1
|
Thomas X. Rare Genetic and Uncommon Morphological Entities in Adults with Acute Myeloid Leukemia. Curr Oncol Rep 2025:10.1007/s11912-025-01678-y. [PMID: 40293670 DOI: 10.1007/s11912-025-01678-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2025] [Indexed: 04/30/2025]
Abstract
PURPOSE OF REVIEW Despite differences in the various classification systems of acute myeloid leukemia (AML), rare entities can be identified according to clinical, biological or morphological characteristics. Uncommon AML defined on specific morphological criteria and/or genetic abnormalities were considered if occurring with a frequency of ≤ 5% in adult patients with AML. RECENT FINDINGS Most of uncommon AML are characterized by a poor outcome with the standard treatment approaches. During the last decade, several therapeutic drugs with promising investigational approaches have been used in therapeutic regimens in both frontline and relapsed/refractory AML and represent a positive potential benefit for some rare entities displaying specific molecular lesions. Several rare subtypes can be identified in adult patients with AML. In this descriptive review, we assess the available information for these rare entities and summarized treatments that could be proposed especially according to their genetic characterization.
Collapse
Affiliation(s)
- Xavier Thomas
- Department of Clinical Hematology, Hospices Civils de Lyon Service d'Hématologie Clinique Centre Hospitalier Lyon Sud, Pierre-Bénite, 69495-cedex, France.
| |
Collapse
|
2
|
Li J, Li Z, Yin J, Wang Y, Zheng D, Cai L, Wang GG. The sotos syndrome gene Nsd1 safeguards developmental gene enhancers poised for transcription by maintaining the precise deposition of histone methylation. J Biol Chem 2025; 301:108423. [PMID: 40118455 PMCID: PMC12033923 DOI: 10.1016/j.jbc.2025.108423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/27/2025] [Accepted: 03/13/2025] [Indexed: 03/23/2025] Open
Abstract
Germline haploinsufficiency of NSD1 is implicated as the etiology of Sotos syndrome; however, the underlying mechanism remains far from being clear. Here, we use mouse embryonic stem cell (mESC) differentiation as a model system to address this question. We found Nsd1 to be indispensable for the faithful differentiation of mESCs into three primary germ layers, particularly, meso-endodermal cell lineages related to the development of the heart and the skeletal system. Time-course transcriptomic profiling following the mESC differentiation revealed that Nsd1 not only facilitates the basal expression but also permits the differentiation-accompanied rapid induction of a suite of meso-endoderm lineage-specifying transcription factor genes such as T and Gata4. Mechanistically, Nsd1 directly occupies putative distal enhancers of the lineage transcription factor genes under the pluripotent cell state, where it deposits H3K36me2 to antagonize the excessive H3K27me3 and maintains the basal H3K27ac level, thereby safeguarding these gene enhancers at a primed state that responds readily to differentiation cues. In agreement, gene rescue assays using the Nsd1 KO mESCs showed that the H3K36me2 catalysis by Nsd1 requires several functional modules within Nsd1 (namely, PHD1-4, PWWP2, and SET) to a similar degree. Disruption of either one of these Nsd1 modules severely abrogated H3K36me2 in mESCs and significantly impaired appropriate induction of developmental genes upon mESC differentiation. Altogether, our study provides novel molecular insight into how the NSD1 perturbation derails normal development and causes the disease.
Collapse
Affiliation(s)
- Jie Li
- Division of Hematology and Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, New York, USA
| | - Zhucui Li
- Department of Biochemistry, Weill Cornell Medicine, Cornell University, New York, New York, USA
| | - Jiekai Yin
- Environmental Toxicology Graduate Program and Department of Chemistry, University of California Riverside, Riverside, California, USA
| | - Yinsheng Wang
- Environmental Toxicology Graduate Program and Department of Chemistry, University of California Riverside, Riverside, California, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA; Department of Neurology and Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Ling Cai
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA.
| | - Gang Greg Wang
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA; Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA.
| |
Collapse
|
3
|
Ahn JH, Guo Y, Lyons H, Mackintosh SG, Lau BK, Edmondson RD, Byrum SD, Storey AJ, Tackett AJ, Cai L, Sabari BR, Wang GG. The phenylalanine-and-glycine repeats of NUP98 oncofusions form condensates that selectively partition transcriptional coactivators. Mol Cell 2025; 85:708-725.e9. [PMID: 39922194 DOI: 10.1016/j.molcel.2024.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 10/21/2024] [Accepted: 12/30/2024] [Indexed: 02/10/2025]
Abstract
Recurrent cancer-causing fusions of NUP98 produce higher-order assemblies known as condensates. How NUP98 oncofusion-driven condensates activate oncogenes remains poorly understood. Here, we investigate NUP98-PHF23, a leukemogenic chimera of the disordered phenylalanine-and-glycine (FG)-repeat-rich region of NUP98 and the H3K4me3/2-binding plant homeodomain (PHD) finger domain of PHF23. Our integrated analyses using mutagenesis, proteomics, genomics, and condensate reconstitution demonstrate that the PHD domain targets condensate to the H3K4me3/2-demarcated developmental genes, while FG repeats determine the condensate composition and gene activation. FG repeats are necessary to form condensates that partition a specific set of transcriptional regulators, notably the KMT2/MLL H3K4 methyltransferases, histone acetyltransferases, and BRD4. FG repeats are sufficient to partition transcriptional regulators and activate a reporter when tethered to a genomic locus. NUP98-PHF23 assembles the chromatin-bound condensates that partition multiple positive regulators, initiating a feedforward loop of reading-and-writing the active histone modifications. This network of interactions enforces an open chromatin landscape at proto-oncogenes, thereby driving cancerous transcriptional programs.
Collapse
Affiliation(s)
- Jeong Hyun Ahn
- Institute for Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Yiran Guo
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Heankel Lyons
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Samuel G Mackintosh
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Benjamin K Lau
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ricky D Edmondson
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Stephanie D Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Aaron J Storey
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Alan J Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Ling Cai
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Benjamin R Sabari
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Gang Greg Wang
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
4
|
Bruserud Ø, Selheim F, Hernandez-Valladares M, Reikvam H. XPO1/Exportin-1 in Acute Myelogenous Leukemia; Biology and Therapeutic Targeting. Biomolecules 2025; 15:175. [PMID: 40001478 PMCID: PMC11852384 DOI: 10.3390/biom15020175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/30/2024] [Accepted: 01/20/2025] [Indexed: 02/27/2025] Open
Abstract
Exportin 1 is responsible for the export of hundreds of proteins, several RNA species and ribosomal components from the nucleus to the cytoplasm. Several transported proteins are important for regulation of cell proliferation and survival both in normal and malignant cells. We review the biological importance and the possibility of therapeutic targeting of Exportin 1 in acute myeloid leukemia (AML). Exportin 1 levels can be increased in human primary AML cells, and even exportin inhibition as monotherapy seems to have an antileukemic effect. The results from Phase I/II studies also suggest that exportin inhibition can be combined with conventional chemotherapy, including intensive induction and consolidation therapy possibly followed by allogeneic stem cell transplantation as well as AML-stabilizing therapy in elderly/unfit patients with hypomethylating agents. However, the risk of severe toxicity needs to be further evaluated; hematological toxicity is common together with constitutional side effects, electrolyte disturbances, and gastrointestinal toxicity. A recent randomized study of intensive chemotherapy with and without the Exportin inhibitor selinexor in elderly patients showed reduced survival in the selinexor arm; this was due to a high frequency of relapse and severe infections during neutropenia. Experimental studies suggest that Exportin 1 inhibition can be combined with other forms of targeted therapy. Thus, Exportin 1 inhibition should still be regarded as a promising strategy for AML treatment, but future studies should focus on the risk of toxicity when combined with conventional chemotherapy, especially in elderly/unfit patients, combinations with targeted therapies, identification of patient subsets (AML is a heterogeneous disease) with high susceptibility, and the possible use of less toxic next-generation Exportin 1 inhibitors.
Collapse
MESH Headings
- Humans
- Exportin 1 Protein
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/genetics
- Karyopherins/metabolism
- Karyopherins/antagonists & inhibitors
- Karyopherins/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors
- Receptors, Cytoplasmic and Nuclear/genetics
- Molecular Targeted Therapy
- Hydrazines/therapeutic use
- Animals
- Antineoplastic Agents/therapeutic use
- Antineoplastic Agents/pharmacology
- Triazoles/therapeutic use
Collapse
Affiliation(s)
- Øystein Bruserud
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (M.H.-V.); (H.R.)
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5007 Bergen, Norway
| | - Frode Selheim
- Proteomics Unit of University of Bergen (PROBE), University of Bergen, Jonas Lies Vei 91, 5009 Bergen, Norway;
| | - Maria Hernandez-Valladares
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (M.H.-V.); (H.R.)
- Department of Physical Chemistry, University of Granada, Avenida de la Fuente Nueva S/N, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria Ibs. Granada, 18012 Granada, Spain
| | - Håkon Reikvam
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (M.H.-V.); (H.R.)
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5007 Bergen, Norway
| |
Collapse
|
5
|
Mella C, Tsarouhas P, Brockwell M, Ball HC. The Role of Chronic Inflammation in Pediatric Cancer. Cancers (Basel) 2025; 17:154. [PMID: 39796780 PMCID: PMC11719864 DOI: 10.3390/cancers17010154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/31/2024] [Accepted: 01/01/2025] [Indexed: 01/13/2025] Open
Abstract
Inflammation plays a crucial role in wound healing and the host immune response following pathogenic invasion. However, unresolved chronic inflammation can result in tissue fibrosis and genetic alterations that contribute to the pathogenesis of human diseases such as cancer. Recent scientific advancements exploring the underlying mechanisms of malignant cellular transformations and cancer progression have exposed significant disparities between pediatric and adult-onset cancers. For instance, pediatric cancers tend to have lower mutational burdens and arise in actively developing tissues, where cell-cycle dysregulation leads to gene, chromosomal, and fusion gene development not seen in adult-onset counterparts. As such, scientific findings in adult cancers cannot be directly applied to pediatric cancers, where unique mutations and inherent etiologies remain poorly understood. Here, we review the role of chronic inflammation in processes of genetic and chromosomal instability, the tumor microenvironment, and immune response that result in pediatric tumorigenesis transformation and explore current and developing therapeutic interventions to maintain and/or restore inflammatory homeostasis.
Collapse
Affiliation(s)
- Christine Mella
- Division of Hematology Oncology, Akron Children’s Hospital, One Perkins Square, Akron, OH 44308, USA;
| | - Panogiotis Tsarouhas
- Department of Biology, The University of Akron, 302 Buchtel Common, Akron, OH 44325, USA;
| | - Maximillian Brockwell
- College of Medicine, Northeast Ohio Medical University, 4029 State Route 44, Rootstown, OH 44272, USA;
| | - Hope C. Ball
- Division of Hematology Oncology, Akron Children’s Hospital, One Perkins Square, Akron, OH 44308, USA;
- College of Medicine, Northeast Ohio Medical University, 4029 State Route 44, Rootstown, OH 44272, USA;
- Rebecca D. Considine Research Institute, Akron Children’s Hospital, One Perkins Square, Akron, OH 44308, USA
| |
Collapse
|
6
|
Okuchi I, Nishimura A, Kamiya T, Sasaki M, Yamashita M, Hoshino A, Kajiwara M, Isoda T, Kanegane H, Morio T, Takagi M. Monitoring measurable residual disease in NUP98::NSD1-positive acute myeloid leukemia. Pediatr Int 2025; 67:e15859. [PMID: 39902715 DOI: 10.1111/ped.15859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/09/2024] [Accepted: 08/12/2024] [Indexed: 02/06/2025]
Abstract
BACKGROUND NUP98 fusion genes are detected in acute myeloid leukemia (AML) subgroups that have a poor prognosis. An appropriate therapeutic approach should therefore be established. Treatment intensification according to the minimal residual disease (MRD) level can lead to a better prognosis in patients with acute lymphoblastic leukemia (ALL). However, the importance of MRD monitoring in the patient with NUP98-positive AML is unclear. METHODS This study aimed to develop a digital droplet polymerase chain reaction (ddPCR) method for monitoring NUP98::NSD1-positive leukemic cells and to report its utility compared with the results of NUP98 split fluorescence in situ hybridization (FISH). RESULTS The results of NUP98::NSD1 ddPCR correlated with those of NUP98 split FISH and were more sensitive than NUP98 split FISH. The sensitivity of ddPCR was 0.001%, equivalent to 1 in 1 × 105 cells. The MRD level of NUP98::NSD1, measured by ddPCR, correlated well with relapse. CONCLUSION The use of ddPCR to target NUP98::NSD1 chimera mRNA for MRD monitoring would be beneficial for NUP98::NSD1 AML treatment.
Collapse
Affiliation(s)
- Ikuo Okuchi
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Bunkyo-Ku, Tokyo, Japan
| | - Akira Nishimura
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Bunkyo-Ku, Tokyo, Japan
| | - Takahiro Kamiya
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Bunkyo-Ku, Tokyo, Japan
| | - Makiko Sasaki
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Bunkyo-Ku, Tokyo, Japan
| | - Motoi Yamashita
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Bunkyo-Ku, Tokyo, Japan
| | - Akihiro Hoshino
- Department of Child Health and Development, Tokyo Medical and Dental University (TMDU), Bunkyo-Ku, Tokyo, Japan
| | - Michiko Kajiwara
- Department of Transfusion Medicine and Cell Therapy, Tokyo Medical and Dental University Hospital, Bunkyo-Ku, Tokyo, Japan
| | - Takeshi Isoda
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Bunkyo-Ku, Tokyo, Japan
| | - Hirokazu Kanegane
- Department of Child Health and Development, Tokyo Medical and Dental University (TMDU), Bunkyo-Ku, Tokyo, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Bunkyo-Ku, Tokyo, Japan
| | - Masatoshi Takagi
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Bunkyo-Ku, Tokyo, Japan
| |
Collapse
|
7
|
Feng Q, Yu L, Li L, Zhang Q. Covalent inhibitors meet epigenetics: New opportunities. Eur J Med Chem 2024; 280:116951. [PMID: 39406112 DOI: 10.1016/j.ejmech.2024.116951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/09/2024] [Accepted: 09/23/2024] [Indexed: 11/25/2024]
Abstract
Epigenetic intervention has become an important therapeutic strategy for a variety of diseases, such as cancer. Although a small number of epigenetic drugs have been marketed, most of these inhibitors are limited by their poor efficacy, dose-dependent toxicity, poor selectivity, and drug resistance. The development of covalent inhibitors has progressed from questioning to resurgence. Its slow dissociation is expected to inject new vitality into epigenetic drugs. In this review, more than 40 covalent inhibitors of 29 epigenetic targets were collated, focusing on their design strategies, reaction mechanisms, covalent warheads and targeted amino acids, and covalent verification methods. Furthermore, this review presented new opportunities based on the current development of covalent inhibitors targeting epigenetic regulators. It is believed that epigenetic covalent inhibitors will lead to more breakthroughs.
Collapse
Affiliation(s)
- Qiang Feng
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, China
| | - Luoting Yu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, And Collaborative Innovation Center for Biotherapy, 17#3rd Section, Ren Min South Road, Chengdu 610041, China
| | - Lu Li
- Department of Pharmacy, NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Qiangsheng Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, And Collaborative Innovation Center for Biotherapy, 17#3rd Section, Ren Min South Road, Chengdu 610041, China; Department of Pharmacy, West China Second University Hospital, Sichuan University, Children's Medicine Key Laboratory of Sichuan Province, Chengdu, 610041, China.
| |
Collapse
|
8
|
Ang CH, Than H, Tuy TT, Goh YT. Fusion Genes in Myeloid Malignancies. Cancers (Basel) 2024; 16:4055. [PMID: 39682241 DOI: 10.3390/cancers16234055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/27/2024] [Accepted: 12/01/2024] [Indexed: 12/18/2024] Open
Abstract
Fusion genes arise from gross chromosomal rearrangements and have been closely linked to oncogenesis. In myeloid malignancies, fusion genes play an integral role in the establishment of diagnosis and prognostication. In the clinical management of patients with acute myeloid leukemia, fusion genes are deeply incorporated in risk stratification criteria to guide the choice of therapy. As a result of their intrinsic ability to define specific disease entities, oncogenic fusion genes also have immense potential to be developed as therapeutic targets and disease biomarkers. In the current era of genomic medicine, breakthroughs in innovation of sequencing techniques have led to a rise in the detection of novel fusion genes, and the concept of standard-of-care diagnostics continues to evolve in this field. In this review, we outline the molecular basis, mechanisms of action and clinical impact of fusion genes. We also discuss the pros and cons of available methodologies that can be used to detect fusion genes. To contextualize the challenges encountered in clinical practice pertaining to the diagnostic workup and management of myeloid malignancies with fusion genes, we share our experience and insights in the form of three clinical case studies.
Collapse
Affiliation(s)
- Chieh Hwee Ang
- Department of Haematology, Singapore General Hospital, Singapore 169608, Singapore
| | - Hein Than
- Department of Haematology, Singapore General Hospital, Singapore 169608, Singapore
| | - Tertius T Tuy
- Department of Haematology, Singapore General Hospital, Singapore 169608, Singapore
| | - Yeow Tee Goh
- Department of Haematology, Singapore General Hospital, Singapore 169608, Singapore
| |
Collapse
|
9
|
Zhang JY, Chen CR, Qin JY, Shen DY, Liu LX, Song H, Xia T, Xu WQ, Wang Y, Zhu F, Fang MX, Shen HP, Liao C, Dong A, Cao SB, Tang YM, Xu XJ. Targeted gene sequencing and transcriptome sequencing reveal characteristics of NUP98 rearrangement in pediatric acute myeloid leukemia. Eur J Med Res 2024; 29:448. [PMID: 39223643 PMCID: PMC11370121 DOI: 10.1186/s40001-024-02042-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND NUP98 rearrangements (NUP98-r) are rare but overrepresented mutations in pediatric acute myeloid leukemia (AML) patients. NUP98-r is often associated with chemotherapy resistance and a particularly poor prognosis. Therefore, characterizing pediatric AML with NUP98-r to identify aberrations is critically important. METHODS Here, we retrospectively analyzed the clinicopathological features, genomic and transcriptomic landscapes, treatments, and outcomes of pediatric patients with AML. RESULTS Nine patients with NUP98-r mutations were identified in our cohort of 142 patients. Ten mutated genes were detected in patients with NUP98-r. The frequency of FLT3-ITD mutations differed significantly between the groups harboring NUP98-r and those without NUP98-r (P = 0.035). Unsupervised hierarchical clustering via RNA sequencing data from 21 AML patients revealed that NUP98-r samples clustered together, strongly suggesting a distinct subtype. Compared with that in the non-NUP98-r fusion and no fusion groups, CMAHP expression was significantly upregulated in the NUP98-r samples (P < 0.001 and P = 0.001, respectively). Multivariate Cox regression analyses demonstrated that patients harboring NUP98-r (P < 0.001) and WT1 mutations (P = 0.030) had worse relapse-free survival, and patients harboring NUP98-r (P < 0.008) presented lower overall survival. CONCLUSIONS These investigations contribute to the understanding of the molecular characteristics, risk stratification, and prognostic evaluation of pediatric AML patients.
Collapse
Affiliation(s)
- Jing-Ying Zhang
- Division/Center of Hematology-Oncology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310005, China
- The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, Hangzhou, 310005, China
- National Clinical Research Center for Child Health, Hangzhou, 310005, China
| | - Chun-Rong Chen
- Division/Center of Hematology-Oncology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310005, China
- The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, Hangzhou, 310005, China
- National Clinical Research Center for Child Health, Hangzhou, 310005, China
| | - Jia-Yue Qin
- Department of Medical Affairs, Acornmed Biotechnology Co., Ltd., Beijing, 100176, China
| | - Di-Ying Shen
- Division/Center of Hematology-Oncology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310005, China
- The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, Hangzhou, 310005, China
- National Clinical Research Center for Child Health, Hangzhou, 310005, China
| | - Li-Xia Liu
- Department of Medical Affairs, Acornmed Biotechnology Co., Ltd., Beijing, 100176, China
| | - Hua Song
- Division/Center of Hematology-Oncology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310005, China
- The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, Hangzhou, 310005, China
- National Clinical Research Center for Child Health, Hangzhou, 310005, China
| | - Tian Xia
- Division/Center of Hematology-Oncology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310005, China
- The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, Hangzhou, 310005, China
- National Clinical Research Center for Child Health, Hangzhou, 310005, China
| | - Wei-Qun Xu
- Division/Center of Hematology-Oncology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310005, China
- The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, Hangzhou, 310005, China
- National Clinical Research Center for Child Health, Hangzhou, 310005, China
| | - Yan Wang
- Division/Center of Hematology-Oncology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310005, China
- The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, Hangzhou, 310005, China
- National Clinical Research Center for Child Health, Hangzhou, 310005, China
| | - Feng Zhu
- Division/Center of Hematology-Oncology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310005, China
- The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, Hangzhou, 310005, China
- National Clinical Research Center for Child Health, Hangzhou, 310005, China
| | - Mei-Xin Fang
- Division/Center of Hematology-Oncology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310005, China
- The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, Hangzhou, 310005, China
- National Clinical Research Center for Child Health, Hangzhou, 310005, China
| | - He-Ping Shen
- Division/Center of Hematology-Oncology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310005, China
- The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, Hangzhou, 310005, China
- National Clinical Research Center for Child Health, Hangzhou, 310005, China
| | - Chan Liao
- Division/Center of Hematology-Oncology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310005, China
- The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, Hangzhou, 310005, China
- National Clinical Research Center for Child Health, Hangzhou, 310005, China
| | - Ao Dong
- National Clinical Research Center for Child Health, Hangzhou, 310005, China
- Department of Clinical Laboratory, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310005, China
| | - Shan-Bo Cao
- Department of Medical Affairs, Acornmed Biotechnology Co., Ltd., Beijing, 100176, China
| | - Yong-Min Tang
- Division/Center of Hematology-Oncology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310005, China
- The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, Hangzhou, 310005, China
- National Clinical Research Center for Child Health, Hangzhou, 310005, China
| | - Xiao-Jun Xu
- Division/Center of Hematology-Oncology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310005, China.
- The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, Hangzhou, 310005, China.
- National Clinical Research Center for Child Health, Hangzhou, 310005, China.
| |
Collapse
|
10
|
Yoshitomi M, Tsujimoto SI, Ikeda J, Kawai T, Ohki K, Hara Y, Yamato G, Tanoshima R, Tomizawa D, Shimada A, Horibe K, Adachi S, Taga T, Tawa A, Hayashi Y, Ito S, Shiba N. High DOCK1 expression identifies a distinct prognostic subgroup of pediatric acute myeloid leukemia: Results of the Japanese Pediatric Leukemia/Lymphoma Study Group AML-05 trial. Pediatr Blood Cancer 2024; 71:e31151. [PMID: 38953149 DOI: 10.1002/pbc.31151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/12/2024] [Accepted: 06/04/2024] [Indexed: 07/03/2024]
Abstract
BACKGROUND The molecular pathogenesis of acute myeloid leukemia (AML) was dramatically clarified over the latest two decades. Several important molecular markers were discovered in patients with AML that have helped to improve the risk stratification. However, developing new treatment strategies for relapsed/refractory acute myeloid leukemia (AML) is crucial due to its poor prognosis. PROCEDURE To overcome this difficulty, we performed an assay for transposase-accessible chromatin with sequencing (ATAC-seq) in 10 AML patients with various gene alterations. ATAC-seq is based on direct in vitro sequencing adaptor transposition into native chromatin, and is a rapid and sensitive method for integrative epigenomic analysis. ATAC-seq analysis revealed increased accessibility of the DOCK1 gene in patients with AML harboring poor prognostic factors. Following the ATAC-seq results, quantitative reverse transcription polymerase chain reaction was used to measure DOCK1 gene expression levels in 369 pediatric patients with de novo AML. RESULTS High DOCK1 expression was detected in 132 (37%) patients. The overall survival (OS) and event-free survival (EFS) among patients with high DOCK1 expression were significantly worse than those patients with low DOCK1 expression (3-year EFS: 34% vs. 60%, p < .001 and 3-year OS: 60% vs. 80%, p < .001). To investigate the significance of high DOCK1 gene expression, we transduced DOCK1 into MOLM14 cells, and revealed that cytarabine in combination with DOCK1 inhibitor reduced the viability of these leukemic cells. CONCLUSIONS Our results indicate that a DOCK1 inhibitor might reinforce the effects of cytarabine and other anti-cancer agents in patients with AML with high DOCK1 expression.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/pathology
- Child
- Male
- Female
- Prognosis
- Child, Preschool
- Adolescent
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Infant
- Survival Rate
- Follow-Up Studies
- East Asian People
- rac GTP-Binding Proteins
Collapse
Affiliation(s)
- Masahiro Yoshitomi
- Department of Pediatrics, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Shin-Ichi Tsujimoto
- Department of Pediatrics, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Junji Ikeda
- Department of Pediatrics, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Tomoko Kawai
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kentaro Ohki
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Yusuke Hara
- Department of Pediatrics, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Genki Yamato
- Department of Pediatrics, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Reo Tanoshima
- Department of Pediatrics, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
- Department of Health Data Science, Graduate School of Data Science, Yokohama City University, Kanagawa, Japan
- YCU Center for Novel and Exploratory Clinical Trials, Yokohama City University Hospital, Kanagawa, Japan
| | - Daisuke Tomizawa
- Division of Leukemia and Lymphoma, Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Akira Shimada
- Depatment of Pediatrics, Jichi Medical University, Tochigi, Japan
| | - Keizo Horibe
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Aichi, Japan
| | - Souichi Adachi
- Department of Human Health Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takashi Taga
- Department of Pediatrics, Shiga University of Medical Science, Shiga, Japan
| | - Akio Tawa
- Higashioosakashi Aramoto Heiwa Clinic, Oosaka, Japan
| | - Yasuhide Hayashi
- Department of Hematology/Oncology, Gunma Children's Medical Center, Gunma, Japan
| | - Shuichi Ito
- Department of Pediatrics, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Norio Shiba
- Department of Pediatrics, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| |
Collapse
|
11
|
Wang JW, Yu-Li, Yang XG, Xu LH. NUP98::NSD1 and FLT3/ITD co-expression is an independent predictor of poor prognosis in pediatric AML patients. BMC Pediatr 2024; 24:547. [PMID: 39182032 PMCID: PMC11344362 DOI: 10.1186/s12887-024-05007-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024] Open
Abstract
OBJECTIVE Patients who carry NUP98::NSD1 or FLT3/ITD mutations are reported to have poor prognosis. Previous studies have confidently reported that the poor outcome in younger AML patients is owning to dual NUP98::NSD1 and FLT3/ITD positivity, with a high overlap for those two genetic lesions. In this study, we assessed the prognostic value of the presence of both NUP98::NSD1 and FLT3/ITD in pediatric AML patients. METHODS We screened a large cohort of 885 pediatric cases from the COG-National Cancer Institute (NCI) TARGET AML cohort and found 57 AML patients with NUP98 rearrangements. RESULTS The frequency of NUP98 gene fusion was 10.8% in 529 patients. NUP98::NSD1 fusion was the most common NUP98 rearrangement, with a frequency of 59.6%(34 of 57). NUP98::NSD1 -positive patients who carried FLT3/ITD mutations had a decreased CR1 or CR2 rate than those patients carried FLT3/ITD mutation alone (P = 0.0001). Moreover, patients harboring both NUP98::NSD1 fusion and FLT3/ITD mutation exhibited inferior event-free survival (EFS, P < 0.001) and overall survival (OS, P = 0.004) than patients who were dual negative for these two genetic lesions. The presence of only NUP98::NSD1 fusion had no significant impact on EFS or OS. We also found that cases with high FLT3/ITD AR levels ( > = 0.5) with or without NUP98::NSD1 had inferior prognosis. Multivariate analysis demonstrated that the presence of both NUP98::NSD1 and FLT3/ITD was an independent prognostic factors for EFS (hazard ratio: 3.2, P = 0.001) in patients with pediatric AML. However, there was no obvious correlation with OS (hazard ratio: 1.3, P = 0.618). Stem cell transplantation did not improve the survival rate of cases with NUP98 fusion or NUP98::NSD1 AML in terms of EFS or OS. CONCLUSION Presence of both NUP98::NSD1 and FLT3/ITD was found to be an independent factor for dismal prognosis in pediatric AML patients. Notably, lack of FLT3/ITD mutations in NUP98::NSD1 -positive patients did not retain its prognostic value.
Collapse
Affiliation(s)
- Jing-Wen Wang
- Department of Pediatrics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-Sen University, Guangzhou, China
| | - Yu-Li
- Department of Pediatrics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-Sen University, Guangzhou, China
| | - Xing-Ge Yang
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan, China.
| | - Lu-Hong Xu
- Department of Pediatrics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
12
|
Rørvik SD, Torkildsen S, Bruserud Ø, Tvedt THA. Acute myeloid leukemia with rare recurring translocations-an overview of the entities included in the international consensus classification. Ann Hematol 2024; 103:1103-1119. [PMID: 38443661 PMCID: PMC10940453 DOI: 10.1007/s00277-024-05680-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/19/2024] [Indexed: 03/07/2024]
Abstract
Two different systems exist for subclassification of acute myeloid leukemia (AML); the World Health Organization (WHO) Classification and the International Consensus Classification (ICC) of myeloid malignancies. The two systems differ in their classification of AML defined by recurrent chromosomal abnormalities. One difference is that the ICC classification defines an AML subset that includes 12 different genetic abnormalities that occur in less than 4% of AML patients. These subtypes exhibit distinct clinical traits and are associated with treatment outcomes, but detailed description of these entities is not easily available and is not described in detail even in the ICC. We searched in the PubMed database to identify scientific publications describing AML patients with the recurrent chromosomal abnormalities/translocations included in this ICC defined patient subset. This patient subset includes AML with t(1;3)(p36.3;q21.3), t(3;5)(q25.3;q35.1), t(8;16)(p11.2;p13.3), t(1;22)(p13.3;q13.1), t(5;11)(q35.2;p15.4), t(11;12)(p15.4;p13.3) (involving NUP98), translocation involving NUP98 and other partner, t(7;12)(q36.3;p13.2), t(10;11)(p12.3;q14.2), t(16;21)(p11.2;q22.2), inv(16)(p13.3q24.3) and t(16;21)(q24.3;q22.1). In this updated review we describe the available information with regard to frequency, biological functions of the involved genes and the fusion proteins, morphology/immunophenotype, required diagnostic procedures, clinical characteristics (including age distribution) and prognostic impact for each of these 12 genetic abnormalities.
Collapse
Affiliation(s)
- Synne D Rørvik
- Department of Cardiology, Haukeland University Hospital, Bergen, Norway
| | - Synne Torkildsen
- Department of Haematology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Øystein Bruserud
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, Bergen, Norway
- Section for Hematology, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | | |
Collapse
|
13
|
Akkari Y, Baughn LB, Kim A, Karaca E, Raca G, Shao L, Mikhail FM. Section E6.1-6.6 of the American College of Medical Genetics and Genomics (ACMG) Technical Laboratory Standards: Cytogenomic studies of acquired chromosomal abnormalities in neoplastic blood, bone marrow, and lymph nodes. Genet Med 2024; 26:101054. [PMID: 38349293 DOI: 10.1016/j.gim.2023.101054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 04/09/2024] Open
Abstract
Cytogenomic analyses of acquired clonal chromosomal abnormalities in neoplastic blood, bone marrow, and/or lymph nodes are instrumental in the clinical management of patients with hematologic neoplasms. Cytogenetic analyses assist in the diagnosis of such disorders and can provide important prognostic information. Furthermore, cytogenetic studies can provide crucial information regarding specific genetically defined subtypes of these neoplasms that may have targeted therapies. At time of relapse, cytogenetic analysis can confirm recurrence of the original neoplasm, detect clonal disease evolution, or uncover a new unrelated neoplastic process. This section deals specifically with the technical standards applicable to cytogenomic studies of acquired clonal chromosomal abnormalities in neoplastic blood, bone marrow, and/or lymph nodes. This updated Section E6.1-6.6 supersedes the previous Section E6 in Section E: Clinical Cytogenetics of the American College of Medical Genetics and Genomics Technical Standards for Clinical Genetics Laboratories.
Collapse
Affiliation(s)
- Yassmine Akkari
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH
| | - Linda B Baughn
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Annette Kim
- Department of Pathology, University of Michigan, Ann Arbor, MI
| | - Ender Karaca
- Department of Pathology, Baylor University Medical Center, Dallas, TX; Texas A&M School of Medicine, Texas A&M University, Dallas, TX
| | - Gordana Raca
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA; Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Lina Shao
- Department of Pathology, University of Michigan, Ann Arbor, MI
| | - Fady M Mikhail
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
14
|
Wysota M, Konopleva M, Mitchell S. Novel Therapeutic Targets in Acute Myeloid Leukemia (AML). Curr Oncol Rep 2024; 26:409-420. [PMID: 38502417 PMCID: PMC11021231 DOI: 10.1007/s11912-024-01503-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2024] [Indexed: 03/21/2024]
Abstract
PURPOSE OF REVIEW This review seeks to identify and describe novel genetic and protein targets and their associated therapeutics currently being used or studied in the treatment of acute myeloid leukemia (AML). RECENT FINDINGS Over the course of the last 5-6 years, several targeted therapies have been approved by the FDA, for the treatment of both newly diagnosed as well as relapsed/refractory AML. These novel therapeutics, as well as several others currently under investigation, have demonstrated activity in AML and have improved outcomes for many patients. Patient outcomes in AML have slowly improved over time, though for many patients, particularly elderly patients or those with relapsed/refractory disease, mortality remains very high. With the identification of several molecular/genetic drivers and protein targets and development of therapeutics which leverage those mechanisms to target leukemic cells, outcomes for patients with AML have improved and continue to improve significantly.
Collapse
Affiliation(s)
- Michael Wysota
- Department of Oncology, Montefiore Medical Center, 111 East 210 Street, Bronx, NY, 10467, USA.
| | - Marina Konopleva
- Montefiore Medical Center/Albert Einstein College of Medicine, Albert Einstein College of Medicine, Jack and Pearl Resnick Campus, Ullmann Building, 1300 Morris Park AvenueRoom 915, Bronx, NY, 10461, USA.
| | | |
Collapse
|
15
|
Shang YK, Pan XA, Chang YJ, Qin YQ, Wang Y, Yan CH, Sun YQ, Huang XJ, Zhao XS. [Clinical significance of monitoring NUP98::NSD1 fusion genes before and after allogeneic hematopoietic stem cell transplantation]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2023; 44:1010-1015. [PMID: 38503524 PMCID: PMC10834866 DOI: 10.3760/cma.j.issn.0253-2727.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Indexed: 03/21/2024]
Abstract
Objective: This study aimed to observe the dynamic changes of NUP98::NSD1 expression before and after allogeneic hematopoietic stem cell transplantation (allo-HSCT) . Moreover, the clinical value of measurable residual disease (MRD) was analyzed. Methods: Sixteen AML patients who were diagnosed with the NUP98::NSD1 fusion gene and received allo-HSCT at Peking University People's Hospital were included. The NUP98::NSD1 fusion gene and leukemia-associated immunophenotype (LAIP) were monitored before and after transplantation to evaluate their MRD status. Results: The median follow-up time for all patients was 526 days (139-1136 days) , with four patients (25.0%) experiencing hematological recurrence at a median of 474 days (283-607 days) after transplantation. Three patients (18.8%) died, two of whom (12.5%) died of leukemia recurrence. The median expression level of NUP98::NSD1 in newly diagnosed patients with complete data was 78.5% (18.9%-184.4%) at the time of initial diagnosis. The recurrence rate was higher in NUP98::NSD1-positive patients after transplantation, with 44.4% of patients experiencing recurrence, whereas no recurrence occurred in NUP98::NSD1-negative patients after transplantation. The area under the receiver operating characteristic curve predicted by the NUP98::NSD1 level after transplantation was 1.000 (95% confidence interval: 1.000-1.000, P=0.003) . Among the four patients with recurrence, NUP98::NSD1 was more sensitive than flow cytometry residual (FCM) and Wilms' tumor gene 1 (WT1) . Conclusions: The NUP98::NSD1 fusion gene can be used to evaluate the MRD status of allo-HSCT. NUP98::NSD1-positive patients after transplantation have a high relapse rate and poor prognosis. NUP98::NSD1 was more sensitive than FCM and WT1 in predicting posttransplant relapse.
Collapse
Affiliation(s)
- Y K Shang
- Peking University People's Hospital & Peking University Institute of Hematology, National Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - X A Pan
- Peking University People's Hospital & Peking University Institute of Hematology, National Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - Y J Chang
- Peking University People's Hospital & Peking University Institute of Hematology, National Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - Y Q Qin
- Peking University People's Hospital & Peking University Institute of Hematology, National Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - Y Wang
- Peking University People's Hospital & Peking University Institute of Hematology, National Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - C H Yan
- Peking University People's Hospital & Peking University Institute of Hematology, National Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - Y Q Sun
- Peking University People's Hospital & Peking University Institute of Hematology, National Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - X J Huang
- Peking University People's Hospital & Peking University Institute of Hematology, National Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - X S Zhao
- Peking University People's Hospital & Peking University Institute of Hematology, National Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| |
Collapse
|
16
|
Weng W, Chen Y, Wang Y, Ying P, Guo X, Ruan J, Song H, Xu W, Zhang J, Xu X, Tang Y. A scoring system based on fusion genes to predict treatment outcomes of the non-acute promyelocytic leukemia pediatric acute myeloid leukemia. Front Med (Lausanne) 2023; 10:1258038. [PMID: 37942413 PMCID: PMC10628016 DOI: 10.3389/fmed.2023.1258038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/05/2023] [Indexed: 11/10/2023] Open
Abstract
Background Fusion genes are considered to be one of the major drivers behind cancer initiation and progression. Meanwhile, non-acute promyelocytic leukemia (APL) pediatric patients with acute myeloid leukemia (AML) in children had limited treatment efficacy. Hence, we developed and validated a simple clinical scoring system for predicting outcomes in non-APL pediatric patients with AML. Method A total of 184 non-APL pediatric patients with AML who were admitted to our hospital and an independent dataset (318 patients) from the TARGET database were included. Least absolute shrinkage and selection operation (LASSO) and Cox regression analysis were used to identify prognostic factors. Then, a nomogram score was developed to predict the 1, 3, and 5 years overall survival (OS) based on their clinical characteristics and fusion genes. The accuracy of the nomogram score was determined by calibration curves and receiver operating characteristic (ROC) curves. Additionally, an internal verification cohort was used to assess its applicability. Results Based on Cox and LASSO regression analyses, a nomogram score was constructed using clinical characteristics and OS-related fusion genes (CBFβ::MYH11, RUNX1::RUNX1T1, KMT2A::ELL, and KMT2A::MLLT10), yielded good calibration and concordance for predicting OS of non-APL pediatric patients with AML. Furthermore, patients with higher scores exhibited worse outcomes. The nomogram score also demonstrated good discrimination and calibration in the whole cohort and internal validation. Furthermore, artificial neural networks demonstrated that this nomogram score exhibits good predictive performance. Conclusion Our model based on the fusion gene is a prognostic biomarker for non-APL pediatric patients with AML. The nomogram score can provide personalized prognosis prediction, thereby benefiting clinical decision-making.
Collapse
Affiliation(s)
- Wenwen Weng
- Division/Center of Hematology-Oncology, Children’s Hospital of Zhejiang University School of Medicine, Hangzhou, China
- The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, National Clinical Research Center for Child Health Hangzhou, Hangzhou, China
| | - Yanfei Chen
- Division/Center of Hematology-Oncology, Children’s Hospital of Zhejiang University School of Medicine, Hangzhou, China
- The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, National Clinical Research Center for Child Health Hangzhou, Hangzhou, China
| | - Yuwen Wang
- Division/Center of Hematology-Oncology, Children’s Hospital of Zhejiang University School of Medicine, Hangzhou, China
- The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, National Clinical Research Center for Child Health Hangzhou, Hangzhou, China
| | - Peiting Ying
- Division/Center of Hematology-Oncology, Children’s Hospital of Zhejiang University School of Medicine, Hangzhou, China
- The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, National Clinical Research Center for Child Health Hangzhou, Hangzhou, China
| | - Xiaoping Guo
- Division/Center of Hematology-Oncology, Children’s Hospital of Zhejiang University School of Medicine, Hangzhou, China
- The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, National Clinical Research Center for Child Health Hangzhou, Hangzhou, China
| | - Jinfei Ruan
- Division/Center of Hematology-Oncology, Children’s Hospital of Zhejiang University School of Medicine, Hangzhou, China
- The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, National Clinical Research Center for Child Health Hangzhou, Hangzhou, China
| | - Hua Song
- Division/Center of Hematology-Oncology, Children’s Hospital of Zhejiang University School of Medicine, Hangzhou, China
- The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, National Clinical Research Center for Child Health Hangzhou, Hangzhou, China
| | - Weiqun Xu
- Division/Center of Hematology-Oncology, Children’s Hospital of Zhejiang University School of Medicine, Hangzhou, China
- The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, National Clinical Research Center for Child Health Hangzhou, Hangzhou, China
| | - Jingying Zhang
- Division/Center of Hematology-Oncology, Children’s Hospital of Zhejiang University School of Medicine, Hangzhou, China
- The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, National Clinical Research Center for Child Health Hangzhou, Hangzhou, China
| | - Xiaojun Xu
- Division/Center of Hematology-Oncology, Children’s Hospital of Zhejiang University School of Medicine, Hangzhou, China
- The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, National Clinical Research Center for Child Health Hangzhou, Hangzhou, China
| | - Yongmin Tang
- Division/Center of Hematology-Oncology, Children’s Hospital of Zhejiang University School of Medicine, Hangzhou, China
- The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, National Clinical Research Center for Child Health Hangzhou, Hangzhou, China
| |
Collapse
|
17
|
Cooper TM, Alonzo TA, Tasian SK, Kutny MA, Hitzler J, Pollard JA, Aplenc R, Meshinchi S, Kolb EA. Children's Oncology Group's 2023 blueprint for research: Myeloid neoplasms. Pediatr Blood Cancer 2023; 70 Suppl 6:e30584. [PMID: 37480164 PMCID: PMC10614720 DOI: 10.1002/pbc.30584] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/23/2023]
Abstract
During the past decade, the outcomes of pediatric patients with acute myeloid leukemia (AML) have plateaued with 5-year event-free survival (EFS) and overall survival (OS) of approximately 46 and 64%, respectively. Outcomes are particularly poor for those children with high-risk disease, who have 5-year OS of 46%. Substantial survival improvements have been observed for a subset of patients treated with targeted therapies. Specifically, children with KMT2A-rearranged AML and/or FLT3 internal tandem duplication (FLT3-ITD) mutations benefitted from the addition of gemtuzumab ozogamicin, an anti-CD33 antibody-drug conjugate, in the AAML0531 clinical trial (NCT00372593). Sorafenib also improved response and survival in children with FLT3-ITD AML in the AAML1031 clinical trial (NCT01371981). Advances in characterization of prognostic cytomolecular events have helped to identify patients at highest risk of relapse and facilitated allocation to consolidative hematopoietic stem cell transplant (HSCT) in first remission. Some patients clearly have improved survival with HSCT, although the benefit is largely unknown for most patients. Finally, data-driven refinements in supportive care recommendations continue to evolve with meaningful and measurable reductions in toxicity and improvements in EFS and OS. As advances in application of targeted therapies, risk stratification, and improved supportive care measures are incorporated into current trials and become standard-of-care, there is every expectation that we will see improved survival with a reduction in toxic morbidity and mortality. The research agenda of the Children's Oncology Group's Myeloid Diseases Committee continues to build upon experience and outcomes with an overarching goal of curing more children with AML.
Collapse
Affiliation(s)
- Todd M Cooper
- Seattle Children’s Hospital Cancer and Blood Disorders Service, University of Washington School of Medicine; Seattle, Washington
| | | | - Sarah K Tasian
- Children’s Hospital of Philadelphia Division of Oncology and Center for Childhood Cancer Research and University of Pennsylvania School of Medicine; Philadelphia, Pennsylvania
| | - Matthew A Kutny
- University of Alabama at Birmingham, Department of Pediatrics, Division of Hematology/Oncology, Birmingham, Alabama
| | - Johann Hitzler
- Division of Hematology/Oncology, The Hospital for Sick Children, Department of Paediatrics, University of Toronto, ON, Canada; Developmental and Stem Cell Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Jessica A Pollard
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children’s Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Richard Aplenc
- Children’s Hospital of Philadelphia Division of Oncology and Center for Childhood Cancer Research and University of Pennsylvania School of Medicine; Philadelphia, Pennsylvania
| | - Soheil Meshinchi
- Seattle Children’s Hospital Cancer and Blood Disorders Service, University of Washington School of Medicine; Seattle, Washington
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - E Anders Kolb
- Nemours Center for Cancer and Blood Disorders, Nemours Children’s Health, Wilmington, DE
| |
Collapse
|
18
|
Shiba N. Comprehensive molecular understanding of pediatric acute myeloid leukemia. Int J Hematol 2023; 117:173-181. [PMID: 36653696 DOI: 10.1007/s12185-023-03533-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/28/2022] [Accepted: 01/05/2023] [Indexed: 01/19/2023]
Abstract
Pediatric acute myeloid leukemia (AML) is a heterogeneous disease with various genetic abnormalities. Recent advances in genetic analysis have enabled the identification of causative genes in > 90% of pediatric AML cases. Fusion genes such as RUNX1::RUNX1T1, CBFB::MYH11, and KMT2A::MLLT3 are frequently detected in > 70% of pediatric AML cases, whereas FLT3-internal tandem duplication, CEBPA-bZip, and NPM1 mutations are detected in approximately 5-15% of cases, respectively. Conversely, mutations in DNMT3A, TET2, and IDH, which are common in adults, are extremely rare in pediatric AML. The genetic characteristics of pediatric AML are slightly different from those of adult AML. For accurate risk stratification and treatment intensity, genome analysis should be performed in a simple, fast, and inexpensive manner and the results should be returned to patients in real time. As with acute lymphoblastic leukemia, the presence or absence of minimal residual disease is an important factor in determining the success of treatment against AML, and it is important to predict prognosis and formulate treatment strategies considering the genetic abnormalities. For the development and clinical application of new molecularly targeted therapies based on identified genetic abnormalities, it is necessary to explore when and in which combinations drugs will be most effective.
Collapse
Affiliation(s)
- Norio Shiba
- Department of Pediatrics, Yokohama City University Graduate School of Medicine, 3-9, Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan.
| |
Collapse
|
19
|
Murali M, Saloura V. Understanding the Roles of the NSD Protein Methyltransferases in Head and Neck Squamous Cell Carcinoma. Genes (Basel) 2022; 13:2013. [PMID: 36360250 PMCID: PMC9689908 DOI: 10.3390/genes13112013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/26/2022] [Accepted: 10/29/2022] [Indexed: 09/18/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most prevalent non-skin cancer in the world. While immunotherapy has revolutionized the standard of care treatment in patients with recurrent/metastatic HNSCC, more than 70% of patients do not respond to this treatment, making the identification of novel therapeutic targets urgent. Recently, research endeavors have focused on how epigenetic modifications may affect tumor initiation and progression of HNSCC. The nuclear receptor binding SET domain (NSD) family of protein methyltransferases NSD1-NSD3 is of particular interest for HNSCC, with NSD1 and NSD3 being amongst the most commonly mutated or amplified genes respectively in HNSCC. Preclinical studies have identified both oncogenic and tumor-suppressing properties across NSD1, NSD2, and NSD3 within the context of HNSCC. The purpose of this review is to provide a better understanding of the contribution of the NSD family of protein methyltransferases to the pathogenesis of HNSCC, underscoring their promise as novel therapeutic targets in this devastating disease.
Collapse
Affiliation(s)
- Madhavi Murali
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
- School of Medicine, The University of Missouri-Kansas City, Kansas City, MO 64018, USA
| | - Vassiliki Saloura
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
20
|
Berardi A, Botrugno OA, Quilici G, Manteiga JMG, Bachi A, Tonon G, Musco G. Nizp1 is a specific
NUP98
‐
NSD1
functional interactor that regulates
NUP98
‐
NSD1
‐dependent oncogenic programs. FEBS J 2022; 290:1782-1797. [PMID: 36271682 DOI: 10.1111/febs.16664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/27/2022] [Accepted: 10/21/2022] [Indexed: 11/05/2022]
Abstract
NSD1, NSD2 and NSD3 proteins constitute a family of histone 3 lysine 36 (H3K36) methyltransferases with similar domain architecture, but diversified activities, in part, dependent on their non-enzymatic domains. These domains, despite their high sequence identity, recruit the hosting proteins to different chromatin regions through the recognition of diverse epigenetic marks and/or associations to distinct interactors. In this sense, the PHDvC5HCH finger tandem domain represents a paradigmatic example of functional divergence within the NSD family. In this work, we prove and give a structural rationale for the uniqueness of the PHDvC5HCH domain of NSD1 in recognizing the C2HR Zinc finger domain of Nizp1 (NSD1 interacting Zn finger protein). Importantly, we show that, in a leukaemogenic context, Nizp1 is pivotal in driving the unscheduled expression of HoxA genes and of genes involved in the type I IFN pathway, triggered by the expression of the fusion protein NUP98-NSD1. These data provide the first insight into the pathophysiological relevance of the Nizp1-NSD1 functional association. Targeting of this interaction might open new therapeutic windows to inhibit the NUP98-NSD1 oncogenic properties.
Collapse
Affiliation(s)
- Andrea Berardi
- Biomolecular NMR, Division of Genetics and Cell Biology IRCCS Ospedale San Raffaele Milan Italy
| | - Oronza A. Botrugno
- Functional Genomics of Cancer, Division of Experimental Oncology IRCCS Ospedale San Raffaele Milan Italy
| | - Giacomo Quilici
- Biomolecular NMR, Division of Genetics and Cell Biology IRCCS Ospedale San Raffaele Milan Italy
| | | | - Angela Bachi
- Functional Proteomics Group IFOM‐FIRC Institute of Molecular Oncology Milan Italy
| | - Giovanni Tonon
- Functional Genomics of Cancer, Division of Experimental Oncology IRCCS Ospedale San Raffaele Milan Italy
| | - Giovanna Musco
- Biomolecular NMR, Division of Genetics and Cell Biology IRCCS Ospedale San Raffaele Milan Italy
| |
Collapse
|
21
|
Balducci E, Kaltenbach S, Villarese P, Duroyon E, Zalmai L, Friedrich C, Suarez F, Marcais A, Bouscary D, Decroocq J, Birsen R, Fontenay M, Templé M, Brouzes C, Touzart A, Steimlé T, Cieslak A, Lhermitte L, Almire C, Chapuis N, Hermine O, Asnafi V, Kosmider O, Couronné L. Optical genome mapping refines cytogenetic diagnostics, prognostic stratification and provides new molecular insights in adult MDS/AML patients. Blood Cancer J 2022; 12:126. [PMID: 36055992 PMCID: PMC9440217 DOI: 10.1038/s41408-022-00718-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Affiliation(s)
- Estelle Balducci
- Laboratory of Onco-Hematology, Hôpital Necker Enfants-Malades, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France. .,INSERM U1151, Institut Necker Enfants Malades (INEM), Paris, France.
| | - Sophie Kaltenbach
- Laboratory of Onco-Hematology, Hôpital Necker Enfants-Malades, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France.,INSERM U1151, Institut Necker Enfants Malades (INEM), Paris, France
| | - Patrick Villarese
- Laboratory of Onco-Hematology, Hôpital Necker Enfants-Malades, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France.,INSERM U1151, Institut Necker Enfants Malades (INEM), Paris, France
| | - Eugénie Duroyon
- Laboratory of Hematology, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Loria Zalmai
- Laboratory of Hematology, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Chloé Friedrich
- Laboratory of Hematology, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Felipe Suarez
- Hematology Department, Hôpital Necker Enfants-Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Ambroise Marcais
- Hematology Department, Hôpital Necker Enfants-Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Didier Bouscary
- Department of Clinical Hematology, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Justine Decroocq
- Department of Clinical Hematology, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Rudy Birsen
- Department of Clinical Hematology, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Michaëla Fontenay
- Laboratory of Hematology, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Marie Templé
- Laboratory of Hematology, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Chantal Brouzes
- Laboratory of Onco-Hematology, Hôpital Necker Enfants-Malades, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France.,INSERM U1151, Institut Necker Enfants Malades (INEM), Paris, France
| | - Aurore Touzart
- Laboratory of Onco-Hematology, Hôpital Necker Enfants-Malades, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France.,INSERM U1151, Institut Necker Enfants Malades (INEM), Paris, France
| | - Thomas Steimlé
- Laboratory of Onco-Hematology, Hôpital Necker Enfants-Malades, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France.,INSERM U1151, Institut Necker Enfants Malades (INEM), Paris, France
| | - Agata Cieslak
- Laboratory of Onco-Hematology, Hôpital Necker Enfants-Malades, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France.,INSERM U1151, Institut Necker Enfants Malades (INEM), Paris, France
| | - Ludovic Lhermitte
- Laboratory of Onco-Hematology, Hôpital Necker Enfants-Malades, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France.,INSERM U1151, Institut Necker Enfants Malades (INEM), Paris, France
| | - Carole Almire
- Laboratory of Hematology, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Nicolas Chapuis
- Laboratory of Hematology, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Olivier Hermine
- Hematology Department, Hôpital Necker Enfants-Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.,Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, INSERM U1163, Imagine Institute, Paris City University, Paris, France
| | - Vahid Asnafi
- Laboratory of Onco-Hematology, Hôpital Necker Enfants-Malades, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France.,INSERM U1151, Institut Necker Enfants Malades (INEM), Paris, France
| | - Olivier Kosmider
- Laboratory of Hematology, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France.,OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Paris City University, Paris, France
| | - Lucile Couronné
- Laboratory of Onco-Hematology, Hôpital Necker Enfants-Malades, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France.,Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, INSERM U1163, Imagine Institute, Paris City University, Paris, France.,OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Paris City University, Paris, France
| |
Collapse
|
22
|
Lejman M, Dziatkiewicz I, Jurek M. Straight to the Point-The Novel Strategies to Cure Pediatric AML. Int J Mol Sci 2022; 23:1968. [PMID: 35216084 PMCID: PMC8878466 DOI: 10.3390/ijms23041968] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 12/15/2022] Open
Abstract
Although the outcome has improved over the past decades, due to improved supportive care, a better understanding of risk factors, and intensified chemotherapy, pediatric acute myeloid leukemia remains a life-threatening disease, and overall survival (OS) remains near 70%. According to French-American-British (FAB) classification, AML is divided into eight subtypes (M0-M7), and each is characterized by a different pathogenesis and response to treatment. However, the curability of AML is due to the intensification of standard chemotherapy, more precise risk classification, improvements in supportive care, and the use of minimal residual disease to monitor response to therapy. The treatment of childhood AML continues to be based primarily on intensive, conventional chemotherapy. Therefore, it is essential to identify new, more precise molecules that are targeted to the specific abnormalities of each leukemia subtype. Here, we review abnormalities that are potential therapeutic targets for the treatment of AML in the pediatric population.
Collapse
Affiliation(s)
- Monika Lejman
- Laboratory of Genetic Diagnostics, II Faculty of Pediatrics, Medical University of Lublin, A. Gębali 6, 20-093 Lublin, Poland
| | - Izabela Dziatkiewicz
- Student Scientific Society, Laboratory of Genetic Diagnostics, II Faculty of Pediatrics, Medical University of Lublin, A. Gębali 6, 20-093 Lublin, Poland; (I.D.); (M.J.)
| | - Mateusz Jurek
- Student Scientific Society, Laboratory of Genetic Diagnostics, II Faculty of Pediatrics, Medical University of Lublin, A. Gębali 6, 20-093 Lublin, Poland; (I.D.); (M.J.)
| |
Collapse
|
23
|
The Role of Allogeneic Hematopoietic Stem Cell Transplantation in Pediatric Leukemia. J Clin Med 2021; 10:jcm10173790. [PMID: 34501237 PMCID: PMC8432223 DOI: 10.3390/jcm10173790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/08/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) offers potentially curative treatment for many children with high-risk or relapsed acute leukemia (AL), thanks to the combination of intense preparative radio/chemotherapy and the graft-versus-leukemia (GvL) effect. Over the years, progress in high-resolution donor typing, choice of conditioning regimen, graft-versus-host disease (GvHD) prophylaxis and supportive care measures have continuously improved overall transplant outcome, and recent successes using alternative donors have extended the potential application of allotransplantation to most patients. In addition, the importance of minimal residual disease (MRD) before and after transplantation is being increasingly clarified and MRD-directed interventions may be employed to further ameliorate leukemia-free survival after allogeneic HSCT. These advances have occurred in parallel with continuous refinements in chemotherapy protocols and the development of targeted therapies, which may redefine the indications for HSCT in the coming years. This review discusses the role of HSCT in childhood AL by analysing transplant indications in both acute lymphoblastic and acute myeloid leukemia, together with current and most promising strategies to further improve transplant outcome, including optimization of conditioning regimen and MRD-directed interventions.
Collapse
|
24
|
Angione SDA, Akalu AY, Gartrell J, Fletcher EP, Burckart GJ, Reaman GH, Leong R, Stewart CF. Fusion Oncoproteins in Childhood Cancers: Potential Role in Targeted Therapy. J Pediatr Pharmacol Ther 2021; 26:541-555. [PMID: 34421403 PMCID: PMC8372856 DOI: 10.5863/1551-6776-26.6.541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/03/2021] [Indexed: 11/11/2022]
Abstract
Cancer remains the leading cause of death from disease in children. Historically, in contrast to their adult counterparts, the causes of pediatric malignancies have remained largely unknown, with most pediatric cancers displaying low mutational burdens. Research related to molecular genetics in pediatric cancers is advancing our understanding of potential drivers of tumorigenesis and opening new opportunities for targeted therapies. One such area is fusion oncoproteins, which are a product of chromosomal rearrangements resulting in the fusion of different genes. They have been identified as oncogenic drivers in several sarcomas and leukemias. Continued advancement in the understanding of the biology of fusion oncoproteins will contribute to the discovery and development of new therapies for childhood cancers. Here we review the current scientific knowledge on fusion oncoproteins, focusing on pediatric sarcomas and hematologic cancers, and highlight the challenges and current efforts in developing drugs to target fusion oncoproteins.
Collapse
|
25
|
Egan G, Chopra Y, Mourad S, Chiang KY, Hitzler J. Treatment of acute myeloid leukemia in children: A practical perspective. Pediatr Blood Cancer 2021; 68:e28979. [PMID: 33844444 DOI: 10.1002/pbc.28979] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/17/2021] [Accepted: 02/07/2021] [Indexed: 12/17/2022]
Abstract
Pediatric acute myeloid leukemia (AML) is a heterogeneous disease that requires a multifaceted treatment approach. Although outcomes for low-risk AML have improved significantly over recent decades, high-risk AML continues to be associated with an adverse prognosis. Recent advances in molecular diagnostics, risk stratification, and supportive care have contributed to improvements in outcomes in pediatric AML. Targeted approaches, for example, the use of tyrosine kinase inhibitors to treat FLT3-ITD AML, offer promise and are currently undergoing clinical investigation in pediatric patients. New approaches to hematopoietic stem cell transplantation, including the use of haploidentical donors, are significantly expanding donor options for patients with high-risk AML. This review provides an overview of recent advances in the treatment of pediatric AML that are likely to have clinical impact and reshape the standard of care.
Collapse
Affiliation(s)
- Grace Egan
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Yogi Chopra
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Stephanie Mourad
- Division of Haematology/Oncology, Montreal Children's Hospital, Montreal, QC, Canada
| | - Kuang-Yueh Chiang
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Johann Hitzler
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada.,Developmental and Stem Cell Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
| |
Collapse
|
26
|
Ganapathi SS, Raikar SS, Yatsenko SA, Djokic M, Bukowinski A. Mixed phenotype acute leukemia in a child associated with a NUP98-NSD1 fusion and NRAS p.Gly61Arg mutation. Cancer Rep (Hoboken) 2021; 4:e1372. [PMID: 33784031 PMCID: PMC8388158 DOI: 10.1002/cnr2.1372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/17/2021] [Accepted: 02/22/2021] [Indexed: 12/27/2022] Open
Abstract
Background Mixed phenotype acute leukemia (MPAL) is a rare subset of acute leukemia in the pediatric population associated with genetic alterations seen in both acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML). Case We describe a patient with MPAL with a NUP98 (nucleoporin 98)‐NSD1 gene fusion (nuclear receptor binding SET domain protein1) and NRAS (neuroblastoma RAS viral oncogene homolog mutation) p.Gly61Arg mutation who was treated with upfront AML‐based chemotherapy, received hematopoietic stem cell transplant (HSCT), but unfortunately died from relapsed disease. Conclusion This case highlights the challenges faced in choosing treatment options in MPAL patients with complex genomics, with predominant myeloid features.
Collapse
Affiliation(s)
- Shireen S Ganapathi
- Division of Hematology/Oncology, Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, Washington, USA
| | - Sunil S Raikar
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University, Atlanta, Georgia, USA
| | - Svetlana A Yatsenko
- Department of Pathology, UPMC Cytogenetics Laboratory, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Miroslav Djokic
- Division of Hematopathology, Department of Pathology, University of Pittsburgh School of Medicine Presbyterian/Shadyside, Pittsburgh, Pennsylvania, USA
| | - Andrew Bukowinski
- Division of Hematology/Oncology, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
27
|
Huang H, Howard CA, Zari S, Cho HJ, Shukla S, Li H, Ndoj J, González-Alonso P, Nikolaidis C, Abbott J, Rogawski DS, Potopnyk MA, Kempinska K, Miao H, Purohit T, Henderson A, Mapp A, Sulis ML, Ferrando A, Grembecka J, Cierpicki T. Covalent inhibition of NSD1 histone methyltransferase. Nat Chem Biol 2020; 16:1403-1410. [PMID: 32868895 PMCID: PMC7669657 DOI: 10.1038/s41589-020-0626-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 06/29/2020] [Indexed: 11/09/2022]
Abstract
The nuclear receptor-binding SET domain (NSD) family of histone methyltransferases is associated with various malignancies, including aggressive acute leukemia with NUP98-NSD1 translocation. While NSD proteins represent attractive drug targets, their catalytic SET domains exist in autoinhibited conformation, presenting notable challenges for inhibitor development. Here, we employed a fragment-based screening strategy followed by chemical optimization, which resulted in the development of the first-in-class irreversible small-molecule inhibitors of the nuclear receptor-binding SET domain protein 1 (NSD1) SET domain. The crystal structure of NSD1 in complex with covalently bound ligand reveals a conformational change in the autoinhibitory loop of the SET domain and formation of a channel-like pocket suitable for targeting with small molecules. Our covalent lead-compound BT5-demonstrates on-target activity in NUP98-NSD1 leukemia cells, including inhibition of histone H3 lysine 36 dimethylation and downregulation of target genes, and impaired colony formation in an NUP98-NSD1 patient sample. This study will facilitate the development of the next generation of potent and selective inhibitors of the NSD histone methyltransferases.
Collapse
Affiliation(s)
- Huang Huang
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Christina A Howard
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA
| | - Sergei Zari
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Hyo Je Cho
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Shirish Shukla
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Hao Li
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA
| | - Juliano Ndoj
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | | | | | - Joshua Abbott
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - David S Rogawski
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | | | | | - Hongzhi Miao
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Trupta Purohit
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Andrew Henderson
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Anna Mapp
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Maria Luisa Sulis
- Department of Pediatric Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Adolfo Ferrando
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
- Department of Systems Biology, Columbia University, New York, NY, USA
- Department of Pathology & Cell Biology, Columbia University, New York, NY, USA
- Department of Pediatrics, Columbia University, New York, NY, USA
| | - Jolanta Grembecka
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA.
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA.
| | - Tomasz Cierpicki
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA.
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA.
- Department of Biophysics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
28
|
Michmerhuizen NL, Klco JM, Mullighan CG. Mechanistic insights and potential therapeutic approaches for NUP98-rearranged hematologic malignancies. Blood 2020; 136:2275-2289. [PMID: 32766874 PMCID: PMC7702474 DOI: 10.1182/blood.2020007093] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022] Open
Abstract
Nucleoporin 98 (NUP98) fusion oncoproteins are observed in a spectrum of hematologic malignancies, particularly pediatric leukemias with poor patient outcomes. Although wild-type full-length NUP98 is a member of the nuclear pore complex, the chromosomal translocations leading to NUP98 gene fusions involve the intrinsically disordered and N-terminal region of NUP98 with over 30 partner genes. Fusion partners include several genes bearing homeodomains or having known roles in transcriptional or epigenetic regulation. Based on data in both experimental models and patient samples, NUP98 fusion oncoprotein-driven leukemogenesis is mediated by changes in chromatin structure and gene expression. Multiple cofactors associate with NUP98 fusion oncoproteins to mediate transcriptional changes possibly via phase separation, in a manner likely dependent on the fusion partner. NUP98 gene fusions co-occur with a set of additional mutations, including FLT3-internal tandem duplication and other events contributing to increased proliferation. To improve the currently dire outcomes for patients with NUP98-rearranged malignancies, therapeutic strategies have been considered that target transcriptional and epigenetic machinery, cooperating alterations, and signaling or cell-cycle pathways. With the development of more faithful experimental systems and continued study, we anticipate great strides in our understanding of the molecular mechanisms and therapeutic vulnerabilities at play in NUP98-rearranged models. Taken together, these studies should lead to improved clinical outcomes for NUP98-rearranged leukemia.
Collapse
Affiliation(s)
| | - Jeffery M Klco
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | | |
Collapse
|
29
|
Stengel A, Shahswar R, Haferlach T, Walter W, Hutter S, Meggendorfer M, Kern W, Haferlach C. Whole transcriptome sequencing detects a large number of novel fusion transcripts in patients with AML and MDS. Blood Adv 2020; 4:5393-5401. [PMID: 33147338 PMCID: PMC7656918 DOI: 10.1182/bloodadvances.2020003007] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/30/2020] [Indexed: 12/31/2022] Open
Abstract
Fusion transcripts are frequent genetic abnormalities in myeloid malignancies and are often the basis for risk stratification, minimal residual disease (MRD) monitoring, and targeted therapy. We comprehensively analyzed the fusion transcript landscape in 572 acute myeloid leukemia (AML) and 630 myelodysplastic syndrome (MDS) patients by whole transcriptome sequencing (WTS). Totally, 274 fusion events (131 unique fusions) were identified in 210/572 AML patients (37%). In 16/630 MDS patients, 16 fusion events (15 unique fusions) were detected (3%). In AML, 141 cases comprised entity-defining rearrangements (51% of all detected fusions) and 21 (8%) additional well-known fusions, all detected by WTS (control group). In MDS, only 1 fusion was described previously (NRIP1-MECOM, n = 2). Interestingly, a high number of so-far unreported fusions were found (41% [112/274] in AML, 88% [14/16] in MDS), all validated by cytogenetic and/or whole genome sequencing data. With 1 exception (CTDSP1-CFLAR, n = 2), all novel fusions were observed in 1 patient each. In AML, cases with novel fusions showed concomitantly a high frequency of TP53 mutations (67%) and of a complex karyotype (71%), which was also observed in MDS, but less pronounced (TP53, 26%; complex karyotype, 21%). A functional annotation of genes involved in novel fusions revealed many functional relevant genes (eg, transcription factors; n = 28 in AML, n = 2 in MDS) or enzymes (n = 42 in AML, n = 9 in MDS). Taken together, new genomic alterations leading to fusion transcripts were much more common in AML than in MDS. Any novel fusions might be of use for developing markers (eg, for MRD monitoring), particularly in cases without an entity-defining abnormality.
Collapse
Affiliation(s)
- Anna Stengel
- MLL Munich Leukemia Laboratory, Munich, Germany; and
| | - Rabia Shahswar
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | | | - Wencke Walter
- MLL Munich Leukemia Laboratory, Munich, Germany; and
| | | | | | - Wolfgang Kern
- MLL Munich Leukemia Laboratory, Munich, Germany; and
| | | |
Collapse
|
30
|
Targeted Inhibition of the NUP98-NSD1 Fusion Oncogene in Acute Myeloid Leukemia. Cancers (Basel) 2020; 12:cancers12102766. [PMID: 32993115 PMCID: PMC7600396 DOI: 10.3390/cancers12102766] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary NUP98-NSD1-positive acute myeloid leukemia (AML) frequently shows an additional mutation in Neuroblastoma rat sarcoma (NRAS). However, the synergistic effect of NUP98-NSD1 and NRASG12D in leukemic transformation remained unclear. In addition, NUP98-NSD1 positive AML patients respond poorly to chemotherapy and lack a targeted therapeutic option. Our study aimed to identify the cooperation of NUP98-NSD1 fusion and NRASG12D mutation and to develop a novel therapeutic approach for this AML. We found that NUP98-NSD1 alone can cause leukemia with long latency, and NRASG12D contributes to the aggressiveness of this AML. Additionally, we validated a novel NUP98-NSD1-targeting siRNA/lipid nanoparticle formulation that significantly prolonged the survival of patient-derived xenograft (PDX) mice with NUP98-NSD1-positive AML. Abstract NUP98-NSD1-positive acute myeloid leukemia (AML) is a poor prognostic subgroup that is frequently diagnosed in pediatric cytogenetically normal AML. NUP98-NSD1-positive AML often carries additional mutations in genes including FLT3, NRAS, WT1, and MYC. The purpose of our study was to characterize the cooperative potential of the fusion and its associated Neuroblastoma rat sarcoma (NRAS) mutation. By constitutively expressing NUP98-NSD1 and NRASG12D in a syngeneic mouse model and using a patient-derived xenograft (PDX) model from a NUP98-NSD1-positive AML patient, we evaluated the functional role of these genes and tested a novel siRNA formulation that inhibits the oncogenic driver NUP98-NSD1. NUP98-NSD1 transformed murine bone marrow (BM) cells in vitro and induced AML in vivo. While NRASG12D expression was insufficient to transform cells alone, co-expression of NUP98-NSD1 and NRASG12D enhanced the leukemogenicity of NUP98-NSD1. We developed a NUP98-NSD1-targeting siRNA/lipid nanoparticle formulation that significantly prolonged the survival of the PDX mice. Our study demonstrates that mutated NRAS cooperates with NUP98-NSD1 and shows that direct targeting of the fusion can be exploited as a novel treatment strategy in NUP98-NSD1-positive AML patients.
Collapse
|
31
|
Arindrarto W, Borràs DM, de Groen RAL, van den Berg RR, Locher IJ, van Diessen SAME, van der Holst R, van der Meijden ED, Honders MW, de Leeuw RH, Verlaat W, Jedema I, Kroes WGM, Knijnenburg J, van Wezel T, Vermaat JSP, Valk PJM, Janssen B, de Knijff P, van Bergen CAM, van den Akker EB, Hoen PAC', Kiełbasa SM, Laros JFJ, Griffioen M, Veelken H. Comprehensive diagnostics of acute myeloid leukemia by whole transcriptome RNA sequencing. Leukemia 2020; 35:47-61. [PMID: 32127641 PMCID: PMC7787979 DOI: 10.1038/s41375-020-0762-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 01/17/2020] [Accepted: 02/12/2020] [Indexed: 01/12/2023]
Abstract
Acute myeloid leukemia (AML) is caused by genetic aberrations that also govern the prognosis of patients and guide risk-adapted and targeted therapy. Genetic aberrations in AML are structurally diverse and currently detected by different diagnostic assays. This study sought to establish whole transcriptome RNA sequencing as single, comprehensive, and flexible platform for AML diagnostics. We developed HAMLET (Human AML Expedited Transcriptomics) as bioinformatics pipeline for simultaneous detection of fusion genes, small variants, tandem duplications, and gene expression with all information assembled in an annotated, user-friendly output file. Whole transcriptome RNA sequencing was performed on 100 AML cases and HAMLET results were validated by reference assays and targeted resequencing. The data showed that HAMLET accurately detected all fusion genes and overexpression of EVI1 irrespective of 3q26 aberrations. In addition, small variants in 13 genes that are often mutated in AML were called with 99.2% sensitivity and 100% specificity, and tandem duplications in FLT3 and KMT2A were detected by a novel algorithm based on soft-clipped reads with 100% sensitivity and 97.1% specificity. In conclusion, HAMLET has the potential to provide accurate comprehensive diagnostic information relevant for AML classification, risk assessment and targeted therapy on a single technology platform.
Collapse
Affiliation(s)
- Wibowo Arindrarto
- Center for Computational Biology, Leiden University Medical Center, 2300RC, Leiden, The Netherlands.,Department of Human Genetics, Leiden University Medical Center, 2300RC, Leiden, The Netherlands
| | - Daniel M Borràs
- GenomeScan B.V, 2333 BZ, Leiden, The Netherlands.,Department of Chemical Cell Biology, Leiden University Medical Center, 2300RC, Leiden, The Netherlands
| | - Ruben A L de Groen
- Department of Hematology, Leiden University Medical Center, 2300RC, Leiden, The Netherlands
| | - Redmar R van den Berg
- Department of Human Genetics, Leiden University Medical Center, 2300RC, Leiden, The Netherlands
| | - Irene J Locher
- Department of Hematology, Leiden University Medical Center, 2300RC, Leiden, The Netherlands
| | | | - Rosalie van der Holst
- Department of Hematology, Leiden University Medical Center, 2300RC, Leiden, The Netherlands
| | | | - M Willy Honders
- Department of Hematology, Leiden University Medical Center, 2300RC, Leiden, The Netherlands
| | - Rick H de Leeuw
- Forensic Laboratory for DNA Research, Department of Human Genetics, Leiden University Medical Center, 2300RC, Leiden, The Netherlands
| | - Wina Verlaat
- Department of Hematology, Leiden University Medical Center, 2300RC, Leiden, The Netherlands
| | - Inge Jedema
- Department of Hematology, Leiden University Medical Center, 2300RC, Leiden, The Netherlands
| | - Wilma G M Kroes
- Department of Clinical Genetics, Leiden University Medical Center, 2300RC, Leiden, The Netherlands
| | - Jeroen Knijnenburg
- Department of Clinical Genetics, Leiden University Medical Center, 2300RC, Leiden, The Netherlands
| | - Tom van Wezel
- Department of Pathology, Leiden University Medical Center, 2300RC, Leiden, The Netherlands
| | - Joost S P Vermaat
- Department of Hematology, Leiden University Medical Center, 2300RC, Leiden, The Netherlands
| | - Peter J M Valk
- Department of Hematology, Erasmus University Medical Center, 3015CN, Rotterdam, The Netherlands
| | - Bart Janssen
- GenomeScan B.V, 2333 BZ, Leiden, The Netherlands
| | - Peter de Knijff
- Forensic Laboratory for DNA Research, Department of Human Genetics, Leiden University Medical Center, 2300RC, Leiden, The Netherlands
| | | | - Erik B van den Akker
- Center for Computational Biology, Leiden University Medical Center, 2300RC, Leiden, The Netherlands.,The Delft Bioinformatics Lab, Delft University of Technology, 2628CD, Delft, The Netherlands.,Section of Molecular Epidemiology, Leiden University Medical Center, 2300RC, Leiden, The Netherlands
| | - Peter A C 't Hoen
- Department of Human Genetics, Leiden University Medical Center, 2300RC, Leiden, The Netherlands.,The Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| | - Szymon M Kiełbasa
- Center for Computational Biology, Leiden University Medical Center, 2300RC, Leiden, The Netherlands
| | - Jeroen F J Laros
- Department of Human Genetics, Leiden University Medical Center, 2300RC, Leiden, The Netherlands
| | - Marieke Griffioen
- Department of Hematology, Leiden University Medical Center, 2300RC, Leiden, The Netherlands.
| | - Hendrik Veelken
- Department of Hematology, Leiden University Medical Center, 2300RC, Leiden, The Netherlands
| |
Collapse
|
32
|
Zhang S, Zhang F, Chen Q, Wan C, Xiong J, Xu J. CRISPR/Cas9-mediated knockout of NSD1 suppresses the hepatocellular carcinoma development via the NSD1/H3/Wnt10b signaling pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:467. [PMID: 31727171 PMCID: PMC6854717 DOI: 10.1186/s13046-019-1462-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/21/2019] [Indexed: 12/15/2022]
Abstract
Background The NSD family of histone lysine methyltransferases have emerged as important biomarkers that participate in a variety of malignancies. Recent evidence has indicated that somatic dysregulation of the nuclear receptor binding SET domain-containing protein 1 (NSD1) is associated with the tumorigenesis in HCC, suggesting that NSD1 may serve as a prognostic target for this malignant tumor. However, its mechanism in human hepatocellular carcinoma (HCC), the major primary malignant tumor in the human liver, remains unclear. Hence, we investigated how NSD1 regulated HCC progression via regulation of the Wnt/β-catenin signaling pathway. Methods Reverse transcription quantitative polymerase chain reaction (RT-qPCR) and Western blot analysis was performed to identify the expression of NSD1 in HCC cells and clinically obtained tissues. The relationship between NSD1 expression and prognosis was analyzed by Kaplan-Meier survival curve. Further, a NSD1 knockout cell line was constructed by CRISPR/Cas9 genomic editing system, which was investigated in a battery of assays such as HCC cell proliferation, migration and invasion, followed by the investigation into NSD1 regulation on histone H3, Wnt10b and Wnt/β-catenin signaling pathway via ChIP. Finally, a nude mouse xenograft model was conducted in order to assess tumorigenesis affected by NSD1 knockout in vivo. Results NSD1 was overexpressed in HCC tissues and cell lines in association with poor prognosis. Knockout of NSD1 inhibited the proliferation, migration and invasion abilities of HCC cells. CRISPR/Cas9-mediated knockout of NSD1 promoted methylation of H3K27me3 and reduced methylation of H3K36me2, which inhibited Wnt10b expression. The results thereby indicated an inactivation of the Wnt/β-catenin signaling pathway suppressed cell proliferation, migration and invasion in HCC. Moreover, these in vitro findings were reproduced in vivo on tumor xenograft in nude mice. Conclusion In conclusion, the study provides evidence that CRISPR/Cas9-mediated NSD1 knockout suppresses HCC cell proliferation and migration via the NSD1/H3/Wnt10b signaling pathway, suggesting that NSD1, H3 and Wnt10b may serve as potential targets for HCC.
Collapse
Affiliation(s)
- Shuhua Zhang
- Department of Hepatobiliary Surgery of General Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.
| | - Fan Zhang
- Department of Hepatobiliary Surgery of General Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Qing Chen
- Department of Hepatobiliary Surgery of General Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Chidan Wan
- Department of Hepatobiliary Surgery of General Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Jun Xiong
- Department of Hepatobiliary Surgery of General Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Jianqun Xu
- Department of Respiratory Medicine, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| |
Collapse
|
33
|
Hara Y, Shiba N, Yamato G, Ohki K, Tabuchi K, Sotomatsu M, Tomizawa D, Kinoshita A, Arakawa H, Saito AM, Kiyokawa N, Tawa A, Horibe K, Taga T, Adachi S, Taki T, Hayashi Y. Patients aged less than 3 years with acute myeloid leukaemia characterize a molecularly and clinically distinct subgroup. Br J Haematol 2019; 188:528-539. [PMID: 31612466 DOI: 10.1111/bjh.16203] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/22/2019] [Indexed: 12/18/2022]
Abstract
Although infants (age <1 year) with acute myeloid leukaemia (AML) have unique characteristics and are vulnerable to chemotherapy, children aged 1-2 years with AML may have characteristics similar to that of infants. Thus, we analysed 723 paediatric AML patients treated on the Japanese AML99 and AML-05 trials to identify characteristics of younger children. We identified patients aged <3 years (the younger group) as a distinct subgroup. KMT2A-rearrangement (KMT2A-R), CBFA2T3-GLIS2, CBFB-MYH11 and NUP98-KDM5A were frequently found in the younger group. Prognostic analyses revealed poor 5-year overall survival (OS), event-free survival (EFS) and cumulative incidence of relapse (CIR) in patients with CBFA2T3-GLIS2 (42%, 17% and 83%, respectively) and those with NUP98-KDM5A (33%, 17% and 83%, respectively). Additionally, we identified KMT2A-R and CBFB-MYH11 as age-specific prognostic markers. Regarding KMT2A-R, the younger group had significantly better OS, EFS and CIR than the older group (aged 3 to <18 years) (P = 0·023, 0·011 and <0·001, respectively). Conversely, concerning CBFB-MYH11, the younger group had significantly poor EFS and CIR than the older group (each P < 0·001), suggesting that certain molecular markers are linked to different prognoses according to age. Therefore, we characterized patients <3 years as a distinct subgroup of paediatric AML.
Collapse
Affiliation(s)
- Yusuke Hara
- Department of Paediatrics, Gunma University Graduate School of Medicine, Maebashi, Japan.,Department of Haematology and Oncology, Gunma Children's Medical Centre, Shibukawa, Japan.,Clinical Research Centre, National Hospital Organization Nagoya Medical Centre, Nagoya, Japan
| | - Norio Shiba
- Department of Haematology and Oncology, Gunma Children's Medical Centre, Shibukawa, Japan.,Clinical Research Centre, National Hospital Organization Nagoya Medical Centre, Nagoya, Japan.,Department of Paediatrics, Yokohama City University Hospital, Kanagawa, Japan
| | - Genki Yamato
- Department of Paediatrics, Gunma University Graduate School of Medicine, Maebashi, Japan.,Department of Haematology and Oncology, Gunma Children's Medical Centre, Shibukawa, Japan.,Clinical Research Centre, National Hospital Organization Nagoya Medical Centre, Nagoya, Japan
| | - Kentaro Ohki
- Department of Haematology and Oncology, Gunma Children's Medical Centre, Shibukawa, Japan.,Department of Paediatric Haematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Ken Tabuchi
- Department of Paediatrics, Tokyo Metropolitan Cancer and Infectious Diseases Centre Komagome Hospital, Tokyo, Japan
| | - Manabu Sotomatsu
- Department of Haematology and Oncology, Gunma Children's Medical Centre, Shibukawa, Japan
| | - Daisuke Tomizawa
- Division of Leukaemia and Lymphoma, Children's Cancer Centre, National Centre for Child Health and Development, Tokyo, Japan
| | - Akitoshi Kinoshita
- Department of Paediatrics, St Marianna University School of Medicine, Kawasaki, Japan
| | - Hirokazu Arakawa
- Department of Paediatrics, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Akiko M Saito
- Clinical Research Centre, National Hospital Organization Nagoya Medical Centre, Nagoya, Japan
| | - Nobutaka Kiyokawa
- Department of Paediatric Haematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Akio Tawa
- Department of Paediatrics, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Keizo Horibe
- Clinical Research Centre, National Hospital Organization Nagoya Medical Centre, Nagoya, Japan
| | - Takashi Taga
- Department of Paediatrics, Shiga University of Medical Science, Otsu, Japan
| | - Souichi Adachi
- Department of Human Health Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomohiko Taki
- Department of Medical Technology, Kyorin University Faculty of Health Sciences, Mitaka, Japan
| | - Yasuhide Hayashi
- Department of Haematology and Oncology, Gunma Children's Medical Centre, Shibukawa, Japan.,Clinical Research Centre, National Hospital Organization Nagoya Medical Centre, Nagoya, Japan.,Institute of Physiology and Medicine, Jobu University, Takasaki, Japan
| |
Collapse
|
34
|
Rack KA, van den Berg E, Haferlach C, Beverloo HB, Costa D, Espinet B, Foot N, Jeffries S, Martin K, O'Connor S, Schoumans J, Talley P, Telford N, Stioui S, Zemanova Z, Hastings RJ. European recommendations and quality assurance for cytogenomic analysis of haematological neoplasms. Leukemia 2019; 33:1851-1867. [PMID: 30696948 PMCID: PMC6756035 DOI: 10.1038/s41375-019-0378-z] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 12/11/2018] [Accepted: 12/17/2018] [Indexed: 12/20/2022]
Abstract
Cytogenomic investigations of haematological neoplasms, including chromosome banding analysis, fluorescence in situ hybridisation (FISH) and microarray analyses have become increasingly important in the clinical management of patients with haematological neoplasms. The widespread implementation of these techniques in genetic diagnostics has highlighted the need for guidance on the essential criteria to follow when providing cytogenomic testing, regardless of choice of methodology. These recommendations provide an updated, practical and easily available document that will assist laboratories in the choice of testing and methodology enabling them to operate within acceptable standards and maintain a quality service.
Collapse
Affiliation(s)
- K A Rack
- GenQA, John Radcliffe Hospital, Oxford University Hospitals NHS Trust, Oxford, UK
| | - E van den Berg
- Department of Genetics University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - C Haferlach
- MLL-Munich Leukemia Laboratory, Munich, Germany
| | - H B Beverloo
- Department of Clinical Genetics, Erasmus MC, University medical center, Rotterdam, The Netherlands
| | - D Costa
- Hematopathology Section, Hospital Clinic, Barcelona, Spain
| | - B Espinet
- Laboratori de Citogenètica Molecular, Servei de Patologia, Grup de Recerca,Translacional en Neoplàsies Hematològiques, Cancer Research Program, imim-Hospital del Mar, Barcelona, Spain
| | - N Foot
- Viapath Genetics laboratories, Guys Hospital, London, UK
| | - S Jeffries
- West Midlands Regional Genetics Laboratory, Birmingham Women's Hospital, Birmingham, UK
| | - K Martin
- Department of Cytogenetics, Nottingham University Hospital, Nottingham, UK
| | - S O'Connor
- Haematological Malignancy Diagnostic Service, St James's University Hospital, Leeds, UK
| | - J Schoumans
- Oncogénomique laboratory, Hematology department, Lausanne University Hospital, Vaudois, Switzerland
| | - P Talley
- Haematological Malignancy Diagnostic Service, St James's University Hospital, Leeds, UK
| | - N Telford
- Oncology Cytogenetics Service, The Christie NHS Foundation Trust, Manchester, UK
| | - S Stioui
- Laboratorio di Citogenetica e genetica moleculaire, Laboratorio Analisi, Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Z Zemanova
- Prague Center of Oncocytogenetics, Institute of Clinical Biochemistry and Laboratory Diagnostics, General University Hospital and First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - R J Hastings
- GenQA, John Radcliffe Hospital, Oxford University Hospitals NHS Trust, Oxford, UK.
| |
Collapse
|
35
|
Eder-Azanza L, Hurtado C, Navarro-Herrera D, Calavia D, Novo FJ, Vizmanos JL. Analysis of genes encoding epigenetic regulators in myeloproliferative neoplasms: Coexistence of a novel SETBP1 mutation in a patient with a p.V617F JAK2 positive myelofibrosis. Mol Clin Oncol 2019; 10:639-643. [PMID: 31031980 DOI: 10.3892/mco.2019.1840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 03/18/2019] [Indexed: 12/28/2022] Open
Abstract
In recent years it has been shown that the causes of chronic myeloproliferative neoplasms (MPNs) are more complex than a simple signaling aberration and many other mutated genes affecting different cell processes have been described. For instance, mutations in genes encoding epigenetic regulators are more frequent than expected. One of the latest genes described as mutated is SET binding protein 1 (SETBP1). In silico tools have revealed that there are several human SETBP1 paralogous to nuclear receptor binding SET domain protein 1 (NSD1), NSD2 and NSD3, for example, which are also involved in the development of other hematological malignancies. Therefore, the present study analyzed the mutational status of NSD1, NSD2, NSD3 and SETBP1 in BCR-ABL1 negative MPNs with or without Janus kinase 2 (JAK2) p.V617F mutation. The present study revealed that the NSD genes are not frequently mutated in MPNs. However, a novel SETBP1 mutation was identified in a patient with p.V617F JAK2 positive primary myelofibrosis. These results provide further insight into the genetic complexity of MPNs.
Collapse
Affiliation(s)
- Laura Eder-Azanza
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, E-31008 Pamplona, Spain.,Navarra Institute for Health Research (IdiSNA), E-31008 Pamplona, Spain
| | - Cristina Hurtado
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, E-31008 Pamplona, Spain.,Navarra Institute for Health Research (IdiSNA), E-31008 Pamplona, Spain
| | - David Navarro-Herrera
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, E-31008 Pamplona, Spain
| | - Diego Calavia
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, E-31008 Pamplona, Spain
| | - Francisco Javier Novo
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, E-31008 Pamplona, Spain.,Navarra Institute for Health Research (IdiSNA), E-31008 Pamplona, Spain
| | - José Luis Vizmanos
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, E-31008 Pamplona, Spain.,Navarra Institute for Health Research (IdiSNA), E-31008 Pamplona, Spain
| |
Collapse
|
36
|
Cartledge Wolf DM, Langhans SA. Moving Myeloid Leukemia Drug Discovery Into the Third Dimension. Front Pediatr 2019; 7:314. [PMID: 31417884 PMCID: PMC6682595 DOI: 10.3389/fped.2019.00314] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/11/2019] [Indexed: 12/12/2022] Open
Abstract
The development of therapies aimed at leukemia has progressed substantially in the past years but childhood acute myeloid leukemia (AML) remains one of the most challenging cancers to treat. Genomic profiling of AML has greatly enhanced our understanding of the genetic and epigenetic landscape of this high-risk leukemia. With it comes the opportunity to develop targeted therapies that are expected to be more effective and less toxic than current treatment regimens. Nevertheless, often overlooked in leukemia drug discovery are the dynamic interactions between leukemic cells and the bone marrow environment. The interplay between leukemic cells, stromal cells and the extracellular matrix plays critical roles in the development, progression and relapse of AML as well as in drug response and the development of resistance. Here we will review pediatric leukemia with a special focus on acute myeloid disease in children, and discuss the tumor microenvironment in the context of drug resistance and leukemia stem cell survival. We will emphasize how three-dimensional (3D) cell-based drug discovery may offer hope for both the identification and advancement of more effective treatment options for patients suffering from this devastating disease.
Collapse
Affiliation(s)
- Donna M Cartledge Wolf
- Nemours Center for Childhood Cancer Research, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| | - Sigrid A Langhans
- Nemours Center for Childhood Cancer Research, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| |
Collapse
|
37
|
Dasatinib and navitoclax act synergistically to target NUP98-NSD1 +/FLT3-ITD + acute myeloid leukemia. Leukemia 2018; 33:1360-1372. [PMID: 30568173 DOI: 10.1038/s41375-018-0327-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/21/2018] [Accepted: 10/10/2018] [Indexed: 12/21/2022]
Abstract
Acute myeloid leukemia (AML) with co-occurring NUP98-NSD1 and FLT3-ITD is associated with unfavorable prognosis and represents a particularly challenging treatment group. To identify novel effective therapies for this AML subtype, we screened patient cells and engineered cell models with over 300 compounds. We found that mouse hematopoietic progenitors co-expressing NUP98-NSD1 and FLT3-ITD had significantly increased sensitivity to FLT3 and MEK-inhibitors compared to cells expressing either aberration alone (P < 0.001). The cells expressing NUP98-NSD1 alone had significantly increased sensitivity to BCL2-inhibitors (P = 0.029). Furthermore, NUP98-NSD1+/FLT3-ITD+ patient cells were also very sensitive to BCL2-inhibitor navitoclax, although the highest select sensitivity was found to SRC/ABL-inhibitor dasatinib (mean IC50 = 2.2 nM). Topoisomerase inhibitor mitoxantrone was the least effective drug against NUP98-NSD1+/FLT3-ITD+ AML cells. Of the 25 significant hits, four remained significant also compared to NUP98-NSD1-/FLT3-ITD+ AML patients. We found that SRC/ABL-inhibitor dasatinib is highly synergistic with BCL2-inhibitor navitoclax in NUP98-NSD1+/FLT3-ITD+ cells. Gene expression analysis supported the potential relevance of dasatinib and navitoclax by revealing significantly higher expression of BCL2A1, FGR, and LCK in NUP98-NSD1+/FLT3-ITD+ patients compared to healthy CD34+ cells. Our data suggest that dasatinib-navitoclax combination may offer a clinically relevant treatment strategy for AML with NUP98-NSD1 and concomitant FLT3-ITD.
Collapse
|
38
|
Acute myeloid leukemia with translocation (1;21). Mol Biol Rep 2018; 45:347-351. [PMID: 29569103 DOI: 10.1007/s11033-018-4168-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/16/2018] [Indexed: 10/17/2022]
Abstract
Advancement in genetic and molecular biology techniques has greatly helped our understanding of various diseases, especially hematological disorders. We describe a case of primary myelofibrosis (PMF) that transformed into acute myeloid leukemia with a very rare and unusual genetic translocation of (1;21). There are only five reported cases of this translocation in acute myeloid leukemia (AML) or myelodysplastic syndrome but none of them transformed from PMF. This case not only highlights the importance of rare genetic translocations but also provides the natural history of the disease and its poor prognosis. To the best of our knowledge our patient is the first reported case of AML transformed from PMF to have this unique translocation of (1;21).
Collapse
|
39
|
Molecular Profiling Defines Distinct Prognostic Subgroups in Childhood AML: A Report From the French ELAM02 Study Group. Hemasphere 2018; 2:e31. [PMID: 31723759 PMCID: PMC6745946 DOI: 10.1097/hs9.0000000000000031] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/04/2018] [Accepted: 01/04/2018] [Indexed: 12/20/2022] Open
Abstract
Supplemental Digital Content is available in the text Despite major treatment improvements over the past decades, pediatric acute myeloid leukemia (AML) is still a life-threatening malignancy with relapse rates up to 30% and survival rates below 75%. A better description of the pattern of molecular aberrations in childhood AML is needed to refine prognostication in such patients. We report here the comprehensive molecular landscape using both high-throughput sequencing focused on 36 genes and ligation-dependent RT-PCR in 385 children with de novo AML enrolled in the prospective ELAM02 trial and we evaluated their prognostic significance. Seventy-six percent of patients had at least 1 mutation among the genes we screened. The most common class of mutations involved genes that control kinase signaling (61%) followed by transcription factors (16%), tumor suppressors (14%), chromatin modifiers (9%), DNA methylation controllers (8%), cohesin genes (5%), and spliceosome (3%). Moreover, a recurrent transcript fusion was detected in about a half of pediatric patients. Overall, CBF rearrangements, NPM1 and double CEBPA mutations represented 37% of the cohort and defined a favorable molecular subgroup (3 years OS: 92.1%) while NUP98 fusions, WT1, RUNX1, and PHF6 mutations (15% of the cohort) segregated into a poor molecular subgroup (3 years OS: 46.1%). KMT2A-rearrangements (21% of the cohort) were associated with an intermediate risk. Despite some overlaps, the spectrum of molecular aberrations and their prognostic significance differ between childhood and adult AML. These data have important implications to contribute in refining risk stratification of pediatric AML and show the need for further validations in independent pediatric cohorts.
Collapse
|
40
|
NSD1 inactivation defines an immune cold, DNA hypomethylated subtype in squamous cell carcinoma. Sci Rep 2017; 7:17064. [PMID: 29213088 PMCID: PMC5719078 DOI: 10.1038/s41598-017-17298-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/22/2017] [Indexed: 12/14/2022] Open
Abstract
Chromatin modifying enzymes are frequently mutated in cancer, resulting in widespread epigenetic deregulation. Recent reports indicate that inactivating mutations in the histone methyltransferase NSD1 define an intrinsic subtype of head and neck squamous cell carcinoma (HNSC) that features pronounced DNA hypomethylation. Here, we describe a similar hypomethylated subtype of lung squamous cell carcinoma (LUSC) that is enriched for both inactivating mutations and deletions in NSD1. The ‘NSD1 subtypes’ of HNSC and LUSC are highly correlated at the DNA methylation and gene expression levels, featuring ectopic expression of developmental transcription factors and genes that are also hypomethylated in Sotos syndrome, a congenital disorder caused by germline NSD1 mutations. Further, the NSD1 subtype of HNSC displays an ‘immune cold’ phenotype characterized by low infiltration of tumor-associated leukocytes, particularly macrophages and CD8+ T cells, as well as low expression of genes encoding the immunotherapy target PD-1 immune checkpoint receptor and its ligands. Using an in vivo model, we demonstrate that NSD1 inactivation results in reduced T cell infiltration into the tumor microenvironment, implicating NSD1 as a tumor cell-intrinsic driver of an immune cold phenotype. NSD1 inactivation therefore causes epigenetic deregulation across cancer sites, and has implications for immunotherapy.
Collapse
|
41
|
Bennett RL, Swaroop A, Troche C, Licht JD. The Role of Nuclear Receptor-Binding SET Domain Family Histone Lysine Methyltransferases in Cancer. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a026708. [PMID: 28193767 DOI: 10.1101/cshperspect.a026708] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The nuclear receptor-binding SET Domain (NSD) family of histone H3 lysine 36 methyltransferases is comprised of NSD1, NSD2 (MMSET/WHSC1), and NSD3 (WHSC1L1). These enzymes recognize and catalyze methylation of histone lysine marks to regulate chromatin integrity and gene expression. The growing number of reports demonstrating that alterations or translocations of these genes fundamentally affect cell growth and differentiation leading to developmental defects illustrates the importance of this family. In addition, overexpression, gain of function somatic mutations, and translocations of NSDs are associated with human cancer and can trigger cellular transformation in model systems. Here we review the functions of NSD family members and the accumulating evidence that these proteins play key roles in tumorigenesis. Because epigenetic therapy is an important emerging anticancer strategy, understanding the function of NSD family members may lead to the development of novel therapies.
Collapse
Affiliation(s)
- Richard L Bennett
- Departments of Medicine, Biochemistry and Molecular Biology and University of Florida Health Cancer Center, The University of Florida, Gainesville, Florida 32610
| | - Alok Swaroop
- Departments of Medicine, Biochemistry and Molecular Biology and University of Florida Health Cancer Center, The University of Florida, Gainesville, Florida 32610
| | - Catalina Troche
- Departments of Medicine, Biochemistry and Molecular Biology and University of Florida Health Cancer Center, The University of Florida, Gainesville, Florida 32610
| | - Jonathan D Licht
- Departments of Medicine, Biochemistry and Molecular Biology and University of Florida Health Cancer Center, The University of Florida, Gainesville, Florida 32610
| |
Collapse
|
42
|
Hamamoto R, Nakamura Y. Dysregulation of protein methyltransferases in human cancer: An emerging target class for anticancer therapy. Cancer Sci 2016; 107:377-84. [PMID: 26751963 PMCID: PMC4832871 DOI: 10.1111/cas.12884] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 01/06/2016] [Accepted: 01/07/2016] [Indexed: 12/15/2022] Open
Abstract
Protein methylation is one of the important post-translational modifications. Although its biological and physiological functions were unknown for a long time, we and others have characterized a number of protein methyltransferases, which have unveiled the critical functions of protein methylation in various cellular processes, in particular, in epigenetic regulation. In addition, it had been believed that protein methylation is an irreversible phenomenon, but through identification of a variety of protein demethylases, protein methylation is now considered to be dynamically regulated similar to protein phosphorylation. A large amount of evidence indicated that protein methylation has a pivotal role in post-translational modification of histone proteins as well as non-histone proteins and is involved in various processes of cancer development and progression. As dysregulation of this modification has been observed frequently in various types of cancer, small-molecule inhibitors targeting protein methyltransferases and demethylases have been actively developed as anticancer drugs; clinical trials for some of these drugs have already begun. In this review, we discuss the biological and physiological importance of protein methylation in human cancer, especially focusing on the significance of protein methyltransferases as emerging targets for anticancer therapy.
Collapse
Affiliation(s)
- Ryuji Hamamoto
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| | - Yusuke Nakamura
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
43
|
Heller G, Rommer A, Steinleitner K, Etzler J, Hackl H, Heffeter P, Tomasich E, Filipits M, Steinmetz B, Topakian T, Klingenbrunner S, Ziegler B, Spittler A, Zöchbauer-Müller S, Berger W, Wieser R. EVI1 promotes tumor growth via transcriptional repression of MS4A3. J Hematol Oncol 2015; 8:28. [PMID: 25886616 PMCID: PMC4389965 DOI: 10.1186/s13045-015-0124-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 02/26/2015] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The transcription factor Ecotropic Virus Integration site 1 (EVI1) regulates cellular proliferation, differentiation, and apoptosis, and its overexpression contributes to an aggressive course of disease in myeloid leukemias and other malignancies. Notwithstanding, knowledge about the target genes mediating its biological and pathological functions remains limited. We therefore aimed to identify and characterize novel EVI1 target genes in human myeloid cells. METHODS U937T_EVI1, a human myeloid cell line expressing EVI1 in a tetracycline regulable manner, was subjected to gene expression profiling. qRT-PCR was used to confirm the regulation of membrane-spanning-4-domains subfamily-A member-3 (MS4A3) by EVI1. Reporter constructs containing various parts of the MS4A3 upstream region were employed in luciferase assays, and binding of EVI1 to the MS4A3 promoter was investigated by chromatin immunoprecipitation. U937 derivative cell lines experimentally expressing EVI1 and/or MS4A3 were generated by retroviral transduction, and tested for their tumorigenicity by subcutaneous injection into severe combined immunodeficient mice. RESULTS Gene expression microarray analysis identified 27 unique genes that were up-regulated, and 29 unique genes that were down-regulated, in response to EVI1 induction in the human myeloid cell line U937T. The most strongly repressed gene was MS4A3, and its down-regulation by EVI1 was confirmed by qRT-PCR in additional, independent experimental model systems. MS4A3 mRNA levels were also negatively correlated with those of EVI1 in several published AML data sets. Reporter gene assays and chromatin immunoprecipitation showed that EVI1 regulated MS4A3 via direct binding to a promoter proximal region. Experimental re-expression of MS4A3 in an EVI1 overexpressing cell line counteracted the tumor promoting effect of EVI1 in a murine xenograft model by increasing the rate of apoptosis. CONCLUSIONS Our data reveal MS4A3 as a novel direct target of EVI1 in human myeloid cells, and show that its repression plays a role in EVI1 mediated tumor aggressiveness.
Collapse
Affiliation(s)
- Gerwin Heller
- Department of Medicine I, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
- Comprehensive Cancer Center of the Medical University of Vienna, Vienna, Austria.
| | - Anna Rommer
- Department of Medicine I, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
- Comprehensive Cancer Center of the Medical University of Vienna, Vienna, Austria.
| | - Katarina Steinleitner
- Department of Medicine I, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
- Comprehensive Cancer Center of the Medical University of Vienna, Vienna, Austria.
| | - Julia Etzler
- Department of Medicine I, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
- Comprehensive Cancer Center of the Medical University of Vienna, Vienna, Austria.
| | - Hubert Hackl
- Biocenter, Division of Bioinformatics, Medical University of Innsbruck, Innrain 80, 6020, Innsbruck, Austria.
| | - Petra Heffeter
- Comprehensive Cancer Center of the Medical University of Vienna, Vienna, Austria.
- Department of Medicine I, Institute of Cancer Research, and Research Platform "Translational Cancer Therapy Research", Borschkegasse 8A, 1090, Vienna, Austria.
| | - Erwin Tomasich
- Department of Medicine I, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
- Comprehensive Cancer Center of the Medical University of Vienna, Vienna, Austria.
| | - Martin Filipits
- Comprehensive Cancer Center of the Medical University of Vienna, Vienna, Austria.
- Department of Medicine I, Institute of Cancer Research, and Research Platform "Translational Cancer Therapy Research", Borschkegasse 8A, 1090, Vienna, Austria.
| | - Birgit Steinmetz
- Department of Medicine I, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
- Comprehensive Cancer Center of the Medical University of Vienna, Vienna, Austria.
| | - Thais Topakian
- Department of Medicine I, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
- Comprehensive Cancer Center of the Medical University of Vienna, Vienna, Austria.
| | - Simone Klingenbrunner
- Department of Medicine I, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
- Comprehensive Cancer Center of the Medical University of Vienna, Vienna, Austria.
| | - Barbara Ziegler
- Department of Medicine I, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
- Comprehensive Cancer Center of the Medical University of Vienna, Vienna, Austria.
| | - Andreas Spittler
- Core Facility Flow Cytometry & Surgical Research Laboratories, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| | - Sabine Zöchbauer-Müller
- Department of Medicine I, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
- Comprehensive Cancer Center of the Medical University of Vienna, Vienna, Austria.
| | - Walter Berger
- Comprehensive Cancer Center of the Medical University of Vienna, Vienna, Austria.
- Department of Medicine I, Institute of Cancer Research, and Research Platform "Translational Cancer Therapy Research", Borschkegasse 8A, 1090, Vienna, Austria.
| | - Rotraud Wieser
- Department of Medicine I, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
- Comprehensive Cancer Center of the Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
44
|
NUP98/NSD1 and FLT3/ITD coexpression is more prevalent in younger AML patients and leads to induction failure: a COG and SWOG report. Blood 2014; 124:2400-7. [PMID: 25145343 DOI: 10.1182/blood-2014-04-570929] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
NUP98/NSD1 has recently been reported in association with poor outcome in acute myeloid leukemia (AML). Previous studies also observed a high overlap between NUP98/NSD1 and FLT3/ITD, raising the question as to whether the reported poor outcome is due to NUP98/NSD1 or caused by the co-occurrence of these 2 genetic lesions. We aimed to determine the prognostic significance of NUP98/NSD1 in the context of FLT3/ITD AML. A total of 1421 patients enrolled in 5 consecutive Children's Oncology Group/Children's Cancer Group and SWOG trials were evaluated. NUP98/NSD1 was found in 15% of FLT3/ITD and 7% of cytogenetically normal (CN)-AML. Those with dual FLT3/ITD and NUP98/NSD1 (82% of NUP98/NSD1 patients) had a complete remission rate of 27% vs 69% in FLT3/ITD without NUP98/NSD1 (P < .001). The corresponding 3-year overall survival was 31% vs 48% (P = .011), respectively. In CN-AML, patients with concomitant NUP98/NSD1 and FLT3/ITD had a worse outcome than those harboring NUP98/NSD1 only. In multivariate analysis, the dual NUP98/NSD1 and FLT3/ITD remained an independent predictor of poor outcome, and NUP98/NSD1 without FLT3/ITD lost its prognostic significance. Our study demonstrates that it is the interaction between NUP98/NSD1 and FLT3/ITD that determines the poor outcome of patients with NUP98/NSD1 disease.
Collapse
|
45
|
Hematopoietic myeloid cell differentiation diminishes nucleotide excision repair. Int J Hematol 2014; 100:260-5. [PMID: 25027282 DOI: 10.1007/s12185-014-1625-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 06/29/2014] [Accepted: 06/30/2014] [Indexed: 10/25/2022]
Abstract
Myeloid cell differentiation is the process by which stem cells develop into mature monocytes or granulocytes. This process is achieved by the sequential activation of variety of genes. Disruption of this process can result in immunodeficiency, bone marrow failure syndrome, or leukemia. Acute promyelocytic leukemia (APL) is characterized by the t(15;17) translocation and can be treated by a combination of all-trans retinoic acid (ATRA) and anthracycline. This treatment can induce leukemic cell differentiation, leading to extremely high remission rates. XAB2, a molecule involved in nucleotide excision repair (NER), is downregulated during granulocyte differentiation and shows reduced expression in NB4 APL-derived cells in vitro. Differentiation of APL by ATRA treatment reduced XAB2 expression levels in vivo. These observations suggest that cellular differentiation is associated with reduced NER activity and provides new insights into combined differentiation induction. NB4 cells were more susceptible than the immature myeloid leukemic cell lines, Kasumi-3 and Kasumi-1, to the DNA interstrand crosslinking agent cisplatin.
Collapse
|
46
|
Li L, Lorzadeh A, Hirst M. Regulatory variation: an emerging vantage point for cancer biology. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2013; 6:37-59. [DOI: 10.1002/wsbm.1250] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Luolan Li
- Centre for High-Throughput Biology, Department of Microbiology & Immunology; University of British Columbia; Vancouver, British Columbia Canada
| | - Alireza Lorzadeh
- Centre for High-Throughput Biology, Department of Microbiology & Immunology; University of British Columbia; Vancouver, British Columbia Canada
| | - Martin Hirst
- Centre for High-Throughput Biology, Department of Microbiology & Immunology; University of British Columbia; Vancouver, British Columbia Canada
- Canada's Michael Smith Genome Sciences Centre; BC Cancer Agency; Vancouver, British Columbia Canada
| |
Collapse
|