1
|
Geyer J, Opoku KB, Lin J, Ramkissoon L, Mullighan C, Bhakta N, Alexander TB, Wang JR. Real-time genomic characterization of pediatric acute leukemia using adaptive sampling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.11.617690. [PMID: 39416119 PMCID: PMC11483067 DOI: 10.1101/2024.10.11.617690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Effective treatment of pediatric acute leukemia is dependent on accurate genomic classification, typically derived from a combination of multiple time-consuming and costly techniques such as flow cytometry, fluorescence in situ hybridization (FISH), karyotype analysis, targeted PCR, and microarrays (Arber et al., 2016; Iacobucci & Mullighan, 2017; Narayanan & Weinberg, 2020). We investigated the feasibility of a comprehensive single-assay classification approach using long-read sequencing, with real-time genome target enrichment, to classify chromosomal abnormalities and structural variants characteristic of acute leukemia. We performed whole genome sequencing on DNA from diagnostic peripheral blood or bone marrow for 57 pediatric acute leukemia cases with diverse genomic subtypes. We demonstrated the characterization of known, clinically relevant karyotype abnormalities and structural variants concordant with standard-of-care clinical testing. Subtype-defining genomic alterations were identified in all cases following a maximum of forty-eight hours of sequencing. In 18 cases, we performed real-time analysis - concurrent with sequencing - and identified the driving alteration in as little as fifteen minutes (for karyotype) or up to six hours (for complex structural variants). Whole genome nanopore sequencing with adaptive sampling has the potential to provide genomic classification of acute leukemia specimens with reduced cost and turnaround time compared to the current standard of care.
Collapse
Affiliation(s)
- Julie Geyer
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kofi B. Opoku
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Hackensack Meridian Health, JFK University Medical Center, Hackensack, NJ, USA
| | - John Lin
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lori Ramkissoon
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Charles Mullighan
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Nickhill Bhakta
- Department of Global Pediatric Medicine, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Thomas B. Alexander
- Department of Pediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jeremy R. Wang
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
2
|
Boer JM, Koudijs MJ, Kester LA, Sonneveld E, Hehir-Kwa JY, Snijder S, Waanders E, Buijs A, de Haas V, van der Sluis IM, Pieters R, den Boer ML, Tops BB. Challenging Conventional Diagnostic Methods by Comprehensive Molecular Diagnostics: A Nationwide Prospective Comparison in Children With ALL. JCO Precis Oncol 2025; 9:e2400788. [PMID: 40020210 PMCID: PMC11913173 DOI: 10.1200/po-24-00788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/06/2024] [Accepted: 01/17/2025] [Indexed: 03/19/2025] Open
Abstract
PURPOSE Treatment stratification in ALL includes diverse (cyto)genetic aberrations, requiring diverse tests to yield conclusive data. We optimized the diagnostic workflow to detect all relevant aberrations with a limited number of tests in a clinically relevant time frame. METHODS In 467 consecutive patients with ALL (0-20 years), we compared RNA sequencing (RNAseq), fluorescence in situ hybridization (FISH), reverse transcriptase polymerase chain reaction (RT-PCR), karyotyping, single-nucleotide polymorphism (SNP) array, and multiplex ligation-dependent probe amplification (MLPA) for technical success, concordance of results, and turnaround time. RESULTS To detect stratifying fusions (ETV6::RUNX1, BCR::ABL1, ABL-class, KMT2Ar, TCF3::HLF, IGH::MYC), RNAseq and FISH were conclusive for 97% and 96% of patients, respectively, with 99% concordance. RNAseq performed well in samples with a low leukemic cell percentage or low RNA quality. RT-PCR for six specific fusions was conclusive for >99% but false-negative for six patients with alternatively fused exons. RNAseq also detected gene fusions not yet used for stratification in 14% of B-cell precursor-ALL and 33% of T-ALL. For aneuploidies and intrachromosomal amplification of chromosome 21, SNP array gave a conclusive result in 99%, thereby outperforming karyotyping, which was conclusive for 64%. To identify deletions in eight stratifying genes/regions, SNP array was conclusive in 99% and MLPA in 95% of patients, with 98% concordance. The median turnaround times were 10 days for RNAseq, 9 days for FISH, 10 days for SNP array, and <7 days for MLPA and RT-PCR in this real-world prospective study. CONCLUSION Combining RNAseq and SNP array outperformed current diagnostic tools to detect all stratifying genetic aberrations in ALL. The turnaround time is <15 days matching major treatment decision time points. Moreover, combining RNAseq and SNP array has the advantage of detecting new lesions for studies on prognosis and pathobiology.
Collapse
Affiliation(s)
- Judith M. Boer
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Marco J. Koudijs
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Lennart A. Kester
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Edwin Sonneveld
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | | | - Simone Snijder
- Department of Genetics, Utrecht University Medical Center, Utrecht, the Netherlands
| | - Esme Waanders
- Department of Genetics, Utrecht University Medical Center, Utrecht, the Netherlands
| | - Arjan Buijs
- Department of Genetics, Utrecht University Medical Center, Utrecht, the Netherlands
| | - Valérie de Haas
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | | | - Rob Pieters
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | | | | |
Collapse
|
3
|
Lestringant V, Guermouche-Flament H, Jimenez-Pocquet M, Gaillard JB, Penther D. Cytogenetics in the management of hematological malignancies: An overview of alternative technologies for cytogenetic characterization. Curr Res Transl Med 2024; 72:103440. [PMID: 38447270 DOI: 10.1016/j.retram.2024.103440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/22/2023] [Accepted: 01/11/2024] [Indexed: 03/08/2024]
Abstract
Genomic characterization is an essential part of the clinical management of hematological malignancies for diagnostic, prognostic and therapeutic purposes. Although CBA and FISH are still the gold standard in hematology for the detection of CNA and SV, some alternative technologies are intended to complement their deficiencies or even replace them in the more or less near future. In this article, we provide a technological overview of these alternatives. CMA is the historical and well established technique for the high-resolution detection of CNA. For SV detection, there are emerging techniques based on the study of chromatin conformation and more established ones such as RTMLPA for the detection of fusion transcripts and RNA-seq to reveal the molecular consequences of SV. Comprehensive techniques that detect both CNA and SV are the most interesting because they provide all the information in a single examination. Among these, OGM is a promising emerging higher-solution technique that offers a complete solution at a contained cost, at the expense of a relatively low throughput per machine. WGS remains the most adaptable solution, with long-read approaches enabling very high-resolution detection of CAs, but requiring a heavy bioinformatics installation and at a still high cost. However, the development of high-resolution genome-wide detection techniques for CAs allows for a much better description of chromoanagenesis. Therefore, we have included in this review an update on the various existing mechanisms and their consequences and implications, especially prognostic, in hematological malignancies.
Collapse
Affiliation(s)
| | | | | | - Jean-Baptiste Gaillard
- Unité de Génétique Chromosomique, Service de Génétique moléculaire et cytogénomique, CHU Montpellier, Montpellier, France
| | | |
Collapse
|
4
|
Akkari Y, Baughn LB, Kim A, Karaca E, Raca G, Shao L, Mikhail FM. Section E6.1-6.6 of the American College of Medical Genetics and Genomics (ACMG) Technical Laboratory Standards: Cytogenomic studies of acquired chromosomal abnormalities in neoplastic blood, bone marrow, and lymph nodes. Genet Med 2024; 26:101054. [PMID: 38349293 DOI: 10.1016/j.gim.2023.101054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 04/09/2024] Open
Abstract
Cytogenomic analyses of acquired clonal chromosomal abnormalities in neoplastic blood, bone marrow, and/or lymph nodes are instrumental in the clinical management of patients with hematologic neoplasms. Cytogenetic analyses assist in the diagnosis of such disorders and can provide important prognostic information. Furthermore, cytogenetic studies can provide crucial information regarding specific genetically defined subtypes of these neoplasms that may have targeted therapies. At time of relapse, cytogenetic analysis can confirm recurrence of the original neoplasm, detect clonal disease evolution, or uncover a new unrelated neoplastic process. This section deals specifically with the technical standards applicable to cytogenomic studies of acquired clonal chromosomal abnormalities in neoplastic blood, bone marrow, and/or lymph nodes. This updated Section E6.1-6.6 supersedes the previous Section E6 in Section E: Clinical Cytogenetics of the American College of Medical Genetics and Genomics Technical Standards for Clinical Genetics Laboratories.
Collapse
Affiliation(s)
- Yassmine Akkari
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH
| | - Linda B Baughn
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Annette Kim
- Department of Pathology, University of Michigan, Ann Arbor, MI
| | - Ender Karaca
- Department of Pathology, Baylor University Medical Center, Dallas, TX; Texas A&M School of Medicine, Texas A&M University, Dallas, TX
| | - Gordana Raca
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA; Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Lina Shao
- Department of Pathology, University of Michigan, Ann Arbor, MI
| | - Fady M Mikhail
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
5
|
Strullu M, Cousin E, de Montgolfier S, Fenwarth L, Gachard N, Arnoux I, Duployez N, Girard S, Guilmatre A, Lafage M, Loosveld M, Petit A, Perrin L, Vial Y, Saultier P. [Suspicion of constitutional abnormality at diagnosis of childhood leukemia: Update of the leukemia committee of the French Society of Childhood Cancers]. Bull Cancer 2024; 111:291-309. [PMID: 38267311 DOI: 10.1016/j.bulcan.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/06/2023] [Accepted: 11/17/2023] [Indexed: 01/26/2024]
Abstract
The spectrum of childhood leukemia predisposition syndromes has grown significantly over last decades. These predisposition syndromes mainly involve CEBPA, ETV6, GATA2, IKZF1, PAX5, RUNX1, SAMD9/SAMD9L, TP53, RAS-MAPK pathway, DNA mismatch repair system genes, genes associated with Fanconi anemia, and trisomy 21. The clinico-biological features leading to the suspicion of a leukemia predisposition are highly heterogeneous and require varied exploration strategies. The study of the initial characteristics of childhood leukemias includes high-throughput sequencing techniques, which have increased the frequency of situations where a leukemia predisposing syndrome is suspected. Identification of a leukemia predisposition syndrome can have a major impact on the choice of chemotherapy, the indication for hematopoietic stem cell transplantation, and screening for associated malformations and pathologies. The diagnosis of a predisposition syndrome can also lead to the exploration of family members and genetic counseling. Diagnosis and management should be based on dedicated and multidisciplinary care networks.
Collapse
Affiliation(s)
- Marion Strullu
- Hématologie et immunologie pédiatrique, hôpital Robert-Debré, GHU AP-HP Nord-Université Paris Cité, Paris, France; Inserm UMR_S1131, Institut universitaire d'hématologie, université Paris Cité, Paris cité, Paris, France.
| | - Elie Cousin
- Service d'onco-hématologie pédiatrique, CHU de Rennes, Rennes, France
| | - Sandrine de Montgolfier
- Aix Marseille université, Inserm, IRD, SESSTIM, sciences économiques & sociales de la santé & traitement de l'information médicale, ISSPAM, Marseille, France
| | - Laurene Fenwarth
- Département de génétique clinique, laboratoire d'hématologie, unité de génétique moléculaire des hémopathies malignes, CHU de Lille, université de Lille, Lille, France
| | | | | | - Nicolas Duployez
- Laboratoire d'hématologie, unité de génétique moléculaire des hémopathies malignes, CHU de Lille, université de Lille, Lille, France
| | - Sandrine Girard
- Service d'hématologie biologique, centre de biologie et pathologie Est, LBMMS, hospices civils de Lyon, Lyon, France
| | - Audrey Guilmatre
- Service d'hématologie et oncologie pédiatrique, hôpital Armand-Trousseau, AP-HP.Sorbonne Université, Paris, France
| | - Marina Lafage
- CRCM, Inserm UMR1068, CNRS UMR7258, Aix Marseille université U105, laboratoire d'hématologie, CHU Timone, Marseille, France
| | - Marie Loosveld
- CRCM, Inserm UMR1068, CNRS UMR7258, Aix Marseille université U105, laboratoire d'hématologie, CHU Timone, Marseille, France
| | - Arnaud Petit
- Service d'hématologie et oncologie pédiatrique, hôpital Armand-Trousseau, AP-HP.Sorbonne Université, Paris, France
| | - Laurence Perrin
- Génétique clinique, hôpital Robert-Debré, GHU AP-HP Nord-Université Paris cité, Paris, France
| | - Yoan Vial
- Inserm UMR_S1131, Institut universitaire d'hématologie, université Paris Cité, Paris cité, Paris, France; Laboratoire de génétique moléculaire, hôpital Robert-Debré, GHU AP-HP Nord-Université Paris cité, Paris, France
| | - Paul Saultier
- Service d'hématologie immunologie oncologie pédiatrique, Inserm, INRAe, C2VN, hôpital d'Enfants de la Timone, Aix Marseille université, AP-HM, Marseille, France
| |
Collapse
|
6
|
Behrens YL, Pietzsch S, Antić Ž, Zhang Y, Bergmann AK. The landscape of cytogenetic and molecular genetic methods in diagnostics for hematologic neoplasia. Best Pract Res Clin Haematol 2024; 37:101539. [PMID: 38490767 DOI: 10.1016/j.beha.2024.101539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/28/2024] [Indexed: 03/17/2024]
Abstract
Improvements made during the last decades in the management of patients with hematologic neoplasia have resulted in increase of overall survival. These advancements have become possible through progress in our understanding of genetic basis of different hematologic malignancies and their role in the current risk-adapted treatment protocols. In this review, we provide an overview of current cytogenetic and molecular genetic methods, commonly used in the genetic characterization of hematologic malignancies, describe the current developments in the cytogenetic and molecular diagnostics, and give an outlook into their future development. Furthermore, we give a brief overview of the most important public databases and guidelines for sequence variant interpretation.
Collapse
Affiliation(s)
- Yvonne Lisa Behrens
- Department of Human Genetics, Hannover Medical School, 30625, Hannover, Germany
| | - Stefan Pietzsch
- Department of Human Genetics, Hannover Medical School, 30625, Hannover, Germany
| | - Željko Antić
- Department of Human Genetics, Hannover Medical School, 30625, Hannover, Germany
| | - Yanming Zhang
- Cytogenetics Laboratory, Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anke K Bergmann
- Department of Human Genetics, Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
7
|
Trinquand A, Betts DR, Harte S, Sills A, Rooney S, Barrett N, Storey L, Malone A, O'Marcaigh A, Smith OP. Adapted risk stratification and intensive chemotherapy abrogate the poor prognosis of pediatric B acute lymphoblastic leukemia with intrachromosomal amplification of chromosome 21 (iAMP21): a National cohort analysis. Leuk Lymphoma 2024; 65:279-282. [PMID: 37909291 DOI: 10.1080/10428194.2023.2276061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023]
Affiliation(s)
- Amélie Trinquand
- National Children's Cancer Service, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - David R Betts
- Department of Clinical Genetics, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Shauna Harte
- National Children's Cancer Service, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Aoife Sills
- National Children's Cancer Service, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Sean Rooney
- Haematology Laboratory, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Neil Barrett
- National Children's Cancer Service, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Lorna Storey
- National Children's Cancer Service, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Andrea Malone
- National Children's Cancer Service, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Aengus O'Marcaigh
- National Children's Cancer Service, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Owen P Smith
- National Children's Cancer Service, Children's Health Ireland at Crumlin, Dublin, Ireland
| |
Collapse
|
8
|
De Sa H, Leonard J. Novel Biomarkers and Molecular Targets in ALL. Curr Hematol Malig Rep 2024; 19:18-34. [PMID: 38048037 DOI: 10.1007/s11899-023-00718-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2023] [Indexed: 12/05/2023]
Abstract
PURPOSE OF REVIEW Acute lymphoblastic leukemia (ALL) is a widely heterogeneous disease in terms of genomic alterations, treatment options, and prognosis. While ALL is considered largely curable in children, adults tend to have higher risk disease subtypes and do not respond as favorably to conventional chemotherapy. Identifying genomic drivers of leukemogenesis and applying targeted therapies in an effort to improve disease outcomes is an exciting focus of current ALL research. Here, we review recent updates in ALL targeted therapy and present promising opportunities for future research. RECENT FINDINGS With the utilization of next-generation sequencing techniques, the genomic landscape of ALL has greatly expanded to encompass novel subtypes characterized by recurrent chromosomal rearrangements, gene fusions, sequence mutations, and distinct gene expression profiles. The evolution of small molecule inhibitors and immunotherapies, and the exploration of unique therapy combinations are some examples of recent advancements in the field. Targeted therapies are becoming increasingly important in the treatment landscape of ALL to improve outcomes and minimize toxicity. Significant recent advancements have been made in the detection of susceptible genomic drivers and the use of novel therapies to target them.
Collapse
Affiliation(s)
- Hong De Sa
- OHSU Center for Health and Healing, Oregon Health & Science University, 3485 S Bond Ave, Mail Code OC14HO, Portland, OR, 97239, USA
| | - Jessica Leonard
- OHSU Center for Health and Healing, Oregon Health & Science University, 3485 S Bond Ave, Mail Code OC14HO, Portland, OR, 97239, USA.
| |
Collapse
|
9
|
Friedrich P, Mercado N, Echeandia-Abud N, Guerrero-Gomez K, González-Zamorano M, López-Ruíz MI, Portillo-Zavala CS, García-Segura LD, Reynoso-Gutiérrez M, López-Facundo NA, Cárdenas-Pedraza D, Valois-Escamilla MG, Mera-González AB, Covarrubias-Zapata D, Vollbrechtshausen-Castelán LA, Loeza-Oliva JDJ, Garay-Sánchez SA, Moreno-Serrano J, Mendoza-Sánchez P, Casillas-Toral P, Sandoval-Cabrera A, Gutiérrez-Martínez I, Jiménez-Osorio MI, Arce-Cabrera D, Aguilar-Escobar DV, González-Montalvo PM, Romo-Rubio HA. Securing access to a comprehensive diagnostic panel for children with suspected acute lymphoblastic leukemia: Results from the Mexico in Alliance with St. Jude "Bridge Project". Front Oncol 2024; 13:1286278. [PMID: 38288107 PMCID: PMC10824571 DOI: 10.3389/fonc.2023.1286278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/07/2023] [Indexed: 01/31/2024] Open
Abstract
Background The "Bridge Project" is a Mexico in Alliance with St. Jude (MAS) initiative developed in 2019 to improve access, accuracy, and timeliness of specialized diagnostic studies for patients with suspected acute lymphoblastic leukemia (ALL). The project strategy relies on service centralization to improve service delivery, biological characterization, risk-group classification, and support proper treatment allocation. Methods This is an ongoing prospective multisite intersectoral quality improvement (QI) project available to all patients 0-18 years of age presenting with suspected ALL to the 14 actively participating institutions in 12 Mexican states. Institutions send specimens to one centralized laboratory. From a clinical standpoint, the project secures access to a consensus-derived comprehensive diagnostic panel. From a service delivery standpoint, we assess equity, timeliness, effectiveness, and patient-centeredness. From an implementation science standpoint, we document feasibility, utility, and appropriateness of the diagnostic panel and centralized approach. This analysis spans from July 2019 to June 2023. Results 612 patients have accessed the project. The median age was 6 years (IQR 3-11), and 53% were males. 94% of the specimens arrived within 48 hours, which documents the feasibility of the centralized model, and 100% of the patients received precise and timely diagnostic results, which documents the effectiveness of the approach. Of 505 (82.5%) patients with confirmed ALL, 463/505 (91.6%) had B-cell ALL, and 42/505 (8.3%) had T-cell ALL. High-hyperdiploidy was detected by DNA index in 36.6% and hypodiploidy in 1.6%. 76.6% of the patients had conclusive karyotype results. FISH studies showed t(12;21) in 15%, iAMP21 in 8.5%, t(1;19) in 7.5%, t(4;11) in 4.2%, t(9;22) in 3.2%, del(9)(p21) in 1.8%, and TRA/D (14)(q11.2) rearrangement in 2.4%. Among B-cell ALL patients, 344/403 (85.1%) had Day 15 MRD<1% and 261/305 (85.6%) Day 84 MRD<0.01. For T-cell ALL patients 20/28 (71.4%) had Day 29 MRD<0.01% and 19/22 (86.4%) Day 84 MRD<0.01%. Conclusions By securing access to a standardized consensus-derived diagnostic panel, the Bridge Project has allowed better characterization of childhood ALL in Mexico while producing unprecedented service improvements and documenting key implementation outcomes. We are using these results to inform iterative changes to the diagnostic panel and an associated treatment guideline (MAS-ALL18).
Collapse
Affiliation(s)
- Paola Friedrich
- Department of Global Pediatric Medicine, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Nataly Mercado
- Casa de la Amistad para Niños con Cáncer, Institución de Asistencia Privada, I.A.P., Ciudad de México, Mexico
| | - Naomi Echeandia-Abud
- Department of Global Pediatric Medicine, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Karla Guerrero-Gomez
- Casa de la Amistad para Niños con Cáncer, Institución de Asistencia Privada, I.A.P., Ciudad de México, Mexico
| | - Margarita González-Zamorano
- Pediatric Oncology and Hematology Department, Hospital General con Especialidades “Juan María de Salvatierra”, La Paz, Mexico
| | - Mayra Ivette López-Ruíz
- Pediatric Oncology Department, Hospital de Especialidades Pediátricas, Tuxtla Gutiérrez, Mexico
| | | | | | | | - Norma Araceli López-Facundo
- Pediatric Oncology Department, Hospital Materno Infantil del Instituto de Seguridad Social del Estado de México y Municipios, Toluca, Mexico
| | - Daniela Cárdenas-Pedraza
- Pediatric Oncology and Hematology Department, Hospital para el Niño del Instituto Materno Infantil del Estado de México, Toluca de Lerdo, Mexico
| | | | - Alma Beatriz Mera-González
- Hematology Department, Hospital del Niño Desarrollo Integral de la Familia (DIF) Hidalgo, Pachuca de Soto, Mexico
| | - Daniela Covarrubias-Zapata
- Pediatric Oncology Department, Centro Estatal de Oncología “Dr. Luis González Francis”, Campeche, Mexico
| | | | - José de Jesús Loeza-Oliva
- Pediatric Oncology Department, Centro Estatal de Cancerología “Dr. Miguel Dorantes Mesa”, Xalapa, Mexico
| | | | - Julio Moreno-Serrano
- Diagnostic and Bood Bank Department, Hospital Infantil Teletón de Oncología, Querétaro, Mexico
| | | | - Paola Casillas-Toral
- Pediatric Oncology and Hematology Department, Hospital Civil de Guadalajara “Dr. Juan I. Menchaca”, Guadalajara, Mexico
| | - Antonio Sandoval-Cabrera
- Pediatric Oncology and Hematology Department, Hospital para el Niño del Instituto Materno Infantil del Estado de México, Toluca de Lerdo, Mexico
| | - Itzel Gutiérrez-Martínez
- Pediatric Oncology Department, Hospital Infantil de Morelia "Eva Sámano de López Mateos", Morelia, Mexico
| | | | - Daniela Arce-Cabrera
- Pediatric Oncology and Hematology Department, Hospital Pediátrico de Sinaloa, Culiacán, Mexico
| | | | | | - Hugo Antonio Romo-Rubio
- Pediatric Oncology and Hematology Department, Hospital Civil de Guadalajara “Dr. Juan I. Menchaca”, Guadalajara, Mexico
| |
Collapse
|
10
|
Tueur G, Quessada J, De Bie J, Cuccuini W, Toujani S, Lefebvre C, Luquet I, Michaux L, Lafage-Pochitaloff M. Cytogenetics in the management of B-cell acute lymphoblastic leukemia: Guidelines from the Groupe Francophone de Cytogénétique Hématologique (GFCH). Curr Res Transl Med 2023; 71:103434. [PMID: 38064905 DOI: 10.1016/j.retram.2023.103434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/20/2023] [Accepted: 11/22/2023] [Indexed: 12/26/2023]
Abstract
Cytogenetic analysis is mandatory at initial assessment of B-cell acute lymphoblastic leukemia (B-ALL) due to its diagnostic and prognostic value. Results from chromosome banding analysis and complementary FISH are taken into account in therapeutic protocols and further completed by other techniques (RT-PCR, SNP-array, MLPA, NGS, OGM). Indeed, new genomic entities have been identified by NGS, mostly RNA sequencing, such as Ph-like ALL that can benefit from targeted therapy. Here, we have attempted to establish cytogenetic guidelines by reviewing the most recent published data including the novel 5th World Health Organization and International Consensus Classifications. We also focused on newly described cytogenomic entities and indicate alternative diagnostic tools such as NGS technology, as its importance is vastly increasing in the diagnostic setting.
Collapse
Affiliation(s)
- Giulia Tueur
- Laboratoire d'hématologie, Hôpital Avicenne, AP-HP, Bobigny 93000, France
| | - Julie Quessada
- Laboratoire de Cytogénétique Hématologique, Département d'Hématologie, CHU Timone, APHM, Aix Marseille Université, Marseille 13005, France; CRCM, Inserm UMR1068, CNRS UMR7258, Aix Marseille Université U105, Institut Paoli Calmettes, Marseille 13009, France
| | - Jolien De Bie
- Center for Human Genetics, University Hospitals Leuven, Herestraat 49, Leuven 3000, Belgium
| | - Wendy Cuccuini
- Laboratoire d'Hématologie, Unité de Cytogénétique, Hôpital Saint-Louis, AP-HP, Paris 75010, France
| | - Saloua Toujani
- Service de cytogénétique et biologie cellulaire, CHU de Rennes, Rennes 35033, France
| | - Christine Lefebvre
- Unité de Génétique des Hémopathies, Service d'Hématologie Biologique, CHU Grenoble Alpes, Grenoble 38000, France
| | - Isabelle Luquet
- Laboratoire d'Hématologie, CHU Toulouse (IUCT-O), Toulouse 31000, France
| | - Lucienne Michaux
- Center for Human Genetics, University Hospitals Leuven, Herestraat 49, Leuven 3000, Belgium; Katholieke Universiteit Leuven, Leuven 3000, Belgium
| | - Marina Lafage-Pochitaloff
- Laboratoire de Cytogénétique Hématologique, Département d'Hématologie, CHU Timone, APHM, Aix Marseille Université, Marseille 13005, France.
| |
Collapse
|
11
|
Gachard N, Lafage-Pochitaloff M, Quessada J, Auger N, Collonge-Rame MA. Cytogenetics in the management of hematologic neoplasms with germline predisposition: guidelines from the Groupe Francophone de Cytogénétique Hématologique (GFCH). Curr Res Transl Med 2023; 71:103416. [PMID: 37865978 DOI: 10.1016/j.retram.2023.103416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/21/2023] [Accepted: 09/29/2023] [Indexed: 10/24/2023]
Abstract
The number of predisposing genes is continuously growing with the widespread availability of DNA sequencing, increasing the prevalence of hematologic malignancies with germline predisposition. Cytogenetic analyses provide an effective approach for the recognition of these malignancies with germline predisposition, which is critical for proper diagnosis, optimal treatment and genetic counseling. Based on the World Health Organization and the international consensus classifications as well as the European LeukemiaNet recommendations, this review first presents an advanced classification of neoplasms with germline predisposition focused on the acquired cytogenetic alterations during leukemogenesis. The various genetic rescue mechanisms and the progression to transformation are then explained. The review also outlines the specific constitutional and somatic cytogenetic aberrations indicative of germline predisposition disorders in B-acute lymphoblastic leukemia (ALL), T-ALL, bone marrow failure syndrome and myeloid neoplasms. An emphasis is made on monosomy 7 in the predisposition field, its frequency and diagnosis impact as well as its various circumstances of occurrence. Lastly, we propose cytogenetic technical recommendations and guidelines for clinical reporting of these specific aberrations.
Collapse
Affiliation(s)
- Nathalie Gachard
- Laboratoire d'hématologie, Centre de Biologie et de Recherche en Santé, CHU de Limoges, Limoges 87042, France; UMR CNRS 7276, INSERM U1262 Université de Limoges, Limoges 87025, France.
| | - Marina Lafage-Pochitaloff
- Laboratoire de Cytogénétique Hématologique, Département d'Hématologie, CHU Timone, APHM, Aix Marseille Université, Marseille 13005, France
| | - Julie Quessada
- Laboratoire de Cytogénétique Hématologique, Département d'Hématologie, CHU Timone, APHM, Aix Marseille Université, Marseille 13005, France
| | - Nathalie Auger
- Laboratoire de Cytogénétique -Génétique des Tumeurs - Gustave Roussy - 144 rue Edouard Vaillant, Villejuif 94805, France
| | - Marie-Agnès Collonge-Rame
- Oncobiologie Génétique Bioinformatique, UF Cytogénétique et Génétique Moléculaire, CHU de Besançon, Besançon 25030, France
| |
Collapse
|
12
|
Gao Q, Ryan SL, Iacobucci I, Ghate PS, Cranston RE, Schwab C, Elsayed AH, Shi L, Pounds S, Lei S, Baviskar P, Pei D, Cheng C, Bashton M, Sinclair P, Bentley DR, Ross MT, Kingsbury Z, James T, Roberts KG, Devidas M, Fan Y, Chen W, Chang TC, Wu G, Carroll A, Heerema N, Valentine V, Valentine M, Yang W, Yang JJ, Moorman AV, Harrison CJ, Mullighan CG. The genomic landscape of acute lymphoblastic leukemia with intrachromosomal amplification of chromosome 21. Blood 2023; 142:711-723. [PMID: 37216686 PMCID: PMC10460677 DOI: 10.1182/blood.2022019094] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/06/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
Intrachromosomal amplification of chromosome 21 defines a subtype of high-risk childhood acute lymphoblastic leukemia (iAMP21-ALL) characterized by copy number changes and complex rearrangements of chromosome 21. The genomic basis of iAMP21-ALL and the pathogenic role of the region of amplification of chromosome 21 to leukemogenesis remains incompletely understood. In this study, using integrated whole genome and transcriptome sequencing of 124 patients with iAMP21-ALL, including rare cases arising in the context of constitutional chromosomal aberrations, we identified subgroups of iAMP21-ALL based on the patterns of copy number alteration and structural variation. This large data set enabled formal delineation of a 7.8 Mb common region of amplification harboring 71 genes, 43 of which were differentially expressed compared with non-iAMP21-ALL ones, including multiple genes implicated in the pathogenesis of acute leukemia (CHAF1B, DYRK1A, ERG, HMGN1, and RUNX1). Using multimodal single-cell genomic profiling, including single-cell whole genome sequencing of 2 cases, we documented clonal heterogeneity and genomic evolution, demonstrating that the acquisition of the iAMP21 chromosome is an early event that may undergo progressive amplification during disease ontogeny. We show that UV-mutational signatures and high mutation load are characteristic secondary genetic features. Although the genomic alterations of chromosome 21 are variable, these integrated genomic analyses and demonstration of an extended common minimal region of amplification broaden the definition of iAMP21-ALL for more precise diagnosis using cytogenetic or genomic methods to inform clinical management.
Collapse
Affiliation(s)
- Qingsong Gao
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Sarra L. Ryan
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle upon Tyne, United Kingdom
| | - Ilaria Iacobucci
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Pankaj S. Ghate
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Ruth E. Cranston
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle upon Tyne, United Kingdom
| | - Claire Schwab
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle upon Tyne, United Kingdom
| | - Abdelrahman H. Elsayed
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Lei Shi
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Stanley Pounds
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Shaohua Lei
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
- Center of Excellence for Leukemia Studies, St. Jude Children’s Research Hospital, Memphis, TN
| | | | - Deqing Pei
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Cheng Cheng
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Matthew Bashton
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle upon Tyne, United Kingdom
| | - Paul Sinclair
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle upon Tyne, United Kingdom
| | - David R. Bentley
- Illumina Cambridge, Ltd, Illumina Centre, Great Abingdon, Cambridge, United Kingdom
| | - Mark T. Ross
- Illumina Cambridge, Ltd, Illumina Centre, Great Abingdon, Cambridge, United Kingdom
| | - Zoya Kingsbury
- Illumina Cambridge, Ltd, Illumina Centre, Great Abingdon, Cambridge, United Kingdom
| | - Terena James
- Illumina Cambridge, Ltd, Illumina Centre, Great Abingdon, Cambridge, United Kingdom
| | - Kathryn G. Roberts
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
- Center of Excellence for Leukemia Studies, St. Jude Children’s Research Hospital, Memphis, TN
| | - Meenakshi Devidas
- Department of Global Pediatric Medicine, St. Jude Children’s Research Hospital, Memphis, TN
| | - Yiping Fan
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Wenan Chen
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Ti-Cheng Chang
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Gang Wu
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Andrew Carroll
- School of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Nyla Heerema
- Department of Pathology, The Ohio State University, Columbus, OH
| | - Virginia Valentine
- Cytogenetics Shared Resource, St. Jude Children’s Research Hospital, Memphis, TN
| | - Marcus Valentine
- Cytogenetics Shared Resource, St. Jude Children’s Research Hospital, Memphis, TN
| | - Wenjian Yang
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
| | - Jun J. Yang
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
| | - Anthony V. Moorman
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle upon Tyne, United Kingdom
| | - Christine J. Harrison
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle upon Tyne, United Kingdom
| | - Charles G. Mullighan
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
- Center of Excellence for Leukemia Studies, St. Jude Children’s Research Hospital, Memphis, TN
| |
Collapse
|
13
|
Rabin KR. Insights into the genomics of iAMP21-ALL. Blood 2023; 142:682-684. [PMID: 37616022 DOI: 10.1182/blood.2023021020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023] Open
|