor haplotypes in Europeans, and a specific functional insertion-deletion (Indel), rs66698963, consistently show major differences in circulating AA (>50%) and in the balance between AA and other HUFA (47-84%) in free living humans; the indel is evolutionarily selective, probably based on diet. The pattern of fatty acid responses is fully consistent with specific genetic modulation of desaturation at the FADS1-mediated 20:3→20:4 step. Well established principles of net tissue HUFA levels indicate that the high linoleic acid and low alpha-linoleic acid in populations drive the net balance of HUFA for any individual. We predict that fast desaturators (insertion allele at rs66698963; major haplotype in Europeans) are predisposed to higher risk and pathological responses to SARS-CoV-2 could be reduced with high dose omega-3 HUFA.
Collapse
Affiliation(s)
- Kumar S D Kothapalli
- Dell Pediatric Research Institute, Depts of Pediatrics, of Chemistry, and of Nutrition, University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX, United States.
| | - Hui Gyu Park
- Dell Pediatric Research Institute, Depts of Pediatrics, of Chemistry, and of Nutrition, University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX, United States.
| | - J Thomas Brenna
- Dell Pediatric Research Institute, Depts of Pediatrics, of Chemistry, and of Nutrition, University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX, United States; Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States.
| |
Collapse
|
17
|
Sasaki N, Gomi F, Yoshimura H, Yamamoto M, Matsuda Y, Michishita M, Hatakeyama H, Kawano Y, Toyoda M, Korc M, Ishiwata T. FGFR4 Inhibitor BLU9931 Attenuates Pancreatic Cancer Cell Proliferation and Invasion While Inducing Senescence: Evidence for Senolytic Therapy Potential in Pancreatic Cancer. Cancers (Basel) 2020; 12:cancers12102976. [PMID: 33066597 PMCID: PMC7602396 DOI: 10.3390/cancers12102976] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 10/06/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Pancreatic ductal adenocarcinoma (PDAC) is a deadly malignancy that is projected to become the leading cause of cancer death by 2050. Fibroblast growth factor receptor 4 (FGFR4) is a transmembrane receptor that is overexpressed in half of PDACs. We determined that its expression in PDAC positively correlated with larger tumor size and more advanced tumor stage, and that BLU9931, a selective FGFR4 inhibitor, reduced PDAC cell proliferation and invasion while promoting their senescence. Quercetin, a senolytic drug, induced cell death in BLU9931-treated cells. We propose that targeting FGFR4 in combination with senolysis could provide a novel therapeutic strategy in patients whose PDAC expresses high FGFR4 levels. Abstract Fibroblast growth factor receptor 4 (FGFR4), one of four tyrosine kinase receptors for FGFs, is involved in diverse cellular processes. Activation of FGF19/FGFR4 signaling is closely associated with cancer development and progression. In this study, we examined the expression and roles of FGF19/FGFR4 signaling in human pancreatic ductal adenocarcinoma (PDAC). In human PDAC cases, FGFR4 expression positively correlated with larger primary tumors and more advanced stages. Among eight PDAC cell lines, FGFR4 was expressed at the highest levels in PK-1 cells, in which single-nucleotide polymorphism G388R in FGFR4 was detected. For inhibition of autocrine/paracrine FGF19/FGFR4 signaling, we used BLU9931, a highly selective FGFR4 inhibitor. Inhibition of signal transduction through ERK, AKT, and STAT3 pathways by BLU9931 reduced proliferation in FGF19/FGFR4 signaling-activated PDAC cells. By contrast, BLU9931 did not alter stemness features, including stemness marker expression, anticancer drug resistance, and sphere-forming ability. However, BLU9931 inhibited cell invasion, in part, by downregulating membrane-type matrix metalloproteinase-1 in FGF19/FGFR4 signaling-activated PDAC cells. Furthermore, downregulation of SIRT1 and SIRT6 by BLU9931 contributed to senescence induction, priming these cells for quercetin-induced death, a process termed senolysis. Thus, we propose that BLU9931 is a promising therapeutic agent in FGFR4-positive PDAC, especially when combined with senolysis (195/200).
Collapse
Affiliation(s)
- Norihiko Sasaki
- Research team for Geriatric Medicine (Vascular Medicine), Tokyo Metropolitan Institute of Gerontology, Sakae-cho 35-2, Itabashi-ku, Tokyo 173-0015, Japan; (N.S.); (M.T.)
| | - Fujiya Gomi
- Division of Aging and Carcinogenesis, Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan;
| | - Hisashi Yoshimura
- Division of Physiological Pathology, Department of Applied Science, School of Veterinary Nursing and Technology, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan; (H.Y.); (M.Y.)
| | - Masami Yamamoto
- Division of Physiological Pathology, Department of Applied Science, School of Veterinary Nursing and Technology, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan; (H.Y.); (M.Y.)
| | - Yoko Matsuda
- Oncology Pathology, Department of Pathology and Host-Defense, Kagawa University, Kagawa 761-0793, Japan;
| | - Masaki Michishita
- Department of Veterinary Pathology, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan;
| | - Hitoshi Hatakeyama
- Department of Comprehensive Education in Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan;
| | - Yoichi Kawano
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School, Tokyo 113-8603, Japan;
| | - Masashi Toyoda
- Research team for Geriatric Medicine (Vascular Medicine), Tokyo Metropolitan Institute of Gerontology, Sakae-cho 35-2, Itabashi-ku, Tokyo 173-0015, Japan; (N.S.); (M.T.)
| | - Murray Korc
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, CA 92697, USA;
| | - Toshiyuki Ishiwata
- Division of Aging and Carcinogenesis, Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan;
- Correspondence: ; Tel.: +81-3-3964-1141 (ext. 4414)
| |
Collapse
|
18
|
8p11.23 Amplification in Breast Cancer: Molecular Characteristics, Prognosis and Targeted Therapy. J Clin Med 2020; 9:jcm9103079. [PMID: 32987805 PMCID: PMC7598661 DOI: 10.3390/jcm9103079] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Amplification of the locus 8p11.23 has been observed in cancer and genes of this locus, including ZNF703 (Zinc finger protein 703), NSD3 (Nuclear receptor binding SET domain protein 3) and FGFR1 (Fibroblast growth factor receptor 1), have been put forward as dominant oncogenes conferring pathophysiologic benefit in cancers with amplifications. However, there is no consensus on the importance of each of them or any other genes of the amplicon or even a consensus on which genes are part of the amplicon. METHODS Publicly available data were used to characterize the locus amplified at 8p11.23 and derive information on each of the genes and roles as oncogenes. The frequency of the amplifications in the locus was examined in the cBioportal platform, and expression levels of the amplicon genes in amplified cases were derived from genomic studies reported in the platform. Examination of the influence of mRNA expressions of each gene of the locus for Recurrence-free survival in breast cancer was performed using K-M plotter. RESULTS The 8p11.23 amplicon is present in higher frequency in squamous cell lung carcinomas, breast cancers and bladder carcinomas and is only rarely observed in other cancers. The most frequently amplified genes within the amplicon vary between different types of cancers. In breast cancer, amplified cases are most commonly of the luminal B type. Amplified genes are not always over-expressed and there is a low correlation of amplification with over-expression in amplicon genes with variation between genes. The presence of the amplicon does not influence the aneuploidy score or the tumor mutation burden of breast cancers. Regarding prognosis, the two genes of the amplicon whose mRNA hyper-expression portends adverse relapse-free survival in breast cancer are EIF4EBP1 (Eukaryotic transcription initiation factor 4E binding protein 1) and LSM1 (LSM1 homolog, mRNA degradation associated). CONCLUSION Besides the previously proposed genes to play a role as dominant oncogenes in the 8p11.23 cancer amplified locus, other genes may also be important in breast cancer based on the high correlation of their amplification and mRNA expression and adverse prognosis conferred by over-expression, consistent with an oncogenic role.
Collapse
|
19
|
Aleksakhina SN, Kramchaninov MM, Mikushina AD, Kubrina SE, Petkau VV, Ivantsov AO, Moiseyenko VM, Imyanitov EN, Iyevleva AG. CCND1 and FGFR1 gene amplifications are associated with reduced benefit from aromatase inhibitors in metastatic breast cancer. Clin Transl Oncol 2020; 23:874-881. [PMID: 32880048 DOI: 10.1007/s12094-020-02481-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/18/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE Endocrine therapy is a mainstay for the treatment of hormone receptor-positive breast cancer (BC); however, only a fraction of patients experience a pronounced response to antagonists of estrogen signaling. There is a need to identify predictors for efficacy of this treatment. METHODS This study included 138 patients with newly diagnosed metastatic BC, who received upfront endocrine therapy. Archival biopsy specimens were tested for CCND1 and FGFR1 gene amplification and mRNA expression by PCR-based methods. RESULTS CCND1 and FGFR1 amplification was detected in 24 (17.9%) and 28 (20.9%) of 134 evaluable cases, respectively; 9 carcinomas had concurrent alterations of these two genes. Presence of amplification in at least one locus was more common in tumors of higher grade (p = 0.018) and was associated with higher Ki-67 proliferation index (p = 0.036). CCND1 gene amplification was associated with shorter progression-free survival (PFS) in patients receiving aromatase inhibitors (AI) [16.0 months vs. 32.4 months, HR = 3.16 (95% CI 1.26-7.93), p = 0.014]. FGFR1 status did not significantly affect PFS of AI-treated women; however, objective response to AI was observed less frequently in FGFR1-amplified BC as compared to cases with normal FGFR1 copy number [2/15 (13.3%) vs. 22/46 (47.8%), p = 0.031]. Meanwhile, CCND1/FGFR1 gene status did not influence the outcome of tamoxifen-treated patients. CONCLUSION Presence of CCND1 and/or FGFR1 amplification is associated with worse outcomes of AI therapy in patients with metastatic BC.
Collapse
Affiliation(s)
- S N Aleksakhina
- Laboratory of Molecular Oncology, N.N. Petrov Institute of Oncology, Saint-Petersburg, Russia, 197758
| | | | - A D Mikushina
- Laboratory of Molecular Oncology, N.N. Petrov Institute of Oncology, Saint-Petersburg, Russia, 197758
| | - S E Kubrina
- Laboratory of Molecular Oncology, N.N. Petrov Institute of Oncology, Saint-Petersburg, Russia, 197758
| | - V V Petkau
- Sverdlovskiy Regional Oncological Hospital, Ekatherinburg, Russia, 620036
| | - A O Ivantsov
- Laboratory of Molecular Oncology, N.N. Petrov Institute of Oncology, Saint-Petersburg, Russia, 197758
| | | | - E N Imyanitov
- Laboratory of Molecular Oncology, N.N. Petrov Institute of Oncology, Saint-Petersburg, Russia, 197758.,Saint-Petersburg Pediatric Medical University, Saint-Petersburg, Russia, 194100.,I.I. Mechnikov North-Western Medical University, Saint-Petersburg, Russia, 191015
| | - A G Iyevleva
- Laboratory of Molecular Oncology, N.N. Petrov Institute of Oncology, Saint-Petersburg, Russia, 197758. .,Saint-Petersburg Pediatric Medical University, Saint-Petersburg, Russia, 194100.
| |
Collapse
|
20
|
Li SQ, Feng J, Yang M, Ai XP, He M, Liu F. Sauchinone: a prospective therapeutic agent-mediated EIF4EBP1 down-regulation suppresses proliferation, invasion and migration of lung adenocarcinoma cells. J Nat Med 2020; 74:777-787. [PMID: 32666278 DOI: 10.1007/s11418-020-01435-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/09/2020] [Indexed: 12/15/2022]
Abstract
Lung adenocarcinoma (LUAD) is the top prevalent histological kind of lung cancer worldwide. Recent evidences have demonstrated that Sauchinone plays an anticancer role in tumor cell invasion and migration. Therefore, we performed this investigation to explain the potential role of Sauchinone in LUAD as well as the potential mechanism involved. Cell counting kit 8 (CCK-8) and transwell experiments were implemented to measure the proliferative, invasive and migratory abilities of LUAD cells. qRT-PCR and Western blot were performed to detect the transfection efficiency of si-EIF4EBP1s. Additionally, Western blot was also implemented to evaluate the effect of Sauchinone on EIF4EBP1 expression level as well as cell cycle-related proteins. Our findings showed that Sauchinone remarkably suppressed the proliferative ability of LUAD cells in a dose-dependent and time-dependent manner. EIF4EBP1 was a candidate target gene of Sauchinone. EIF4EBP1 expression was increased in LUAD tissues, and its high expression induced a poorer prognosis of LUAD patients. EIF4EBP1 expression was positively associated with cell cycle in LUAD. Sauchinone treatment attenuated EIF4EBP1 expression and cell cycle-related protein levels. Knockdown of EIF4EBP1 repressed the proliferation, invasion and migration of LUAD cells; furthermore, Sauchinone stimulation enforced its inhibitory effect. Meanwhile, the treatment of Sauchinone intensified the arrest of cell cycle induced by EIF4EBP1 knockdown. To sum up, our discovery indicated that Sauchinone exerts an anticancer role through down-regulating EIF4EBP1 and mediating cell cycle in LUAD.
Collapse
Affiliation(s)
- Sheng-Qian Li
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, No.63 Wenhua Road, Shunqing District, Nanchong, 637000, Sichuan, People's Republic of China
| | - Jing Feng
- Department of Pharmacy, Nanchong Second People's Hospital, No.55, Baituba Road, Shunqing District, Nanchong, 637000, Sichuan, People's Republic of China
| | - Ming Yang
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, No.63 Wenhua Road, Shunqing District, Nanchong, 637000, Sichuan, People's Republic of China
| | - Xiao-Peng Ai
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, No.63 Wenhua Road, Shunqing District, Nanchong, 637000, Sichuan, People's Republic of China
| | - Mei He
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, No.63 Wenhua Road, Shunqing District, Nanchong, 637000, Sichuan, People's Republic of China
| | - Fu Liu
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, No.63 Wenhua Road, Shunqing District, Nanchong, 637000, Sichuan, People's Republic of China.
| |
Collapse
|
21
|
Distinct Roles of mTOR Targets S6K1 and S6K2 in Breast Cancer. Int J Mol Sci 2020; 21:ijms21041199. [PMID: 32054043 PMCID: PMC7072743 DOI: 10.3390/ijms21041199] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 12/12/2022] Open
Abstract
The mechanistic target of rapamycin (mTOR) is a master regulator of protein translation, metabolism, cell growth and proliferation. It forms two complexes, mTOR complex 1 (mTORC1) and 2 (mTORC2). mTORC1 is frequently deregulated in many cancers, including breast cancer, and is an important target for cancer therapy. The immunosuppressant drug rapamycin and its analogs that inhibit mTOR are currently being evaluated for their potential as anti-cancer agents, albeit with limited efficacy. mTORC1 mediates its function via its downstream targets 40S ribosomal S6 kinases (S6K) and eukaryotic translation initiation factor 4E (eIF4E)-binding protein 1 (4E-BP1). There are two homologs of S6K: S6K1 and S6K2. Most of the earlier studies focused on S6K1 rather than S6K2. Because of their high degree of structural homology, it was generally believed that they behave similarly. Recent studies suggest that while they may share some functions, they may also exhibit distinct or even opposite functions. Both homologs have been implicated in breast cancer, although how they contribute to breast cancer may differ. The purpose of this review article is to compare and contrast the expression, structure, regulation and function of these two S6K homologs in breast cancer.
Collapse
|
22
|
Zhu J, Wang M, Hu D. Development of an autophagy-related gene prognostic signature in lung adenocarcinoma and lung squamous cell carcinoma. PeerJ 2020; 8:e8288. [PMID: 31938577 PMCID: PMC6953332 DOI: 10.7717/peerj.8288] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 11/24/2019] [Indexed: 12/15/2022] Open
Abstract
Purpose There is plenty of evidence showing that autophagy plays an important role in the biological process of cancer. The purpose of this study was to establish a novel autophagy-related prognostic marker for lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC). Methods The mRNA microarray and clinical data in The Cancer Genome Atlas (TCGA) were analyzed by using a univariate Cox proportional regression model to select candidate autophagy-related prognostic genes. Bioinformatics analysis of gene function using the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) platforms was performed. A multivariate Cox proportional regression model helped to develop a prognostic signature from the pool of candidate genes. On the basis of this prognostic signature, we could divide LUAD and LUSC patients into high-risk and low-risk groups. Further survival analysis demonstrated that high-risk patients had significantly shorter disease-free survival (DFS) than low-risk patients. The signature which contains six autophagy-related genes (EIF4EBP1, TP63, BNIP3, ATIC, ERO1A and FADD) showed good performance for predicting the survival of LUAD and LUSC patients by having a better Area Under Curves (AUC) than other clinical parameters. Its efficacy was also validated by data from the Gene Expression Omnibus (GEO) database. Conclusion Collectively, the prognostic signature we proposed is a promising biomarker for monitoring the outcomes of LUAD and LUSC.
Collapse
Affiliation(s)
- Jie Zhu
- Department of Intensive Care Unit, The People's Hospital of Tongliang District, Chongqing, China
| | - Min Wang
- Department of Respiratory and Geriatrics, Chongqing Public Health Medical Center, Chongqing, China
| | - Daixing Hu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
23
|
Nakamura N, Sloper DT, Del Valle PL. Gene expression profiling of cultured mouse testis fragments treated with ethinylestradiol. J Toxicol Sci 2019; 44:667-679. [PMID: 31588058 DOI: 10.2131/jts.44.667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The assessment of xenobiotic-induced testicular toxicity is important in drug development. Nonetheless, in vitro models to test drugs and chemicals that may cause testicular toxicity are lacking, requiring the continued use of animal models for those studies. We previously evaluated an in vitro mouse testis organ culture system using ethinylestradiol (EE), a well-studied testicular toxicant, and demonstrated a dose-dependent relationship between adverse effects to germ cell differentiation and increasing EE concentrations. However, we terminated that study after 20 days of culture due to oxygen deficiency during germ cell differentiation. Therefore, in the current study, we aimed to identify gene(s) with potential for supporting the histopathological evaluations of testicular toxicity using in vitro testis organ culture system. We cultured testis fragments obtained from mice at postnatal day (PND) 5 in α-Minimal Essential Medium containing 40 mg/mL AlbuMAX™ I and treated them with 0.01 or 1 nM EE on day 1 of culture. On day 20, we collected testis fragments for RNA sequencing analysis and quantitative polymerase chain reaction (qPCR). We found that phospholipase C, zeta 1 and testis-specific serine kinase 4 genes, that are involved in spermatogenesis and predominantly expressed in the testis, were significantly reduced in testis fragments treated with the highest concentration of EE. Also, cytochrome P450, family 26, subfamily b, polypeptide 1 (Cyp26b1) and interleukin 16 (Il16) were up-regulated in the highest EE-treated groups. Further studies are needed to confirm the variations of these gene expression using other testicular toxicants.
Collapse
Affiliation(s)
- Noriko Nakamura
- Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, USA
| | - Daniel T Sloper
- Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, USA
| | - Pedro L Del Valle
- Center for Drug Evaluation and Research, Food and Drug Administration, USA
| |
Collapse
|
24
|
Vakili Saatloo M, Aghbali AA, Koohsoltani M, Yari Khosroushahi A. Akt1 and Jak1 siRNA based silencing effects on the proliferation and apoptosis in head and neck squamous cell carcinoma. Gene 2019; 714:143997. [PMID: 31348981 DOI: 10.1016/j.gene.2019.143997] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/22/2019] [Accepted: 07/22/2019] [Indexed: 01/14/2023]
Abstract
Based on Akt1 and Jak1 key roles in apoptosis and proliferation of many cancers, the aim of this study was to find a new gene therapy strategy by silencing of these main anti-apoptotic genes for HNSCC treatment. Cancerous HN5 and normal HUVEC cell lines were treated with Akt1 and Jak1 siRNAs alone or with each other combined with/without cisplatin. The MTS, flow cytometry, 4',6-diamidino-2-phenylindole staining, real-time PCR and ELISA methods were utilized in this study. The highest percentage of apoptosis was observed in the treatment of Jak1 siRNA/cisplatin group in cancerous HN5 cells (96.5%) where this treatment showed 12.84% apoptosis in normal HUVEC cell line. Cell viability reduced significantly to 64.57% after treatment with Akt1 siRNA in HN5 treated group. Knocking down Akt1 and Jak1 genes using siRNAs could increase levels of apoptosis and reduce proliferation rate in HNSCC indicating the powerful effects of these genes siRNAs with or without chemotherapeutic agents in HNSCC treatment. In conclusion, the combination of siRNA-mediated gene-silencing strategy can be considered as a valuable and safe approach for sensitizing cancer cells to chemotherapeutic agents thus proposed further studies regarding this issue to approve some siRNA based therapeutics for using in clinic.
Collapse
Affiliation(s)
- Maedeh Vakili Saatloo
- Oral and Maxillofacial Department of Pathology, Faculty of Dentistry, Urmia Medical University, Urmia, West Azerbaijan, Iran
| | - Amir Ala Aghbali
- Oral and Maxillofacial Department of Pathology, Faculty of Dentistry, Tabriz Medical University, Tabriz, East Azerbaijan, Iran.
| | - Maryam Koohsoltani
- Oral and Maxillofacial Department of Pathology, Faculty of Dentistry, Tabriz Medical University, Tabriz, East Azerbaijan, Iran
| | - Ahmad Yari Khosroushahi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
25
|
Vo DT, Karanam NK, Ding L, Saha D, Yordy JS, Giri U, Heymach JV, Story MD. miR-125a-5p Functions as Tumor Suppressor microRNA And Is a Marker of Locoregional Recurrence And Poor prognosis in Head And Neck Cancer. Neoplasia 2019; 21:849-862. [PMID: 31325708 PMCID: PMC6642270 DOI: 10.1016/j.neo.2019.06.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/03/2019] [Accepted: 06/12/2019] [Indexed: 01/22/2023] Open
Abstract
MicroRNAs (miRNAs) are short single-stranded RNAs, measuring 21 to 23 nucleotides in length and regulate gene expression at the post-transcriptional level through mRNA destabilization or repressing protein synthesis. Dysregulation of miRNAs can lead to tumorigenesis through changes in regulation of key cellular processes such as cell proliferation, cell survival, and apoptosis. miR-125a-5p has been implicated as a tumor suppressor miRNA in malignancies such as non-small cell lung cancer and colon cancer. However, the role of miR-125a-5p has not been fully investigated in head and neck squamous cell carcinoma (HNSCC). We performed microRNA microarray profiling of HNSCC tumor samples obtained from a prospective clinical trial evaluating the role of postoperative radiotherapy in head and neck cancer. We also mined through The Cancer Genome Atlas to evaluate expression and survival data. Biological experiments, including cell proliferation, flow cytometry, cell migration and invasion, clonogenic survival, and fluorescent microscopy, were conducted using HN5 and UM-SCC-22B cell lines. miR-125a-5p downregulation was associated with recurrent disease in a panel of high-risk HNSCC and then confirmed poor survival associated with low expression in HNSCC via the Cancer Genome Atlas, suggesting that miR-125a-5p acts as a tumor suppressor miRNA. We then demonstrated that miR-125a-5p regulates cell proliferation through cell cycle regulation at the G1/S transition. We also show that miR-125a-5p can alter cell migration and modulate sensitivity to ionizing radiation. Finally, we identified putative mRNA targets of miR-125a-5p, including ERBB2, EIF4EBP1, and TXNRD1, which support the tumor suppressive mechanism of miR-125a-5p. Functional validation of ERBB2 suggests that miR-125a-5p affects cell proliferation and sensitivity to ionizing radiation, in part, through ERBB2. Our data suggests that miR-125a-5p acts as a tumor suppressor miRNA, has potential as a diagnostic tool and may be a potential therapeutic target for the management and treatment of squamous cell carcinoma of the head and neck.
Collapse
Affiliation(s)
- Dat T Vo
- Department of Radiation Oncology, Division of Molecular Radiation Biology, UT Southwestern Medical Center, Dallas, TX 75390
| | - Narasimha Kumar Karanam
- Department of Radiation Oncology, Division of Molecular Radiation Biology, UT Southwestern Medical Center, Dallas, TX 75390
| | - Lianghao Ding
- Department of Radiation Oncology, Division of Molecular Radiation Biology, UT Southwestern Medical Center, Dallas, TX 75390
| | - Debabrata Saha
- Department of Radiation Oncology, Division of Molecular Radiation Biology, UT Southwestern Medical Center, Dallas, TX 75390
| | - John S Yordy
- Department of Radiation Oncology, Division of Molecular Radiation Biology, UT Southwestern Medical Center, Dallas, TX 75390
| | - Uma Giri
- Department of Thoracic Head and Neck Medical Oncology, UT MD Anderson Cancer Center, Houston, TX 77030
| | - John V Heymach
- Department of Thoracic Head and Neck Medical Oncology, UT MD Anderson Cancer Center, Houston, TX 77030
| | - Michael D Story
- Department of Radiation Oncology, Division of Molecular Radiation Biology, UT Southwestern Medical Center, Dallas, TX 75390.
| |
Collapse
|
26
|
Campone M, Bachelot T, Penault-Llorca F, Pallis A, Agrapart V, Pierrat MJ, Poirot C, Dubois F, Xuereb L, Bossard CJ, Guigal-Stephan N, Lockhart B, Andre F. A phase Ib dose allocation study of oral administration of lucitanib given in combination with fulvestrant in patients with estrogen receptor-positive and FGFR1-amplified or non-amplified metastatic breast cancer. Cancer Chemother Pharmacol 2019; 83:743-753. [DOI: 10.1007/s00280-018-03765-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 12/27/2018] [Indexed: 11/25/2022]
|
27
|
Vranic S, Palazzo J, Sanati S, Florento E, Contreras E, Xiu J, Swensen J, Gatalica Z. Potential Novel Therapy Targets in Neuroendocrine Carcinomas of the Breast. Clin Breast Cancer 2018; 19:131-136. [PMID: 30268765 DOI: 10.1016/j.clbc.2018.09.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/10/2018] [Accepted: 09/02/2018] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Neuroendocrine carcinoma (NEC) of the breast is a rare, special type of breast cancer, reportedly constituting 2% to 5% of all breast cancers. Although breast NEC does not have a specific targeted therapy, several new targeted therapies based on specific biomarkers were recently investigated in the NEC of lung and in other types of breast carcinoma, which may provide guidance to their feasibility in breast NEC. MATERIALS AND METHODS Twenty breast NECs were profiled for biomarkers of therapy including antibody-drug conjugates (DLL3, TROP-2, and FOLR1), histone deacetylase (H3K36Me3) inhibitors, tropomyosin receptor kinases (NTRK1/2/3 gene fusions) targeted inhibitors, alkylating agents (MGMT), and immune checkpoint inhibitors (PD-L1, TMB, and MSI) using immunohistochemistry and DNA/RNA next-generation sequencing assays. RESULTS Predictive expression of TROP-2, FOLR1, and H3K36Me3 were detected in different subsets of tumors and may pave the way for development of novel targeted therapies in some patients with breast NECs. There was no evidence of DLL3 expression, NTRK gene fusions, or MGMT hypermethylation. No biomarkers predictive of immune checkpoint inhibitor efficacy (programmed death-ligand 1 expression, tumor mutational burden, microsatellite instability) were identified. FGFR and CCND1 gene amplifications were detected in isolated cases. CONCLUSIONS This study identified several potential targets for novel therapies in breast NEC, including farletuzumab and mirvetuximab soravtansine (FOLR1), sacituzumab govitecan (TROP-2), and HDAC inhibitors (H3K36Me3). In some cases, CCND1 gene amplification may indicate the usefulness of investigational therapies. The reported results should serve as an early indication of potential clinical relevance in selected patients with breast NEC.
Collapse
Affiliation(s)
- Semir Vranic
- College of Medicine, Qatar University, Doha, Qatar
| | - Juan Palazzo
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University Hospital, Philadelphia, PA
| | - Souzan Sanati
- Division of Anatomic and Molecular Pathology, Washington University School of Medicine, Saint Louis, MO
| | | | | | | | | | | |
Collapse
|
28
|
Huang J, Song Q, Wang H, Wang H, Xu C, Wang X, Jiang Z, Wang Y, Xu Y, Su J, Zeng H, Tan L, Zhu H, Jiang D, Hou Y. Poor prognostic impact of FGF4 amplification in patients with esophageal squamous cell carcinoma. Hum Pathol 2018; 80:210-218. [PMID: 29936056 DOI: 10.1016/j.humpath.2018.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 06/04/2018] [Accepted: 06/09/2018] [Indexed: 12/09/2022]
Abstract
In the present study, we aimed to determine the prognostic impact and clinicopathological feature of FGF4 amplification in patients with esophageal squamous cell carcinoma (ESCC). Fluorescence in situ hybridization with FGF4 probe was analyzed using tissue microarray consisting of representative cores of 267 ESCC cases. FGF4 amplification was observed in 52.8% (141/267) of patients. Patients with FGF4 amplification showed a significantly shorter disease-free survival (DFS) or disease-specific overall survival (OS) compared with those without FGF4 amplification (both P < .05). Moreover, FGF4 amplification was an independent prognostic factor (DFS, P = .036; OS, P = .021) along with clinical stage and lymph node metastasis in multivariate analysis. Among stage I-II or III patients whose DFS was greater than or equal to 24 months (n = 125 or 32), patients with FGF4 amplification showed a significantly worse prognosis (OS, P = .027 or P = .010). Moreover, the survival curve of stage I-II patients with FGF4 amplification was identical to stage III patients without FGF4 amplification (DFS, P = .643; OS, P = .707). Taken together, FGF4 amplification was an independent prognostic factor in ESCC patients, and ESCC might have potentially been upstaged by FGF4 amplification. Therefore, FGF4 amplification in combination with clinical stage could be used as a relatively accurate predictor for the 5-year probability of death and recurrence for ESCC patients.
Collapse
Affiliation(s)
- Jie Huang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Qi Song
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Hao Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Haixing Wang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Chen Xu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Xin Wang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Zhengzeng Jiang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Yanqiu Wang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Yifan Xu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Jieakesu Su
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Haiying Zeng
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Lijie Tan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Hongguang Zhu
- Department of Pathology, School of Basic Medical Sciences & Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Dongxian Jiang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China.
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China; Department of Pathology, School of Basic Medical Sciences & Zhongshan Hospital, Fudan University, Shanghai 200032, PR China; Department of Pathology, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, PR China.
| |
Collapse
|
29
|
Felicio PS, Bidinotto LT, Melendez ME, Grasel RS, Campacci N, Galvão HCR, Scapulatempo-Neto C, Dufloth RM, Evangelista AF, Palmero EI. Genetic alterations detected by comparative genomic hybridization in BRCAX breast and ovarian cancers of Brazilian population. Oncotarget 2018; 9:27525-27534. [PMID: 29938003 PMCID: PMC6007956 DOI: 10.18632/oncotarget.25537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 05/14/2018] [Indexed: 12/19/2022] Open
Abstract
Background About 5–10% of breast/ovarian cancers are hereditary. However, for a large proportion of cases (around 50%), the genetic cause remains unknown. These cases are grouped in a separated BRCAX category. The aim of this study was to identify genomic alterations in BRCA1/BRCA2 wild-type tumor samples from women with family history strongly suggestive of hereditary breast/ovarian cancer. Results A cohort of 31 Brazilian women was included in the study. Using the GISTIC algorithm, we identified 20 regions with genomic gains and 31 with losses. The most frequent altered regions were 1q21.2, 6p22.1 and 8p23.3 in breast tumors and Xq26 and Xp22.32-22.31 among the ovarian cancer cases. An interesting association identified was the loss of 22q13.31-13.32 and the presence of ovarian cancer cases. Among the genes present in the frequently altered regions, we found FGFR1, NSMCE2, CTTN, CRLF2, ERBB2, STARD3, MIR3201 and several genes of RAET and ULBP family. Conclusions In conclusion, our results suggest that alterations on chromosomes 1, 6, 8 and X are common on BRCAX tumors and that the loss on 22q can be associated with the presence of ovarian cancer. Methods DNA copy number alterations were analyzed by 60K array comparative genomic hybridization in breast and ovarian FFPE tumors.
Collapse
Affiliation(s)
- Paula Silva Felicio
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SP, Brazil
| | - Lucas Tadeu Bidinotto
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SP, Brazil.,Barretos School of Health Sciences-FACISB, Barretos, SP, Brazil
| | | | | | - Natalia Campacci
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SP, Brazil
| | | | | | | | | | - Edenir Inêz Palmero
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SP, Brazil.,Barretos School of Health Sciences-FACISB, Barretos, SP, Brazil
| |
Collapse
|
30
|
Cloning and functional characterization of human Pak1 promoter by steroid hormones. Gene 2017; 646:120-128. [PMID: 29274909 DOI: 10.1016/j.gene.2017.12.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/29/2017] [Accepted: 12/20/2017] [Indexed: 12/21/2022]
Abstract
P21-activated kinase 1 (Pak1) is known to be involved in a plethora of functions including cell growth, survival and can lead to cell transformation and tumor progression especially in breast tissue. Multiple studies have shown Pak1 dysregulation as a change in DNA copy number as well as gene expression levels, suggesting many regulatory mechanisms at transcriptional and translational level. However, very little is known about the transcriptional regulation of the human Pak1 promoter. Here, we focus on Pak1 promoter regulation by steroid hormones along with their respective receptors that are also crucial players in breast tissue function and tumorigenesis. Our results show high Pak1 expression in breast cancer cell lines and in breast tumor tissue. It also suggests that Pak1 is hormone responsive, whose expression can be modulated by steroid hormones namely, estrogen in the form of 17β-estradiol (E2) and progesterone (P4). Sequence analysis of a 3.2kb Pak1 proximal promoter region shows the presence of PRE (progesterone response element) and ERE (estrogen response element) half sites, that were further cloned and characterized. Results from promoter analysis showed that Pak1 promoter activity is mediated by PR via its binding to PRE present on the Pak1 promoter that was further reaffirmed in vitro by electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation assay (ChIP). Our results together suggest that it is the PR isoform B regulates Pak1 promoter. To our knowledge, this is the first study to report the detailed characterization and transcriptional regulation of the human Pak1 promoter by steroid hormones.
Collapse
|
31
|
Thillai K, Lam H, Sarker D, Wells CM. Deciphering the link between PI3K and PAK: An opportunity to target key pathways in pancreatic cancer? Oncotarget 2017; 8:14173-14191. [PMID: 27845911 PMCID: PMC5355171 DOI: 10.18632/oncotarget.13309] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/27/2016] [Indexed: 02/07/2023] Open
Abstract
The development of personalised therapies has ushered in a new and exciting era of cancer treatment for a variety of solid malignancies. Yet pancreatic ductal adenocarcinoma (PDAC) has failed to benefit from this paradigm shift, remaining notoriously refractory to targeted therapies. Chemotherapy is the cornerstone of management but can offer only modest survival benefits of a few months with 5-year survival rates rarely exceeding 3%. Despite these disappointing statistics, significant strides have been made towards understanding the complex biology of pancreatic cancer, with deep genomic sequencing identifying novel genetic aberrations and key signalling pathways. The PI3K-PDK1-AKT pathway has received great attention due to its prominence in carcinogenesis. However, efforts to target several components of this network have resulted in only a handful of drugs demonstrating any survival benefit in solid tumors; despite promising pre-clinical results. p-21 activated kinase 4 (PAK4) is a gene that is recurrently amplified or overexpressed in PDAC and both PAK4 and related family member PAK1, have been linked to aberrant RAS activity, a common feature in pancreatic cancer. As regulators of PI3K, PAKs have been highlighted as a potential prognostic marker and therapeutic target. In this review, we discuss the biology of pancreatic cancer and the close interaction between PAKs and the PI3K pathway. We also suggest proposals for future research that may see the development of effective targeted therapies that could finally improve outcomes for this disease.
Collapse
Affiliation(s)
- Kiruthikah Thillai
- Division of Cancer Studies, King's College London, London, United Kingdom.,Department of Medical Oncology, Guy's and St Thomas' NHS Trust, London, United Kingdom
| | - Hoyin Lam
- Division of Cancer Studies, King's College London, London, United Kingdom
| | - Debashis Sarker
- Division of Cancer Studies, King's College London, London, United Kingdom.,Department of Medical Oncology, Guy's and St Thomas' NHS Trust, London, United Kingdom
| | - Claire M Wells
- Division of Cancer Studies, King's College London, London, United Kingdom
| |
Collapse
|
32
|
Zhang X, Kong M, Zhang Z, Xu S, Yan F, Wei L, Zhou J. FGF19 genetic amplification as a potential therapeutic target in lung squamous cell carcinomas. Thorac Cancer 2017; 8:655-665. [PMID: 28906590 PMCID: PMC5668513 DOI: 10.1111/1759-7714.12504] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/08/2017] [Accepted: 08/09/2017] [Indexed: 11/29/2022] Open
Abstract
Background Although FGF19 gene aberrations are associated with carcinogenesis and progression in human cancers, the roles of FGF19 genetic amplification and expression in Chinese patients with lung squamous cell carcinoma (LSCC) and FGF19 amplification as a potential therapeutic target for LSCC are not well understood. Methods Fluorescence in situ hybridization analysis and quantitative real‐time‐PCR was used to detect FGF19 genetic amplification and FGF19 messenger RNA expression in LSCC tumor and paired adjacent samples. Small interfering RNA and short hairpin RNA were used to knockdown FGF19 in vitro and in vivo. Results FGF19 amplification was identified in a subset of LSCC patients (37.5%, 15/40), and upregulation of FGF19 expression was found in 60% (24/40) of tumor tissues compared to adjacent non‐tumorous tissues. Correlation analysis with clinicopathologic parameters showed that FGF19 upregulation was significantly associated with heavy smoking. Small interfering RNA knockdown of FGF19 led to the significant inhibition of cell growth and induced apoptosis in LSCC cells carrying the amplified FGF19 gene, but these effects was not observed in non‐amplified LSCC cells. Interfering FGF19 expression with short hairpin RNA also resulted in tumor growth inhibition and induced apoptosis in LSCC xenografts with amplified FGF19 in tumor cells. Conclusion Our results suggested that FGF19 signaling activation is required for cell growth and survival of FGF19 amplified LSCC cells, both in vitro and in vivo. Intervention of FGF19 activation could be a potential therapeutic strategy for LSCC patients with FGF19 amplification.
Collapse
Affiliation(s)
- Xiaochen Zhang
- Department of Medical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Mei Kong
- Department of Pathology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhen Zhang
- Department of Oncology, Hangzhou Cancer Hospital, Hangzhou, China
| | - Suzhen Xu
- Department of Medical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Feifei Yan
- Department of Medical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Liyuan Wei
- Department of Medical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jianying Zhou
- Department of Respiratory Disease, Thoracic Disease Centre, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
33
|
Relevance of chromosomal band 11q13 in oral carcinogenesis: An update of current knowledge. Oral Oncol 2017; 72:7-16. [DOI: 10.1016/j.oraloncology.2017.04.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/24/2017] [Indexed: 12/14/2022]
|
34
|
Abstract
Fibroblast growth factors (FGFs) and their receptors (FGFRs) regulate numerous cellular processes. Deregulation of FGFR signalling is observed in a subset of many cancers, making activated FGFRs a highly promising potential therapeutic target supported by multiple preclinical studies. However, early-phase clinical trials have produced mixed results with FGFR-targeted cancer therapies, revealing substantial complexity to targeting aberrant FGFR signalling. In this Review, we discuss the increasing understanding of the differences between diverse mechanisms of oncogenic activation of FGFR, and the factors that determine response and resistance to FGFR targeting.
Collapse
Affiliation(s)
- Irina S Babina
- Breast Cancer Now Research Centre, Institute of Cancer Research, London SW3 6JB, UK
| | - Nicholas C Turner
- Breast Cancer Now Research Centre, Institute of Cancer Research, London SW3 6JB, UK
- Breast Unit, The Royal Marsden Hospital, Fulham Road, London SW3 6JJ, UK
| |
Collapse
|
35
|
Abstract
Eukaryotic translation initiation factor 4E (eIF4E)-binding protein 1 (4E-BP1) is a member of a family of translation repressor proteins, and a well-known substrate of mechanistic target of rapamycin (mTOR) signaling pathway. Phosphorylation of 4E-BP1 causes its release from eIF4E to allow cap-dependent translation to proceed. Recently, 4E-BP1 was shown to be phosphorylated by other kinases besides mTOR, and overexpression of 4E-BP1 was found in different human carcinomas. In this review, we summarize the novel findings on mTOR independent 4E-BP1 phosphorylation in carcinomas. The implications of overexpression and possible multi-function of 4E-BP1 are also discussed.
Collapse
Affiliation(s)
- Xiaoyu Qin
- a Department of Oncology , Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Bin Jiang
- a Department of Oncology , Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Yanjie Zhang
- a Department of Oncology , Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine , Shanghai , China
| |
Collapse
|
36
|
Kumar R, Li DQ. PAKs in Human Cancer Progression: From Inception to Cancer Therapeutic to Future Oncobiology. Adv Cancer Res 2016; 130:137-209. [PMID: 27037753 DOI: 10.1016/bs.acr.2016.01.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Since the initial recognition of a mechanistic role of p21-activated kinase 1 (PAK1) in breast cancer invasion, PAK1 has emerged as one of the widely overexpressed or hyperactivated kinases in human cancer at-large, allowing the PAK family to make in-roads in cancer biology, tumorigenesis, and cancer therapeutics. Much of our current understanding of the PAK family in cancer progression relates to a central role of the PAK family in the integration of cancer-promoting signals from cell membrane receptors as well as function as a key nexus-modifier of complex, cytoplasmic signaling network. Another core aspect of PAK signaling that highlights its importance in cancer progression is through PAK's central role in the cross talk with signaling and interacting proteins, as well as PAK's position as a key player in the phosphorylation of effector substrates to engage downstream components that ultimately leads to the development cancerous phenotypes. Here we provide a comprehensive review of the recent advances in PAK cancer research and its downstream substrates in the context of invasion, nuclear signaling and localization, gene expression, and DNA damage response. We discuss how a deeper understanding of PAK1's pathobiology over the years has widened research interest to the PAK family and human cancer, and positioning the PAK family as a promising cancer therapeutic target either alone or in combination with other therapies. With many landmark findings and leaps in the progress of PAK cancer research since the infancy of this field nearly 20 years ago, we also discuss postulated advances in the coming decade as the PAK family continues to shape the future of oncobiology.
Collapse
Affiliation(s)
- R Kumar
- School of Medicine and Health Sciences, George Washington University, Washington, DC, United States; Rajiv Gandhi Center of Biotechnology, Thiruvananthapuram, India.
| | - D-Q Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China; Key Laboratory of Breast Cancer in Shanghai, Shanghai Medical College, Fudan University, Shanghai, China; Key Laboratory of Epigenetics in Shanghai, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
37
|
Eukaryotic initiation factor 4E-binding protein 1 (4E-BP1): a master regulator of mRNA translation involved in tumorigenesis. Oncogene 2016; 35:4675-88. [DOI: 10.1038/onc.2015.515] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/11/2015] [Accepted: 12/11/2015] [Indexed: 01/17/2023]
|
38
|
Karlsson E, Magić I, Bostner J, Dyrager C, Lysholm F, Hallbeck AL, Stål O, Lundström P. Revealing Different Roles of the mTOR-Targets S6K1 and S6K2 in Breast Cancer by Expression Profiling and Structural Analysis. PLoS One 2015; 10:e0145013. [PMID: 26698305 PMCID: PMC4689523 DOI: 10.1371/journal.pone.0145013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 11/25/2015] [Indexed: 12/21/2022] Open
Abstract
Background The AKT/mTORC1/S6K pathway is frequently overstimulated in breast cancer, constituting a promising therapeutic target. The benefit from mTOR inhibitors varies, likely as a consequence of tumour heterogeneity, and upregulation of several compensatory feed-back mechanisms. The mTORC1 downstream effectors S6K1, S6K2, and 4EBP1 are amplified and overexpressed in breast cancer, associated with a poor outcome and divergent endocrine treatment benefit. S6K1 and S6K2 share high sequence homology, but evidence of partly distinct biological functions is emerging. The aim of this work was to explore possible different roles and treatment target potentials of S6K1 and S6K2 in breast cancer. Materials and methods Whole-genome expression profiles were compared for breast tumours expressing high levels of S6K1, S6K2 or 4EBP1, using public datasets, as well as after in vitro siRNA downregulation of S6K1 and/or S6K2 in ZR751 breast cancer cells. In silico homology modelling of the S6K2 kinase domain was used to evaluate its possible structural divergences to S6K1. Results Genome expression profiles were highly different in S6K1 and S6K2 high tumours, whereas S6K2 and 4EBP1 profiles showed significant overlaps, both correlated to genes involved in cell cycle progression, among these the master regulator E2F1. S6K2 and 4EBP1 were inversely associated with IGF1 levels, and their prognostic value was shown to be restricted to tumours positive for IGFR and/or HER2. In vitro, S6K1 and S6K2 silencing resulted in upregulation of genes in the mTORC1 and mTORC2 complexes. Isoform-specific silencing also showed distinct patterns, e.g. S6K2 downregulation lead to upregulation of several cell cycle associated genes. Structural analyses of the S6K2 kinase domain showed unique structure patterns, deviating from those of S6K1, facilitating the development of isoform-specific inhibitors. Our data support emerging proposals of distinct biological features of S6K1 and S6K2, suggesting their importance as separate oncogenes and clinical markers, where specific targeting in different breast cancer subtypes could facilitate further individualised therapies.
Collapse
Affiliation(s)
- Elin Karlsson
- Department of Clinical and Experimental Medicine, and Department of Oncology, Linköping University, SE-58185, Linköping, Sweden
| | - Ivana Magić
- Department of Clinical and Experimental Medicine, and Department of Oncology, Linköping University, SE-58185, Linköping, Sweden
- Division of Chemistry, Department of Physics, Chemistry and Biology, Linköping University, SE-58183, Linköping, Sweden
| | - Josefine Bostner
- Department of Clinical and Experimental Medicine, and Department of Oncology, Linköping University, SE-58185, Linköping, Sweden
| | - Christine Dyrager
- Division of Chemistry, Department of Physics, Chemistry and Biology, Linköping University, SE-58183, Linköping, Sweden
| | - Fredrik Lysholm
- Division of Bioinformatics and SeRC (Swedish e-Science Research Centre), Department of Physics, Chemistry and Biology, Linköping University, SE-581 83, Linköping, Sweden
| | - Anna-Lotta Hallbeck
- Department of Clinical and Experimental Medicine, and Department of Oncology, Linköping University, SE-58185, Linköping, Sweden
| | - Olle Stål
- Department of Clinical and Experimental Medicine, and Department of Oncology, Linköping University, SE-58185, Linköping, Sweden
- * E-mail: (OS); (PL)
| | - Patrik Lundström
- Division of Chemistry, Department of Physics, Chemistry and Biology, Linköping University, SE-58183, Linköping, Sweden
- * E-mail: (OS); (PL)
| |
Collapse
|
39
|
Schwaederlé M, Daniels GA, Piccioni DE, Fanta PT, Schwab RB, Shimabukuro KA, Parker BA, Kurzrock R. Cyclin alterations in diverse cancers: Outcome and co-amplification network. Oncotarget 2015; 6:3033-42. [PMID: 25596748 PMCID: PMC4413635 DOI: 10.18632/oncotarget.2848] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 12/05/2014] [Indexed: 11/25/2022] Open
Abstract
Cyclin genes are key regulatory components of the cell cycle. With the development of new agents, cyclin-related genes are becoming increasingly important as they can be targeted. Yet, the biological implications of these alterations have not been fully studied. Clinical characteristics and outcome parameters were compared for patients harboring cyclin alterations versus not. CCN alterations were found in 13% of our population (50/392; all amplifications) and were associated with breast cancer (P < 0.0001), a higher median number of concomitant molecular alterations (P < 0.0001), and liver metastases (P = 0.046). Harboring a cyclin amplification was not associated with overall survival, the time to metastasis/recurrence, nor with the best progression-free survival. In a Cox regression model, gastrointestinal histology (P < 0.0001), PTEN (P < 0.0001), and CDK alterations (P = 0.041) had a significant association with poorer overall survival. CCN amplifications significantly correlated with alterations in FGF/FGFR family genes as well as in MET and ARFRP1. An extended correlation study shed light on a network of co-amplifications influenced in part by genes that were localized on the same amplicons. CCN amplifications are common across cancers and had distinctive biological associations. Customized combinations targeting the cyclin pathway as well as the extended co-amplification network may be necessary in order to address resistance mechanisms.
Collapse
Affiliation(s)
- Maria Schwaederlé
- Center for Personalized Cancer Therapy, and Division of Hematology and Oncology, UCSD Moores Cancer Center, La Jolla, USA
| | - Gregory A Daniels
- Center for Personalized Cancer Therapy, and Division of Hematology and Oncology, UCSD Moores Cancer Center, La Jolla, USA
| | - David E Piccioni
- Center for Personalized Cancer Therapy, and Division of Hematology and Oncology, UCSD Moores Cancer Center, La Jolla, USA
| | - Paul T Fanta
- Center for Personalized Cancer Therapy, and Division of Hematology and Oncology, UCSD Moores Cancer Center, La Jolla, USA
| | - Richard B Schwab
- Center for Personalized Cancer Therapy, and Division of Hematology and Oncology, UCSD Moores Cancer Center, La Jolla, USA
| | - Kelly A Shimabukuro
- Center for Personalized Cancer Therapy, and Division of Hematology and Oncology, UCSD Moores Cancer Center, La Jolla, USA
| | - Barbara A Parker
- Center for Personalized Cancer Therapy, and Division of Hematology and Oncology, UCSD Moores Cancer Center, La Jolla, USA
| | - Razelle Kurzrock
- Center for Personalized Cancer Therapy, and Division of Hematology and Oncology, UCSD Moores Cancer Center, La Jolla, USA
| |
Collapse
|
40
|
Hortobagyi GN, Chen D, Piccart M, Rugo HS, Burris HA, Pritchard KI, Campone M, Noguchi S, Perez AT, Deleu I, Shtivelband M, Masuda N, Dakhil S, Anderson I, Robinson DM, He W, Garg A, McDonald ER, Bitter H, Huang A, Taran T, Bachelot T, Lebrun F, Lebwohl D, Baselga J. Correlative Analysis of Genetic Alterations and Everolimus Benefit in Hormone Receptor-Positive, Human Epidermal Growth Factor Receptor 2-Negative Advanced Breast Cancer: Results From BOLERO-2. J Clin Oncol 2015; 34:419-26. [PMID: 26503204 DOI: 10.1200/jco.2014.60.1971] [Citation(s) in RCA: 195] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
PURPOSE To explore the genetic landscape of tumors from patients enrolled on the BOLERO-2 trial to identify potential correlations between genetic alterations and efficacy of everolimus treatment. The BOLERO-2 trial has previously demonstrated that the addition of everolimus to exemestane prolonged progression-free survival by more than twofold in patients with hormone receptor-positive, human epidermal growth factor receptor 2-negative, advanced breast cancer previously treated with nonsteroidal aromatase inhibitors. PATIENTS AND METHODS Next-generation sequencing was used to analyze genetic status of cancer-related genes in 302 archival tumor specimens from patients representative of the BOLERO-2 study population. Correlations between the most common somatic alterations and degree of chromosomal instability, and treatment effect of everolimus were investigated. RESULTS Progression-free survival benefit with everolimus was maintained regardless of alteration status of PIK3CA, FGFR1, and CCND1 or the pathways of which they are components. However, quantitative differences in everolimus benefit were observed between patient subgroups defined by the exon-specific mutations in PIK3CA (exon 20 v 9) or by different degrees of chromosomal instability in the tumor tissues. CONCLUSION The data from this exploratory analysis suggest that the efficacy of everolimus was largely independent of the most commonly altered genes or pathways in hormone receptor-positive, human epidermal growth factor receptor 2-negative breast cancer. The potential impact of chromosomal instabilities and low-frequency genetic alterations on everolimus efficacy warrants further investigation.
Collapse
Affiliation(s)
- Gabriel N Hortobagyi
- Gabriel N. Hortobagyi, University of Texas MD Anderson Cancer Center, Houston, TX; David Chen, Tetiana Taran, and David Lebwohl, Novartis Pharmaceuticals, East Hanover, NJ; Martine Piccart and Fabienne Lebrun, Université Libre de Bruxelles, Brussels; Ines Deleu, Oncology Centre, AZ Nikolaas, Sint-Nikolaas, Belgium; Hope S. Rugo, University of California, San Francisco; Ian Anderson, Redwood Regional Oncology Center, Santa Rosa, CA; Howard A. Burris III, Sarah Cannon Research Institute, Nashville, TN; Kathleen I. Pritchard, Sunnybrook Odette Cancer Centre and the University of Toronto, Toronto, Ontario, Canada; Mario Campone, Centre de Recherche en Cancerologie, Nantes-Saint-Herblain; Thomas Bachelot, Centre Léon Bérard, Lyon, France; Shinzaburo Noguchi, Osaka University Medical School; Norikazu Masuda, Osaka National Hospital, Osaka, Japan; Alejandra T. Perez, Memorial Cancer Institute, Hollywood, FL; Mikhail Shtivelband, Ironwood Cancer & Research Centers, Chandler, AZ; Shaker Dakhil, Cancer Center of Kansas, Wichita, KS; Douglas M. Robinson, Wei He, Abhishek Garg, E. Robert McDonald III, Hans Bitter, and Alan Huang, Novartis Institutes for BioMedical Research, Cambridge, MA; and José Baselga, Memorial Sloan-Kettering Cancer Center, New York, NY.
| | - David Chen
- Gabriel N. Hortobagyi, University of Texas MD Anderson Cancer Center, Houston, TX; David Chen, Tetiana Taran, and David Lebwohl, Novartis Pharmaceuticals, East Hanover, NJ; Martine Piccart and Fabienne Lebrun, Université Libre de Bruxelles, Brussels; Ines Deleu, Oncology Centre, AZ Nikolaas, Sint-Nikolaas, Belgium; Hope S. Rugo, University of California, San Francisco; Ian Anderson, Redwood Regional Oncology Center, Santa Rosa, CA; Howard A. Burris III, Sarah Cannon Research Institute, Nashville, TN; Kathleen I. Pritchard, Sunnybrook Odette Cancer Centre and the University of Toronto, Toronto, Ontario, Canada; Mario Campone, Centre de Recherche en Cancerologie, Nantes-Saint-Herblain; Thomas Bachelot, Centre Léon Bérard, Lyon, France; Shinzaburo Noguchi, Osaka University Medical School; Norikazu Masuda, Osaka National Hospital, Osaka, Japan; Alejandra T. Perez, Memorial Cancer Institute, Hollywood, FL; Mikhail Shtivelband, Ironwood Cancer & Research Centers, Chandler, AZ; Shaker Dakhil, Cancer Center of Kansas, Wichita, KS; Douglas M. Robinson, Wei He, Abhishek Garg, E. Robert McDonald III, Hans Bitter, and Alan Huang, Novartis Institutes for BioMedical Research, Cambridge, MA; and José Baselga, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Martine Piccart
- Gabriel N. Hortobagyi, University of Texas MD Anderson Cancer Center, Houston, TX; David Chen, Tetiana Taran, and David Lebwohl, Novartis Pharmaceuticals, East Hanover, NJ; Martine Piccart and Fabienne Lebrun, Université Libre de Bruxelles, Brussels; Ines Deleu, Oncology Centre, AZ Nikolaas, Sint-Nikolaas, Belgium; Hope S. Rugo, University of California, San Francisco; Ian Anderson, Redwood Regional Oncology Center, Santa Rosa, CA; Howard A. Burris III, Sarah Cannon Research Institute, Nashville, TN; Kathleen I. Pritchard, Sunnybrook Odette Cancer Centre and the University of Toronto, Toronto, Ontario, Canada; Mario Campone, Centre de Recherche en Cancerologie, Nantes-Saint-Herblain; Thomas Bachelot, Centre Léon Bérard, Lyon, France; Shinzaburo Noguchi, Osaka University Medical School; Norikazu Masuda, Osaka National Hospital, Osaka, Japan; Alejandra T. Perez, Memorial Cancer Institute, Hollywood, FL; Mikhail Shtivelband, Ironwood Cancer & Research Centers, Chandler, AZ; Shaker Dakhil, Cancer Center of Kansas, Wichita, KS; Douglas M. Robinson, Wei He, Abhishek Garg, E. Robert McDonald III, Hans Bitter, and Alan Huang, Novartis Institutes for BioMedical Research, Cambridge, MA; and José Baselga, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Hope S Rugo
- Gabriel N. Hortobagyi, University of Texas MD Anderson Cancer Center, Houston, TX; David Chen, Tetiana Taran, and David Lebwohl, Novartis Pharmaceuticals, East Hanover, NJ; Martine Piccart and Fabienne Lebrun, Université Libre de Bruxelles, Brussels; Ines Deleu, Oncology Centre, AZ Nikolaas, Sint-Nikolaas, Belgium; Hope S. Rugo, University of California, San Francisco; Ian Anderson, Redwood Regional Oncology Center, Santa Rosa, CA; Howard A. Burris III, Sarah Cannon Research Institute, Nashville, TN; Kathleen I. Pritchard, Sunnybrook Odette Cancer Centre and the University of Toronto, Toronto, Ontario, Canada; Mario Campone, Centre de Recherche en Cancerologie, Nantes-Saint-Herblain; Thomas Bachelot, Centre Léon Bérard, Lyon, France; Shinzaburo Noguchi, Osaka University Medical School; Norikazu Masuda, Osaka National Hospital, Osaka, Japan; Alejandra T. Perez, Memorial Cancer Institute, Hollywood, FL; Mikhail Shtivelband, Ironwood Cancer & Research Centers, Chandler, AZ; Shaker Dakhil, Cancer Center of Kansas, Wichita, KS; Douglas M. Robinson, Wei He, Abhishek Garg, E. Robert McDonald III, Hans Bitter, and Alan Huang, Novartis Institutes for BioMedical Research, Cambridge, MA; and José Baselga, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Howard A Burris
- Gabriel N. Hortobagyi, University of Texas MD Anderson Cancer Center, Houston, TX; David Chen, Tetiana Taran, and David Lebwohl, Novartis Pharmaceuticals, East Hanover, NJ; Martine Piccart and Fabienne Lebrun, Université Libre de Bruxelles, Brussels; Ines Deleu, Oncology Centre, AZ Nikolaas, Sint-Nikolaas, Belgium; Hope S. Rugo, University of California, San Francisco; Ian Anderson, Redwood Regional Oncology Center, Santa Rosa, CA; Howard A. Burris III, Sarah Cannon Research Institute, Nashville, TN; Kathleen I. Pritchard, Sunnybrook Odette Cancer Centre and the University of Toronto, Toronto, Ontario, Canada; Mario Campone, Centre de Recherche en Cancerologie, Nantes-Saint-Herblain; Thomas Bachelot, Centre Léon Bérard, Lyon, France; Shinzaburo Noguchi, Osaka University Medical School; Norikazu Masuda, Osaka National Hospital, Osaka, Japan; Alejandra T. Perez, Memorial Cancer Institute, Hollywood, FL; Mikhail Shtivelband, Ironwood Cancer & Research Centers, Chandler, AZ; Shaker Dakhil, Cancer Center of Kansas, Wichita, KS; Douglas M. Robinson, Wei He, Abhishek Garg, E. Robert McDonald III, Hans Bitter, and Alan Huang, Novartis Institutes for BioMedical Research, Cambridge, MA; and José Baselga, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Kathleen I Pritchard
- Gabriel N. Hortobagyi, University of Texas MD Anderson Cancer Center, Houston, TX; David Chen, Tetiana Taran, and David Lebwohl, Novartis Pharmaceuticals, East Hanover, NJ; Martine Piccart and Fabienne Lebrun, Université Libre de Bruxelles, Brussels; Ines Deleu, Oncology Centre, AZ Nikolaas, Sint-Nikolaas, Belgium; Hope S. Rugo, University of California, San Francisco; Ian Anderson, Redwood Regional Oncology Center, Santa Rosa, CA; Howard A. Burris III, Sarah Cannon Research Institute, Nashville, TN; Kathleen I. Pritchard, Sunnybrook Odette Cancer Centre and the University of Toronto, Toronto, Ontario, Canada; Mario Campone, Centre de Recherche en Cancerologie, Nantes-Saint-Herblain; Thomas Bachelot, Centre Léon Bérard, Lyon, France; Shinzaburo Noguchi, Osaka University Medical School; Norikazu Masuda, Osaka National Hospital, Osaka, Japan; Alejandra T. Perez, Memorial Cancer Institute, Hollywood, FL; Mikhail Shtivelband, Ironwood Cancer & Research Centers, Chandler, AZ; Shaker Dakhil, Cancer Center of Kansas, Wichita, KS; Douglas M. Robinson, Wei He, Abhishek Garg, E. Robert McDonald III, Hans Bitter, and Alan Huang, Novartis Institutes for BioMedical Research, Cambridge, MA; and José Baselga, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Mario Campone
- Gabriel N. Hortobagyi, University of Texas MD Anderson Cancer Center, Houston, TX; David Chen, Tetiana Taran, and David Lebwohl, Novartis Pharmaceuticals, East Hanover, NJ; Martine Piccart and Fabienne Lebrun, Université Libre de Bruxelles, Brussels; Ines Deleu, Oncology Centre, AZ Nikolaas, Sint-Nikolaas, Belgium; Hope S. Rugo, University of California, San Francisco; Ian Anderson, Redwood Regional Oncology Center, Santa Rosa, CA; Howard A. Burris III, Sarah Cannon Research Institute, Nashville, TN; Kathleen I. Pritchard, Sunnybrook Odette Cancer Centre and the University of Toronto, Toronto, Ontario, Canada; Mario Campone, Centre de Recherche en Cancerologie, Nantes-Saint-Herblain; Thomas Bachelot, Centre Léon Bérard, Lyon, France; Shinzaburo Noguchi, Osaka University Medical School; Norikazu Masuda, Osaka National Hospital, Osaka, Japan; Alejandra T. Perez, Memorial Cancer Institute, Hollywood, FL; Mikhail Shtivelband, Ironwood Cancer & Research Centers, Chandler, AZ; Shaker Dakhil, Cancer Center of Kansas, Wichita, KS; Douglas M. Robinson, Wei He, Abhishek Garg, E. Robert McDonald III, Hans Bitter, and Alan Huang, Novartis Institutes for BioMedical Research, Cambridge, MA; and José Baselga, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Shinzaburo Noguchi
- Gabriel N. Hortobagyi, University of Texas MD Anderson Cancer Center, Houston, TX; David Chen, Tetiana Taran, and David Lebwohl, Novartis Pharmaceuticals, East Hanover, NJ; Martine Piccart and Fabienne Lebrun, Université Libre de Bruxelles, Brussels; Ines Deleu, Oncology Centre, AZ Nikolaas, Sint-Nikolaas, Belgium; Hope S. Rugo, University of California, San Francisco; Ian Anderson, Redwood Regional Oncology Center, Santa Rosa, CA; Howard A. Burris III, Sarah Cannon Research Institute, Nashville, TN; Kathleen I. Pritchard, Sunnybrook Odette Cancer Centre and the University of Toronto, Toronto, Ontario, Canada; Mario Campone, Centre de Recherche en Cancerologie, Nantes-Saint-Herblain; Thomas Bachelot, Centre Léon Bérard, Lyon, France; Shinzaburo Noguchi, Osaka University Medical School; Norikazu Masuda, Osaka National Hospital, Osaka, Japan; Alejandra T. Perez, Memorial Cancer Institute, Hollywood, FL; Mikhail Shtivelband, Ironwood Cancer & Research Centers, Chandler, AZ; Shaker Dakhil, Cancer Center of Kansas, Wichita, KS; Douglas M. Robinson, Wei He, Abhishek Garg, E. Robert McDonald III, Hans Bitter, and Alan Huang, Novartis Institutes for BioMedical Research, Cambridge, MA; and José Baselga, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Alejandra T Perez
- Gabriel N. Hortobagyi, University of Texas MD Anderson Cancer Center, Houston, TX; David Chen, Tetiana Taran, and David Lebwohl, Novartis Pharmaceuticals, East Hanover, NJ; Martine Piccart and Fabienne Lebrun, Université Libre de Bruxelles, Brussels; Ines Deleu, Oncology Centre, AZ Nikolaas, Sint-Nikolaas, Belgium; Hope S. Rugo, University of California, San Francisco; Ian Anderson, Redwood Regional Oncology Center, Santa Rosa, CA; Howard A. Burris III, Sarah Cannon Research Institute, Nashville, TN; Kathleen I. Pritchard, Sunnybrook Odette Cancer Centre and the University of Toronto, Toronto, Ontario, Canada; Mario Campone, Centre de Recherche en Cancerologie, Nantes-Saint-Herblain; Thomas Bachelot, Centre Léon Bérard, Lyon, France; Shinzaburo Noguchi, Osaka University Medical School; Norikazu Masuda, Osaka National Hospital, Osaka, Japan; Alejandra T. Perez, Memorial Cancer Institute, Hollywood, FL; Mikhail Shtivelband, Ironwood Cancer & Research Centers, Chandler, AZ; Shaker Dakhil, Cancer Center of Kansas, Wichita, KS; Douglas M. Robinson, Wei He, Abhishek Garg, E. Robert McDonald III, Hans Bitter, and Alan Huang, Novartis Institutes for BioMedical Research, Cambridge, MA; and José Baselga, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Ines Deleu
- Gabriel N. Hortobagyi, University of Texas MD Anderson Cancer Center, Houston, TX; David Chen, Tetiana Taran, and David Lebwohl, Novartis Pharmaceuticals, East Hanover, NJ; Martine Piccart and Fabienne Lebrun, Université Libre de Bruxelles, Brussels; Ines Deleu, Oncology Centre, AZ Nikolaas, Sint-Nikolaas, Belgium; Hope S. Rugo, University of California, San Francisco; Ian Anderson, Redwood Regional Oncology Center, Santa Rosa, CA; Howard A. Burris III, Sarah Cannon Research Institute, Nashville, TN; Kathleen I. Pritchard, Sunnybrook Odette Cancer Centre and the University of Toronto, Toronto, Ontario, Canada; Mario Campone, Centre de Recherche en Cancerologie, Nantes-Saint-Herblain; Thomas Bachelot, Centre Léon Bérard, Lyon, France; Shinzaburo Noguchi, Osaka University Medical School; Norikazu Masuda, Osaka National Hospital, Osaka, Japan; Alejandra T. Perez, Memorial Cancer Institute, Hollywood, FL; Mikhail Shtivelband, Ironwood Cancer & Research Centers, Chandler, AZ; Shaker Dakhil, Cancer Center of Kansas, Wichita, KS; Douglas M. Robinson, Wei He, Abhishek Garg, E. Robert McDonald III, Hans Bitter, and Alan Huang, Novartis Institutes for BioMedical Research, Cambridge, MA; and José Baselga, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Mikhail Shtivelband
- Gabriel N. Hortobagyi, University of Texas MD Anderson Cancer Center, Houston, TX; David Chen, Tetiana Taran, and David Lebwohl, Novartis Pharmaceuticals, East Hanover, NJ; Martine Piccart and Fabienne Lebrun, Université Libre de Bruxelles, Brussels; Ines Deleu, Oncology Centre, AZ Nikolaas, Sint-Nikolaas, Belgium; Hope S. Rugo, University of California, San Francisco; Ian Anderson, Redwood Regional Oncology Center, Santa Rosa, CA; Howard A. Burris III, Sarah Cannon Research Institute, Nashville, TN; Kathleen I. Pritchard, Sunnybrook Odette Cancer Centre and the University of Toronto, Toronto, Ontario, Canada; Mario Campone, Centre de Recherche en Cancerologie, Nantes-Saint-Herblain; Thomas Bachelot, Centre Léon Bérard, Lyon, France; Shinzaburo Noguchi, Osaka University Medical School; Norikazu Masuda, Osaka National Hospital, Osaka, Japan; Alejandra T. Perez, Memorial Cancer Institute, Hollywood, FL; Mikhail Shtivelband, Ironwood Cancer & Research Centers, Chandler, AZ; Shaker Dakhil, Cancer Center of Kansas, Wichita, KS; Douglas M. Robinson, Wei He, Abhishek Garg, E. Robert McDonald III, Hans Bitter, and Alan Huang, Novartis Institutes for BioMedical Research, Cambridge, MA; and José Baselga, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Norikazu Masuda
- Gabriel N. Hortobagyi, University of Texas MD Anderson Cancer Center, Houston, TX; David Chen, Tetiana Taran, and David Lebwohl, Novartis Pharmaceuticals, East Hanover, NJ; Martine Piccart and Fabienne Lebrun, Université Libre de Bruxelles, Brussels; Ines Deleu, Oncology Centre, AZ Nikolaas, Sint-Nikolaas, Belgium; Hope S. Rugo, University of California, San Francisco; Ian Anderson, Redwood Regional Oncology Center, Santa Rosa, CA; Howard A. Burris III, Sarah Cannon Research Institute, Nashville, TN; Kathleen I. Pritchard, Sunnybrook Odette Cancer Centre and the University of Toronto, Toronto, Ontario, Canada; Mario Campone, Centre de Recherche en Cancerologie, Nantes-Saint-Herblain; Thomas Bachelot, Centre Léon Bérard, Lyon, France; Shinzaburo Noguchi, Osaka University Medical School; Norikazu Masuda, Osaka National Hospital, Osaka, Japan; Alejandra T. Perez, Memorial Cancer Institute, Hollywood, FL; Mikhail Shtivelband, Ironwood Cancer & Research Centers, Chandler, AZ; Shaker Dakhil, Cancer Center of Kansas, Wichita, KS; Douglas M. Robinson, Wei He, Abhishek Garg, E. Robert McDonald III, Hans Bitter, and Alan Huang, Novartis Institutes for BioMedical Research, Cambridge, MA; and José Baselga, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Shaker Dakhil
- Gabriel N. Hortobagyi, University of Texas MD Anderson Cancer Center, Houston, TX; David Chen, Tetiana Taran, and David Lebwohl, Novartis Pharmaceuticals, East Hanover, NJ; Martine Piccart and Fabienne Lebrun, Université Libre de Bruxelles, Brussels; Ines Deleu, Oncology Centre, AZ Nikolaas, Sint-Nikolaas, Belgium; Hope S. Rugo, University of California, San Francisco; Ian Anderson, Redwood Regional Oncology Center, Santa Rosa, CA; Howard A. Burris III, Sarah Cannon Research Institute, Nashville, TN; Kathleen I. Pritchard, Sunnybrook Odette Cancer Centre and the University of Toronto, Toronto, Ontario, Canada; Mario Campone, Centre de Recherche en Cancerologie, Nantes-Saint-Herblain; Thomas Bachelot, Centre Léon Bérard, Lyon, France; Shinzaburo Noguchi, Osaka University Medical School; Norikazu Masuda, Osaka National Hospital, Osaka, Japan; Alejandra T. Perez, Memorial Cancer Institute, Hollywood, FL; Mikhail Shtivelband, Ironwood Cancer & Research Centers, Chandler, AZ; Shaker Dakhil, Cancer Center of Kansas, Wichita, KS; Douglas M. Robinson, Wei He, Abhishek Garg, E. Robert McDonald III, Hans Bitter, and Alan Huang, Novartis Institutes for BioMedical Research, Cambridge, MA; and José Baselga, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Ian Anderson
- Gabriel N. Hortobagyi, University of Texas MD Anderson Cancer Center, Houston, TX; David Chen, Tetiana Taran, and David Lebwohl, Novartis Pharmaceuticals, East Hanover, NJ; Martine Piccart and Fabienne Lebrun, Université Libre de Bruxelles, Brussels; Ines Deleu, Oncology Centre, AZ Nikolaas, Sint-Nikolaas, Belgium; Hope S. Rugo, University of California, San Francisco; Ian Anderson, Redwood Regional Oncology Center, Santa Rosa, CA; Howard A. Burris III, Sarah Cannon Research Institute, Nashville, TN; Kathleen I. Pritchard, Sunnybrook Odette Cancer Centre and the University of Toronto, Toronto, Ontario, Canada; Mario Campone, Centre de Recherche en Cancerologie, Nantes-Saint-Herblain; Thomas Bachelot, Centre Léon Bérard, Lyon, France; Shinzaburo Noguchi, Osaka University Medical School; Norikazu Masuda, Osaka National Hospital, Osaka, Japan; Alejandra T. Perez, Memorial Cancer Institute, Hollywood, FL; Mikhail Shtivelband, Ironwood Cancer & Research Centers, Chandler, AZ; Shaker Dakhil, Cancer Center of Kansas, Wichita, KS; Douglas M. Robinson, Wei He, Abhishek Garg, E. Robert McDonald III, Hans Bitter, and Alan Huang, Novartis Institutes for BioMedical Research, Cambridge, MA; and José Baselga, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Douglas M Robinson
- Gabriel N. Hortobagyi, University of Texas MD Anderson Cancer Center, Houston, TX; David Chen, Tetiana Taran, and David Lebwohl, Novartis Pharmaceuticals, East Hanover, NJ; Martine Piccart and Fabienne Lebrun, Université Libre de Bruxelles, Brussels; Ines Deleu, Oncology Centre, AZ Nikolaas, Sint-Nikolaas, Belgium; Hope S. Rugo, University of California, San Francisco; Ian Anderson, Redwood Regional Oncology Center, Santa Rosa, CA; Howard A. Burris III, Sarah Cannon Research Institute, Nashville, TN; Kathleen I. Pritchard, Sunnybrook Odette Cancer Centre and the University of Toronto, Toronto, Ontario, Canada; Mario Campone, Centre de Recherche en Cancerologie, Nantes-Saint-Herblain; Thomas Bachelot, Centre Léon Bérard, Lyon, France; Shinzaburo Noguchi, Osaka University Medical School; Norikazu Masuda, Osaka National Hospital, Osaka, Japan; Alejandra T. Perez, Memorial Cancer Institute, Hollywood, FL; Mikhail Shtivelband, Ironwood Cancer & Research Centers, Chandler, AZ; Shaker Dakhil, Cancer Center of Kansas, Wichita, KS; Douglas M. Robinson, Wei He, Abhishek Garg, E. Robert McDonald III, Hans Bitter, and Alan Huang, Novartis Institutes for BioMedical Research, Cambridge, MA; and José Baselga, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Wei He
- Gabriel N. Hortobagyi, University of Texas MD Anderson Cancer Center, Houston, TX; David Chen, Tetiana Taran, and David Lebwohl, Novartis Pharmaceuticals, East Hanover, NJ; Martine Piccart and Fabienne Lebrun, Université Libre de Bruxelles, Brussels; Ines Deleu, Oncology Centre, AZ Nikolaas, Sint-Nikolaas, Belgium; Hope S. Rugo, University of California, San Francisco; Ian Anderson, Redwood Regional Oncology Center, Santa Rosa, CA; Howard A. Burris III, Sarah Cannon Research Institute, Nashville, TN; Kathleen I. Pritchard, Sunnybrook Odette Cancer Centre and the University of Toronto, Toronto, Ontario, Canada; Mario Campone, Centre de Recherche en Cancerologie, Nantes-Saint-Herblain; Thomas Bachelot, Centre Léon Bérard, Lyon, France; Shinzaburo Noguchi, Osaka University Medical School; Norikazu Masuda, Osaka National Hospital, Osaka, Japan; Alejandra T. Perez, Memorial Cancer Institute, Hollywood, FL; Mikhail Shtivelband, Ironwood Cancer & Research Centers, Chandler, AZ; Shaker Dakhil, Cancer Center of Kansas, Wichita, KS; Douglas M. Robinson, Wei He, Abhishek Garg, E. Robert McDonald III, Hans Bitter, and Alan Huang, Novartis Institutes for BioMedical Research, Cambridge, MA; and José Baselga, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Abhishek Garg
- Gabriel N. Hortobagyi, University of Texas MD Anderson Cancer Center, Houston, TX; David Chen, Tetiana Taran, and David Lebwohl, Novartis Pharmaceuticals, East Hanover, NJ; Martine Piccart and Fabienne Lebrun, Université Libre de Bruxelles, Brussels; Ines Deleu, Oncology Centre, AZ Nikolaas, Sint-Nikolaas, Belgium; Hope S. Rugo, University of California, San Francisco; Ian Anderson, Redwood Regional Oncology Center, Santa Rosa, CA; Howard A. Burris III, Sarah Cannon Research Institute, Nashville, TN; Kathleen I. Pritchard, Sunnybrook Odette Cancer Centre and the University of Toronto, Toronto, Ontario, Canada; Mario Campone, Centre de Recherche en Cancerologie, Nantes-Saint-Herblain; Thomas Bachelot, Centre Léon Bérard, Lyon, France; Shinzaburo Noguchi, Osaka University Medical School; Norikazu Masuda, Osaka National Hospital, Osaka, Japan; Alejandra T. Perez, Memorial Cancer Institute, Hollywood, FL; Mikhail Shtivelband, Ironwood Cancer & Research Centers, Chandler, AZ; Shaker Dakhil, Cancer Center of Kansas, Wichita, KS; Douglas M. Robinson, Wei He, Abhishek Garg, E. Robert McDonald III, Hans Bitter, and Alan Huang, Novartis Institutes for BioMedical Research, Cambridge, MA; and José Baselga, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - E Robert McDonald
- Gabriel N. Hortobagyi, University of Texas MD Anderson Cancer Center, Houston, TX; David Chen, Tetiana Taran, and David Lebwohl, Novartis Pharmaceuticals, East Hanover, NJ; Martine Piccart and Fabienne Lebrun, Université Libre de Bruxelles, Brussels; Ines Deleu, Oncology Centre, AZ Nikolaas, Sint-Nikolaas, Belgium; Hope S. Rugo, University of California, San Francisco; Ian Anderson, Redwood Regional Oncology Center, Santa Rosa, CA; Howard A. Burris III, Sarah Cannon Research Institute, Nashville, TN; Kathleen I. Pritchard, Sunnybrook Odette Cancer Centre and the University of Toronto, Toronto, Ontario, Canada; Mario Campone, Centre de Recherche en Cancerologie, Nantes-Saint-Herblain; Thomas Bachelot, Centre Léon Bérard, Lyon, France; Shinzaburo Noguchi, Osaka University Medical School; Norikazu Masuda, Osaka National Hospital, Osaka, Japan; Alejandra T. Perez, Memorial Cancer Institute, Hollywood, FL; Mikhail Shtivelband, Ironwood Cancer & Research Centers, Chandler, AZ; Shaker Dakhil, Cancer Center of Kansas, Wichita, KS; Douglas M. Robinson, Wei He, Abhishek Garg, E. Robert McDonald III, Hans Bitter, and Alan Huang, Novartis Institutes for BioMedical Research, Cambridge, MA; and José Baselga, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Hans Bitter
- Gabriel N. Hortobagyi, University of Texas MD Anderson Cancer Center, Houston, TX; David Chen, Tetiana Taran, and David Lebwohl, Novartis Pharmaceuticals, East Hanover, NJ; Martine Piccart and Fabienne Lebrun, Université Libre de Bruxelles, Brussels; Ines Deleu, Oncology Centre, AZ Nikolaas, Sint-Nikolaas, Belgium; Hope S. Rugo, University of California, San Francisco; Ian Anderson, Redwood Regional Oncology Center, Santa Rosa, CA; Howard A. Burris III, Sarah Cannon Research Institute, Nashville, TN; Kathleen I. Pritchard, Sunnybrook Odette Cancer Centre and the University of Toronto, Toronto, Ontario, Canada; Mario Campone, Centre de Recherche en Cancerologie, Nantes-Saint-Herblain; Thomas Bachelot, Centre Léon Bérard, Lyon, France; Shinzaburo Noguchi, Osaka University Medical School; Norikazu Masuda, Osaka National Hospital, Osaka, Japan; Alejandra T. Perez, Memorial Cancer Institute, Hollywood, FL; Mikhail Shtivelband, Ironwood Cancer & Research Centers, Chandler, AZ; Shaker Dakhil, Cancer Center of Kansas, Wichita, KS; Douglas M. Robinson, Wei He, Abhishek Garg, E. Robert McDonald III, Hans Bitter, and Alan Huang, Novartis Institutes for BioMedical Research, Cambridge, MA; and José Baselga, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Alan Huang
- Gabriel N. Hortobagyi, University of Texas MD Anderson Cancer Center, Houston, TX; David Chen, Tetiana Taran, and David Lebwohl, Novartis Pharmaceuticals, East Hanover, NJ; Martine Piccart and Fabienne Lebrun, Université Libre de Bruxelles, Brussels; Ines Deleu, Oncology Centre, AZ Nikolaas, Sint-Nikolaas, Belgium; Hope S. Rugo, University of California, San Francisco; Ian Anderson, Redwood Regional Oncology Center, Santa Rosa, CA; Howard A. Burris III, Sarah Cannon Research Institute, Nashville, TN; Kathleen I. Pritchard, Sunnybrook Odette Cancer Centre and the University of Toronto, Toronto, Ontario, Canada; Mario Campone, Centre de Recherche en Cancerologie, Nantes-Saint-Herblain; Thomas Bachelot, Centre Léon Bérard, Lyon, France; Shinzaburo Noguchi, Osaka University Medical School; Norikazu Masuda, Osaka National Hospital, Osaka, Japan; Alejandra T. Perez, Memorial Cancer Institute, Hollywood, FL; Mikhail Shtivelband, Ironwood Cancer & Research Centers, Chandler, AZ; Shaker Dakhil, Cancer Center of Kansas, Wichita, KS; Douglas M. Robinson, Wei He, Abhishek Garg, E. Robert McDonald III, Hans Bitter, and Alan Huang, Novartis Institutes for BioMedical Research, Cambridge, MA; and José Baselga, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Tetiana Taran
- Gabriel N. Hortobagyi, University of Texas MD Anderson Cancer Center, Houston, TX; David Chen, Tetiana Taran, and David Lebwohl, Novartis Pharmaceuticals, East Hanover, NJ; Martine Piccart and Fabienne Lebrun, Université Libre de Bruxelles, Brussels; Ines Deleu, Oncology Centre, AZ Nikolaas, Sint-Nikolaas, Belgium; Hope S. Rugo, University of California, San Francisco; Ian Anderson, Redwood Regional Oncology Center, Santa Rosa, CA; Howard A. Burris III, Sarah Cannon Research Institute, Nashville, TN; Kathleen I. Pritchard, Sunnybrook Odette Cancer Centre and the University of Toronto, Toronto, Ontario, Canada; Mario Campone, Centre de Recherche en Cancerologie, Nantes-Saint-Herblain; Thomas Bachelot, Centre Léon Bérard, Lyon, France; Shinzaburo Noguchi, Osaka University Medical School; Norikazu Masuda, Osaka National Hospital, Osaka, Japan; Alejandra T. Perez, Memorial Cancer Institute, Hollywood, FL; Mikhail Shtivelband, Ironwood Cancer & Research Centers, Chandler, AZ; Shaker Dakhil, Cancer Center of Kansas, Wichita, KS; Douglas M. Robinson, Wei He, Abhishek Garg, E. Robert McDonald III, Hans Bitter, and Alan Huang, Novartis Institutes for BioMedical Research, Cambridge, MA; and José Baselga, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Thomas Bachelot
- Gabriel N. Hortobagyi, University of Texas MD Anderson Cancer Center, Houston, TX; David Chen, Tetiana Taran, and David Lebwohl, Novartis Pharmaceuticals, East Hanover, NJ; Martine Piccart and Fabienne Lebrun, Université Libre de Bruxelles, Brussels; Ines Deleu, Oncology Centre, AZ Nikolaas, Sint-Nikolaas, Belgium; Hope S. Rugo, University of California, San Francisco; Ian Anderson, Redwood Regional Oncology Center, Santa Rosa, CA; Howard A. Burris III, Sarah Cannon Research Institute, Nashville, TN; Kathleen I. Pritchard, Sunnybrook Odette Cancer Centre and the University of Toronto, Toronto, Ontario, Canada; Mario Campone, Centre de Recherche en Cancerologie, Nantes-Saint-Herblain; Thomas Bachelot, Centre Léon Bérard, Lyon, France; Shinzaburo Noguchi, Osaka University Medical School; Norikazu Masuda, Osaka National Hospital, Osaka, Japan; Alejandra T. Perez, Memorial Cancer Institute, Hollywood, FL; Mikhail Shtivelband, Ironwood Cancer & Research Centers, Chandler, AZ; Shaker Dakhil, Cancer Center of Kansas, Wichita, KS; Douglas M. Robinson, Wei He, Abhishek Garg, E. Robert McDonald III, Hans Bitter, and Alan Huang, Novartis Institutes for BioMedical Research, Cambridge, MA; and José Baselga, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Fabienne Lebrun
- Gabriel N. Hortobagyi, University of Texas MD Anderson Cancer Center, Houston, TX; David Chen, Tetiana Taran, and David Lebwohl, Novartis Pharmaceuticals, East Hanover, NJ; Martine Piccart and Fabienne Lebrun, Université Libre de Bruxelles, Brussels; Ines Deleu, Oncology Centre, AZ Nikolaas, Sint-Nikolaas, Belgium; Hope S. Rugo, University of California, San Francisco; Ian Anderson, Redwood Regional Oncology Center, Santa Rosa, CA; Howard A. Burris III, Sarah Cannon Research Institute, Nashville, TN; Kathleen I. Pritchard, Sunnybrook Odette Cancer Centre and the University of Toronto, Toronto, Ontario, Canada; Mario Campone, Centre de Recherche en Cancerologie, Nantes-Saint-Herblain; Thomas Bachelot, Centre Léon Bérard, Lyon, France; Shinzaburo Noguchi, Osaka University Medical School; Norikazu Masuda, Osaka National Hospital, Osaka, Japan; Alejandra T. Perez, Memorial Cancer Institute, Hollywood, FL; Mikhail Shtivelband, Ironwood Cancer & Research Centers, Chandler, AZ; Shaker Dakhil, Cancer Center of Kansas, Wichita, KS; Douglas M. Robinson, Wei He, Abhishek Garg, E. Robert McDonald III, Hans Bitter, and Alan Huang, Novartis Institutes for BioMedical Research, Cambridge, MA; and José Baselga, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - David Lebwohl
- Gabriel N. Hortobagyi, University of Texas MD Anderson Cancer Center, Houston, TX; David Chen, Tetiana Taran, and David Lebwohl, Novartis Pharmaceuticals, East Hanover, NJ; Martine Piccart and Fabienne Lebrun, Université Libre de Bruxelles, Brussels; Ines Deleu, Oncology Centre, AZ Nikolaas, Sint-Nikolaas, Belgium; Hope S. Rugo, University of California, San Francisco; Ian Anderson, Redwood Regional Oncology Center, Santa Rosa, CA; Howard A. Burris III, Sarah Cannon Research Institute, Nashville, TN; Kathleen I. Pritchard, Sunnybrook Odette Cancer Centre and the University of Toronto, Toronto, Ontario, Canada; Mario Campone, Centre de Recherche en Cancerologie, Nantes-Saint-Herblain; Thomas Bachelot, Centre Léon Bérard, Lyon, France; Shinzaburo Noguchi, Osaka University Medical School; Norikazu Masuda, Osaka National Hospital, Osaka, Japan; Alejandra T. Perez, Memorial Cancer Institute, Hollywood, FL; Mikhail Shtivelband, Ironwood Cancer & Research Centers, Chandler, AZ; Shaker Dakhil, Cancer Center of Kansas, Wichita, KS; Douglas M. Robinson, Wei He, Abhishek Garg, E. Robert McDonald III, Hans Bitter, and Alan Huang, Novartis Institutes for BioMedical Research, Cambridge, MA; and José Baselga, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - José Baselga
- Gabriel N. Hortobagyi, University of Texas MD Anderson Cancer Center, Houston, TX; David Chen, Tetiana Taran, and David Lebwohl, Novartis Pharmaceuticals, East Hanover, NJ; Martine Piccart and Fabienne Lebrun, Université Libre de Bruxelles, Brussels; Ines Deleu, Oncology Centre, AZ Nikolaas, Sint-Nikolaas, Belgium; Hope S. Rugo, University of California, San Francisco; Ian Anderson, Redwood Regional Oncology Center, Santa Rosa, CA; Howard A. Burris III, Sarah Cannon Research Institute, Nashville, TN; Kathleen I. Pritchard, Sunnybrook Odette Cancer Centre and the University of Toronto, Toronto, Ontario, Canada; Mario Campone, Centre de Recherche en Cancerologie, Nantes-Saint-Herblain; Thomas Bachelot, Centre Léon Bérard, Lyon, France; Shinzaburo Noguchi, Osaka University Medical School; Norikazu Masuda, Osaka National Hospital, Osaka, Japan; Alejandra T. Perez, Memorial Cancer Institute, Hollywood, FL; Mikhail Shtivelband, Ironwood Cancer & Research Centers, Chandler, AZ; Shaker Dakhil, Cancer Center of Kansas, Wichita, KS; Douglas M. Robinson, Wei He, Abhishek Garg, E. Robert McDonald III, Hans Bitter, and Alan Huang, Novartis Institutes for BioMedical Research, Cambridge, MA; and José Baselga, Memorial Sloan-Kettering Cancer Center, New York, NY
| |
Collapse
|
41
|
Parker BA, Schwaederlé M, Scur MD, Boles SG, Helsten T, Subramanian R, Schwab RB, Kurzrock R. Breast Cancer Experience of the Molecular Tumor Board at the University of California, San Diego Moores Cancer Center. J Oncol Pract 2015; 11:442-9. [PMID: 26243651 DOI: 10.1200/jop.2015.004127] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
PURPOSE Multiplex genomic tests are enabling oncologists to interrogate the DNA of their patients. However, few oncologists are proficient with respect to the implications of complex molecular diagnostics. We initiated a Molecular Tumor Board that focused on individual patients with advanced cancer whose tumors underwent genomic profiling, and here report our experience with breast cancer. METHODS A multidisciplinary team that included physicians, scientists, geneticists, and bioinformatics/pathway specialists attended. All molecular tests were performed in a Clinical Laboratory Improvement Amendments environment (next-generation sequencing, 182 or 236 genes). RESULTS Forty of 43 patients (93%; mean age, 59 years) had at least one theoretically actionable aberration (mean, 4.79 anomalies/patient). Median time from ordering to report was 27 days (median of approximately 11 days for specimen acquisition and approximately 14 days for diagnostic processing). Even if we considered distinct abnormalities in a gene as the same, there were only two patients with an identical molecular profile. Seventy-three genes (206 abnormalities; 119 distinct) were aberrant. Seventeen of the 43 patients (40%; median, seven previous therapies in the metastatic setting) were treated in a manner consistent with Molecular Tumor Board discussions; seven (16% of 43, or 41% of 17) achieved stable disease for 6 or more months (n = 2) or partial remission (n = 5). Lack of access to targeted medication was the most common reason that patients could not be treated. CONCLUSION Multidisciplinary molecular tumor boards may help to optimize the management of patients with advanced, heavily pretreated breast cancer who have undergone genomic testing. Facilitating availability of appropriately targeted drugs and clinical trials is needed.
Collapse
Affiliation(s)
- Barbara A Parker
- Center for Personalized Cancer Therapy, Moores Cancer Center, University of California, San Diego, La Jolla, CA
| | - Maria Schwaederlé
- Center for Personalized Cancer Therapy, Moores Cancer Center, University of California, San Diego, La Jolla, CA
| | - Michael D Scur
- Center for Personalized Cancer Therapy, Moores Cancer Center, University of California, San Diego, La Jolla, CA
| | - Sarah G Boles
- Center for Personalized Cancer Therapy, Moores Cancer Center, University of California, San Diego, La Jolla, CA
| | - Teresa Helsten
- Center for Personalized Cancer Therapy, Moores Cancer Center, University of California, San Diego, La Jolla, CA
| | - Rupa Subramanian
- Center for Personalized Cancer Therapy, Moores Cancer Center, University of California, San Diego, La Jolla, CA
| | - Richard B Schwab
- Center for Personalized Cancer Therapy, Moores Cancer Center, University of California, San Diego, La Jolla, CA
| | - Razelle Kurzrock
- Center for Personalized Cancer Therapy, Moores Cancer Center, University of California, San Diego, La Jolla, CA
| |
Collapse
|
42
|
Loss of protein tyrosine phosphatase, non-receptor type 2 is associated with activation of AKT and tamoxifen resistance in breast cancer. Breast Cancer Res Treat 2015. [PMID: 26208487 DOI: 10.1007/s10549-015-3516-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Breast cancer is a heterogeneous disease and new clinical markers are needed to individualise disease management and therapy further. Alterations in the PI3K/AKT pathway, mainly PIK3CA mutations, have been shown frequently especially in the luminal breast cancer subtypes, suggesting a cross-talk between ER and PI3K/AKT. Aberrant PI3K/AKT signalling has been connected to poor response to anti-oestrogen therapies. In vitro studies have shown protein tyrosine phosphatase, non-receptor type 2 (PTPN2) as a previously unknown negative regulator of the PI3K/AKT pathway. Here, we evaluate possible genomic alterations in the PTPN2 gene and its potential as a new prognostic and treatment predictive marker for endocrine therapy benefit in breast cancer. PTPN2 gene copy number was assessed by real-time PCR in 215 tumour samples from a treatment randomised study consisting of postmenopausal patients diagnosed with stage II breast cancer 1976-1990. Corresponding mRNA expression levels of PTPN2 were evaluated in 86 available samples by the same methodology. Gene copy loss of PTPN2 was detected in 16% (34/215) of the tumours and this was significantly correlated with lower levels of PTPN2 mRNA. PTPN2 gene loss and lower mRNA levels were associated with activation of AKT and a poor prognosis. Furthermore, PTPN2 gene loss was a significant predictive marker of poor benefit from tamoxifen treatment. In conclusion, genomic loss of PTPN2 may be a previously unknown mechanism of PI3K/AKT upregulation in breast cancer. PTPN2 status is a potential new clinical marker of endocrine treatment benefit which could guide further individualised therapies in breast cancer.
Collapse
|
43
|
Rationale for targeting fibroblast growth factor receptor signaling in breast cancer. Breast Cancer Res Treat 2015; 150:1-8. [PMID: 25677745 PMCID: PMC4344551 DOI: 10.1007/s10549-015-3301-y] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 02/04/2015] [Indexed: 01/28/2023]
Abstract
Fibroblast growth factor receptor (FGFR) signaling is involved in multiple biological processes, including cell proliferation, survival, differentiation, migration, and apoptosis during embryonic development and adult tissue homeostasis. Given its role in the activation of critical signaling pathways, aberrant FGFR signaling has been implicated in multiple cancer types. A comprehensive search of PubMed and congress abstracts was conducted to identify reports on FGFR pathway components in breast cancer. In breast cancers, FGFR1 and FGFR4 gene amplification and single nucleotide polymorphisms in FGFR2 and FGFR4 have been detected. Commonly, these FGFR aberrations and gene amplifications lead to increased FGFR signaling and have been linked with poor prognosis and resistance to breast cancer treatments. Here, we review the role of FGFR signaling and the impact of FGFR genetic amplifications/aberrations on breast tumors. In addition, we summarize the most recent preclinical and clinical data on FGFR-targeted therapies in breast cancer. Finally, we highlight the ongoing clinical trials of the FGFR-targeted agents dovitinib, AZD4547, lucitanib, BGJ398, and JNJ-42756493, which are selected for patients with FGFR pathway-amplified breast cancer. Aberrant FGFR pathway amplification may drive some breast cancers. Inhibition of FGFR signaling is being explored in the clinic, and data from these trials may refine our ability to select patients who would best respond to these treatments.
Collapse
|
44
|
Cha YL, Li PD, Yuan LJ, Zhang MY, Zhang YJ, Rao HL, Zhang HZ, Zheng XFS, Wang HY. EIF4EBP1 overexpression is associated with poor survival and disease progression in patients with hepatocellular carcinoma. PLoS One 2015; 10:e0117493. [PMID: 25658620 PMCID: PMC4319970 DOI: 10.1371/journal.pone.0117493] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 12/24/2014] [Indexed: 01/20/2023] Open
Abstract
Objective EIF4EBP1 acts as a crucial effector in mTOR signaling pathway. Studies have suggested that EIF4EBP1 plays a critical role in carcinogenesis. However, the clinical significance and biological role of EIF4EBP1 in hepatocellular carcinoma (HCC) have not been elucidated. Therefore, we aimed to investigate the clinical significance of EIF4EBP1 in HCC. Methods Total 128 cases of HCCs were included in this study. EIF4EBP1 expression in HCC tissues was detected by qRT-PCR, Western blot and immunohistochemistry, respectively. Then the relationships between EIF4EBP1 expression and clinical features as well as survival were analyzed. Results The expression level of EIF4EBP1 mRNA is significantly higher in 60% (24/40) of fresh HCC tissues than that in the matched adjacent nontumor liver (NCL) tissues (P = 0.044). Similarly, EIF4EBP1 protein is notably upregulated in 8 HCC tissues (randomly selected from the 40 HCCs) measured by Western blot and is significantly increased in another 88 paraffin-embedded HCCs (53%, 47/88) by immunohistochemistry compared with the matched NCLs (P < 0.001). EIF4EBP1 protein expression in HCC tissues is significantly correlated with serum AFP (P = 0.003) and marginally significantly associated with pathological grade (P = 0.085), tumor number (P = 0.084), tumor embolus (P = 0.084) and capsulation (P = 0.073). Patients with higher EIF4EBP1 protein expression have a much worse 5-year overall survival (40.3% vs 73.6%) and 5-year disease-free survival (33.0% vs 49.0%) than those with low expression. Furthermore, Cox regression analysis shows that EIF4EBP1 protein is an independent prognostic factor for overall survival (HR, 2.285; 95% CI, 1.154–4.527; P = 0.018) and disease-free survival (HR, 1.901; 95% CI, 1.067–3.386; P = 0.029) in HCC patients. Conclusions Our results demonstrate for the first time that EIF4EBP1 mRNA and protein are markedly up-regulated in HCC tissues, and the protein overexpression is significantly associated with poor survival and progression, which provide a potential new prognostic marker and therapeutic target for HCC patients.
Collapse
Affiliation(s)
- Yin-Lian Cha
- State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
- National Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Pin-Dong Li
- State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
- National Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Lin-Jing Yuan
- State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
- National Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Mei-Yin Zhang
- State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
- National Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yao-Jun Zhang
- Department of Hepatobiliary Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Hui-Lan Rao
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Hui-Zhong Zhang
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - X. F. Steven Zheng
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Hui-Yun Wang
- State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
- National Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
- * E-mail:
| |
Collapse
|
45
|
Maiese K. Cutting through the complexities of mTOR for the treatment of stroke. Curr Neurovasc Res 2014; 11:177-86. [PMID: 24712647 DOI: 10.2174/1567202611666140408104831] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/17/2014] [Accepted: 03/19/2014] [Indexed: 01/06/2023]
Abstract
On a global basis, at least 15 million individuals suffer some form of a stroke every year. Of these individuals, approximately 800,000 of these cerebrovascular events occur in the United States (US) alone. The incidence of stroke in the US has declined from the third leading cause of death to the fourth, a result that can be attributed to multiple factors that include improved vascular disease management, reduced tobacco use, and more rapid time to treatment in patients that are clinically appropriate to receive recombinant tissue plasminogen activator. However, treatment strategies for the majority of stroke patients are extremely limited and represent a critical void for care. A number of new therapeutic considerations for stroke are under consideration, but it is the mammalian target of rapamycin (mTOR) that is receiving intense focus as a potential new target for cerebrovascular disease. As part of the phosphoinositide 3-kinase (PI 3-K) and protein kinase B (Akt) cascade, mTOR is an essential component of mTOR Complex 1 (mTORC1) and mTOR Complex 2 (mTORC2) to govern cell death involving apoptosis, autophagy, and necroptosis, cellular metabolism, and gene transcription. Vital for the consideration of new therapeutic strategies for stroke is the ability to understand how the intricate and complex pathways of mTOR signaling sometimes lead to disparate clinical outcomes.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, Newark, New Jersey 07101, USA.
| |
Collapse
|
46
|
Juric D, Castel P, Griffith M, Griffith OL, Won HH, Ellis H, Ebbesen SH, Ainscough BJ, Ramu A, Iyer G, Shah RH, Huynh T, Mino-Kenudson M, Sgroi D, Isakoff S, Thabet A, Elamine L, Solit DB, Lowe SW, Quadt C, Peters M, Derti A, Schegel R, Huang A, Mardis ER, Berger MF, Baselga J, Scaltriti M. Convergent loss of PTEN leads to clinical resistance to a PI(3)Kα inhibitor. Nature 2014; 518:240-4. [PMID: 25409150 PMCID: PMC4326538 DOI: 10.1038/nature13948] [Citation(s) in RCA: 464] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 10/07/2014] [Indexed: 12/12/2022]
Abstract
The feasibility of performing broad and deep tumour genome sequencing has shed new light into tumour heterogeneity and provided important insights into the evolution of metastases arising from different clones1,2. To add an additional layer of complexity, tumour evolution may be influenced by selective pressure provided by therapy, in a similar fashion as it occurs in infectious diseases. Here, we have studied the tumour genomic evolution in a patient with metastatic breast cancer bearing an activating PIK3CA mutation. The patient was treated with the PI3Kα inhibitor BYL719 and achieved a lasting clinical response, although eventually progressed to treatment and died shortly thereafter. A rapid autopsy was performed and a total of 14 metastatic sites were collected and sequenced. All metastatic lesions, when compared to the pre-treatment tumour, had a copy loss of PTEN, and those lesions that became refractory to BYL719 had additional and different PTEN genetic alterations, resulting in the loss of PTEN expression. Acquired bi-allelic loss of PTEN was found in one additional patient treated with BYL719 whereas in two patients PIK3CA mutations present in the primary tumour were no longer detected at the time of progression. To functionally characterize our findings, inducible PTEN knockdown in sensitive cells resulted in resistance to BYL719, while simultaneous PI3Kp110β blockade reverted this resistance phenotype, both in cell lines and in PTEN-null xenografts derived from our patient. We conclude that parallel genetic evolution of separate sites with different PTEN genomic alterations leads to a convergent PTEN- null phenotype resistant to PI3Kα inhibition.
Collapse
Affiliation(s)
- Dejan Juric
- Massachusetts General Hospital Cancer Center, 55 Fruit Street, Boston, Massachusetts 02114, USA
| | - Pau Castel
- Human Oncology and Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, New York 10065, USA
| | - Malachi Griffith
- 1] Department of Genetics, Washington University School of Medicine, 4566 Scott Avenue, St Louis, Missouri 63110, USA [2] Siteman Cancer Center, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, Missouri 63110, USA [3] The Genome Institute, Washington University School of Medicine, 4444 Forest Park Avenue, St Louis, Missouri 63108, USA
| | - Obi L Griffith
- 1] Siteman Cancer Center, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, Missouri 63110, USA [2] The Genome Institute, Washington University School of Medicine, 4444 Forest Park Avenue, St Louis, Missouri 63108, USA [3] Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, Missouri 63110, USA
| | - Helen H Won
- 1] Human Oncology and Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, New York 10065, USA [2] Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, New York 10065, USA
| | - Haley Ellis
- Human Oncology and Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, New York 10065, USA
| | - Saya H Ebbesen
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, New York 10065, USA
| | - Benjamin J Ainscough
- The Genome Institute, Washington University School of Medicine, 4444 Forest Park Avenue, St Louis, Missouri 63108, USA
| | - Avinash Ramu
- The Genome Institute, Washington University School of Medicine, 4444 Forest Park Avenue, St Louis, Missouri 63108, USA
| | - Gopa Iyer
- 1] Human Oncology and Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, New York 10065, USA [2] Division of Genitourinary Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, New York 10065, USA
| | - Ronak H Shah
- Human Oncology and Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, New York 10065, USA
| | - Tiffany Huynh
- Massachusetts General Hospital Cancer Center, 55 Fruit Street, Boston, Massachusetts 02114, USA
| | - Mari Mino-Kenudson
- Massachusetts General Hospital Cancer Center, 55 Fruit Street, Boston, Massachusetts 02114, USA
| | - Dennis Sgroi
- Massachusetts General Hospital Cancer Center, 55 Fruit Street, Boston, Massachusetts 02114, USA
| | - Steven Isakoff
- Massachusetts General Hospital Cancer Center, 55 Fruit Street, Boston, Massachusetts 02114, USA
| | - Ashraf Thabet
- Massachusetts General Hospital Cancer Center, 55 Fruit Street, Boston, Massachusetts 02114, USA
| | - Leila Elamine
- Massachusetts General Hospital Cancer Center, 55 Fruit Street, Boston, Massachusetts 02114, USA
| | - David B Solit
- 1] Human Oncology and Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, New York 10065, USA [2] Division of Genitourinary Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, New York 10065, USA
| | - Scott W Lowe
- 1] Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, New York 10065, USA [2] Howard Hughes Medical Institute, Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, New York 10065, USA
| | - Cornelia Quadt
- Novartis Pharma AG, Forum 1, Novartis Campus, CH-4056 Basel, Switzerland
| | - Malte Peters
- Novartis Pharma AG, Forum 1, Novartis Campus, CH-4056 Basel, Switzerland
| | - Adnan Derti
- Oncology Translational Medicine, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, USA
| | - Robert Schegel
- Oncology Translational Medicine, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, USA
| | - Alan Huang
- Oncology Translational Medicine, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, USA
| | - Elaine R Mardis
- 1] Department of Genetics, Washington University School of Medicine, 4566 Scott Avenue, St Louis, Missouri 63110, USA [2] Siteman Cancer Center, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, Missouri 63110, USA [3] The Genome Institute, Washington University School of Medicine, 4444 Forest Park Avenue, St Louis, Missouri 63108, USA [4] Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, Missouri 63110, USA
| | - Michael F Berger
- 1] Human Oncology and Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, New York 10065, USA [2] Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, New York 10065, USA
| | - José Baselga
- 1] Human Oncology and Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, New York 10065, USA [2] Breast Medicine Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, New York 10065, USA
| | - Maurizio Scaltriti
- Human Oncology and Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, New York 10065, USA
| |
Collapse
|
47
|
Horii R, Matsuura M, Dan S, Ushijima M, Uehiro N, Ogiya A, Honma N, Ito Y, Iwase T, Yamori T, Akiyama F. Extensive analysis of signaling pathway molecules in breast cancer: association with clinicopathological characteristics. Int J Clin Oncol 2014; 20:490-8. [PMID: 25312293 DOI: 10.1007/s10147-014-0753-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 09/16/2014] [Indexed: 11/28/2022]
Abstract
BACKGROUND The aim of this study was to extensively analyze the signaling pathway molecules in breast cancer and to explore candidate biomarkers for clinicopathological relevance. METHODS We assessed the expression of key factors in cell signaling, namely p-AKT, cyclin D1, P27, p-p70S6 K, p-4EBP1, and p-MAPK/ERK, within 338 invasive breast cancer patients. These factors were immunohistochemically examined in tumor tissues and assessed by staining score. Staining scores were analyzed by a clustering method to devise a new classification based on pathway activity. We investigated the relationships among staining scores, the clustering classification, and patient characteristics. RESULTS The proportion of patients displaying high expression levels were as follows: p-AKT, 75%; cyclin D1, 12%; P27, 53%; p-p70S6 K, 37%; p-4EBP1, 19%; and p-MAPK/ERK, 3%. Patients were classified into two groups on the basis of staining scores. Group 1 (39%) included more positive cases for p-4EBP1, p-MAPK/ERK, and p-p70S6 K and fewer positive cases for P27 and cyclin D1 than Group 2 (61%). The clustering classification was significantly related to subgrouping by hormone receptor and HER2 (P < 0.001), nuclear grade (P < 0.001) and histological subtype (P = 0.034). A strong positive correlation was identified between p-AKT and P27, cyclin D1 and P27, p-p70S6 K and p-4EBP1, p-p70S6 K and p-MAPK/ERK, and between p-4EBP1 and p-MAPK/ERK. Levels of p-p70S6 K were significantly related to recurrence in both univariate (RR = 0.75, P < 0.001) and multivariate (RR = 0.71, P = 0.049) analyses. CONCLUSIONS The present study helps us to understand the characteristics of signaling pathway status in breast cancers. Moreover, p-p70S6 K expression may be of use in predicting clinical outcome.
Collapse
Affiliation(s)
- Rie Horii
- Department of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Roy D, Calaf GM. Allelic loss at chromosome 11q13 alters FGF3 gene expression in a human breast cancer progression model. Oncol Rep 2014; 32:2445-52. [PMID: 25333703 DOI: 10.3892/or.2014.3502] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 08/26/2014] [Indexed: 11/06/2022] Open
Abstract
Identification of markers with the potential to predict tumorigenic behavior is important in breast cancer, due to the variability in clinical disease progression. Genetic alterations during neoplastic progression may appear as changes in total DNA content, single genes, or gene expression. Oncogenic alterations are thought to be prognostic indices for patients with breast cancer. Breast cancer deregulation can occur in the normal cellular process and can be measured by microsatellite instability (MSI)/loss of heterozygosity (LOH). Chromosome 11 is unique in this respect, as three regions of MSI/LOH have been identified (11p15-p15.5, 11q13-q13.3 and 11q23-q24). There are many important families of genes, such as FGF, CCND1, FADD, BAD and GAD2, that are located on chromosome 11 and these play a crucial role in breast cancer progression. Among them, different members of the fibroblast growth factor (FGF) family of genes are clustered around human chromosome 11q13 amplicon, which are constantly altering during breast cancer progression. Therefore, in this study, locus 11q13 and FGF3 gene (11q13) function were investigated in a radiation and estrogen breast cancer model induced by high-LET (α-particle) radiation and estrogen exposure. To assess the effect of ionizing radiation and estrogen at chromosome 11q13 loci and the subsequent role of FGF3 gene expression, various microsatellite markers were chosen in this region, and allelic loses (~20-45%) were identified by PCR-SSCP analysis. Results showed an increase in FGF3 protein expression and a 6- to 8-fold change in gene expression of FGF3 and associated genes. These deregulations could be utilized as an appropriate target for therapeutic intervention in breast cancer.
Collapse
Affiliation(s)
- Debasish Roy
- Department of Natural Sciences, Hostos College of the City University of New York, Bronx, NY, USA
| | - Gloria M Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Chile
| |
Collapse
|
49
|
Karlsson E, Pérez-Tenorio G, Amin R, Bostner J, Skoog L, Fornander T, Sgroi DC, Nordenskjöld B, Hallbeck AL, Stål O. The mTOR effectors 4EBP1 and S6K2 are frequently coexpressed, and associated with a poor prognosis and endocrine resistance in breast cancer: a retrospective study including patients from the randomised Stockholm tamoxifen trials. Breast Cancer Res 2014; 15:R96. [PMID: 24131622 PMCID: PMC3978839 DOI: 10.1186/bcr3557] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 09/25/2013] [Indexed: 12/14/2022] Open
Abstract
Introduction mTOR and its downstream effectors the 4E-binding protein 1 (4EBP1) and the p70 ribosomal S6 kinases (S6K1 and S6K2) are frequently upregulated in breast cancer, and assumed to be driving forces in tumourigenesis, in close connection with oestrogen receptor (ER) networks. Here, we investigated these factors as clinical markers in five different cohorts of breast cancer patients. Methods The prognostic significance of 4EBP1, S6K1 and S6K2 mRNA expression was assessed with real-time PCR in 93 tumours from the treatment randomised Stockholm trials, encompassing postmenopausal patients enrolled between 1976 and 1990. Three publicly available breast cancer cohorts were used to confirm the results. Furthermore, the predictive values of 4EBP1 and p4EBP1_S65 protein expression for both prognosis and endocrine treatment benefit were assessed by immunohistochemical analysis of 912 node-negative breast cancers from the Stockholm trials. Results S6K2 and 4EBP1 mRNA expression levels showed significant correlation and were associated with a poor outcome in all cohorts investigated. 4EBP1 protein was confirmed as an independent prognostic factor, especially in progesterone receptor (PgR)-expressing cancers. 4EBP1 protein expression was also associated with a poor response to endocrine treatment in the ER/PgR positive group. Cross-talk to genomic as well as non-genomic ER/PgR signalling may be involved and the results further support a combination of ER and mTOR signalling targeted therapies. Conclusion This study suggests S6K2 and 4EBP1 as important factors for breast tumourigenesis, interplaying with hormone receptor signalling. We propose S6K2 and 4EBP1 as new potential clinical markers for prognosis and endocrine therapy response in breast cancer.
Collapse
|
50
|
Abstract
FGFR (fibroblast growth factor receptor) signalling plays critical roles in embryogensis, adult physiology, tissue repair and many pathologies. Of particular interest over recent years, it has been implicated in a wide range of cancers, and concerted efforts are underway to target different aspects of FGFR signalling networks. A major focus has been identifying the canonical downstream signalling pathways in cancer cells, and these are now relatively well understood. In the present review, we focus on two distinct but emerging hot topics in FGF biology: its role in stromal cross-talk during cancer progression and the potential roles of FGFR signalling in the nucleus. These neglected areas are proving to be of great interest clinically and are intimately linked, at least in pancreatic cancer. The importance of the stroma in cancer is well accepted, both as a conduit/barrier for treatment and as a target in its own right. Nuclear receptors are less acknowledged as targets, largely due to historical scepticism as to their existence or importance. However, increasing evidence from across the receptor tyrosine kinase field is now strong enough to make the study of nuclear growth factor receptors a major area of interest.
Collapse
|