1
|
Zhang Y, Wang W. Advances in tumor subclone formation and mechanisms of growth and invasion. J Transl Med 2025; 23:461. [PMID: 40259385 PMCID: PMC12012948 DOI: 10.1186/s12967-025-06486-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 04/11/2025] [Indexed: 04/23/2025] Open
Abstract
Tumor subclones refer to distinct cell populations within the same tumor that possess different genetic characteristics. They play a crucial role in understanding tumor heterogeneity, evolution, and therapeutic resistance. The formation of tumor subclones is driven by several key mechanisms, including the inherent genetic instability of tumor cells, which facilitates the accumulation of novel mutations; selective pressures from the tumor microenvironment and therapeutic interventions, which promote the expansion of certain subclones; and epigenetic modifications, such as DNA methylation and histone modifications, which alter gene expression patterns. Major methodologies for studying tumor subclones include single-cell sequencing, liquid biopsy, and spatial transcriptomics, which provide insights into clonal architecture and dynamic evolution. Beyond their direct involvement in tumor growth and invasion, subclones significantly contribute to tumor heterogeneity, immune evasion, and treatment resistance. Thus, an in-depth investigation of tumor subclones not only aids in guiding personalized precision therapy, overcoming drug resistance, and identifying novel therapeutic targets, but also enhances our ability to predict recurrence and metastasis risks while elucidating the mechanisms underlying tumor heterogeneity. The integration of artificial intelligence, big data analytics, and multi-omics technologies is expected to further advance research in tumor subclones, paving the way for novel strategies in cancer diagnosis and treatment. This review aims to provide a comprehensive overview of tumor subclone formation mechanisms, evolutionary models, analytical methods, and clinical implications, offering insights into precision oncology and future translational research.
Collapse
Affiliation(s)
- Yuhong Zhang
- Department of Oncology, Clinical Medical College, Southwest Medical University, No. 319, Section 3, Zhongshan Road, Luzhou, 646099, Sichuan, China
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Weidong Wang
- Department of Oncology, Clinical Medical College, Southwest Medical University, No. 319, Section 3, Zhongshan Road, Luzhou, 646099, Sichuan, China.
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Quan Y, Wang M, Zhang H, Lu D, Ping H. Spatial transcriptomics identifies RBM39 as a gene a ssociated with Gleason score progression in prostate cancer. iScience 2024; 27:111351. [PMID: 39650727 PMCID: PMC11625293 DOI: 10.1016/j.isci.2024.111351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/17/2024] [Accepted: 11/06/2024] [Indexed: 12/11/2024] Open
Abstract
Prostate cancer (PCa) exhibits significant intratumor heterogeneity, frequently manifesting as a multifocal disease. This study utilized Visium spatial transcriptomics (ST) to explore transcriptome patterns in PCa regions with varying Gleason scores (GSs). Principal component analysis (PCA) and Louvain clustering analysis revealed transcriptomic classifications aligned with the histology of different GSs. The increasing degree of tumor malignancy during GS progression was validated using inferred copy number variation (inferCNV) analysis. Diffusion pseudotime (DPT) and partition-based graph abstraction (PAGA) analyses predicted the developmental trajectories among distinct clusters. Differentially expressed gene (DEG) analysis through pairwise comparisons of various GSs identified genes associated with GS progression. Validation with The Cancer Genome Atlas Prostate Adenocarcinoma (TCGA-PRAD) dataset confirmed the differential expression of RBM39, a finding further supported by cytological and histological experiments. These findings enhance our understanding of GS evolution through spatial transcriptomics and highlight RBM39 as a gene associated with GS progression.
Collapse
Affiliation(s)
- Yongjun Quan
- Department of Urology, Beijing Tongren Hospital, Capital Medical University, Beijing 100176, P.R. China
| | - Mingdong Wang
- Department of Urology, Beijing Tongren Hospital, Capital Medical University, Beijing 100176, P.R. China
| | - Hong Zhang
- Department of Pathology, Beijing Tongren Hospital, Capital Medical University, Beijing 100176, P.R. China
| | - Dan Lu
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing 100191, P.R. China
| | - Hao Ping
- Department of Urology, Beijing Tongren Hospital, Capital Medical University, Beijing 100176, P.R. China
| |
Collapse
|
3
|
Quan Y, Zhang H, Wang M, Ping H. UQCRB and LBH are correlated with Gleason score progression in prostate cancer: Spatial transcriptomics and experimental validation. Comput Struct Biotechnol J 2024; 23:3315-3326. [PMID: 39310280 PMCID: PMC11414276 DOI: 10.1016/j.csbj.2024.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/09/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024] Open
Abstract
Prostate cancer (PCa) is a multifocal disease characterized by genomic and phenotypic heterogeneity within a single gland. In this study, Visium spatial transcriptomics (ST) analysis was applied to PCa tissues with different histological structures to infer the molecular events involved in Gleason score (GS) progression. The spots in tissue sections were classified into various groups using Principal Component Analysis (PCA) and Louvain clustering analysis based on transcriptome data. Anotation of the spots according to GS revealed notable similarities between transcriptomic profiles and histologically identifiable structures. The accuracy of macroscopic GS determination was bioinformatically verified through malignancy-related feature analysis, specifically inferred copy number variation (inferCNV), as well as developmental trajectory analyses, such as diffusion pseudotime (DPT) and partition-based graph abstraction (PAGA). Genes related to GS progression were identified from the differentially expressed genes (DEGs) through pairwise comparisons of groups along a GS gradient. The proteins encoded by the representative oncogenes UQCRB and LBH were found to be highly expressed in advanced-stage PCa tissues. Knockdown of their mRNAs significantly suppressed PCa cell proliferation and invasion. These findings were validated using The Cancer Genome Atlas Prostate Adenocarcinoma (TCGA-PRAD) dataset, as well as through histological and cytological experiments. The results presented here establish a foundation for ST-based evaluation of GS progression and provide valuable insights into the GS progression-related genes UQCRB and LBH.
Collapse
Affiliation(s)
- Yongjun Quan
- Department of Urology, Beijing Tongren Hospital, Capital Medical University, Beijing 100176, China
| | - Hong Zhang
- Department of Pathology, Beijing Tongren Hospital, Capital Medical University, Beijing 100176, China
| | - Mingdong Wang
- Department of Urology, Beijing Tongren Hospital, Capital Medical University, Beijing 100176, China
| | - Hao Ping
- Department of Urology, Beijing Tongren Hospital, Capital Medical University, Beijing 100176, China
| |
Collapse
|
4
|
Ren S, Li J, Dorado J, Sierra A, González-Díaz H, Duardo A, Shen B. From molecular mechanisms of prostate cancer to translational applications: based on multi-omics fusion analysis and intelligent medicine. Health Inf Sci Syst 2024; 12:6. [PMID: 38125666 PMCID: PMC10728428 DOI: 10.1007/s13755-023-00264-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
Prostate cancer is the most common cancer in men worldwide and has a high mortality rate. The complex and heterogeneous development of prostate cancer has become a core obstacle in the treatment of prostate cancer. Simultaneously, the issues of overtreatment in early-stage diagnosis, oligometastasis and dormant tumor recognition, as well as personalized drug utilization, are also specific concerns that require attention in the clinical management of prostate cancer. Some typical genetic mutations have been proved to be associated with prostate cancer's initiation and progression. However, single-omic studies usually are not able to explain the causal relationship between molecular alterations and clinical phenotypes. Exploration from a systems genetics perspective is also lacking in this field, that is, the impact of gene network, the environmental factors, and even lifestyle behaviors on disease progression. At the meantime, current trend emphasizes the utilization of artificial intelligence (AI) and machine learning techniques to process extensive multidimensional data, including multi-omics. These technologies unveil the potential patterns, correlations, and insights related to diseases, thereby aiding the interpretable clinical decision making and applications, namely intelligent medicine. Therefore, there is a pressing need to integrate multidimensional data for identification of molecular subtypes, prediction of cancer progression and aggressiveness, along with perosonalized treatment performing. In this review, we systematically elaborated the landscape from molecular mechanism discovery of prostate cancer to clinical translational applications. We discussed the molecular profiles and clinical manifestations of prostate cancer heterogeneity, the identification of different states of prostate cancer, as well as corresponding precision medicine practices. Taking multi-omics fusion, systems genetics, and intelligence medicine as the main perspectives, the current research results and knowledge-driven research path of prostate cancer were summarized.
Collapse
Affiliation(s)
- Shumin Ren
- Department of Urology and Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, 610041 China
- Department of Computer Science and Information Technology, University of A Coruña, 15071 A Coruña, Spain
| | - Jiakun Li
- Department of Urology and Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Julián Dorado
- Department of Computer Science and Information Technology, University of A Coruña, 15071 A Coruña, Spain
| | - Alejandro Sierra
- Department of Computer Science and Information Technology, University of A Coruña, 15071 A Coruña, Spain
- IKERDATA S.L., ZITEK, University of Basque Country UPVEHU, Rectorate Building, 48940 Leioa, Spain
| | - Humbert González-Díaz
- Department of Computer Science and Information Technology, University of A Coruña, 15071 A Coruña, Spain
- IKERDATA S.L., ZITEK, University of Basque Country UPVEHU, Rectorate Building, 48940 Leioa, Spain
| | - Aliuska Duardo
- Department of Computer Science and Information Technology, University of A Coruña, 15071 A Coruña, Spain
- IKERDATA S.L., ZITEK, University of Basque Country UPVEHU, Rectorate Building, 48940 Leioa, Spain
| | - Bairong Shen
- Department of Urology and Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, 610041 China
| |
Collapse
|
5
|
Skotheim RI, Bogaard M, Carm KT, Axcrona U, Axcrona K. Prostate cancer: Molecular aspects, consequences, and opportunities of the multifocal nature. Biochim Biophys Acta Rev Cancer 2024; 1879:189080. [PMID: 38272101 DOI: 10.1016/j.bbcan.2024.189080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
Prostate cancer is unique compared to other major cancers due to the presence of multiple primary malignant foci in the majority of patients at the time of diagnosis. Each malignant focus has distinct somatic mutations and gene expression patterns, which represents a challenge for the development of prognostic tests for localized prostate cancer. Additionally, the molecular heterogeneity of advanced prostate cancer has important implications for management, particularly for patients with metastatic and locally recurrent cancer. Studies have shown that prostate cancers with mutations in DNA damage response genes are more sensitive to drugs inhibiting the poly ADP-ribose polymerase (PARP) enzyme. However, testing for such mutations should consider both spatial and temporal heterogeneity. Here, we summarize studies where multiregional genomics and transcriptomics analyses have been performed for primary prostate cancer. We further discuss the vast interfocal heterogeneity and how prognostic biomarkers and a molecular definition of the index tumor should be developed. The concept of focal treatments in prostate cancer has been evolving as a demand from patients and clinicians and is one example where there is a need for defining an index tumor. Here, biomarkers must have proven value for individual malignant foci. The potential discovery and implementation of biomarkers that are agnostic to heterogeneity are also explored as an alternative to multisample testing. Thus, deciding upon whole-organ treatment, such as radical prostatectomy, should depend on information from biomarkers which are informative for the whole organ.
Collapse
Affiliation(s)
- Rolf I Skotheim
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; Department of Informatics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway.
| | - Mari Bogaard
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Kristina T Carm
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Ulrika Axcrona
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Karol Axcrona
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; Department of Urology, Akershus University Hospital, Lørenskog, Norway
| |
Collapse
|
6
|
Wasim S, Lee SY, Kim J. Complexities of Prostate Cancer. Int J Mol Sci 2022; 23:14257. [PMID: 36430730 PMCID: PMC9696501 DOI: 10.3390/ijms232214257] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Prostate cancer has a long disease history and a wide variety and uncertainty in individual patients' clinical progress. In recent years, we have seen a revolutionary advance in both prostate cancer patient care and in the research field. The power of deep sequencing has provided cistromic and transcriptomic knowledge of prostate cancer that has not discovered before. Our understanding of prostate cancer biology, from bedside and molecular imaging techniques, has also been greatly advanced. It is important that our current theragnostic schemes, including our diagnostic modalities, therapeutic responses, and the drugs available to target non-AR signaling should be improved. This review article discusses the current progress in the understanding of prostate cancer biology and the recent advances in diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Sobia Wasim
- Department of Neuroscience, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
| | - Sang-Yoon Lee
- Department of Neuroscience, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
| | - Jaehong Kim
- Department of Biochemistry, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
7
|
Cyrta J, Prandi D, Arora A, Hovelson DH, Sboner A, Rodriguez A, Fedrizzi T, Beltran H, Robinson DR, Gopalan A, True L, Nelson PS, Robinson BD, Mosquera JM, Tomlins SA, Shen R, Demichelis F, Rubin MA. Comparative genomics of primary prostate cancer and paired metastases: insights from 12 molecular case studies. J Pathol 2022; 257:274-284. [PMID: 35220606 PMCID: PMC9311708 DOI: 10.1002/path.5887] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 02/09/2022] [Accepted: 02/23/2022] [Indexed: 11/25/2022]
Abstract
Primary prostate cancer (PCa) can show marked molecular heterogeneity. However, systematic analyses comparing primary PCa and matched metastases in individual patients are lacking. We aimed to address the molecular aspects of metastatic progression while accounting for the heterogeneity of primary PCa. In this pilot study, we collected 12 radical prostatectomy (RP) specimens from men who subsequently developed metastatic castration‐resistant prostate cancer (mCRPC). We used histomorphology (Gleason grade, focus size, stage) and immunohistochemistry (IHC) (ERG and p53) to identify independent tumors and/or distinct subclones of primary PCa. We then compared molecular profiles of these primary PCa areas to matched metastatic samples using whole‐exome sequencing (WES) and amplicon‐based DNA and RNA sequencing. Based on combined pathology and molecular analysis, seven (58%) RP specimens harbored monoclonal and topographically continuous disease, albeit with some degree of intratumor heterogeneity; four (33%) specimens showed true multifocal disease; and one displayed monoclonal disease with discontinuous topography. Early (truncal) events in primary PCa included SPOP p.F133V (one patient), BRAF p.K601E (one patient), and TMPRSS2:ETS rearrangements (eight patients). Activating AR alterations were seen in nine (75%) mCRPC patients, but not in matched primary PCa. Hotspot TP53 mutations, found in metastases from three patients, were readily present in matched primary disease. Alterations in genes encoding epigenetic modifiers were observed in several patients (either shared between primary foci and metastases or in metastatic samples only). WES‐based phylogenetic reconstruction and/or clonality scores were consistent with the index focus designated by pathology review in six out of nine (67%) cases. The three instances of discordance pertained to monoclonal, topographically continuous tumors, which would have been considered as unique disease in routine practice. Overall, our results emphasize pathologic and molecular heterogeneity of primary PCa, and suggest that comprehensive IHC‐assisted pathology review and genomic analysis are highly concordant in nominating the ‘index’ primary PCa area. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Joanna Cyrta
- Department of Pathology and Laboratory Medicine Weill Cornell Medicine New York NY USA
- Englander Institute for Precision Medicine Weill Cornell Medicine New York NY USA
- Department for BioMedical Research University of Bern Bern Switzerland
| | - Davide Prandi
- Department of Cellular Computational and Integrative Biology, University of Trento Trento Italy
| | - Arshi Arora
- Department of Epidemiology and Biostatistics Memorial Sloan‐Kettering Cancer Center New York NY USA
| | - Daniel H. Hovelson
- Center for Computational Medicine and Bioinformatics Univ. Michigan Ann Arbor MA USA
| | - Andrea Sboner
- Englander Institute for Precision Medicine Weill Cornell Medicine New York NY USA
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine Weill Cornell Medicine New York NY USA
| | - Antonio Rodriguez
- Department for BioMedical Research University of Bern Bern Switzerland
- Institute of Pathology University of Bern Bern Switzerland
| | - Tarcisio Fedrizzi
- Department of Epidemiology and Biostatistics Memorial Sloan‐Kettering Cancer Center New York NY USA
| | - Himisha Beltran
- Department of Medicine Division of Medical Oncology, Weill Cornell Medicine New York NY USA
- Department of Medical Oncology Dana Farber Cancer Institute Boston MA USA
| | - Dan R. Robinson
- Department of Pathology University of Michigan Ann Arbor MI USA
| | - Anurandha Gopalan
- Department of Pathology Memorial Sloan Kettering Cancer Center New York NY USA
| | - Lawrence True
- Department of Pathology Univ. of Washington Seattle WA USA
| | | | - Brian D. Robinson
- Department of Pathology and Laboratory Medicine Weill Cornell Medicine New York NY USA
- Englander Institute for Precision Medicine Weill Cornell Medicine New York NY USA
| | - Juan Miguel Mosquera
- Department of Pathology and Laboratory Medicine Weill Cornell Medicine New York NY USA
- Englander Institute for Precision Medicine Weill Cornell Medicine New York NY USA
| | | | - Ronglai Shen
- Department of Epidemiology and Biostatistics Memorial Sloan‐Kettering Cancer Center New York NY USA
| | - Francesca Demichelis
- Englander Institute for Precision Medicine Weill Cornell Medicine New York NY USA
- Department of Cellular Computational and Integrative Biology, University of Trento Trento Italy
| | - Mark A. Rubin
- Department of Pathology and Laboratory Medicine Weill Cornell Medicine New York NY USA
- Englander Institute for Precision Medicine Weill Cornell Medicine New York NY USA
- Department for BioMedical Research University of Bern Bern Switzerland
| |
Collapse
|
8
|
Ali A, Du Feu A, Oliveira P, Choudhury A, Bristow RG, Baena E. Prostate zones and cancer: lost in transition? Nat Rev Urol 2022; 19:101-115. [PMID: 34667303 DOI: 10.1038/s41585-021-00524-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2021] [Indexed: 12/16/2022]
Abstract
Localized prostate cancer shows great clinical, genetic and environmental heterogeneity; however, prostate cancer treatment is currently guided solely by clinical staging, serum PSA levels and histology. Increasingly, the roles of differential genomics, multifocality and spatial distribution in tumorigenesis are being considered to further personalize treatment. The human prostate is divided into three zones based on its histological features: the peripheral zone (PZ), the transition zone (TZ) and the central zone (CZ). Each zone has variable prostate cancer incidence, prognosis and outcomes, with TZ prostate tumours having better clinical outcomes than PZ and CZ tumours. Molecular and cell biological studies can improve understanding of the unique molecular, genomic and zonal cell type features that underlie the differences in tumour progression and aggression between the zones. The unique biology of each zonal tumour type could help to guide individualized treatment and patient risk stratification.
Collapse
Affiliation(s)
- Amin Ali
- Prostate Oncobiology Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK.,The Christie NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Alexander Du Feu
- Prostate Oncobiology Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Pedro Oliveira
- The Christie NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Ananya Choudhury
- The Christie NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK.,The University of Manchester, Manchester Cancer Research Centre, Manchester, UK.,Belfast-Manchester Movember Centre of Excellence, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Robert G Bristow
- The Christie NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK.,The University of Manchester, Manchester Cancer Research Centre, Manchester, UK.,Belfast-Manchester Movember Centre of Excellence, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Esther Baena
- Prostate Oncobiology Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK. .,Belfast-Manchester Movember Centre of Excellence, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK.
| |
Collapse
|
9
|
Grossmann S, Hooks Y, Wilson L, Moore L, O'Neill L, Martincorena I, Voet T, Stratton MR, Heer R, Campbell PJ. Development, maturation, and maintenance of human prostate inferred from somatic mutations. Cell Stem Cell 2021; 28:1262-1274.e5. [PMID: 33657416 PMCID: PMC8260206 DOI: 10.1016/j.stem.2021.02.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 11/19/2020] [Accepted: 02/02/2021] [Indexed: 01/23/2023]
Abstract
Clonal dynamics and mutation burden in healthy human prostate epithelium are relevant to prostate cancer. We sequenced whole genomes from 409 microdissections of normal prostate epithelium across 8 donors, using phylogenetic reconstruction with spatial mapping in a 59-year-old man's prostate to reconstruct tissue dynamics across the lifespan. Somatic mutations accumulate steadily at ∼16 mutations/year/clone, with higher rates in peripheral than peri-urethral regions. The 24-30 independent glandular subunits are established as rudimentary ductal structures during fetal development by 5-10 embryonic cells each. Puberty induces formation of further side and terminal branches by local stem cells disseminated throughout the rudimentary ducts during development. During adult tissue maintenance, clonal expansions have limited geographic scope and minimal migration. Driver mutations are rare in aging prostate epithelium, but the one driver we did observe generated a sizable intraepithelial clonal expansion. Leveraging unbiased clock-like mutations, we define prostate stem cell dynamics through fetal development, puberty, and aging.
Collapse
Affiliation(s)
- Sebastian Grossmann
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Yvette Hooks
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Laura Wilson
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | - Luiza Moore
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Laura O'Neill
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Iñigo Martincorena
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Thierry Voet
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK; Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Michael R Stratton
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Rakesh Heer
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK.
| | - Peter J Campbell
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK; Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK.
| |
Collapse
|
10
|
Erickson A, Hayes A, Rajakumar T, Verrill C, Bryant RJ, Hamdy FC, Wedge DC, Woodcock DJ, Mills IG, Lamb AD. A Systematic Review of Prostate Cancer Heterogeneity: Understanding the Clonal Ancestry of Multifocal Disease. Eur Urol Oncol 2021; 4:358-369. [PMID: 33888445 DOI: 10.1016/j.euo.2021.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/31/2021] [Accepted: 02/26/2021] [Indexed: 11/24/2022]
Abstract
CONTEXT Studies characterising genomic changes in prostate cancer (PCa) during natural progression have greatly increased our understanding of the disease. A better understanding of the evolutionary history of PCa would allow advances in diagnostics, prognostication, and novel therapies that together will improve patient outcomes. OBJECTIVE To review the molecular heterogeneity of PCa and assess recent efforts to profile intratumoural heterogeneity and clonal evolution. EVIDENCE ACQUISITION We screened a total of 1313 abstracts from PubMed published between 2009 and 2020, of which we reviewed 84 full-text articles. We excluded 49, resulting in 35 studies for qualitative analysis. EVIDENCE SYNTHESIS In studies of primary disease (16 studies, 4793 specimens), there is a lack of consensus regarding the monoclonal or polyclonal origin of primary PCa. There is no consistent mutation giving rise to primary PCa. Detailed clonal analysis of primary PCa has been limited by current techniques. By contrast, clonal relationships between PCa metastases and a potentiating clone have been consistently identified (19 studies, 732 specimens). Metastatic specimens demonstrate consistent truncal genomic aberrations that suggest monoclonal metastatic progenitors. CONCLUSIONS The relationship between the clonal dynamics of PCa and clinical outcomes needs further investigation. It is likely that this will provide a biological rationale for whether radical treatment of the primary tumour benefits patients with oligometastatic PCa. Future studies on the mutational burden in primary disease at single-cell resolution should permit the identification of clonal patterns underpinning the origin of lethal PCa. PATIENT SUMMARY Prostate cancers arise in different parts of the prostate because of DNA mutations that occur by chance at different times. These cancer cells and their origin can be tracked by DNA mapping. In this review we summarise the state of the art and outline what further science is needed to provide the missing answers.
Collapse
Affiliation(s)
- Andrew Erickson
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Alicia Hayes
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK; Oxford NIHR Biomedical Research Centre, University of Oxford, UK
| | - Timothy Rajakumar
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Clare Verrill
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK; Department of Cellular Pathology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Oxford National Institute for Health Research Biomedical Research Centre, Oxford, UK; Oxford NIHR Biomedical Research Centre, University of Oxford, UK
| | - Richard J Bryant
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK; Department of Urology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Oxford NIHR Biomedical Research Centre, University of Oxford, UK
| | - Freddie C Hamdy
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK; Department of Urology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Oxford NIHR Biomedical Research Centre, University of Oxford, UK
| | - David C Wedge
- Manchester Cancer Research Centre, University of Manchester, Manchester, UK
| | - Dan J Woodcock
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK; Oxford Big Data Institute, University of Oxford, Oxford, UK
| | - Ian G Mills
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK; Oxford NIHR Biomedical Research Centre, University of Oxford, UK
| | - Alastair D Lamb
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK; Department of Urology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Oxford NIHR Biomedical Research Centre, University of Oxford, UK.
| |
Collapse
|
11
|
Rebello RJ, Oing C, Knudsen KE, Loeb S, Johnson DC, Reiter RE, Gillessen S, Van der Kwast T, Bristow RG. Prostate cancer. Nat Rev Dis Primers 2021. [PMID: 33542230 DOI: 10.1038/s41572-020-0024.3-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/27/2023]
Abstract
Prostate cancer is a complex disease that affects millions of men globally, predominantly in high human development index regions. Patients with localized disease at a low to intermediate risk of recurrence generally have a favourable outcome of 99% overall survival for 10 years if the disease is detected and treated at an early stage. Key genetic alterations include fusions of TMPRSS2 with ETS family genes, amplification of the MYC oncogene, deletion and/or mutation of PTEN and TP53 and, in advanced disease, amplification and/or mutation of the androgen receptor (AR). Prostate cancer is usually diagnosed by prostate biopsy prompted by a blood test to measure prostate-specific antigen levels and/or digital rectal examination. Treatment for localized disease includes active surveillance, radical prostatectomy or ablative radiotherapy as curative approaches. Men whose disease relapses after prostatectomy are treated with salvage radiotherapy and/or androgen deprivation therapy (ADT) for local relapse, or with ADT combined with chemotherapy or novel androgen signalling-targeted agents for systemic relapse. Advanced prostate cancer often progresses despite androgen ablation and is then considered castration-resistant and incurable. Current treatment options include AR-targeted agents, chemotherapy, radionuclides and the poly(ADP-ribose) inhibitor olaparib. Current research aims to improve prostate cancer detection, management and outcomes, including understanding the fundamental biology at all stages of the disease.
Collapse
Affiliation(s)
- Richard J Rebello
- Cancer Research UK Manchester Institute, University of Manchester, Manchester Cancer Research Centre, Manchester, UK
| | - Christoph Oing
- Cancer Research UK Manchester Institute, University of Manchester, Manchester Cancer Research Centre, Manchester, UK
- Department of Oncology, Haematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Centre Eppendorf, Hamburg, Germany
| | - Karen E Knudsen
- Sidney Kimmel Cancer Center at Jefferson Health and Thomas Jefferson University, Philadelphia, PA, USA
| | - Stacy Loeb
- Department of Urology and Population Health, New York University and Manhattan Veterans Affairs, Manhattan, NY, USA
| | - David C Johnson
- Department of Urology, University of North Carolina, Chapel Hill, NC, USA
| | - Robert E Reiter
- Department of Urology, Jonssen Comprehensive Cancer Center UCLA, Los Angeles, CA, USA
| | | | - Theodorus Van der Kwast
- Laboratory Medicine Program, Princess Margaret Cancer Center, University Health Network, Toronto, Canada
| | - Robert G Bristow
- Cancer Research UK Manchester Institute, University of Manchester, Manchester Cancer Research Centre, Manchester, UK.
| |
Collapse
|
12
|
Abstract
Prostate cancer is a complex disease that affects millions of men globally, predominantly in high human development index regions. Patients with localized disease at a low to intermediate risk of recurrence generally have a favourable outcome of 99% overall survival for 10 years if the disease is detected and treated at an early stage. Key genetic alterations include fusions of TMPRSS2 with ETS family genes, amplification of the MYC oncogene, deletion and/or mutation of PTEN and TP53 and, in advanced disease, amplification and/or mutation of the androgen receptor (AR). Prostate cancer is usually diagnosed by prostate biopsy prompted by a blood test to measure prostate-specific antigen levels and/or digital rectal examination. Treatment for localized disease includes active surveillance, radical prostatectomy or ablative radiotherapy as curative approaches. Men whose disease relapses after prostatectomy are treated with salvage radiotherapy and/or androgen deprivation therapy (ADT) for local relapse, or with ADT combined with chemotherapy or novel androgen signalling-targeted agents for systemic relapse. Advanced prostate cancer often progresses despite androgen ablation and is then considered castration-resistant and incurable. Current treatment options include AR-targeted agents, chemotherapy, radionuclides and the poly(ADP-ribose) inhibitor olaparib. Current research aims to improve prostate cancer detection, management and outcomes, including understanding the fundamental biology at all stages of the disease.
Collapse
|
13
|
Beaumont KG, Beaumont MA, Sebra R. Application of Single-Cell Sequencing to Immunotherapy. Urol Clin North Am 2020; 47:475-485. [PMID: 33008498 DOI: 10.1016/j.ucl.2020.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Cancer is a highly complex and heterogeneous disease and immunotherapy has shown promise as a therapeutic approach. The increased resolution afforded by single-cell analysis offers the hope of finding and characterizing previously underappreciated populations of cells that could prove useful in understanding cancer progression and treatment. Urologic and prostate cancers are inherently heterogeneous diseases, and the potential for single-cell analysis to help understand and develop immunotherapeutic approaches to treat these diseases is very exciting. In this review, we view cancer immunotherapy through a single-cell lens and discuss the state-of-the-art technologies that enable advances in this field.
Collapse
Affiliation(s)
- Kristin G Beaumont
- Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1498, New York, NY 10029, USA.
| | - Michael A Beaumont
- Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1498, New York, NY 10029, USA
| | - Robert Sebra
- Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1498, New York, NY 10029, USA
| |
Collapse
|
14
|
Lu Y, Wu M, Fu J, Sun Y, Furukawa K, Ling J, Qin X, Chiao PJ. The overexpression of long intergenic ncRNA00162 induced by RelA/p65 promotes growth of pancreatic ductal adenocarcinoma. Cell Prolif 2020; 53:e12805. [PMID: 32364285 PMCID: PMC7260071 DOI: 10.1111/cpr.12805] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 03/15/2020] [Accepted: 03/18/2020] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES Recent observations have emphasized the role of long non-coding RNA (lncRNA) in cancer progression; however, a genetic profile of lncRNAs in pancreatic ductal adenocarcinoma (PDAC) remains an ongoing study. MATERIALS AND METHODS In this research, RNA sequencing showed that LINC00162 is dramatically increased in patient-derived tumour cell lines (PATC) compared with the human pancreatic nestin-positive epithelial (HPNE) cells. RESULTS These data were validated in several PDAC cell lines, and significant upregulation of LINC00162 was found in all of them. Knock-down of LINC00162 significantly inhibited the proliferation, colony formation and migration of PATC cells in vitro and suppressed the growth of PATC xenografts in vivo. Overexpression of LINC00162 in PDAC cell lines (AsPc-1) showed consistent results, with significantly increased proliferation, colony formation and migration of AsPc-1 cells, as well as enhanced tumour growth of the AsPc-1 xenografts in vivo. Furthermore, the result of Chromatin immunoprecipitation assay revealed that RelA/p65 directly bound to LINC00162, and the expression of LINC00162 in PDAC decreased after RelA/p65 knock-down, the proliferation ability of AsPc-1 also significantly inhibited after knocking down LINC00162 and RelA/p65 simultaneously, indicating that RelA/p65 directly involve in the transcriptional regulation of LINC00162. CONCLUSIONS In sum, our results provide first evidence for the role of LINC00162 in promoting PDAC progression and the potential underlying mechanism of LINC00162 overexpression.
Collapse
Affiliation(s)
- Yu Lu
- Department of Clinical LaboratoryLiuzhou People's HospitalLiuzhouChina
- Department of Molecular & Cellular OncologyThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
- Department of Clinical LaboratoryFirst Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Min Wu
- Department of Molecular & Cellular OncologyThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Jie Fu
- Department of Molecular & Cellular OncologyThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Yichen Sun
- Department of Molecular & Cellular OncologyThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Kenei Furukawa
- Department of Molecular & Cellular OncologyThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Jianhua Ling
- Department of Molecular & Cellular OncologyThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Xue Qin
- Department of Clinical LaboratoryFirst Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Paul J. Chiao
- Department of Molecular & Cellular OncologyThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| |
Collapse
|
15
|
Su F, Zhang W, Zhang D, Zhang Y, Pang C, Huang Y, Wang M, Cui L, He L, Zhang J, Zou L, Zhang J, Li W, Li L, Shao J, Ma J, Xiao F, Liu M. Spatial Intratumor Genomic Heterogeneity within Localized Prostate Cancer Revealed by Single-nucleus Sequencing. Eur Urol 2018; 74:551-559. [DOI: 10.1016/j.eururo.2018.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 06/01/2018] [Indexed: 10/28/2022]
|
16
|
Gaviraghi M, Vivori C, Pareja Sanchez Y, Invernizzi F, Cattaneo A, Santoliquido BM, Frenquelli M, Segalla S, Bachi A, Doglioni C, Pelechano V, Cittaro D, Tonon G. Tumor suppressor PNRC1 blocks rRNA maturation by recruiting the decapping complex to the nucleolus. EMBO J 2018; 37:embj.201899179. [PMID: 30373810 DOI: 10.15252/embj.201899179] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 09/14/2018] [Accepted: 09/19/2018] [Indexed: 12/20/2022] Open
Abstract
Focal deletions occur frequently in the cancer genome. However, the putative tumor-suppressive genes residing within these regions have been difficult to pinpoint. To robustly identify these genes, we implemented a computational approach based on non-negative matrix factorization, NMF, and interrogated the TCGA dataset. This analysis revealed a metagene signature including a small subset of genes showing pervasive hemizygous deletions, reduced expression in cancer patient samples, and nucleolar function. Amid the genes belonging to this signature, we have identified PNRC1, a nuclear receptor coactivator. We found that PNRC1 interacts with the cytoplasmic DCP1α/DCP2 decapping machinery and hauls it inside the nucleolus. PNRC1-dependent nucleolar translocation of the decapping complex is associated with a decrease in the 5'-capped U3 and U8 snoRNA fractions, hampering ribosomal RNA maturation. As a result, PNRC1 ablates the enhanced proliferation triggered by established oncogenes such as RAS and MYC These observations uncover a previously undescribed mechanism of tumor suppression, whereby the cytoplasmic decapping machinery is hauled within nucleoli, tightly regulating ribosomal RNA maturation.
Collapse
Affiliation(s)
- Marco Gaviraghi
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Claudia Vivori
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Yerma Pareja Sanchez
- Science for Life Laboratory, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - Francesca Invernizzi
- Pathology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Angela Cattaneo
- Functional Proteomics Program, Istituto FIRC di Oncologia Molecolare (IFOM), Milan, Italy
| | - Benedetta Maria Santoliquido
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Michela Frenquelli
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Simona Segalla
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Angela Bachi
- Functional Proteomics Program, Istituto FIRC di Oncologia Molecolare (IFOM), Milan, Italy
| | - Claudio Doglioni
- Pathology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Vicent Pelechano
- Science for Life Laboratory, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - Davide Cittaro
- Center for Translational Genomics and Bioinformatics, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Giovanni Tonon
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy .,Center for Translational Genomics and Bioinformatics, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
17
|
Yun JW, Lee S, Ryu D, Park S, Park WY, Joung JG, Jeong J. Biomarkers Associated with Tumor Heterogeneity in Prostate Cancer. Transl Oncol 2018; 12:43-48. [PMID: 30265975 PMCID: PMC6161410 DOI: 10.1016/j.tranon.2018.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/09/2018] [Accepted: 09/09/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND: Prostate cancers exhibit intratumor heterogeneity (ITH), like other cancer types. The ITH may affect diverse phenotypes such as treatment response, drug resistance, and clinical outcomes. It is crucial to consider ITH to understand tumorigenesis. METHODS: Genomic and transcriptomic profiles of prostate cancer patients were investigated to determine which markers are correlated with the degree of tumor heterogeneity. In addition, the correlation between the immune activity and clonality of tumors was examined. RESULTS: Tumor heterogeneity across all prostate cancer samples was variable. However, ITH events were dependent on genomic and clinical features. Interestingly, prostate-specific antigen score increased in tumors with multiple subclones, indicating high-grade tumor heterogeneity. On the other hand, CD8-positive T-cell activation decreased in highly heterogeneous tumors. Intriguingly, PTEN deletion was prominently enriched in high heterogeneity groups, with a strong association with heterozygous loss. Expression of major genes including PTEN, CDC42EP5, RNLS, GP2, NETO2, and AMPD3 was closely related to tumor heterogeneity in association with PTEN deletion. CONCLUSIONS: In prostate cancer, ITH, a potential factor affecting tumor progression, is associated with PTEN deletion and cytotoxic T cell inactivation.
Collapse
Affiliation(s)
- Jae Won Yun
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Republic of Korea; Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul 06351, Republic of Korea
| | - Soomin Lee
- Center for Health Promotion, Samsung Medical Center, Seoul, Republic of Korea
| | - Daeun Ryu
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Semi Park
- Center for Health Promotion, Samsung Medical Center, Seoul, Republic of Korea
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Republic of Korea; Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul 06351, Republic of Korea; Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Je-Gun Joung
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Republic of Korea.
| | - Jeongyun Jeong
- Center for Health Promotion, Samsung Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
18
|
Yadav SS, Stockert JA, Hackert V, Yadav KK, Tewari AK. Intratumor heterogeneity in prostate cancer. Urol Oncol 2018; 36:349-360. [PMID: 29887240 DOI: 10.1016/j.urolonc.2018.05.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 04/20/2018] [Accepted: 05/08/2018] [Indexed: 12/25/2022]
Abstract
Prostate cancer (PCa) has long been thought of as a disease with a heterogeneous phenotype. It can manifest in men as benign growths that can be safely watched or as more aggressive malignancies that can prove fatal. Recent investigations at the genomic, histopathological and molecular levels have identified tumor heterogeneity, the phenomenon of individual tumor cells presenting distinct genomic and phenotypic characteristics, as one of the most confounding and complex factors underlying PCa diagnosis, prognosis, and treatment. Despite tremendous progress made over the course of the last decade we still have an incomplete understanding of the extent and effect of intra- and inter-tumoral heterogeneity in the course of PCa progression. For example, a primary tumor can be classified into one of several molecular subgroups depending on whether the cancer has a particular gene fusion or a mutation which in turn might yield some patient-specific therapeutic regimen, but this same type of heterogeneous growth can be spatially or temporally restricted proving it difficult to detect during biopsy. We therefore present here a comprehensive review of the various studies addressing intra-tumor heterogeneity in PCa and in the context of that seen in other solid tumors. We discuss the impact of heterogeneity on clinical decision-making in treating both primary and metastatic lesions and how our understanding of this heterogeneity might help in developing better diagnostic tools and biomarkers and in guiding the selection of better therapeutic strategies.
Collapse
Affiliation(s)
- Shalini S Yadav
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jennifer A Stockert
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Victoria Hackert
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Kamlesh K Yadav
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY.
| | - Ashutosh K Tewari
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
19
|
Böttcher R, Kweldam CF, Livingstone J, Lalonde E, Yamaguchi TN, Huang V, Yousif F, Fraser M, Bristow RG, van der Kwast T, Boutros PC, Jenster G, van Leenders GJLH. Cribriform and intraductal prostate cancer are associated with increased genomic instability and distinct genomic alterations. BMC Cancer 2018; 18:8. [PMID: 29295717 PMCID: PMC5751811 DOI: 10.1186/s12885-017-3976-z] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 12/21/2017] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Invasive cribriform and intraductal carcinoma (CR/IDC) is associated with adverse outcome of prostate cancer patients. The aim of this study was to determine the molecular aberrations associated with CR/IDC in primary prostate cancer, focusing on genomic instability and somatic copy number alterations (CNA). METHODS Whole-slide images of The Cancer Genome Atlas Project (TCGA, N = 260) and the Canadian Prostate Cancer Genome Network (CPC-GENE, N = 199) radical prostatectomy datasets were reviewed for Gleason score (GS) and presence of CR/IDC. Genomic instability was assessed by calculating the percentage of genome altered (PGA). Somatic copy number alterations (CNA) were determined using Fisher-Boschloo tests and logistic regression. Primary analysis were performed on TCGA (N = 260) as discovery and CPC-GENE (N = 199) as validation set. RESULTS CR/IDC growth was present in 80/260 (31%) TCGA and 76/199 (38%) CPC-GENE cases. Patients with CR/IDC and ≥ GS 7 had significantly higher PGA than men without this pattern in both TCGA (2.2 fold; p = 0.0003) and CPC-GENE (1.7 fold; p = 0.004) cohorts. CR/IDC growth was associated with deletions of 8p, 16q, 10q23, 13q22, 17p13, 21q22, and amplification of 8q24. CNAs comprised a total of 1299 gene deletions and 369 amplifications in the TCGA dataset, of which 474 and 328 events were independently validated, respectively. Several of the affected genes were known to be associated with aggressive prostate cancer such as loss of PTEN, CDH1, BCAR1 and gain of MYC. Point mutations in TP53, SPOP and FOXA1were also associated with CR/IDC, but occurred less frequently than CNAs. CONCLUSIONS CR/IDC growth is associated with increased genomic instability clustering to genetic regions involved in aggressive prostate cancer. Therefore, CR/IDC is a pathologic substrate for progressive molecular tumour derangement.
Collapse
Affiliation(s)
- René Böttcher
- Department of Urology, Erasmus MC, Rotterdam, the Netherlands
| | - Charlotte F. Kweldam
- Department of Pathology, Erasmus University Medical Center, Josephine Nefkens Institute building, Be-222, P.O. Box 2040, Rotterdam, 3000 CA The Netherlands
| | - Julie Livingstone
- Informatics & Biocomputing Program, Ontario Institute for Cancer Research, Toronto, ON Canada
| | - Emilie Lalonde
- Informatics & Biocomputing Program, Ontario Institute for Cancer Research, Toronto, ON Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON Canada
| | - Takafumi N. Yamaguchi
- Informatics & Biocomputing Program, Ontario Institute for Cancer Research, Toronto, ON Canada
| | - Vincent Huang
- Informatics & Biocomputing Program, Ontario Institute for Cancer Research, Toronto, ON Canada
| | - Fouad Yousif
- Informatics & Biocomputing Program, Ontario Institute for Cancer Research, Toronto, ON Canada
| | - Michael Fraser
- Ontario Cancer Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, ON Canada
| | - Robert G. Bristow
- Department of Medical Biophysics, University of Toronto, Toronto, ON Canada
- Ontario Cancer Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, ON Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON Canada
| | - Theodorus van der Kwast
- Department of Pathology and Laboratory Medicine, Toronto General Hospital, University Health Network, Toronto, ON Canada
| | - Paul C. Boutros
- Informatics & Biocomputing Program, Ontario Institute for Cancer Research, Toronto, ON Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON Canada
| | - Guido Jenster
- Department of Urology, Erasmus MC, Rotterdam, the Netherlands
| | - Geert J. L. H. van Leenders
- Department of Pathology, Erasmus University Medical Center, Josephine Nefkens Institute building, Be-222, P.O. Box 2040, Rotterdam, 3000 CA The Netherlands
| |
Collapse
|
20
|
Hammerlindl H, Schaider H. Tumor cell-intrinsic phenotypic plasticity facilitates adaptive cellular reprogramming driving acquired drug resistance. J Cell Commun Signal 2017; 12:133-141. [PMID: 29192388 PMCID: PMC5842196 DOI: 10.1007/s12079-017-0435-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 11/16/2017] [Indexed: 01/10/2023] Open
Abstract
The enthusiasm about successful novel therapeutic strategies in cancer is often quickly dampened by the development of drug resistance. This is true for targeted therapies using tyrosine kinase inhibitors for EGFR or BRAF mutant cancers, but is also an increasingly recognized problem for immunotherapies. One of the major obstacles of successful cancer therapy is tumor heterogeneity of genotypic and phenotypic features. Historically, drivers for drug resistance have been suspected and found on the genetic level, with mutations either being pre-existing in a subset of cancer cells or emerging de novo to mediate drug resistance. In contrast to that, our group and others identified a non-mutational adaptive response, resulting in a reversible, drug tolerant, slow cycling phenotype that precedes the emergence of permanent drug resistance and is triggered by prolonged drug exposure. More recently, studies described the importance of initially reversible transcriptional reprogramming for the development of acquired drug resistance, identified factors important for the survival of the slow cycling phenotype and investigated the relationship of mutational and non-mutational resistance mechanisms. However, the connection and relative importance of mutational and adaptive drug resistance in relation to the in vitro models at hand and the clinically observed response patterns remains poorly defined. In this review we focus on adaptive intrinsic phenotypic plasticity in cancer cells that leads to the drug tolerant slow cycling state, which eventually transitions to permanent resistance, and propose a general model based on current literature, to describe the development of acquired drug resistance.
Collapse
Affiliation(s)
- Heinz Hammerlindl
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, 37 Kent Street, Brisbane, QLD, 4102, Australia
| | - Helmut Schaider
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, 37 Kent Street, Brisbane, QLD, 4102, Australia.
| |
Collapse
|
21
|
Moad M, Hannezo E, Buczacki SJ, Wilson L, El-Sherif A, Sims D, Pickard R, Wright NA, Williamson SC, Turnbull DM, Taylor RW, Greaves L, Robson CN, Simons BD, Heer R. Multipotent Basal Stem Cells, Maintained in Localized Proximal Niches, Support Directed Long-Ranging Epithelial Flows in Human Prostates. Cell Rep 2017; 20:1609-1622. [PMID: 28813673 PMCID: PMC5565638 DOI: 10.1016/j.celrep.2017.07.061] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 05/24/2017] [Accepted: 07/21/2017] [Indexed: 12/15/2022] Open
Abstract
Sporadic mitochondrial DNA mutations serve as clonal marks providing access to the identity and lineage potential of stem cells within human tissues. By combining quantitative clonal mapping with 3D reconstruction of adult human prostates, we show that multipotent basal stem cells, confined to discrete niches in juxta-urethral ducts, generate bipotent basal progenitors in directed epithelial migration streams. Basal progenitors are then dispersed throughout the entire glandular network, dividing and differentiating to replenish the loss of apoptotic luminal cells. Rare lineage-restricted luminal stem cells, and their progeny, are confined to proximal ducts and provide only minor contribution to epithelial homeostasis. In situ cell capture from clonal maps identified delta homolog 1 (DLK1) enrichment of basal stem cells, which was validated in functional spheroid assays. This study establishes significant insights into niche organization and function of prostate stem and progenitor cells, with implications for disease.
Collapse
Affiliation(s)
- Mohammad Moad
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne NE2 4AD, UK
| | - Edouard Hannezo
- Cavendish Laboratory, Department of Physics, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, UK; Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Simon J Buczacki
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Laura Wilson
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne NE2 4AD, UK
| | - Amira El-Sherif
- Department of Histopathology, Royal Victoria Infirmary, Newcastle upon Tyne NE1 4LP, UK; Department of Pathology, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - David Sims
- Computational Genomics Analysis and Training (CGAT), MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Robert Pickard
- Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Nicholas A Wright
- Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Stuart C Williamson
- Clinical and Experimental Pharmacology Group, University of Manchester, Manchester M13 9PL, UK
| | - Doug M Turnbull
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Newcastle Centre for Ageing and Vitality, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Robert W Taylor
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Laura Greaves
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Newcastle Centre for Ageing and Vitality, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Craig N Robson
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne NE2 4AD, UK
| | - Benjamin D Simons
- Cavendish Laboratory, Department of Physics, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, UK; Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Wellcome Trust/Medical Research Council Stem Cell Institute, Cambridge CB2 1QR, UK.
| | - Rakesh Heer
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne NE2 4AD, UK.
| |
Collapse
|
22
|
Prostate cancer, PI3K, PTEN and prognosis. Clin Sci (Lond) 2017; 131:197-210. [PMID: 28057891 DOI: 10.1042/cs20160026] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 11/12/2016] [Accepted: 11/21/2016] [Indexed: 12/22/2022]
Abstract
Loss of function of the PTEN tumour suppressor, resulting in dysregulated activation of the phosphoinositide 3-kinase (PI3K) signalling network, is recognized as one of the most common driving events in prostate cancer development. The observed mechanisms of PTEN loss are diverse, but both homozygous and heterozygous genomic deletions including PTEN are frequent, and often accompanied by loss of detectable protein as assessed by immunohistochemistry (IHC). The occurrence of PTEN loss is highest in aggressive metastatic disease and this has driven the development of PTEN as a prognostic biomarker, either alone or in combination with other factors, to distinguish indolent tumours from those likely to progress. Here, we discuss these factors and the consequences of PTEN loss, in the context of its role as a lipid phosphatase, as well as current efforts to use available inhibitors of specific components of the PI3K/PTEN/TOR signalling network in prostate cancer treatment.
Collapse
|
23
|
Rycaj K, Li H, Zhou J, Chen X, Tang DG. Cellular determinants and microenvironmental regulation of prostate cancer metastasis. Semin Cancer Biol 2017; 44:83-97. [PMID: 28408152 PMCID: PMC5491097 DOI: 10.1016/j.semcancer.2017.03.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/26/2017] [Accepted: 03/27/2017] [Indexed: 12/14/2022]
Abstract
Metastasis causes more than 90% of cancer-related deaths and most prostate cancer (PCa) patients also die from metastasis. The 'metastatic cascade' is a complex biological process that encompasses tumor cell dissociation (from the primary tumor), local invasion, intravasation, transport in circulation, extravasation, colonization, and overt growth in end organs. It has become clear that successful metastasis not only involves many tumor cell-intrinsic properties but also depends on productive interactions between cancer cells and the tumor microenvironment. In this Review, we begin with a general summary on cancer metastasis and a specific discussion on PCa metastasis. We then discuss recent advances in our knowledge of the cellular determinants of PCa metastasis and the importance of tumor microenvironment, especially an immunosuppressive tumor microenvironment, in shaping metastatic propensities. We conclude with a presentation of current and future therapeutic options for patients with PCa metastasis, emphasizing the development of novel, mechanism-based combinatorial strategies for treating metastatic and castration-resistant PCa.
Collapse
Affiliation(s)
- Kiera Rycaj
- Department of Pharmacology & Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
| | - Hangwen Li
- Department of Pharmacology & Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA; Cancer Stem Cell Institute, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Jianjun Zhou
- Cancer Stem Cell Institute, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Xin Chen
- Department of Pharmacology & Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Dean G Tang
- Department of Pharmacology & Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA; Cancer Stem Cell Institute, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| |
Collapse
|
24
|
Correlation between Chromosome 9p21 Locus Deletion and Prognosis in Clinically Localized Prostate Cancer. Int J Biol Markers 2017; 32:e248-e254. [DOI: 10.5301/jbm.5000242] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2016] [Indexed: 01/16/2023]
Abstract
Background Some studies have reported that deletions at chromosome arm 9p occur frequently and represent a critical step in carcinogenesis of some neoplasms. Our aim was to evaluate the deletion of locus 9p21 and chromosomes 3, 7 and 17 in localized prostate cancer (PC) and correlate these alterations with prognostic factors and biochemical recurrence after surgery. Methods We retrospectively evaluated surgical specimens from 111 patients with localized PC who underwent radical prostatectomy. Biochemical recurrence was defined as a prostate-specific antigen (PSA) >0.2 ng/mL and the mean postoperative follow-up was 123 months. The deletions were evaluated using fluorescence in situ hybridization with centromeric and locus-specific probes in a tissue microarray containing 2 samples from each patient. We correlated the occurrence of any deletion with pathological stage, Gleason score, ISUP grade group, PSA and biochemical recurrence. Results We observed a loss of any probe in only 8 patients (7.2%). The most common deletion was the loss of locus 9p21, which occurred in 6.4% of cases. Deletions of chromosomes 3, 7 and 17 were observed in 2.3%, 1.2% and 1.8% patients, respectively. There was no correlation between chromosome loss and Gleason score, ISUP, PSA or stage. Biochemical recurrence occurred in 83% cases involving 9p21 deletions. Loss of 9p21 locus was significantly associated with time to recurrence (p = 0.038). Conclusions We found low rates of deletion in chromosomes 3, 7 and 17 and 9p21 locus. We observed that 9p21 locus deletion was associated with worse prognosis in localized PC treated by radical prostatectomy.
Collapse
|
25
|
Massie CE, Mills IG, Lynch AG. The importance of DNA methylation in prostate cancer development. J Steroid Biochem Mol Biol 2017; 166:1-15. [PMID: 27117390 DOI: 10.1016/j.jsbmb.2016.04.009] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 04/09/2016] [Accepted: 04/17/2016] [Indexed: 02/08/2023]
Abstract
After briefly reviewing the nature of DNA methylation, its general role in cancer and the tools available to interrogate it, we consider the literature surrounding DNA methylation as relating to prostate cancer. Specific consideration is given to recurrent alterations. A list of frequently reported genes is synthesized from 17 studies that have reported on methylation changes in malignant prostate tissue, and we chart the timing of those changes in the diseases history through amalgamation of several previously published data sets. We also review associations with genetic alterations and hormone signalling, before the practicalities of investigating prostate cancer methylation using cell lines are assessed. We conclude by outlining the interplay between DNA methylation and prostate cancer metabolism and their regulation by androgen receptor, with a specific discussion of the mitochondria and their associations with DNA methylation.
Collapse
Affiliation(s)
- Charles E Massie
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, UK
| | - Ian G Mills
- Prostate Cancer Research Group, Centre for Molecular Medicine (Norway), University of Oslo and Oslo University Hospitals, Gaustadalleen, Oslo, Norway; Department of Molecular Oncology, Oslo University Hospitals, Oslo, Norway; PCUK/Movember Centre of Excellence for Prostate Cancer Research, Centre for Cancer Research and Cell Biology (CCRCB), Queen's University Belfast, Belfast, UK
| | - Andy G Lynch
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, UK.
| |
Collapse
|
26
|
Mahas A, Potluri K, Kent MN, Naik S, Markey M. Copy number variation in archival melanoma biopsies versus benign melanocytic lesions. Cancer Biomark 2017; 16:575-97. [PMID: 27002761 DOI: 10.3233/cbm-160600] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Skin melanocytes can give rise to benign and malignant neoplasms. Discrimination of an early melanoma from an unusual/atypical benign nevus can represent a significant challenge. However, previous studies have shown that in contrast to benign nevi, melanoma demonstrates pervasive chromosomal aberrations. OBJECTIVE This substantial difference between melanoma and benign nevi can be exploited to discriminate between melanoma and benign nevi. METHODS Array-comparative genomic hybridization (aCGH) is an approach that can be used on DNA extracted from formalin-fixed paraffin-embedded (FFPE) tissues to assess the entire genome for the presence of changes in DNA copy number. In this study, high resolution, genome-wide single-nucleotide polymorphism (SNP) arrays were utilized to perform comprehensive and detailed analyses of recurrent copy number aberrations in 41 melanoma samples in comparison with 21 benign nevi. RESULTS We found statistically significant copy number gains and losses within melanoma samples. Some of the identified aberrations are previously implicated in melanoma. Moreover, novel regions of copy number alterations were identified, revealing new candidate genes potentially involved in melanoma pathogenesis. CONCLUSIONS Taken together, these findings can help improve melanoma diagnosis and introduce novel melanoma therapeutic targets.
Collapse
Affiliation(s)
- Ahmed Mahas
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, USA
| | - Keerti Potluri
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, USA
| | - Michael N Kent
- Department of Dermatology, Wright State University Boonshoft School of Medicine, Dayton, OH, USA.,Dermatopathology Laboratory of Central States, Dayton, OH, USA
| | - Sameep Naik
- Dermatopathology Laboratory of Central States, Dayton, OH, USA
| | - Michael Markey
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, USA
| |
Collapse
|
27
|
Mundbjerg K, Chopra S, Alemozaffar M, Duymich C, Lakshminarasimhan R, Nichols PW, Aron M, Siegmund KD, Ukimura O, Aron M, Stern M, Gill P, Carpten JD, Ørntoft TF, Sørensen KD, Weisenberger DJ, Jones PA, Duddalwar V, Gill I, Liang G. Identifying aggressive prostate cancer foci using a DNA methylation classifier. Genome Biol 2017; 18:3. [PMID: 28081708 PMCID: PMC5234101 DOI: 10.1186/s13059-016-1129-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 12/08/2016] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Slow-growing prostate cancer (PC) can be aggressive in a subset of cases. Therefore, prognostic tools to guide clinical decision-making and avoid overtreatment of indolent PC and undertreatment of aggressive disease are urgently needed. PC has a propensity to be multifocal with several different cancerous foci per gland. RESULTS Here, we have taken advantage of the multifocal propensity of PC and categorized aggressiveness of individual PC foci based on DNA methylation patterns in primary PC foci and matched lymph node metastases. In a set of 14 patients, we demonstrate that over half of the cases have multiple epigenetically distinct subclones and determine the primary subclone from which the metastatic lesion(s) originated. Furthermore, we develop an aggressiveness classifier consisting of 25 DNA methylation probes to determine aggressive and non-aggressive subclones. Upon validation of the classifier in an independent cohort, the predicted aggressive tumors are significantly associated with the presence of lymph node metastases and invasive tumor stages. CONCLUSIONS Overall, this study provides molecular-based support for determining PC aggressiveness with the potential to impact clinical decision-making, such as targeted biopsy approaches for early diagnosis and active surveillance, in addition to focal therapy.
Collapse
Affiliation(s)
- Kamilla Mundbjerg
- USC Institute of Urology and the Catherine & Joseph Aresty Department of Urology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90089, USA
| | - Sameer Chopra
- USC Institute of Urology and the Catherine & Joseph Aresty Department of Urology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90089, USA
| | - Mehrdad Alemozaffar
- USC Institute of Urology and the Catherine & Joseph Aresty Department of Urology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90089, USA
| | - Christopher Duymich
- USC Institute of Urology and the Catherine & Joseph Aresty Department of Urology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90089, USA
| | - Ranjani Lakshminarasimhan
- USC Institute of Urology and the Catherine & Joseph Aresty Department of Urology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90089, USA
| | - Peter W Nichols
- Department of Pathology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90089, USA
| | - Manju Aron
- Department of Pathology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90089, USA
| | - Kimberly D Siegmund
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90089, USA
| | - Osamu Ukimura
- USC Institute of Urology and the Catherine & Joseph Aresty Department of Urology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90089, USA
| | - Monish Aron
- USC Institute of Urology and the Catherine & Joseph Aresty Department of Urology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90089, USA
| | - Mariana Stern
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90089, USA
| | - Parkash Gill
- Department of Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90089, USA
| | - John D Carpten
- Department of Translational Genomics, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90089, USA
| | - Torben F Ørntoft
- Department of Molecular Medicine, Aarhus University Hospital, 8200, Aarhus N, Denmark
| | - Karina D Sørensen
- Department of Molecular Medicine, Aarhus University Hospital, 8200, Aarhus N, Denmark
| | - Daniel J Weisenberger
- Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90089, USA
| | - Peter A Jones
- USC Institute of Urology and the Catherine & Joseph Aresty Department of Urology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90089, USA.,Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Vinay Duddalwar
- Department of Radiology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90089, USA
| | - Inderbir Gill
- USC Institute of Urology and the Catherine & Joseph Aresty Department of Urology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90089, USA.
| | - Gangning Liang
- USC Institute of Urology and the Catherine & Joseph Aresty Department of Urology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
28
|
Piipponen M, Nissinen L, Farshchian M, Riihilä P, Kivisaari A, Kallajoki M, Peltonen J, Peltonen S, Kähäri VM. Long Noncoding RNA PICSAR Promotes Growth of Cutaneous Squamous Cell Carcinoma by Regulating ERK1/2 Activity. J Invest Dermatol 2016; 136:1701-1710. [DOI: 10.1016/j.jid.2016.03.028] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/26/2016] [Accepted: 03/10/2016] [Indexed: 01/08/2023]
|
29
|
Abstract
Prostate cancer is a leading cause of cancer-related death and morbidity in men in the Western world. Tumor progression is dependent on functioning androgen receptor signaling, and initial administration of antiandrogens and hormone therapy (androgen-deprivation therapy) prevent growth and spread. Tumors frequently develop escape mechanisms to androgen-deprivation therapy and progress to castration-resistant late-stage metastatic disease that, in turn, inevitably leads to resistance to all current therapeutics, including chemotherapy. In spite of the recent development of more effective inhibitors of androgen–androgen receptor signaling such as enzalutamide and abiraterone, patient survival benefits are still limited. Oncolytic adenoviruses have proven efficacy in prostate cancer cells and cause regression of tumors in preclinical models of numerous drug-resistant cancers. Data from clinical trials demonstrate that adenoviral mutants have limited toxicity to normal tissues and are safe when administered to patients with various solid cancers, including prostate cancer. While efficacy in response to adenovirus administration alone is marginal, findings from early-phase trials targeting local-ized and metastatic prostate cancer suggest improved efficacy in combination with cytotoxic drugs and radiation therapy. Here, we review recent progress in the development of multimodal oncolytic adenoviruses as biological therapeutics to improve on tumor elimination in prostate cancer patients. These optimized mutants target cancer cells by several mechanisms including viral lysis and by expression of cytotoxic transgenes and immune-stimulatory factors that activate the host immune system to destroy both infected and noninfected prostate cancer cells. Additional modifications of the viral capsid proteins may support future systemic delivery of oncolytic adenoviruses.
Collapse
Affiliation(s)
- Katrina Sweeney
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary, University of London, London, UK
| | - Gunnel Halldén
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary, University of London, London, UK
| |
Collapse
|
30
|
Van Etten JL, Dehm SM. Clonal origin and spread of metastatic prostate cancer. Endocr Relat Cancer 2016; 23:R207-17. [PMID: 27000662 PMCID: PMC4895916 DOI: 10.1530/erc-16-0049] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 03/17/2016] [Indexed: 12/24/2022]
Abstract
Metastatic disease is responsible for the majority of prostate cancer deaths. The standard treatment for metastatic disease is surgical or chemical castration in the form of androgen deprivation therapy. Despite initial success and disease regression, resistance to therapy ultimately develops and the disease transitions to castration-resistant prostate cancer, which is uniformly fatal. Thus, developing an understanding of genetic evolution in metastasis and in response to therapy has been a focus of recent studies. Large-scale sequencing studies have provided an expansive catalog of the mutation events that occur in the prostate cancer genome at various stages of disease progression. Small-scale studies have interrogated the genomic composition of multiple metastatic sites within individual patients or have tracked clonal evolution longitudinally in tissues, circulating tumor cells, or circulating tumor DNA. Collectively, these efforts have provided a new conceptual framework for understanding the origin of prostate cancer, as well as the origin and evolution of metastatic disease. In this review, we highlight these recent insights into the spatiotemporal landscape of genetic evolution of prostate cancer.
Collapse
Affiliation(s)
| | - Scott M Dehm
- Masonic Cancer CenterUniversity of Minnesota, Minneapolis, MN, USA Department of Laboratory Medicine and PathologyUniversity of Minnesota, Minneapolis, MN, USA Department of UrologyUniversity of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
31
|
Abstract
Although prostate cancer is the most common malignancy to affect men in the Western world, the molecular mechanisms underlying its development and progression remain poorly understood. Like all cancers, prostate cancer is a genetic disease that is characterized by multiple genomic alterations, including point mutations, microsatellite variations, and chromosomal alterations such as translocations, insertions, duplications, and deletions. In prostate cancer, but not other carcinomas, these chromosome alterations result in a high frequency of gene fusion events. The development and application of novel high-resolution technologies has significantly accelerated the detection of genomic alterations, revealing the complex nature and heterogeneity of the disease. The clinical heterogeneity of prostate cancer can be partly explained by this underlying genetic heterogeneity, which has been observed between patients from different geographical and ethnic populations, different individuals within these populations, different tumour foci within the same patient, and different cells within the same tumour focus. The highly heterogeneous nature of prostate cancer provides a real challenge for clinical disease management and a detailed understanding of the genetic alterations in all cells, including small subpopulations, would be highly advantageous.
Collapse
|
32
|
Abstract
Autopsy studies have confirmed the high prevalence of latent prostate cancer; however, only a certain portion of patients require definite treatment. Active surveillance is one of the treatment options which, according to national and international guidelines, should be offered to patients with newly diagnosed low-risk prostate cancer. Prostate cancer-specific survival is high in these patients; therefore, curative treatment, such as radical prostatectomy, external beam radiotherapy and brachytherapy may be initially deferred in order to avoid therapy-related side effects. In order to qualify for active surveillance, strict inclusion criteria have to be met; nevertheless, the reliable identification of low-risk prostate cancer patients is not always possible. Patients under active surveillance are followed up regularly with prostate-specific antigen (PSA) testing, digital rectal examination (DRE) and repeat prostate biopsies. Due to the heterogeneity of primary prostate tumors precise molecular diagnostic techniques could allow individualized treatment strategies in the future.
Collapse
Affiliation(s)
- Annika Herlemann
- Urologische Klinik und Poliklinik, Ludwig-Maximilians-Universität München, Campus Großhadern, Marchioninistraße 15, 81377, München, Deutschland.
| | - Christian G Stief
- Urologische Klinik und Poliklinik, Ludwig-Maximilians-Universität München, Campus Großhadern, Marchioninistraße 15, 81377, München, Deutschland
| |
Collapse
|
33
|
Korsten H, Ziel-van der Made ACJ, van Weerden WM, van der Kwast T, Trapman J, Van Duijn PW. Characterization of Heterogeneous Prostate Tumors in Targeted Pten Knockout Mice. PLoS One 2016; 11:e0147500. [PMID: 26807730 PMCID: PMC4726760 DOI: 10.1371/journal.pone.0147500] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/05/2016] [Indexed: 11/18/2022] Open
Abstract
Previously, we generated a preclinical mouse prostate tumor model based on PSA-Cre driven inactivation of Pten. In this model homogeneous hyperplastic prostates (4-5m) developed at older age (>10m) into tumors. Here, we describe the molecular and histological characterization of the tumors in order to better understand the processes that are associated with prostate tumorigenesis in this targeted mouse Pten knockout model. The morphologies of the tumors that developed were very heterogeneous. Different histopathological growth patterns could be identified, including intraductal carcinoma (IDC), adenocarcinoma and undifferentiated carcinoma, all strongly positive for the epithelial cell marker Cytokeratin (CK), and carcinosarcomas, which were negative for CK. IDC pattern was already detected in prostates of 7-8 month old mice, indicating that it could be a precursor stage. At more than 10 months IDC and carcinosarcoma were most frequently observed. Gene expression profiling discriminated essentially two molecular subtypes, denoted tumor class 1 (TC1) and tumor class 2 (TC2). TC1 tumors were characterized by high expression of epithelial markers like Cytokeratin 8 and E-Cadherin whereas TC2 tumors showed high expression of mesenchyme/stroma markers such as Snail and Fibronectin. These molecular subtypes corresponded with histological growth patterns: where TC1 tumors mainly represented adenocarcinoma/intraductal carcinoma, in TC2 tumors carcinosarcoma was the dominant growth pattern. Further molecular characterization of the prostate tumors revealed an increased expression of genes associated with the inflammatory response. Moreover, functional markers for senescence, proliferation, angiogenesis and apoptosis were higher expressed in tumors compared to hyperplasia. The highest expression of proliferation and angiogenesis markers was detected in TC2 tumors. Our data clearly showed that in the genetically well-defined PSA-Cre;Pten-loxP/loxP prostate tumor model, histopathological, molecular and biological heterogeneity occurred during later stages of tumor development.
Collapse
MESH Headings
- Adenocarcinoma/chemistry
- Adenocarcinoma/genetics
- Adenocarcinoma/pathology
- Animals
- Apoptosis/genetics
- Biomarkers
- Biomarkers, Tumor
- Cadherins/analysis
- Carcinoma/chemistry
- Carcinoma/genetics
- Carcinoma/pathology
- Carcinosarcoma/chemistry
- Carcinosarcoma/genetics
- Carcinosarcoma/pathology
- Cellular Senescence/genetics
- Disease Progression
- Epithelial Cells/chemistry
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Inflammation/genetics
- Keratins/analysis
- Male
- Mesoderm/chemistry
- Mice
- Mice, Inbred Strains
- Mice, Knockout
- Neoplasm Proteins/analysis
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/pathology
- PTEN Phosphohydrolase/deficiency
- Prostatic Hyperplasia/genetics
- Prostatic Hyperplasia/pathology
- Prostatic Neoplasms/chemistry
- Prostatic Neoplasms/classification
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/pathology
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Neoplasm/biosynthesis
- RNA, Neoplasm/genetics
- Stromal Cells/chemistry
Collapse
Affiliation(s)
- Hanneke Korsten
- Department of Pathology, Josephine Nefkens Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Wytske M. van Weerden
- Department of Urology, Josephine Nefkens Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Theo van der Kwast
- Department of Pathology, Josephine Nefkens Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jan Trapman
- Department of Pathology, Josephine Nefkens Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Petra W. Van Duijn
- Department of Pathology, Josephine Nefkens Institute, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Urology, Josephine Nefkens Institute, Erasmus Medical Center, Rotterdam, The Netherlands
- * E-mail:
| |
Collapse
|
34
|
Wagner J, Damaschke N, Yang B, Truong M, Guenther C, McCormick J, Huang W, Jarrard D. Overexpression of the novel senescence marker β-galactosidase (GLB1) in prostate cancer predicts reduced PSA recurrence. PLoS One 2015; 10:e0124366. [PMID: 25876105 PMCID: PMC4398352 DOI: 10.1371/journal.pone.0124366] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 03/10/2015] [Indexed: 12/11/2022] Open
Abstract
Purpose Senescence is a terminal growth arrest that functions as a tumor suppressor in aging and precancerous cells and is a response to selected anticancer compounds. Lysosomal-β-galactosidase (GLB1) hydrolyzes β-galactose from glycoconjugates and is the origin of senescence-associated β-gal activity (SA-β-gal). Using a new GLB1 antibody, senescence biology was investigated in prostate cancer (PCa) tissues. Experimental Design In vitro characterization of GLB1 was determined in primary prostate epithelial cell cultures passaged to replicative senescence and in therapy-induced senescence in PCa lines using chemotherapeutic agents. FFPE tissue microarrays were subjected to immunofluorescent staining for GLB1, Ki67 and HP1γ and automated quantitative imaging initially using AQUA in exploratory samples and Vectra in a validation series. Results GLB1 expression accumulates in replicative and induced senescence and correlates with senescent morphology and P16 (CDKN2) expression. In tissue arrays, quantitative imaging detects increased GLB1 expression in high-grade prostatic intraepithelial neoplasia (HGPIN), known to contain senescent cells, and cancer compared to benign prostate tissues (p<0.01) and senescent cells contain low Ki67 and elevated HP1γ. Within primary tumors, elevated GLB1 associates with lower T stage (p=0.01), localized versus metastatic disease (p=0.0003) and improved PSA-free survival (p=0.03). Increased GLB1 stratifies better PSA-free survival in intermediate grade PCa (0.01). Tissues that elaborate higher GLB1 display increased uniformity of expression. Conclusion Increased GLB1 is a valuable marker in formalin-fixed paraffin-embedded (FFPE) tissues for the senescence-like phenotype and associates with improved cancer outcomes. This protein addresses a lack of senescence markers and should be applicable to study the biologic role of senescence in other cancers.
Collapse
Affiliation(s)
- Jennifer Wagner
- Department of Urology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Nathan Damaschke
- Department of Urology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Bing Yang
- Department of Urology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Matthew Truong
- Department of Urology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Chad Guenther
- Department of Urology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Johnathon McCormick
- Department of Urology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Wei Huang
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - David Jarrard
- Department of Urology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- * E-mail: (DJ)
| |
Collapse
|
35
|
Gerlinger M, Catto JW, Orntoft TF, Real FX, Zwarthoff EC, Swanton C. Intratumour heterogeneity in urologic cancers: from molecular evidence to clinical implications. Eur Urol 2015; 67:729-37. [PMID: 24836153 DOI: 10.1016/j.eururo.2014.04.014] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 04/21/2014] [Indexed: 02/05/2023]
Abstract
CONTEXT Intratumour heterogeneity (ITH) can impair the precise molecular analysis of tumours and may contribute to difficulties encountered in cancer biomarker qualification and treatment personalisation. OBJECTIVE This review summarises the evidence for genetic ITH in renal, bladder, and prostate carcinomas and potential strategies to address the clinical and translational research challenges arising from ITH. EVIDENCE ACQUISITION Publications that assessed ITH in the relevant urologic cancers were identified in a literature review. EVIDENCE SYNTHESIS ITH with functionally distinct tumour subclones has been identified in all three tumour types. Heterogeneity of actionable genetic changes and of prognostic biomarkers between different tumour regions in the same patient suggests limitations of single biopsy-based molecular analyses for precision medicine approaches. Evolutionary constraints may differ between patients and may allow the prediction of specific evolutionary trajectories. CONCLUSIONS Assessment of multiple tumour regions for precision medicine purposes, monitoring of subclonal dynamics over time, and the preferential targeting of genetic alterations located on the trunk of the phylogenetic tree of individual cancers may accelerate the development of personalised medicine strategies and improve our understanding of treatment failure. PATIENT SUMMARY Genetic alterations can be heterogeneous within urologic tumours, complicating their use as biomarkers for treatment personalisation. We present novel strategies to address these challenges.
Collapse
Affiliation(s)
- Marco Gerlinger
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK; The Royal Marsden Hospital, London, UK.
| | - James W Catto
- Academic Urology Unit, University of Sheffield, Sheffield, South Yorkshire, UK
| | - Torben F Orntoft
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Francisco X Real
- Epithelial Carcinogenesis Group, Molecular Pathology Program, CNIO (Spanish National Cancer Research Centre), Madrid, Spain; Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | | | - Charles Swanton
- CR-UK London Research Institute, London, UK; University College London Cancer Institute, London, UK.
| |
Collapse
|
36
|
Cooper CS, Eeles R, Wedge DC, Van Loo P, Gundem G, Alexandrov LB, Kremeyer B, Butler A, Lynch AG, Camacho N, Massie CE, Kay J, Luxton HJ, Edwards S, Kote-Jarai ZS, Dennis N, Merson S, Leongamornlert D, Zamora J, Corbishley C, Thomas S, Nik-Zainal S, O'Meara S, Matthews L, Clark J, Hurst R, Mithen R, Bristow RG, Boutros PC, Fraser M, Cooke S, Raine K, Jones D, Menzies A, Stebbings L, Hinton J, Teague J, McLaren S, Mudie L, Hardy C, Anderson E, Joseph O, Goody V, Robinson B, Maddison M, Gamble S, Greenman C, Berney D, Hazell S, Livni N, Fisher C, Ogden C, Kumar P, Thompson A, Woodhouse C, Nicol D, Mayer E, Dudderidge T, Shah NC, Gnanapragasam V, Voet T, Campbell P, Futreal A, Easton D, Warren AY, Foster CS, Stratton MR, Whitaker HC, McDermott U, Brewer DS, Neal DE. Analysis of the genetic phylogeny of multifocal prostate cancer identifies multiple independent clonal expansions in neoplastic and morphologically normal prostate tissue. Nat Genet 2015; 47:367-372. [PMID: 25730763 PMCID: PMC4380509 DOI: 10.1038/ng.3221] [Citation(s) in RCA: 337] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 01/21/2015] [Indexed: 01/12/2023]
Abstract
Genome-wide DNA sequencing was used to decrypt the phylogeny of multiple samples from distinct areas of cancer and morphologically normal tissue taken from the prostates of three men. Mutations were present at high levels in morphologically normal tissue distant from the cancer, reflecting clonal expansions, and the underlying mutational processes at work in morphologically normal tissue were also at work in cancer. Our observations demonstrate the existence of ongoing abnormal mutational processes, consistent with field effects, underlying carcinogenesis. This mechanism gives rise to extensive branching evolution and cancer clone mixing, as exemplified by the coexistence of multiple cancer lineages harboring distinct ERG fusions within a single cancer nodule. Subsets of mutations were shared either by morphologically normal and malignant tissues or between different ERG lineages, indicating earlier or separate clonal cell expansions. Our observations inform on the origin of multifocal disease and have implications for prostate cancer therapy in individual cases.
Collapse
Affiliation(s)
- Colin S Cooper
- Division of Genetics and Epidemiology, The Institute Of Cancer Research, London, UK
- Department of Biological Sciences University of East Anglia, Norwich, UK
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Rosalind Eeles
- Division of Genetics and Epidemiology, The Institute Of Cancer Research, London, UK
- Royal Marsden NHS Foundation Trust, London and Sutton, UK
| | - David C Wedge
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Peter Van Loo
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
- Human Genome Laboratory, Department of Human Genetics, VIB and KU Leuven, Leuven, Belgium
- Cancer Research UK London Research Institute, London, UK
| | - Gunes Gundem
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | | | - Barbara Kremeyer
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Adam Butler
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Andrew G Lynch
- Statistics and Computational Biology Laboratory, Cancer Research UK Cambridge Research Institute, Cambridge, UK
| | - Niedzica Camacho
- Division of Genetics and Epidemiology, The Institute Of Cancer Research, London, UK
| | - Charlie E Massie
- Urological Research Laboratory, Cancer Research UK Cambridge Research Institute, Cambridge, UK
| | - Jonathan Kay
- Urological Research Laboratory, Cancer Research UK Cambridge Research Institute, Cambridge, UK
| | - Hayley J Luxton
- Urological Research Laboratory, Cancer Research UK Cambridge Research Institute, Cambridge, UK
| | - Sandra Edwards
- Division of Genetics and Epidemiology, The Institute Of Cancer Research, London, UK
| | - ZSofia Kote-Jarai
- Division of Genetics and Epidemiology, The Institute Of Cancer Research, London, UK
| | - Nening Dennis
- Royal Marsden NHS Foundation Trust, London and Sutton, UK
| | - Sue Merson
- Division of Genetics and Epidemiology, The Institute Of Cancer Research, London, UK
| | | | - Jorge Zamora
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | | | - Sarah Thomas
- Royal Marsden NHS Foundation Trust, London and Sutton, UK
| | | | - Sarah O'Meara
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Lucy Matthews
- Division of Genetics and Epidemiology, The Institute Of Cancer Research, London, UK
| | - Jeremy Clark
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Rachel Hurst
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Richard Mithen
- Institute of Food Research, Norwich Research Park, Norwich, UK
| | - Robert G Bristow
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
- Princess Margaret Cancer Centre-University Health Network, Toronto, Canada
| | - Paul C Boutros
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Informatics and Bio-Computing, Ontario Institute for Cancer Research, Toronto, Canada
- Department Pharmacology & Toxicology, University of Toronto, Toronto, Canada
| | - Michael Fraser
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
- Princess Margaret Cancer Centre-University Health Network, Toronto, Canada
| | - Susanna Cooke
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Keiran Raine
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | - David Jones
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Andrew Menzies
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Lucy Stebbings
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Jon Hinton
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Jon Teague
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Stuart McLaren
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Laura Mudie
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Claire Hardy
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | | | - Olivia Joseph
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Victoria Goody
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Ben Robinson
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Mark Maddison
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Stephen Gamble
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | | | - Dan Berney
- Department of Molecular Oncology, Barts Cancer Centre, Barts and the London School of Medicine and Dentistry, London, UK
| | - Steven Hazell
- Royal Marsden NHS Foundation Trust, London and Sutton, UK
| | - Naomi Livni
- Royal Marsden NHS Foundation Trust, London and Sutton, UK
| | - Cyril Fisher
- Royal Marsden NHS Foundation Trust, London and Sutton, UK
| | | | - Pardeep Kumar
- Royal Marsden NHS Foundation Trust, London and Sutton, UK
| | - Alan Thompson
- Royal Marsden NHS Foundation Trust, London and Sutton, UK
| | | | - David Nicol
- Royal Marsden NHS Foundation Trust, London and Sutton, UK
| | - Erik Mayer
- Royal Marsden NHS Foundation Trust, London and Sutton, UK
| | - Tim Dudderidge
- Royal Marsden NHS Foundation Trust, London and Sutton, UK
| | - Nimish C Shah
- Urological Research Laboratory, Cancer Research UK Cambridge Research Institute, Cambridge, UK
| | - Vincent Gnanapragasam
- Urological Research Laboratory, Cancer Research UK Cambridge Research Institute, Cambridge, UK
| | - Thierry Voet
- Laboratory of Reproductive Genomics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Peter Campbell
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Andrew Futreal
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Douglas Easton
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Anne Y Warren
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | | | - Hayley C Whitaker
- Urological Research Laboratory, Cancer Research UK Cambridge Research Institute, Cambridge, UK
| | - Ultan McDermott
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Daniel S Brewer
- Division of Genetics and Epidemiology, The Institute Of Cancer Research, London, UK
- Norwich Medical School, University of East Anglia, Norwich, UK
- The Genome Analysis Centre, Norwich, UK
| | - David E Neal
- Urological Research Laboratory, Cancer Research UK Cambridge Research Institute, Cambridge, UK
- Department of Surgical Oncology, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| |
Collapse
|
37
|
Heterogeneity of DNA methylation in multifocal prostate cancer. Virchows Arch 2014; 466:53-9. [DOI: 10.1007/s00428-014-1678-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/17/2014] [Accepted: 10/23/2014] [Indexed: 10/24/2022]
|
38
|
VanderWeele DJ, Brown CD, Taxy JB, Gillard M, Hatcher DM, Tom WR, Stadler WM, White KP. Low-grade prostate cancer diverges early from high grade and metastatic disease. Cancer Sci 2014; 105:1079-85. [PMID: 24890684 PMCID: PMC4317857 DOI: 10.1111/cas.12460] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 05/16/2014] [Accepted: 05/23/2014] [Indexed: 12/22/2022] Open
Abstract
Understanding the developmental relationship between indolent and aggressive tumors is central to understanding disease progression and making treatment decisions. For example, most men diagnosed with prostate cancer have clinically indolent disease and die from other causes. Overtreatment of prostate cancer remains a concern. Here we use laser microdissection followed by exome sequencing of low- and high-grade prostate cancer foci from four subjects, and metastatic disease from two of those subjects, to evaluate the molecular relationship of coincident cancer foci. Seventy of 79 (87%) high-confidence somatic mutations in low-grade disease were private to low-grade foci. In contrast, high-grade foci and metastases harbored many of the same mutations. In cases in which there was a metastatic focus, 15 of 80 (19%) high-confidence somatic mutations in high-grade foci were private. Seven of the 80 (9%) were shared with low-grade foci and 65 (82%) were shared with metastatic foci. Notably, mutations in cancer-associated genes and the p53 signaling pathway were found exclusively in high-grade foci and metastases. The pattern of mutations is consistent with early divergence between low- and high-grade foci and late divergence between high-grade foci and metastases. These data provide insights into the development of high-grade and metastatic prostate cancer.
Collapse
Affiliation(s)
- David J VanderWeele
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, Illinois, USA; Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Williams JL, Greer PA, Squire JA. Recurrent copy number alterations in prostate cancer: an in silico meta-analysis of publicly available genomic data. Cancer Genet 2014; 207:474-88. [PMID: 25434580 DOI: 10.1016/j.cancergen.2014.09.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 07/22/2014] [Accepted: 09/07/2014] [Indexed: 01/29/2023]
Abstract
We present a meta-analysis of somatic copy number alterations (CNAs) from 11 publications that examined 662 prostate cancer patient samples, which were derived from 546 primary and 116 advanced tumors. Normalization, segmentation, and identification of corresponding CNAs for meta-analysis was achieved using established commercial software. Unsupervised analysis identified five genomic subgroups in which approximately 90% of the samples were characterized by abnormal profiles with gains of 8q. The most common loss was 8p (NKX3.1). The CNA distribution in other genomic subgroups was characterized by losses at 2q, 3p, 5q, 6q, 13q, 16q, 17p, 18q, and PTEN (10q), and acquisition of 21q deletions associated with the TMPRSS2-ERG fusion rearrangement. Parallel analysis of advanced and primary tumors in the cohort indicated that genomic deletions of PTEN and the gene fusion were enriched in advanced disease. A supervised analysis of the PTEN deletion and the fusion gene showed that PTEN deletion was sufficient to impose higher levels of CNA. Moreover, the overall percentage of the genome altered was significantly higher when PTEN was deleted, suggesting that this important genomic subgroup was likely characterized by intrinsic chromosomal instability. Predicted alterations in expression levels of candidate genes in each of the recurrent CNA regions characteristic of each subgroup showed that signaling networks associated with cancer progression and genome stability were likely to be perturbed at the highest level in the PTEN deleted genomic subgroup.
Collapse
Affiliation(s)
- Julia L Williams
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Peter A Greer
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Jeremy A Squire
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada; Departments of Genetics and Pathology, School of Medicine of Ribeirao Preto, University of Sao Paulo at Ribeirao Preto, Sao Paulo, Brazil.
| |
Collapse
|
40
|
Rye MB, Bertilsson H, Drabløs F, Angelsen A, Bathen TF, Tessem MB. Gene signatures ESC, MYC and ERG-fusion are early markers of a potentially dangerous subtype of prostate cancer. BMC Med Genomics 2014; 7:50. [PMID: 25115192 PMCID: PMC4147934 DOI: 10.1186/1755-8794-7-50] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 07/04/2014] [Indexed: 01/08/2023] Open
Abstract
Background Good prognostic tools for predicting disease progression in early stage prostate cancer (PCa) are still missing. Detection of molecular subtypes, for instance by using microarray gene technology, can give new prognostic information which can assist personalized treatment planning. The detection of new subtypes with validation across additional and larger patient cohorts is important for bringing a potential prognostic tool into the clinic. Methods We used fresh frozen prostatectomy tissue of high molecular quality to further explore four molecular subtype signatures of PCa based on Gene Set Enrichment Analysis (GSEA) of 15 selected gene sets published in a previous study. For this analysis we used a statistical test of dependent correlations to compare reference signatures to signatures in new normal and PCa samples, and also explore signatures within and between sample subgroups in the new samples. Results An important finding was the consistent signatures observed for samples from the same patient independent of Gleason score. This proves that the signatures are robust and can surpass a normally high tumor heterogeneity within each patient. Our data did not distinguish between four different subtypes of PCa as previously published, but rather highlighted two groups of samples which could be related to good and poor prognosis based on survival data from the previous study.The poor prognosis group highlighted a set of samples characterized by enrichment of ESC, ERG-fusion and MYC + rich signatures in patients diagnosed with low Gleason score,. The other group consisted of PCa samples showing good prognosis as well as normal samples. Accounting for sample composition (the amount of benign structures such as stroma and epithelial cells in addition to the cancer component) was important to improve subtype assignments and should also be considered in future studies. Conclusion Our study validates a previous molecular subtyping of PCa in a new patient cohort, and identifies a subgroup of PCa samples highly interesting for detecting high risk PCa at an early stage. The importance of taking sample tissue composition into account when assigning subtype is emphasized.
Collapse
Affiliation(s)
- Morten Beck Rye
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), P,O, Box 8905, N-7491 Trondheim, Norway.
| | | | | | | | | | | |
Collapse
|
41
|
Lahdensuo K, Mirtti T, Petas A, Rannikko A. Performance of transrectal prostate biopsies in detecting tumours and implications for focal therapy. Scand J Urol 2014; 49:90-6. [DOI: 10.3109/21681805.2014.936494] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
42
|
Ibeawuchi C, Schmidt H, Voss R, Titze U, Abbas M, Neumann J, Eltze E, Hoogland AM, Jenster G, Brandt B, Semjonow A. Genome-wide investigation of multifocal and unifocal prostate cancer-are they genetically different? Int J Mol Sci 2013; 14:11816-29. [PMID: 23736690 PMCID: PMC3709757 DOI: 10.3390/ijms140611816] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 05/20/2013] [Accepted: 05/27/2013] [Indexed: 11/18/2022] Open
Abstract
Prostate cancer is widely observed to be biologically heterogeneous. Its heterogeneity is manifested histologically as multifocal prostate cancer, which is observed more frequently than unifocal prostate cancer. The clinical and prognostic significance of either focal cancer type is not fully established. To investigate prostate cancer heterogeneity, the genetic profiles of multifocal and unifocal prostate cancers were compared. Here, we report observations deduced from tumor-tumor comparison of copy number alteration data of both focal categories. Forty-one fresh frozen prostate cancer foci from 14 multifocal prostate cancers and eight unifocal prostate cancers were subjected to copy number variation analysis with the Affymetrix SNP 6.0 microarray tool. With the investigated cases, tumors obtained from a single prostate exhibited different genetic profiles of variable degrees. Further comparison identified no distinct genetic pattern or signatures specific to multifocal or unifocal prostate cancer. Our findings suggest that samples obtained from multiple sites of a single unifocal prostate cancer show as much genetic heterogeneity and variability as separate tumors obtained from a single multifocal prostate cancer.
Collapse
Affiliation(s)
- Chinyere Ibeawuchi
- Prostate Center, Department of Urology, University Hospital Muenster, Albert-Schweitzer-Campus 1, Gebaeude 1A, Muenster D-48149, Germany; E-Mail:
| | - Hartmut Schmidt
- Center for Laboratory Medicine, University Hospital Muenster, Albert-Schweitzer-Campus 1, Gebaeude 1A, Muenster D-48149, Germany; E-Mail:
| | - Reinhard Voss
- Interdisciplinary Center for Clinical Research, University of Muenster, Albert-Schweitzer-Campus 1, Gebaeude D3, Domagkstrasse 3, Muenster D-48149, Germany; E-Mail:
| | - Ulf Titze
- Gerhard-Domagk Institute of Pathology, University Hospital Muenster, Domagkstrasse 17, Muenster D-48149, Germany; E-Mail:
| | - Mahmoud Abbas
- Institute of Pathology, University Hospital Hannover, Carl-Neuberg-Strasse 1, Hannover D-30625, Germany; E-Mail:
| | - Joerg Neumann
- Institute of Pathology, Klinikum Osnabrueck, Am Finkenhuegel 1, Osnabrueck D-49076, Germany; E-Mail:
| | - Elke Eltze
- Institute of Pathology, Saarbrücken-Rastpfuhl, Rheinstrasse 2, Saarbrücken D-66113, Germany; E-Mail:
| | - Agnes Marije Hoogland
- Department of Pathology, Erasmus Medical Center, ‘s-Gravendijkwal 230, 3015-CE Rotterdam, The Netherlands; E-Mail:
| | - Guido Jenster
- Department of Urology, Erasmus Medical Center, ‘s-Gravendijkwal 230, 3015-CE Rotterdam, The Netherlands; E-Mail:
| | - Burkhard Brandt
- Institute for Clinical Chemistry, University Clinic Schleswig-Holsteins, Arnold-Heller-Strasse 3, Haus 17, Kiel D-24105, Germany; E-Mail:
| | - Axel Semjonow
- Prostate Center, Department of Urology, University Hospital Muenster, Albert-Schweitzer-Campus 1, Gebaeude 1A, Muenster D-48149, Germany; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +49-251-83-47443; Fax: +49-251-83-45540
| |
Collapse
|
43
|
The genomic landscape of prostate cancer. Int J Mol Sci 2013; 14:10822-51. [PMID: 23708091 PMCID: PMC3709705 DOI: 10.3390/ijms140610822] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Revised: 05/06/2013] [Accepted: 05/09/2013] [Indexed: 12/12/2022] Open
Abstract
By the age of 80, approximately 80% of men will manifest some cancerous cells within their prostate, indicating that prostate cancer constitutes a major health burden. While this disease is clinically insignificant in most men, it can become lethal in others. The most challenging task for clinicians is developing a patient-tailored treatment in the knowledge that this disease is highly heterogeneous and that relatively little adequate prognostic tools are available to distinguish aggressive from indolent disease. Next-generation sequencing allows a description of the cancer at an unprecedented level of detail and at different levels, going from whole genome or exome sequencing to transcriptome analysis and methylation-specific immunoprecipitation, followed by sequencing. Integration of all these data is leading to a better understanding of the initiation, progression and metastatic processes of prostate cancer. Ultimately, these insights will result in a better and more personalized treatment of patients suffering from prostate cancer. The present review summarizes current knowledge on copy number changes, gene fusions, single nucleotide mutations and polymorphisms, methylation, microRNAs and long non-coding RNAs obtained from high-throughput studies.
Collapse
|
44
|
Schoenborn JR, Nelson P, Fang M. Genomic profiling defines subtypes of prostate cancer with the potential for therapeutic stratification. Clin Cancer Res 2013; 19:4058-66. [PMID: 23704282 DOI: 10.1158/1078-0432.ccr-12-3606] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The remarkable variation in prostate cancer clinical behavior represents an opportunity to identify and understand molecular features that can be used to stratify patients into clinical subgroups for more precise outcome prediction and treatment selection. Significant progress has been made in recent years in establishing the composition of genomic and epigenetic alterations in localized and advanced prostate cancers using array-based technologies and next-generation sequencing approaches. The results of these efforts shed new light on our understanding of this disease and point to subclasses of prostate cancer that exhibit distinct vulnerabilities to therapeutics. The goal of this review is to categorize the genomic data and, where available, corresponding expression, functional, or related therapeutic information, from recent large-scale and in-depth studies that show a new appreciation for the molecular complexity of this disease. We focus on how these results inform our growing understanding of the mechanisms that promote genetic instability, as well as routes by which specific genes and biologic pathways may serve as biomarkers or potential targets for new therapies. We summarize data that indicate the presence of genetic subgroups of prostate cancers and show the high level of intra- and intertumoral heterogeneity, as well as updated information on disseminated and circulating tumor cells. The integrated analysis of all types of genetic alterations that culminate in altering critical biologic pathways may serve as the impetus for developing new therapeutics, repurposing agents used currently for treating other malignancies, and stratifying early and advanced prostate cancers for appropriate interventions.
Collapse
Affiliation(s)
- Jamie R Schoenborn
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | | |
Collapse
|
45
|
Cernei N, Zitka O, Skalickova S, Gumulec J, Sztalmachova M, Rodrigo MAM, Sochor J, Masarik M, Adam V, Hubalek J, Trnkova L, Kruseova J, Eckschlager T, Kizek R. Effect of sarcosine on antioxidant parameters and metallothionein content in the PC-3 prostate cancer cell line. Oncol Rep 2013; 29:2459-66. [PMID: 23588590 DOI: 10.3892/or.2013.2389] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 01/29/2013] [Indexed: 11/05/2022] Open
Abstract
Sarcosine is currently one of the most discussed markers of prostate cancer. It is involved in amino acid metabolism and methylation processes that occur during the progression of prostate cancer. In this study, we monitored the effect of the addition of sarcosine (0; 10; 250; 500; 1,000 and 1,500 µM) in a time-dependent manner (0-72 h) on the PC-3 prostate cancer cell line. For the assessment of cell viability, the commonly used MTT test was employed. Furthermore, ion-exchange liquid chromatography was used for the determination of sarcosine content in the PC-3 cells. We also determined metallothionein (MT) levels by chip capillary electrophoresis and Brdicka reaction in the cells treated with sarcosine. Sarcosine levels in the cells increased in a concentration-dependent manner levels increased from only 270 nM with the lowest applied concentration of sarcosine (10 µM) to 106 µM with the highest applied concentration of sarcosine (1,500 µM). There was a marginal change observed in the MT concentration. Finally, the antioxidant activity of the PC-3 cells was determined using five different spectrophotometric methods [2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing ability of plasma (FRAP), free radicals, N,N-dimethyl-p-phenylenediamine (DMPD) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS)]. A significant negative correlation was observed between DPPH and FRAP (r=-0.68 at p<0.001) and between DMPD and ABST (r=-0.64 at p<0.001). Additionally, as regards the correlation between MT and DPPH, a significant positive trend (r=0.62 at p<0.001) was observed.
Collapse
Affiliation(s)
- Natalia Cernei
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, CZ-613 00 Brno, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Current challenges in development of differentially expressed and prognostic prostate cancer biomarkers. Prostate Cancer 2012; 2012:640968. [PMID: 22970379 PMCID: PMC3434411 DOI: 10.1155/2012/640968] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 07/13/2012] [Indexed: 01/05/2023] Open
Abstract
Introduction. Predicting the aggressiveness of prostate cancer at biopsy is invaluable in making treatment decisions. In this paper we review the differential expression of genes and microRNAs identified through microarray analysis as potentially useful markers for prostate cancer prognosis and discuss some of the challenges associated with their development. Methods. A review of the literature was conducted through Medline. Articles were identified through searches of the following terms: "prostate cancer AND differential expression", "prostate cancer prognosis", and "prostate cancer AND microRNAs". Results. Though numerous differentially expressed genes and microRNAs were identified as possible prognostic markers, the significance of several of these genes is either debated due to conflicting results or is not validated in other study populations. A few of the articles constructed predictive nomograms using a panel of biomarkers which require further validation. Challenges to the development of useful markers include different methodology, cancer heterogeneity, and sampling error. These can be overcome by categorizing prognostic factors into particular gene pathways or by supplementing biopsy information with blood or urine-based biomarkers. Conclusion. Though biomarkers based on differential expression offer the potential to improve decision making concerning prostate cancer, further validation of their utility and accuracy at the biopsy level is needed.
Collapse
|