1
|
Tian J, Li Y, Tong Y, Zhang Y, Zhao T, Kang Y, Bi Q. Uridine-cytidine kinase 2 is correlated with immune, DNA damage repair and promotion of cancer stemness in pan-cancer. Front Oncol 2025; 15:1503300. [PMID: 39931080 PMCID: PMC11807824 DOI: 10.3389/fonc.2025.1503300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 01/03/2025] [Indexed: 02/13/2025] Open
Abstract
Background UCK2 (Uridine-Cytidine Kinase 2) is a promising prognostic marker for malignant tumors, but its association with immune infiltration and cancer stemness in pan-cancer remains to be fully understood. we find that gene UCK2 is closed related to RNA stemness scores (RNAss) and DNA stemness scores (DNAss), which is measured the tumor stemness. We also discover an association between UCK2 expression and immune cells by CIBERSORT algorithm, ESTIMATE algorithm and ssGSEA algorithm, especially, related to T cell, monocytes, mast cells, and macrophages. This study aims to shed light on the role and possible mechanism of UCK2 in pan-cancer. Methods We used the R programming language for pan-cancer bulk sequencing data analysis, which were obtained from the University of California, Santa Cruz (UCSC) datasets. UCSC database is a very useful for explore data from TCGA and other cancer genomics datasets, The data we explored at the UCK2 transcriptome level came from TCGA data in the UCSC database. We explored differential UCK2 expression between tumor and normal samples. Immunohistochemistry (IHC) was utilized to validate the expression of UCK2 in different types cancers using tumor tissue chips. The correlations of UCK2 with prognosis, genetic instability, DNA repair, cancer stem cell characteristics, and immune cell infiltration were investigated. Furthermore, single-cell datasets, acquired from the Gene Expression Omnibus (GEO) database, were used to validate the relationship between UCK2 and immune cells. GEO is a famous public genomics database supporting freely disseminates microarray data. Finally, we analyzed the correlation between UCK2 and drug sensitivity. Results UCK2 expression was observed to be high in most cancers and was remarkably related to the prognosis of pan-cancers. We found that the increased UCK2 expression was associated with higher genetic instability. Additionally, positive relationships were observed between UCK2 expression and mismatch repair genes, homologous recombination repair genes, and cancer stemness across different cancer types. There were significant correlations between UCK2 and T cells, monocytes, mast cells, and macrophages. Moreover, as expected, the immune checkpoint human leucocyte antigen (HLA) was found to be negatively related to UCK2. Similarly, UCK2 was also observed to have a negative association with major histocompatibility complex (MHC) genes. We noted that UCK2 had significant correlations with the sensitivity to various anti-cancer drug. Conclusion We have observed that UCK2 plays pivotal roles in prognosis and tumor immunity, and it is associated with DNA repair and cancer stemness. The UCK2 gene exhibits a strong correlation with the immune checkpoints HLA. This study highlights its potential impact on drug sensitivity.
Collapse
Affiliation(s)
- Jinlong Tian
- Graduate School of Bengbu Medical University, Bengbu, Anhui, China
| | - Yanlei Li
- Graduate School of Bengbu Medical University, Bengbu, Anhui, China
| | - Yu Tong
- Sports Medicine Center, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yuan Zhang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, Hangzhou, China
| | - Tingxiao Zhao
- Sports Medicine Center, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yao Kang
- Sports Medicine Center, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Qing Bi
- Graduate School of Bengbu Medical University, Bengbu, Anhui, China
| |
Collapse
|
2
|
Tan AK, Henry A, Goffart N, Poulet C, Sluijs JA, Hol EM, Bours V, Robe PA. Non-Immune-Mediated, p27-Associated, Growth Inhibition of Glioblastoma by Class-II-Transactivator (CIITA). Cells 2024; 13:1883. [PMID: 39594630 PMCID: PMC11593141 DOI: 10.3390/cells13221883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/01/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Previous works have shown that the expression of Class-II-Transactivator (CIITA) in tumor cells reduces the growth of glioblastoma (GB) in animal models, but immune effects cannot solely explain this. Here, we searched for immune-independent effects of CIITA on the proliferation of GB. METHODS Murine GL261 and human U87, GM2 and GM3 malignant glioma cells were transfected with CIITA. NSG (immunodeficient) and nude (athymic) mice were injected in the striatum with GL261-wildtype (-WT) and -CIITA, and tumor growth was assessed by immunohistology and luminescence reporter genes. Clonogenic, sphere-formation, and 3D Matrigel-based in vitro growth assays were performed to compare the growth of WT versus CIITA-expressing murine and human cells. Bulk RNA sequencing and RT2 qRT-PCR profiler arrays were performed on these four cell lines to assess RNA expression changes following CIITA transfection. Western blot analysis on several proliferation-associated proteins was performed. RESULTS The intracerebral growth of murine GL261-CIITA cells was drastically reduced both in immunodeficient and athymic mice. Tumor growth was reduced in vitro in three of the four cell types. RNA sequencing and RT2 profiler array experiments revealed a modulation of gene expression in the PI3-Akt, MAPK- and cell-cycle regulation pathways following CIITA overexpression. Western blot analysis showed an upregulation of p27 in the growth-inhibited cells following this treatment. PDGFR-beta was downregulated in all cells. We did not find consistent regulation of other proteins involved in GB proliferation. CONCLUSIONS Proliferation is drastically reduced by CIITA in GB, both in vivo and in vitro, notably in association with p27-mediated inhibition of cell-cycle pathways.
Collapse
Affiliation(s)
- A Katherine Tan
- Department of Translational Neuroscience, University Medical Center Utrecht (UMCU) Brain Center, Utrecht University, 3584 CX Utrecht, The Netherlands; (A.K.T.); (J.A.S.); (E.M.H.)
| | - Aurelie Henry
- Department of Human Genetics, University of Liège, 4000 Liège, Belgium; (A.H.); (N.G.); (C.P.); (V.B.)
| | - Nicolas Goffart
- Department of Human Genetics, University of Liège, 4000 Liège, Belgium; (A.H.); (N.G.); (C.P.); (V.B.)
| | - Christophe Poulet
- Department of Human Genetics, University of Liège, 4000 Liège, Belgium; (A.H.); (N.G.); (C.P.); (V.B.)
- Laboratory of Rheumatology, University Hospital of Liège, University of Liège, 4000 Liège, Belgium
| | - Jacqueline A. Sluijs
- Department of Translational Neuroscience, University Medical Center Utrecht (UMCU) Brain Center, Utrecht University, 3584 CX Utrecht, The Netherlands; (A.K.T.); (J.A.S.); (E.M.H.)
| | - Elly M. Hol
- Department of Translational Neuroscience, University Medical Center Utrecht (UMCU) Brain Center, Utrecht University, 3584 CX Utrecht, The Netherlands; (A.K.T.); (J.A.S.); (E.M.H.)
| | - Vincent Bours
- Department of Human Genetics, University of Liège, 4000 Liège, Belgium; (A.H.); (N.G.); (C.P.); (V.B.)
| | - Pierre A. Robe
- Department of Translational Neuroscience, University Medical Center Utrecht (UMCU) Brain Center, Utrecht University, 3584 CX Utrecht, The Netherlands; (A.K.T.); (J.A.S.); (E.M.H.)
- Department of Human Genetics, University of Liège, 4000 Liège, Belgium; (A.H.); (N.G.); (C.P.); (V.B.)
- Department of Neurosurgery, University Medical Center Utrecht (UMCU) Brain Center, Utrecht University, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
3
|
Tan AK, Henry A, Goffart N, van Logtestijn S, Bours V, Hol EM, Robe PA. Limited Effects of Class II Transactivator-Based Immunotherapy in Murine and Human Glioblastoma. Cancers (Basel) 2023; 16:193. [PMID: 38201622 PMCID: PMC10778432 DOI: 10.3390/cancers16010193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/23/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND The major histocompatibility complex type II is downregulated in glioblastoma (GB) due to the silencing of the major transcriptional regulator class II transactivator (CIITA). We investigated the pro-immunogenic potential of CIITA overexpression in mouse and human GB. METHODS The intracerebral growth of wildtype GL261-WT cells was assessed following contralateral injection of GL261-CIITA cells or flank injections with GL261-WT or GL261-CIITA cells. Splenocytes obtained from mice implanted intracerebrally with GL261-WT, GL261-CIITA cells or phosphate buffered saline (PBS) were transferred to other mice and subsequently implanted intracerebrally with GL261-WT. Human GB cells and (syngeneic) GB-infiltrating immune cells were isolated from surgical samples and co-cultured with GB cells expressing CIITA or not, followed by RT-qPCR assessment of the expression of key immune regulators. RESULTS Intracerebral vaccination of GL261-CIITA significantly reduced the subsequent growth of GL261-WT cells implanted contralaterally. Vaccination with GL261-WT or -CIITA subcutaneously, however, equivalently retarded the intracerebral growth of GL261 cells. Adoptive cell transfer experiments showed a similar antitumor potential of lymphocytes harvested from mice implanted intracerebrally with GL261-WT or -CIITA. Human GB-infiltrating myeloid cells and lymphocytes were not activated when cultured with CIITA-expressing GB cells. Tumor-infiltrating NK cells remained mostly inactivated when in co-culture with GB cells, regardless of CIITA. CONCLUSION these results question the therapeutic potential of CIITA-mediated immunotherapy in glioblastoma.
Collapse
Affiliation(s)
- A. Katherine Tan
- Department of Translational Neuroscience, University Medical Center Utrecht (UMCU) Brain Center, Utrecht University, 3584 CX Utrecht, The Netherlands; (A.K.T.); (E.M.H.)
| | - Aurelie Henry
- Department of Human Genetics, University of Liège, 4000 Liège, Belgium
| | - Nicolas Goffart
- Department of Human Genetics, University of Liège, 4000 Liège, Belgium
| | - Sofie van Logtestijn
- Department of Translational Neuroscience, University Medical Center Utrecht (UMCU) Brain Center, Utrecht University, 3584 CX Utrecht, The Netherlands; (A.K.T.); (E.M.H.)
| | - Vincent Bours
- Department of Human Genetics, University of Liège, 4000 Liège, Belgium
| | - Elly M. Hol
- Department of Translational Neuroscience, University Medical Center Utrecht (UMCU) Brain Center, Utrecht University, 3584 CX Utrecht, The Netherlands; (A.K.T.); (E.M.H.)
| | - Pierre A. Robe
- Department of Translational Neuroscience, University Medical Center Utrecht (UMCU) Brain Center, Utrecht University, 3584 CX Utrecht, The Netherlands; (A.K.T.); (E.M.H.)
- Department of Human Genetics, University of Liège, 4000 Liège, Belgium
- Department of Neurosurgery, University Medical Center Utrecht (UMCU) Brain Center, Utrecht University, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
4
|
Forlani G, Shallak M, Gatta A, Shaik AKB, Accolla RS. The NLR member CIITA: Master controller of adaptive and intrinsic immunity and unexpected tool in cancer immunotherapy. Biomed J 2023; 46:100631. [PMID: 37467968 PMCID: PMC10505679 DOI: 10.1016/j.bj.2023.100631] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023] Open
Abstract
Human nucleotide-binding oligomerization domain (NOD)-like receptors (NLR) include a large family of proteins that have important functions in basic physio-pathological processes like inflammation, cell death and regulation of transcription of key molecules for the homeostasis of the immune system. They are all characterized by a common backbone structure (the STAND ATPase module consisting in a nucleotide-binding domain (NBD), an helical domain 1 (HD1) and a winged helix domain (WHD), used by both prokaryotes and eukaryotes as defense mechanism. In this review, we will focus on the MHC class II transactivator (CIITA), the master regulator of MHC class II (MHC-II) gene expression and the founding member of NLR. Although a consistent part of the described NLR family components is often recalled as innate or intrinsic immune sensors, CIITA in fact occupies a special place as a unique example of regulator of both intrinsic and adaptive immunity. The description of the discovery of CIITA and the genetic and molecular characterization of its expression will be followed by the most recent studies that have unveiled this dual role of CIITA, key molecule in intrinsic immunity as restriction factor for human retroviruses and precious tool to induce the expression of MHC-II molecules in cancer cells, rendering them potent surrogate antigen presenting cells (APC) for their own tumor antigens.
Collapse
Affiliation(s)
- Greta Forlani
- Laboratories of General Pathology and Immunology "Giovanna Tosi", Department of Medicine and Technological Innovation, School of Medicine, University of Insubria, 21100 Varese, Italy.
| | - Mariam Shallak
- Laboratories of General Pathology and Immunology "Giovanna Tosi", Department of Medicine and Technological Innovation, School of Medicine, University of Insubria, 21100 Varese, Italy
| | - Andrea Gatta
- Laboratories of General Pathology and Immunology "Giovanna Tosi", Department of Medicine and Technological Innovation, School of Medicine, University of Insubria, 21100 Varese, Italy
| | - Amruth K B Shaik
- Laboratories of General Pathology and Immunology "Giovanna Tosi", Department of Medicine and Technological Innovation, School of Medicine, University of Insubria, 21100 Varese, Italy
| | - Roberto S Accolla
- Laboratories of General Pathology and Immunology "Giovanna Tosi", Department of Medicine and Technological Innovation, School of Medicine, University of Insubria, 21100 Varese, Italy.
| |
Collapse
|
5
|
Macy AM, Herrmann LM, Adams AC, Hastings KT. Major histocompatibility complex class II in the tumor microenvironment: functions of nonprofessional antigen-presenting cells. Curr Opin Immunol 2023; 83:102330. [PMID: 37130456 PMCID: PMC10524529 DOI: 10.1016/j.coi.2023.102330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/30/2023] [Accepted: 04/02/2023] [Indexed: 05/04/2023]
Abstract
Major histocompatibility complex class-II-restricted presentation by nonprofessional antigen-presenting cells in the tumor microenvironment can regulate antitumor T-cell responses. In murine models, tumor cell-specific MHC class II expression decreases in vivo tumor growth, dependent on T cells. Tumor cell-specific MHC class II expression is associated with improved survival and response to immune checkpoint inhibitors in human cancers. Antigen-presenting cancer-associated fibroblasts (apCAF) present MHC class-II-restricted antigens and activate CD4 T cells. The role of MHC class II on apCAFs depends on the cell of origin. MHC class II on tumoral lymphatic endothelial cells leads to expansion of regulatory T cells and increased in vivo tumor growth.
Collapse
Affiliation(s)
- Anne M Macy
- University of Arizona College of Medicine Phoenix, 425 N. 5th St., Phoenix, AZ 85004, USA; Phoenix Veterans Affairs Health Care System, 650 E. Indian School Rd., Phoenix, AZ 85023, USA
| | - Lauren M Herrmann
- University of Arizona College of Medicine Phoenix, 425 N. 5th St., Phoenix, AZ 85004, USA; Phoenix Veterans Affairs Health Care System, 650 E. Indian School Rd., Phoenix, AZ 85023, USA
| | - Anngela C Adams
- University of Arizona College of Medicine Phoenix, 425 N. 5th St., Phoenix, AZ 85004, USA; Phoenix Veterans Affairs Health Care System, 650 E. Indian School Rd., Phoenix, AZ 85023, USA
| | - K Taraszka Hastings
- University of Arizona College of Medicine Phoenix, 425 N. 5th St., Phoenix, AZ 85004, USA; Phoenix Veterans Affairs Health Care System, 650 E. Indian School Rd., Phoenix, AZ 85023, USA; University of Arizona Cancer Center, University of Arizona, 1515 N. Campbell Ave., Tucson, AZ 85724, USA.
| |
Collapse
|
6
|
Wen M, Li Y, Qin X, Qin B, Wang Q. Insight into Cancer Immunity: MHCs, Immune Cells and Commensal Microbiota. Cells 2023; 12:1882. [PMID: 37508545 PMCID: PMC10378520 DOI: 10.3390/cells12141882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/16/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Cancer cells circumvent immune surveillance via diverse strategies. In accordance, a large number of complex studies of the immune system focusing on tumor cell recognition have revealed new insights and strategies developed, largely through major histocompatibility complexes (MHCs). As one of them, tumor-specific MHC-II expression (tsMHC-II) can facilitate immune surveillance to detect tumor antigens, and thereby has been used in immunotherapy, including superior cancer prognosis, clinical sensitivity to immune checkpoint inhibition (ICI) therapy and tumor-bearing rejection in mice. NK cells play a unique role in enhancing innate immune responses, accounting for part of the response including immunosurveillance and immunoregulation. NK cells are also capable of initiating the response of the adaptive immune system to cancer immunotherapy independent of cytotoxic T cells, clearly demonstrating a link between NK cell function and the efficacy of cancer immunotherapies. Eosinophils were shown to feature pleiotropic activities against a variety of solid tumor types, including direct interactions with tumor cells, and accessorily affect immunotherapeutic response through intricating cross-talk with lymphocytes. Additionally, microbial sequencing and reconstitution revealed that commensal microbiota might be involved in the modulation of cancer progression, including positive and negative regulatory bacteria. They may play functional roles in not only mucosal modulation, but also systemic immune responses. Here, we present a panorama of the cancer immune network mediated by MHCI/II molecules, immune cells and commensal microbiota and a discussion of prospective relevant intervening mechanisms involved in cancer immunotherapies.
Collapse
Affiliation(s)
- Minting Wen
- School of Life Science, Guangzhou University, Guangzhou 510006, China
| | - Yingjing Li
- School of Life Science, Guangzhou University, Guangzhou 510006, China
| | - Xiaonan Qin
- School of Life Science, Guangzhou University, Guangzhou 510006, China
| | - Bing Qin
- School of Life Science, Guangzhou University, Guangzhou 510006, China
| | - Qiong Wang
- School of Life Science, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
7
|
Celesti F, Gatta A, Shallak M, Chiaravalli AM, Cerati M, Sessa F, Accolla RS, Forlani G. Protective anti-tumor vaccination against glioblastoma expressing the MHC class II transactivator CIITA. Front Immunol 2023; 14:1133177. [PMID: 36993983 PMCID: PMC10040613 DOI: 10.3389/fimmu.2023.1133177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/23/2023] [Indexed: 03/14/2023] Open
Abstract
Glioblastoma is the most malignant tumor of the central nervous system. Current treatments based on surgery, chemotherapy, and radiotherapy, and more recently on selected immunological approaches, unfortunately produce dismal outcomes, and less than 2% of patients survive after 5 years. Thus, there is an urgent need for new therapeutic strategies. Here, we report unprecedented positive results in terms of protection from glioblastoma growth in an animal experimental system after vaccination with glioblastoma GL261 cells stably expressing the MHC class II transactivator CIITA. Mice injected with GL261-CIITA express de novo MHC class II molecules and reject or strongly retard tumor growth as a consequence of rapid infiltration with CD4+ and CD8+ T cells. Importantly, mice vaccinated with GL261-CIITA cells by injection in the right brain hemisphere strongly reject parental GL261 tumors injected in the opposite brain hemisphere, indicating not only the acquisition of anti-tumor immune memory but also the capacity of immune T cells to migrate within the brain, overcoming the blood–brain barrier. GL261-CIITA cells are a potent anti-glioblastoma vaccine, stimulating a protective adaptive anti-tumor immune response in vivo as a consequence of CIITA-driven MHC class II expression and consequent acquisition of surrogate antigen-presenting function toward tumor-specific CD4+ Th cells. This unprecedented approach for glioblastoma demonstrates the feasibility of novel immunotherapeutic strategies for potential application in the clinical setting.
Collapse
Affiliation(s)
- Fabrizio Celesti
- Laboratories of General Phatology and Immunology “Giovanna Tosi”, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Andrea Gatta
- Laboratories of General Phatology and Immunology “Giovanna Tosi”, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Mariam Shallak
- Laboratories of General Phatology and Immunology “Giovanna Tosi”, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | | | | | - Fausto Sessa
- Unit of Pathology, Department of Medicine and Surgery, ASST Sette-Laghi, University of Insubria, Varese, Italy
| | - Roberto S. Accolla
- Laboratories of General Phatology and Immunology “Giovanna Tosi”, Department of Medicine and Surgery, University of Insubria, Varese, Italy
- *Correspondence: Greta Forlani, ; Roberto S. Accolla,
| | - Greta Forlani
- Laboratories of General Phatology and Immunology “Giovanna Tosi”, Department of Medicine and Surgery, University of Insubria, Varese, Italy
- *Correspondence: Greta Forlani, ; Roberto S. Accolla,
| |
Collapse
|
8
|
Jeong S, Jang N, Kim M, Choi IK. CD4 + cytotoxic T cells: an emerging effector arm of anti-tumor immunity. BMB Rep 2023; 56:140-144. [PMID: 36863358 PMCID: PMC10068340 DOI: 10.5483/bmbrep.2023-0014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/26/2023] [Accepted: 02/26/2023] [Indexed: 04/29/2024] Open
Abstract
While CD8+ cytotoxic T cells have long been considered the primary effector in controlling tumors, the involvement of CD4+ "helper" T cells in anti-tumor immunity has been underappreciated. The investigations of intra-tumoral T cells, fueled by the recent advances in genomic technologies, have led to a rethinking of the indirect role of CD4+ T cells that have traditionally been described as a "helper". Accumulating evidence from preclinical and clinical studies indicates that CD4+ T cells can acquire intrinsic cytotoxic properties and directly kill various types of tumor cells in a major histocompatibility complex class II (MHC-II)-dependent manner, as opposed to the indirect "helper" function, thus underscoring a potentially critical contribution of CD4+ cytotoxic T cells to immune responses against a wide range of tumor types. Here, we discuss the biological properties of anti-tumor CD4+ T cells with cytotoxic capability and highlight the emerging observations suggesting their more significant role in anti-tumor immunity than previously appreciated. [BMB Reports 2023; 56(3): 140-144].
Collapse
Affiliation(s)
- Seongmin Jeong
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Nawon Jang
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Minchae Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Il-Kyu Choi
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
- New Biology Research Center (NBRC), Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| |
Collapse
|
9
|
Letchuman V, Ampie L, Shah AH, Brown DA, Heiss JD, Chittiboina P. Syngeneic murine glioblastoma models: reactionary immune changes and immunotherapy intervention outcomes. Neurosurg Focus 2022; 52:E5. [PMID: 35104794 PMCID: PMC10851929 DOI: 10.3171/2021.11.focus21556] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022]
Abstract
Glioblastoma is the most common primary malignant brain neoplasm with dismal 10-year survival rates of < 1%. Despite promising preliminary results from several novel therapeutic agents, clinical responses have been modest due to several factors, including tumor heterogeneity, immunosuppressive tumor microenvironment, and treatment resistance. Novel immunotherapeutics have been developed to reverse tumor-induced immunosuppression in patients with glioblastomas. In order to recapitulate the tumor microenvironment, reliable in vivo syngeneic murine models are critical for the development of new targeted agents as these models demonstrate rapid tumor induction and reliable tumor growth over multiple generations. Despite the clear advantages of murine models, choosing an appropriate model from an immunological perspective can be difficult and have significant ramifications on the translatability of the results from murine to human trials. Herein, the authors reviewed the 4 most commonly used immunocompetent syngeneic murine glioma models (GL261 [C57BL/6], SB28 [C57BL/6], CT-2A [C57BL/6], and SMA-560 [VM/Dk]) and compared their strengths and weaknesses from an immunological standpoint.
Collapse
Affiliation(s)
- Vijay Letchuman
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Leonel Ampie
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia
| | - Ashish H. Shah
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Desmond A. Brown
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - John D. Heiss
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Prashant Chittiboina
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
10
|
Cai X, Tao W, Li L. Glioma cell-derived FGF20 suppresses macrophage function by activating β-catenin. Cell Signal 2021; 89:110181. [PMID: 34757019 DOI: 10.1016/j.cellsig.2021.110181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 10/23/2021] [Accepted: 10/26/2021] [Indexed: 01/19/2023]
Abstract
Macrophages, which are the main regulators of the tumor-associated microenvironment, play a crucial role in the progression of various tumors. The anti-inflammatory role of β-catenin in macrophages has been extensively studied in recent years. However, the association between macrophages and β-catenin with regards to the development of glioma has not yet been investigated, at least to the best of our knowledge. The present study found that fibroblast growth factor 20 (FGF20), as a paracrine cytokine, was secreted by glioma cells and acted on macrophages. FGF20 treated macrophages exhibited a decreased pro-inflammatory phenotype upon LPS and IFN-γ stimulation, characterized by the decreased the level of M1 macrophage markers and the reduced production of pro-inflammatory cytokines. Mechanistic analysis revealed that FGF20 interacted with FGF receptor 1 isoform of macrophages, and subsequently increased the stability of β-catenin via phosphorylating GSK3β, which suppressed macrophage polarization to the M1-phenotype. Finally, it was found that FGF20 of glioma cells expression was upregulated by the glucocorticoids (GCs) treatment, and decreased FGF20 expression of glioma cells markedly blocked the effects of GCs on the polarization of macrophages. On the whole, the present study demonstrates that FGF20, secreted from glioma cells, participates the GCs regulated macrophage function and exerts anti-inflammatory effects during the treatment of glioma by GCs. Moreover, a molecular link was identified between glioma cells and macrophages, demonstrating that FGF20 modulates the GCs-induced dysfunction of macrophages during glioma development.
Collapse
Affiliation(s)
- Xue Cai
- Department of Emergency, ShengJing Hospital of China Medical University, Shenyang, Liaoning Province 110004, China.
| | - Weichen Tao
- Department of Emergency, ShengJing Hospital of China Medical University, Shenyang, Liaoning Province 110004, China
| | - Lei Li
- Department of Emergency, ShengJing Hospital of China Medical University, Shenyang, Liaoning Province 110004, China.
| |
Collapse
|
11
|
Shukla A, Cano-Mejia J, Andricovich J, Burga RA, Sweeney EE, Fernandes R. An Engineered Prussian Blue Nanoparticles-based Nanoimmunotherapy Elicits Robust and Persistent Immunological Memory in a TH-MYCN Neuroblastoma Model. ADVANCED NANOBIOMED RESEARCH 2021; 1. [PMID: 34435194 DOI: 10.1002/anbr.202100021] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A combination therapy using Prussian blue nanoparticles (PBNP) as photothermal therapy (PTT) agents coated with CpG oligodeoxynucleotides, an immunologic adjuvant, as a nanoimmunotherapy (CpG-PBNP-PTT) for neuroblastoma (NB) is described. NB driven by MYCN amplification confers high risk and correlates with a dismal prognosis, accounting for the majority of NB-related mortality. The efficacy of the CpG-PBNP-PTT nanoimmunotherapy in a clinically relevant, TH-MYCN murine NB model (9464D) overexpressing MYCN is tested. When administered to 9464D NB cells in vitro, CpG-PBNP-PTT triggers thermal dose-dependent immunogenic cell death and tumor cell priming for immune recognition in vitro, measured by the expression of specific costimulatory and antigen-presenting molecules. In vivo, intratumorally administered CpG-PBNP-PTT generates complete tumor regression and significantly higher long-term survival compared to controls. Furthermore, CpG-PBNP-PTT-treated mice reject tumor rechallenge. Ex vivo studies confirm these therapeutic responses result from the generation of robust T cell-mediated immunological memory. Consequently, in a synchronous 9464D tumor model, CpG-PBNP-PTT induces complete tumor regression on the treated flank and significantly slows tumor progression on the untreated flank, improving animal survival. These findings demonstrate that localized administration of the CpG-PBNP-PTT nanoimmunotherapy drives potent systemic T cell responses in solid tumors such as NB and therefore has therapeutic implications for NB.
Collapse
Affiliation(s)
- Anshi Shukla
- The George Washington Cancer Center, The George Washington University, 800 22nd St NW, Science and Engineering Hall 8 Floor, Washington, DC 20052, USA
| | - Juliana Cano-Mejia
- The George Washington Cancer Center, The George Washington University, 800 22nd St NW, Science and Engineering Hall 8 Floor, Washington, DC 20052, USA
| | - Jaclyn Andricovich
- The George Washington Cancer Center, The George Washington University, 800 22nd St NW, Science and Engineering Hall 8 Floor, Washington, DC 20052, USA.,The Institute for Biomedical Sciences, The George Washington University,2300 Eye Street NW, Ross Hall Room 561, Washington, DC 20037, USA
| | - Rachel A Burga
- The George Washington Cancer Center, The George Washington University, 800 22nd St NW, Science and Engineering Hall 8 Floor, Washington, DC 20052, USA.,The Institute for Biomedical Sciences, The George Washington University,2300 Eye Street NW, Ross Hall Room 561, Washington, DC 20037, USA
| | - Elizabeth E Sweeney
- The George Washington Cancer Center, The George Washington University, 800 22nd St NW, Science and Engineering Hall 8 Floor, Washington, DC 20052, USA
| | - Rohan Fernandes
- The George Washington Cancer Center, The George Washington University, 800 22nd St NW, Science and Engineering Hall 8 Floor, Washington, DC 20052, USA
| |
Collapse
|
12
|
Leko V, Cafri G, Yossef R, Paria B, Hill V, Gurusamy D, Zheng Z, Gartner JJ, Prickett TD, Goff SL, Robbins P, Lu YC, Rosenberg SA. Identification of neoantigen-reactive T lymphocytes in the peripheral blood of a patient with glioblastoma. J Immunother Cancer 2021; 9:jitc-2021-002882. [PMID: 34266885 PMCID: PMC8286793 DOI: 10.1136/jitc-2021-002882] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2021] [Indexed: 12/19/2022] Open
Abstract
The adoptive transfer of naturally occurring T cells that recognize cancer neoantigens has led to durable tumor regressions in select patients with cancer. However, it remains unknown whether such T cells can be isolated from and used to treat patients with glioblastoma, a cancer that is refractory to currently available therapies. To answer this question, we stimulated patient blood-derived memory T cells in vitro using peptides and minigenes that represented point mutations unique to patients’ tumors (ie, candidate neoantigens) and then tested their ability to specifically recognize these mutations. In a cohort of five patients with glioblastoma, we found that circulating CD4+ memory T cells from one patient recognized a cancer neoantigen harboring a mutation in the EED gene (EEDH189N) that was unique to that patient’s tumor. This finding suggests that neoantigen-reactive T cells could indeed be isolated from patients with glioblastoma, thereby providing a rationale for further efforts to develop neoantigen-directed adoptive T cell therapy for this disease.
Collapse
Affiliation(s)
- Vid Leko
- Surgery Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Gal Cafri
- Sheba Medical Center, Ramat Gan, Israel
| | - Rami Yossef
- Surgery Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Biman Paria
- Program Coordination and Referral Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Victoria Hill
- Surgery Branch, National Cancer Institute, Bethesda, Maryland, USA
| | | | - Zhili Zheng
- Surgery Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Jared J Gartner
- Surgery Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Todd D Prickett
- Surgery Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Stephanie L Goff
- Surgery Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Paul Robbins
- Surgery Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Yong-Chen Lu
- Surgery Branch, National Cancer Institute, Bethesda, Maryland, USA
| | | |
Collapse
|
13
|
Human leukocyte antigen class II quantification by targeted mass spectrometry in dendritic-like cell lines and monocyte-derived dendritic cells. Sci Rep 2021; 11:1028. [PMID: 33441579 PMCID: PMC7807004 DOI: 10.1038/s41598-020-77024-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 10/26/2020] [Indexed: 11/08/2022] Open
Abstract
The major histocompatibility complex II (HLA-II) facilitates the presentation of antigen-derived peptides to CD4+ T-cells. Antigen presentation is not only affected by peptide processing and intracellular trafficking, but also by mechanisms that govern HLA-II abundance such as gene expression, biosynthesis and degradation. Herein we describe a mass spectrometry (MS) based HLA-II-protein quantification method, applied to dendritic-like cells (KG-1 and MUTZ-3) and human monocyte-derived dendritic cells (DCs). This method monitors the proteotypic peptides VEHWGLDKPLLK, VEHWGLDQPLLK and VEHWGLDEPLLK, mapping to the α-chains HLA-DQA1, -DPA1 and -DRA1/DQA2, respectively. Total HLA-II was detected at 176 and 248 fmol per million unstimulated KG-1 and MUTZ-3 cells, respectively. In contrast, TNF- and LPS-induced MUTZ-3 cells showed a 50- and 200-fold increase, respectively, of total α-chain as measured by MS. HLA-II protein levels in unstimulated DCs varied significantly between donors ranging from ~ 4 to ~ 50 pmol per million DCs. Cell surface HLA-DR levels detected by flow cytometry increased 2- to 3-fold after DC activation with lipopolysaccharide (LPS), in contrast to a decrease or no change in total HLA α-chain as determined by MS. HLA-DRA1 was detected as the predominant variant, representing > 90% of total α-chain, followed by DPA1 and DQA1 at 3-7% and ≤ 1%, respectively.
Collapse
|
14
|
Niklasson M, Bergström T, Jarvius M, Sundström A, Nyberg F, Haglund C, Larsson R, Westermark B, Segerman B, Segerman A. Mesenchymal transition and increased therapy resistance of glioblastoma cells is related to astrocyte reactivity. J Pathol 2019; 249:295-307. [PMID: 31298733 DOI: 10.1002/path.5317] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/10/2019] [Accepted: 06/17/2019] [Indexed: 12/22/2022]
Abstract
Grade IV astrocytoma/glioblastoma multiforme (GBM) is essentially incurable, partly due to its heterogenous nature, demonstrated even within the glioma-initiating cell (GIC) population. Increased therapy resistance of GICs is coupled to transition into a mesenchymal (MES) cell state. The GBM MES molecular signature displays a pronounced inflammatory character and its expression vary within and between tumors. Herein, we investigate how MES transition of GBM cells relates to inflammatory responses of normal astroglia. In response to CNS insults astrocytes enter a reactive cell state and participate in directing neuroinflammation and subsequent healing processes. We found that the MES signature show strong resemblance to gene programs induced in reactive astrocytes. Likewise, astrocyte reactivity gene signatures were enriched in therapy-resistant MES-like GIC clones. Variable expression of astrocyte reactivity related genes also largely defined intratumoral GBM cell heterogeneity at the single-cell level and strongly correlated with our previously defined therapy-resistance signature (based on linked molecular and functional characterization of GIC clones). In line with this, therapy-resistant MES-like GIC secreted immunoregulatory and tissue repair related proteins characteristic of astrocyte reactivity. Moreover, sensitive GIC clones could be made reactive through long-term exposure to the proinflammatory cytokine interleukin 1 beta (IL1β). IL1β induced a slow MES transition, increased therapy resistance, and a shift in DNA methylation profile towards that of resistant clones, which confirmed a slow reprogramming process. In summary, GICs enter through MES transition a reactive-astrocyte-like cell state, connected to therapy resistance. Thus, from a biological point of view, MES GICs would preferably be called 'reactive GICs'. The ability of GBM cells to mimic astroglial reactivity contextualizes the immunomodulatory and microenvironment reshaping abilities of GBM cells that generate a tumor-promoting milieu. This insight will be important to guide the development of future sensitizing therapies targeting treatment-resistant relapse-driving cell populations as well as enhancing the efficiency of immunotherapies in GBM. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Mia Niklasson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Tobias Bergström
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Malin Jarvius
- Department of Medical Sciences, Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala University Hospital, Uppsala, Sweden
| | - Anders Sundström
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Frida Nyberg
- Department of Medical Sciences, Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala University Hospital, Uppsala, Sweden
| | - Caroline Haglund
- Department of Medical Sciences, Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala University Hospital, Uppsala, Sweden
| | - Rolf Larsson
- Department of Medical Sciences, Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala University Hospital, Uppsala, Sweden
| | - Bengt Westermark
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Bo Segerman
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden.,Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
| | - Anna Segerman
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden.,Department of Medical Sciences, Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
15
|
Axelrod ML, Cook RS, Johnson DB, Balko JM. Biological Consequences of MHC-II Expression by Tumor Cells in Cancer. Clin Cancer Res 2019; 25:2392-2402. [PMID: 30463850 PMCID: PMC6467754 DOI: 10.1158/1078-0432.ccr-18-3200] [Citation(s) in RCA: 316] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/02/2018] [Accepted: 11/16/2018] [Indexed: 12/20/2022]
Abstract
Immunotherapy has emerged as a key pillar of cancer treatment. To build upon the recent successes of immunotherapy, intense research efforts are aimed at a molecular understanding of antitumor immune responses, identification of biomarkers of immunotherapy response and resistance, and novel strategies to circumvent resistance. These studies are revealing new insight into the intricacies of tumor cell recognition by the immune system, in large part through MHCs. Although tumor cells widely express MHC-I, a subset of tumors originating from a variety of tissues also express MHC-II, an antigen-presenting complex traditionally associated with professional antigen-presenting cells. MHC-II is critical for antigen presentation to CD4+ T lymphocytes, whose role in antitumor immunity is becoming increasingly appreciated. Accumulating evidence demonstrates that tumor-specific MHC-II associates with favorable outcomes in patients with cancer, including those treated with immunotherapies, and with tumor rejection in murine models. Herein, we will review current research regarding tumor-enriched MHC-II expression and regulation in a range of human tumors and murine models, and the possible therapeutic applications of tumor-specific MHC-II.
Collapse
Affiliation(s)
- Margaret L Axelrod
- Department of Medicine, Vanderbilt University Medical Center, Vanderbilt University, Nashville, Tennessee
- Cancer Biology Graduate Program, Vanderbilt University, Nashville, Tennessee
| | - Rebecca S Cook
- Cancer Biology Graduate Program, Vanderbilt University, Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| | - Douglas B Johnson
- Department of Medicine, Vanderbilt University Medical Center, Vanderbilt University, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| | - Justin M Balko
- Department of Medicine, Vanderbilt University Medical Center, Vanderbilt University, Nashville, Tennessee.
- Cancer Biology Graduate Program, Vanderbilt University, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| |
Collapse
|
16
|
Mohammadi A, Sharifi A, Pourpaknia R, Mohammadian S, Sahebkar A. Manipulating macrophage polarization and function using classical HDAC inhibitors: Implications for autoimmunity and inflammation. Crit Rev Oncol Hematol 2018; 128:1-18. [DOI: 10.1016/j.critrevonc.2018.05.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/18/2018] [Accepted: 05/10/2018] [Indexed: 02/06/2023] Open
|
17
|
Martin AM, Nirschl CJ, Polanczyk MJ, Bell WR, Nirschl TR, Harris-Bookman S, Phallen J, Hicks J, Martinez D, Ogurtsova A, Xu H, Sullivan LM, Meeker AK, Raabe EH, Cohen KJ, Eberhart CG, Burger PC, Santi M, Taube JM, Pardoll DM, Drake CG, Lim M. PD-L1 expression in medulloblastoma: an evaluation by subgroup. Oncotarget 2018; 9:19177-19191. [PMID: 29721192 PMCID: PMC5922386 DOI: 10.18632/oncotarget.24951] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 03/13/2018] [Indexed: 01/01/2023] Open
Abstract
Background This study evaluated the expression of PD-L1 and markers of immune mediated resistance in human medulloblastoma (MB), the most common malignant pediatric brain tumor. Results Overall levels of PD-L1 in human MB were low; however, some cases demonstrated robust focal expression associated with increased immune infiltrates. The case with highest PD-L1 expression was a sonic hedgehog (SHH) MB. In cell lines, SHH MB, which are low-MYC expressing, demonstrated both constitutive and inducible expression of PD-L1 while those in Group 3/4 that expressed high levels of MYC had only inducible expression. In vitro, IFN-γ robustly stimulated the expression of PD-L1 in all cell lines while radiation induced variable expression. Forced high MYC expression did not significantly alter PD-L1. Methods Human MB tumor samples were evaluated for expression of PD-L1 and immune cell markers in relation to molecular subgroup assignment. PD-L1 expression was functionally analyzed under conditions of interferon gamma (IFN-γ), radiation, and MYC overexpression. Conclusions MB expresses low levels of PD-L1 facilitating immune escape. Importantly, TH1 cytokine stimulation appears to be the most potent inducer of PD-L1 expression in vitro suggesting that an inflamed tumor microenvironment is necessary for PD-1 pathway activation in this tumor.
Collapse
Affiliation(s)
- Allison M Martin
- Johns Hopkins School of Medicine, Sidney Kimmel Cancer Center, Division of Pediatric Oncology, Baltimore, MD, USA
| | - Christopher J Nirschl
- Johns Hopkins School of Medicine, Sidney Kimmel Cancer Center, Division of Cancer Immunology, Baltimore, MD, USA
| | - Magda J Polanczyk
- Johns Hopkins School of Medicine, Sidney Kimmel Cancer Center, Division of Pediatric Oncology, Baltimore, MD, USA
| | - W Robert Bell
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Thomas R Nirschl
- Johns Hopkins School of Medicine, Department of Pathobiology, Baltimore, MD, USA
| | - Sarah Harris-Bookman
- Johns Hopkins School of Medicine, Department of Ophthalmology, Baltimore, MD, USA
| | - Jillian Phallen
- Johns Hopkins School of Medicine, Sidney Kimmel Cancer Center, Division of Cancer Biology, Baltimore, MD, USA
| | - Jessica Hicks
- Johns Hopkins School of Medicine, Department of Pathology, Division of Kidney and Urologic Pathology, Baltimore, MD, USA
| | - Daniel Martinez
- Children's Hospital of Philadelphia, Department of Pathology and Laboratory Medicine, Philadelphia, PA, USA
| | - Aleksandra Ogurtsova
- Johns Hopkins School of Medicine, Department of Dermatology, Division of Dermatologic Pathology and Oral Pathology, Baltimore, MD, USA
| | - Haiying Xu
- Johns Hopkins School of Medicine, Department of Dermatology, Division of Dermatologic Pathology and Oral Pathology, Baltimore, MD, USA
| | | | - Alan K Meeker
- Johns Hopkins School of Medicine, Department of Pathology, Division of Kidney and Urologic Pathology, Baltimore, MD, USA
| | - Eric H Raabe
- Johns Hopkins School of Medicine, Sidney Kimmel Cancer Center, Division of Pediatric Oncology, Baltimore, MD, USA.,Johns Hopkins School of Medicine, Department of Pathology, Division of Neuropathology, Baltimore, MD, USA
| | - Kenneth J Cohen
- Johns Hopkins School of Medicine, Sidney Kimmel Cancer Center, Division of Pediatric Oncology, Baltimore, MD, USA
| | - Charles G Eberhart
- Johns Hopkins School of Medicine, Department of Pathology, Division of Neuropathology, Baltimore, MD, USA
| | - Peter C Burger
- Johns Hopkins School of Medicine, Department of Pathology, Division of Neuropathology, Baltimore, MD, USA
| | - Mariarita Santi
- Children's Hospital of Philadelphia, Department of Pathology and Laboratory Medicine, Philadelphia, PA, USA
| | - Janis M Taube
- Johns Hopkins School of Medicine, Department of Dermatology, Division of Dermatologic Pathology and Oral Pathology, Baltimore, MD, USA
| | - Drew M Pardoll
- Johns Hopkins School of Medicine, Sidney Kimmel Cancer Center, Division of Cancer Immunology, Baltimore, MD, USA
| | - Charles G Drake
- Columbia University Medical Center, Division of Hematology/Oncology, New York, NY, USA
| | - Michael Lim
- Johns Hopkins School of Medicine, Department of Neurosurgery, Division of Neurosurgical Oncology, Baltimore, MD, USA
| |
Collapse
|
18
|
Cui Y, Li J, Weng L, Wirbisky SE, Freeman JL, Liu J, Liu Q, Yuan X, Irudayaraj J. Regulatory landscape and clinical implication of MBD3 in human malignant glioma. Oncotarget 2018; 7:81698-81714. [PMID: 27835581 PMCID: PMC5340251 DOI: 10.18632/oncotarget.13173] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/19/2016] [Indexed: 12/19/2022] Open
Abstract
In this article we inspect the roles and functions of the methyl-CpG-binding domain protein 3 (MBD3) in human malignant glioma, to assess its potential as an epigenetic biomarker for prognosis. The regulatory effects of MBD3 on glioma transcriptome were first profiled by high-throughput microarray. Our results indicate that MBD3 is involved in both transcriptional activation and repression. Furthermore, MBD3 fine-controls a spectrum of proteins critical for cellular metabolism and proliferation, thereby contributing to an exquisite anti-glioma network. Specifically, the expression of MHC class II molecules was found to positively correlate with MBD3, which provides new insight into the immune escape of gliomagenesis. In addition, MBD3 participates in constraining a number of oncogenic non-coding RNAs whose over-activation could drive cells into excessive growth and higher malignancy. Having followed up a pilot cohort, we noted that the survival of malignant glioma patients was proportional to the content of MBD3 and 5-hydroxymethylcytosine (5hmC) in their tumor cells. The progression-free survival (PFS) and overall survival (OS) were relatively poor for patients with lower amount of MBD3 and 5hmC in the tissue biopsies. Taken together, this work enriches our understanding of the mechanistic involvement of MBD3 in malignant glioma.
Collapse
Affiliation(s)
- Yi Cui
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China.,Biological Engineering and Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
| | - Jian Li
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Ling Weng
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Sara E Wirbisky
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Jennifer L Freeman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Jingping Liu
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Qing Liu
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China.,The Institute of Skull Base Surgery & Neuro-Oncology at Hunan, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Xianrui Yuan
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China.,The Institute of Skull Base Surgery & Neuro-Oncology at Hunan, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Joseph Irudayaraj
- Biological Engineering and Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
19
|
Kober C, Weibel S, Rohn S, Kirscher L, Szalay AA. Intratumoral INF-γ triggers an antiviral state in GL261 tumor cells: a major hurdle to overcome for oncolytic vaccinia virus therapy of cancer. Mol Ther Oncolytics 2015; 2:15009. [PMID: 27119106 PMCID: PMC4782962 DOI: 10.1038/mto.2015.9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 04/26/2015] [Accepted: 04/28/2015] [Indexed: 12/24/2022] Open
Abstract
Oncolytic vaccinia virus (VACV) therapy is an alternative treatment option for glioblastoma multiforme. Here, we used a comparison of different tumor locations and different immunologic and genetic backgrounds to determine the replication efficacy and oncolytic potential of the VACV LIVP 1.1.1, an attenuated wild-type isolate of the Lister strain, in murine GL261 glioma models. With this approach, we expected to identify microenvironmental factors, which may be decisive for failure or success of oncolytic VACV therapy. We found that GL261 glioma cells implanted subcutaneously or orthotopically into Balb/c athymic, C57BL/6 athymic, or C57BL/6 wild-type mice formed individual tumors that respond to oncolytic VACV therapy with different outcomes. Surprisingly, only Balb/c athymic mice with subcutaneous tumors supported viral replication. We identified intratumoral IFN-γ expression levels that upregulate MHCII expression on GL261 cells in C57BL/6 wild-type mice associated with a non-permissive status of the tumor cells. Moreover, this IFN-γ-induced tumor cell phenotype was reversible.
Collapse
Affiliation(s)
- Christina Kober
- Department of Biochemistry, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Stephanie Weibel
- Department of Biochemistry, Biocenter, University of Wuerzburg, Wuerzburg, Germany
- Department of Anesthesia and Critical Care, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Susanne Rohn
- Department of Biochemistry, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Lorenz Kirscher
- Department of Biochemistry, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Aladar A Szalay
- Department of Biochemistry, Biocenter, University of Wuerzburg, Wuerzburg, Germany
- Rudolf Virchow Center for Experimental Biomedicine and Institute for Molecular Infection Biology, University of Wuerzburg, Wuerzburg, Germany
- Department of Radiation Medicine and Applied Sciences, Rebecca & John Moores Comprehensive Cancer Center, University of California, San Diego, California, USA
- Genelux Corporation, San Diego Science Center, San Diego, California, USA
| |
Collapse
|
20
|
Abstract
Despite dramatic advances in surgical techniques, imaging and adjuvant radiotherapy or chemotherapy, the prognosis for patients with malignant glial tumors remains dismal. Based on the current knowledge regarding immune responses in the healthy CNS and glioma-bearing hosts, this review discusses dendritic cell-based immunotherapeutic approaches for malignant gliomas and the relevance of recent clinical trials and their outcomes. It is now recognized that the CNS is not an immunologically tolerated site and clearance of arising glioma cells is a routine physiologic function of the normal, noncompromised immune system. To escape from immune surveillance, however, clinically apparent gliomas develop complex mechanisms that suppress tumoricidal immune responses. Although the use of dendritic cells for the treatment of glioma patients may be the most appropriate approach, an effective treatment paradigm for these tumors may eventually require the use of several types of treatment. Additionally, given the heterogeneity of this disease process and an immune-refractory tumor cell population, the series use of rational multiple modalities that target disparate tumor characteristics may be the most effective therapeutic strategy to treat malignant gliomas.
Collapse
Affiliation(s)
- Yasuharu Akasaki
- Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Suite 800 East, 8631 West 3 Street, Los Angeles, CA 90048, USA
| | | | | |
Collapse
|
21
|
Pi LQ, Jin XH, Hwang ST, Lee WS. Effects of calcitonin gene-related peptide on the immune privilege of human hair follicles. Neuropeptides 2013; 47:51-7. [PMID: 22975462 DOI: 10.1016/j.npep.2012.07.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 06/19/2012] [Accepted: 07/16/2012] [Indexed: 10/27/2022]
Abstract
The hair follicle is a widely available and instructive miniature organ in the human body that experiences major histocompatibility complex (MHC) class I dependent immune privilege (IP). There are various regulation factors that act on the generation, maintenance, and collapse of hair follicle IP. Neuropeptides such as calcitonin gene-related peptide (CGRP) are created in many organs, including skin, and display various immune regulation effects. The purpose of this study was to investigate the phenotypic effect of CGRP on the hair follicle's IP. First, we used interferon-γ (IFN-γ) to generate ectopic MHC antigen expression model in cultured human hair follicles as previously described. Then, we examined the effects of CGRP on the regulation of ectopic MHC antigen expression in cultured human hair follicles using reverse transcriptase-polymerase chain reaction (RT-PCR) and immunohistochemical staining techniques. IFN-γ (75 IU/ml) induced ectopic MHC expression. CGRP down-regulated INF-γ-induced ectopic MHC class I mRNA expression. These down-regulated effects were especially evident in 10(-8)M. In addition, CGRP also suppressed the staining intensity related to the expression of MHC class I and MHC class I-pathway related molecules (β2-microglobulin), but had no effect on MHC class II antigen expression. Taken together, these results indicate that CGRP might be an important regulatory factor for IP maintenance and restoration of IP via suppression of MHC class I antigen.
Collapse
Affiliation(s)
- Long-Quan Pi
- Department of Dermatology and Institute of Hair and Cosmetic Medicine, Yonsei University, Wonju College of Medicine, Wonju, Republic of Korea
| | | | | | | |
Collapse
|
22
|
Pisapia L, Pozzo GD, Barba P, Citro A, Harris PE, Maffei A. Contrasting effects of IFNα on MHC class II expression in professional vs. nonprofessional APCs: Role of CIITA type IV promoter. RESULTS IN IMMUNOLOGY 2012; 2:174-83. [PMID: 24371581 DOI: 10.1016/j.rinim.2012.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 09/16/2012] [Accepted: 09/19/2012] [Indexed: 01/01/2023]
Abstract
We previously demonstrated that, in ex vivo cultures, IFNα downregulates the expression of MHC class II (MHCII) genes in human non-professional APCs associated with pancreatic islets. IFNα has an opposing effect on MHCII expression in professional APCs. In this study, we found that the mechanism responsible for the IFNα-mediated MHCII's downregulation in human MHCII-positive non-professional antigen presenting human non-hematopoietic cell lines is the result of the negative feedback system that regulates cytokine signal transduction, which eventually inhibits promoters III and IV of CIITA gene. Because the CIITA-PIV isoform is mostly responsible for the constitutive expression of MHCII genes in non-professional APCs, we pursued and achieved the specific knockdown of CIITA-PIV mRNA in our in vitro system, obtaining a partial silencing of MHCII molecules similar to that obtained by IFNα. We believe that our results offer a new understanding of the potential significance of CIITA-PIV as a therapeutic target for interventional strategies that can manage autoimmune disease and allograft rejection with little interference on the function of professional APCs of the immune system.
Collapse
Affiliation(s)
- Laura Pisapia
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Naples, Italy
| | - Giovanna Del Pozzo
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Naples, Italy
| | - Pasquale Barba
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Naples, Italy
| | - Alessandra Citro
- Department of Medicine of Columbia University Medical Center, New York, NY, USA
| | - Paul E Harris
- Department of Medicine of Columbia University Medical Center, New York, NY, USA
| | - Antonella Maffei
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Naples, Italy ; Department of Medicine of Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
23
|
Modulation of antigen-presenting cells by HDAC inhibitors: implications in autoimmunity and cancer. Immunol Cell Biol 2011; 90:55-65. [PMID: 22105512 DOI: 10.1038/icb.2011.96] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
There is a growing body of evidence to support the use of histone deacetylase inhibitors (HDACi) in the treatment of diverse conditions from autoimmunity to cancer. In this context, HDACi have been ascribed many immunomodulatory effects, assigning novel and promising roles to these compounds. This review summarizes the current observations arising from both pre-clinical and clinical studies in these pathological conditions. However, it is left to be explained how a single agent can have both pro- and anti-inflammatory effects in either physiological or pathological conditions. This question is explored in greater detail by focusing on the effects of HDACi on antigen-presenting cells (APCs), key regulators of immune activation. In particular, HDACi modulation of molecules involved in antigen processing and presentation, as well as co-stimulatory and adhesion molecules, and cytokines will be discussed in the context of both professional and non-professional APCs. Professional APCs encompass classic immune cells; however, it is increasingly evident that other somatic cells, including cancer cells, are not immunologically inert and can display functions similar to professional APCs, a challenging feature that needs to be explored as a potential therapeutic target. In this way, professional and non-professional APCs can regulate their particular micro-environmental niche, affecting either a pro- or anti-inflammatory milieu.
Collapse
|
24
|
Waldron JS, Yang I, Han S, Tihan T, Sughrue ME, Mills SA, Pieper RO, Parsa AT. Implications for immunotherapy of tumor-mediated T-cell apoptosis associated with loss of the tumor suppressor PTEN in glioblastoma. J Clin Neurosci 2010; 17:1543-7. [PMID: 20822910 DOI: 10.1016/j.jocn.2010.04.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 04/22/2010] [Accepted: 04/25/2010] [Indexed: 12/31/2022]
Abstract
The ability of glioma cells to escape the immune system remains a significant barrier to successful immunotherapy. Here we demonstrate that loss of the PTEN tumor suppressor gene, with associated activation of the PI3K/Akt/mTOR pathway, leads to a human glioma phenotype that induces autologous T-cell apoptosis upon contact. The PTEN status of pathologically confirmed glioblastoma specimens was defined, and primary cultures established after surgical resection of tumor from 26 patients. Autologous T-cells were isolated from these patients, and after T-cell activation was induced, these cells were co-cultured with matched autologous glioma cells, either alone, or after treatment with one of three inhibitors of the PI3K/Akt/mTOR pathway. When co-cultured with autologous T-cells, PTEN wild-type tumor cells induced apoptosis in a minimal number of activated T-cells (6-12% of T-cells), whereas tumors with PTEN loss induced much more profound levels of T-cell apoptosis (42-56% of T-cells). Prior treatment of PTEN-deficient tumor cells with specific inhibitors of the PI3K/Akt/mTOR pathway diminished T-cell apoptosis to levels seen after co-culture with wild-type PTEN tumor cells, suggesting that PTEN loss confers this immunoresistant phenotype through the PI3K/Akt/mTOR pathway. These results suggest that PTEN-deficient glioblastoma patients are suboptimal candidates for immunotherapy. In addition, our results raise the possibility of combining T-cell based immunotherapy protocols with clinical inhibitors of the PI3K/Akt/mTOR pathway.
Collapse
Affiliation(s)
- James S Waldron
- Department of Neurological Surgery, University of California at San Francisco, San Francisco, California 94123, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Gamma interferon-mediated superinduction of B7-H1 in PTEN-deficient glioblastoma: a paradoxical mechanism of immune evasion. Neuroreport 2010; 20:1597-602. [PMID: 19875977 DOI: 10.1097/wnr.0b013e32833188f7] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
B7 homolog 1 (B7-H1) is a recently discovered immunoresistance protein that is regulated posttranscriptionally after PTEN loss in malignant glioma, a deadly form of brain tumor. Here, the impact of gamma-interferon-mediated activation of B7-H1 was investigated in glioblastoma patients with PTEN loss. Lymphocytes and T cells were selected for apoptosis assays after 1 : 1 coculture with autologous glioma cells. Gamma interferon treatment of PTEN-deficient tumors resulted in superinduction of B7-H1 protein that correlated with increased T-cell apoptosis, an effect dependent upon activation of the PI3-kinase pathway. The combination of PTEN loss and gamma-interferon exposure in glioblastoma patients results in an exceptionally immunoresistant phenotype that may negate adaptive immunity through induction of T-cell apoptosis.
Collapse
|
26
|
|
27
|
Kronik N, Kogan Y, Vainstein V, Agur Z. Improving alloreactive CTL immunotherapy for malignant gliomas using a simulation model of their interactive dynamics. Cancer Immunol Immunother 2008; 57:425-39. [PMID: 17823798 PMCID: PMC11030586 DOI: 10.1007/s00262-007-0387-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Accepted: 08/07/2007] [Indexed: 11/30/2022]
Abstract
Glioblastoma (GBM), a highly aggressive (WHO grade IV) primary brain tumor, is refractory to traditional treatments, such as surgery, radiation or chemotherapy. This study aims at aiding in the design of more efficacious GBM therapies. We constructed a mathematical model for glioma and the immune system interactions, that may ensue upon direct intra-tumoral administration of ex vivo activated alloreactive cytotoxic-T-lymphocytes (aCTL). Our model encompasses considerations of the interactive dynamics of aCTL, tumor cells, major histocompatibility complex (MHC) class I and MHC class II molecules, as well as cytokines, such as TGF-beta and IFN-gamma, which dampen or increase the pro-inflammatory environment, respectively. Computer simulations were used for model verification and for retrieving putative treatment scenarios. The mathematical model successfully retrieved clinical trial results of efficacious aCTL immunotherapy for recurrent anaplastic oligodendroglioma and anaplastic astrocytoma (WHO grade III). It predicted that cellular adoptive immunotherapy failed in GBM because the administered dose was 20-fold lower than required for therapeutic efficacy. Model analysis suggests that GBM may be eradicated by new dose-intensive strategies, e.g., 3 x 10(8) aCTL every 4 days for small tumor burden, or 2 x 10(9) aCTL, infused every 5 days for larger tumor burden. Further analysis pinpoints crucial bio-markers relating to tumor growth rate, tumor size, and tumor sensitivity to the immune system, whose estimation enables regimen personalization. We propose that adoptive cellular immunotherapy was prematurely abandoned. It may prove efficacious for GBM, if dose intensity is augmented, as prescribed by the mathematical model. Re-initiation of clinical trials, using calculated individualized regimens for grade III-IV malignant glioma, is suggested.
Collapse
Affiliation(s)
- Natalie Kronik
- Institute for Medical BioMathematics (IMBM), 10 Hate'ena St., PO Box 282, Bene Ataroth 60991, Israel.
| | | | | | | |
Collapse
|
28
|
Zhao W, Cha EN, Lee C, Park CY, Schindler C. Stat2-dependent regulation of MHC class II expression. THE JOURNAL OF IMMUNOLOGY 2007; 179:463-71. [PMID: 17579067 DOI: 10.4049/jimmunol.179.1.463] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
MHC type II (MHC II) expression is tightly regulated in macrophages and potently induced by IFN-gamma (type II IFN). In contrast, type I IFNs (IFN-Is), which are far more widely expressed, fail to induce MHC II expression, even though both classes of IFNs direct target gene expression through Stat1. The unexpected finding that IFN-Is effectively induce MHC II expression in Stat2(-/-) macrophages provided an opportunity to explore this conundrum. The ensuing studies revealed that deletion of Stat2, which uniquely transduces signals for IFN-Is, leads to a loss in the IFN-I-dependent induction of suppressor of cytokine signaling-1. Impairment in the expression of this important negative regulator led to a striking prolongation in IFN-I-dependent Stat1 activation, as well as enhanced expression of the target gene, IFN-regulatory factor-1. The prolonged activity of these two transcription factors synergized to drive the transcription of CIITA, the master regulator of MHC II expression, analogous to the pattern observed in IFN-gamma-treated macrophages. Thus, IFN-I-dependent suppressor of cytokine signaling-1 expression plays an important role in distinguishing the biological response between type I and II IFNs in macrophages.
Collapse
Affiliation(s)
- Wenli Zhao
- Department of Microbiology, Columbia University, Hammer Health Science Center, 701 West 168th Street, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
29
|
Anderson RCE, Anderson DE, Elder JB, Brown MD, Mandigo CE, Parsa AT, Goodman RR, McKhann GM, Sisti MB, Bruce JN. Lack of B7 expression, not human leukocyte antigen expression, facilitates immune evasion by human malignant gliomas. Neurosurgery 2007; 60:1129-36; discussion 1136. [PMID: 17538388 DOI: 10.1227/01.neu.0000255460.91892.44] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Lack of human leukocyte antigens and costimulatory molecules have been suggested as mechanisms by which human malignant gliomas avoid immune recognition and elimination. METHODS Using quantitative multiparameter flow cytometric analysis, tumor cells from patients with glioblastoma multiforme (n = 18) were examined ex vivo for the expression of human leukocyte antigen Class I and II molecules and the costimulatory molecules B7-1 and B7-2. They were compared with reactive astrocytes from peritumoral brain metastases (n = 7), and astrocytes removed during nontumor surgery (n = 5). RESULTS In contrast to the vast majority of solid peripheral human tumors, these results demonstrate that glioblastoma multiforme frequently express both human leukocyte antigen Class I and II molecules. Like most solid peripheral tumors, glioblastoma multiforme tumor cells express few or no B7 costimulatory molecules. Functional assays using heterogeneous ex vivo tumor preparations or pure populations of ex vivo tumor cells and microglia obtained using fluorescence-activated cell sorting indicate that CD4+ T-cells are activated by tumor cells only in the presence of exogenous B7 costimulation (provided by addition of soluble agonist anti-CD28 monoclonal antibody). CONCLUSION Thus, in contrast to many solid peripheral tumors, failure to present tumor antigens is not a likely impediment to immunotherapeutic strategies against malignant gliomas. Rather, immunotherapeutic strategies need to overcome low levels of B7 costimulation.
Collapse
Affiliation(s)
- Richard C E Anderson
- Department of Neurological Surgery, The Neurological Institute, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Jo YS, Lee JC, Li S, Choi YS, Bai YS, Kim YJ, Lee IS, Rha SY, Ro HK, Kim JM, Shong M. Significance of the expression of major histocompatibility complex class II antigen, HLA-DR and -DQ, with recurrence of papillary thyroid cancer. Int J Cancer 2007; 122:785-90. [DOI: 10.1002/ijc.23167] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
31
|
Maubach G, Lim MCC, Kumar S, Zhuo L. Expression and upregulation of cathepsin S and other early molecules required for antigen presentation in activated hepatic stellate cells upon IFN-gamma treatment. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1773:219-31. [PMID: 17178165 DOI: 10.1016/j.bbamcr.2006.11.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Revised: 10/20/2006] [Accepted: 11/07/2006] [Indexed: 11/23/2022]
Abstract
Hepatic stellate cells (HSCs) have been shown to be able to activate T-cells and upregulate expression of surface molecules essential for this process, when treated with IFN-gamma. But little is known about the early molecules expressed by activated hepatic stellate cells under the same treatment. In this study, we investigate the effect of IFN-gamma on the transcription and expression of these early molecules in hepatic stellate cells. We show on the molecular level that activated rat hepatic stellate cells express the class II transactivator, the invariant chain (CD74), the MHC class II molecules, as well as cathepsin S, all of which are known to be responsible for the initial steps of successful antigen presentation. The mRNA and the protein expression level of these molecules is upregulated by IFN-gamma. Importantly, IFN-gamma increases cathepsin S activity, suggesting a possible involvement of this protease in CD74 processing. Our data also show that not only can the HSCs take up antigenic proteins, they can also process them. Our comparative study indicates that the rat HSC-T6 cell line displays sufficient similarity to the activated rat HSCs in order to serve as a model for in vitro studies on the molecular mechanisms of inflammatory response.
Collapse
Affiliation(s)
- Gunter Maubach
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, #04-01, 138669, Singapore.
| | | | | | | |
Collapse
|
32
|
Chen H, Gilbert CA, Hudson JA, Bolick SC, Wright KL, Piskurich JF. Positive regulatory domain I-binding factor 1 mediates repression of the MHC class II transactivator (CIITA) type IV promoter. Mol Immunol 2006; 44:1461-70. [PMID: 16765445 PMCID: PMC1987354 DOI: 10.1016/j.molimm.2006.04.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Revised: 04/24/2006] [Accepted: 04/25/2006] [Indexed: 02/06/2023]
Abstract
MHC class II transactivator (CIITA), a co-activator that controls MHC class II (MHC II) transcription, functions as the master regulator of MHC II expression. Persistent activity of the CIITA type III promoter (pIII), one of the four potential promoters of this gene, is responsible for constitutive expression of MHC II by B lymphocytes. In addition, IFN-gamma induces expression of CIITA in these cells through the type IV promoter (pIV). Positive regulatory domain 1-binding factor 1 (PRDI-BF1), called B lymphocyte-induced maturation protein 1 (Blimp-1) in mice, represses the expression of CIITA pIII in plasma and multiple myeloma cells. To investigate regulation of CIITA pIV expression by PRDI-BF1 in the B lymphocyte lineage, protein/DNA-binding studies, and functional promoter analyses were performed. PRDI-BF1 bound to the IFN regulatory factor-element (IRF-E) site in CIITA pIV. Ectopic expression of either PRDI-BF1 or Blimp-1 repressed this promoter in B lymphocytes. In vitro binding and functional analyses of CIITA pIV demonstrated that the IRF-E is the target of this repression. In vivo genomic footprint analysis demonstrated protein binding at the IRF-E site of CIITA pIV in U266 myeloma cells, which express PRDI-BF1. PRDI-BF1beta, a truncated form of PRDI-BF1 that is co-expressed in myeloma cells, also bound to the IRF-E site and repressed CIITA pIV. These findings demonstrate for the first time that, in addition to silencing expression of CIITA pIII in B lymphocytes, PRDI-BF1 is capable of binding and suppressing CIITA pIV.
Collapse
Affiliation(s)
- Han Chen
- Division of Basic Medical Sciences, Mercer University School of Medicine, 1550 College St., Macon, GA 31207, USA
| | - Carolyn A. Gilbert
- Division of Basic Medical Sciences, Mercer University School of Medicine, 1550 College St., Macon, GA 31207, USA
| | - John A. Hudson
- Department of Internal Medicine, Mercer University School of Medicine, 1550 College St., Macon, GA 31207, USA
| | - Sophia C. Bolick
- H. Lee Moffitt Cancer Center, Departments of Interdisciplinary Oncology and Molecular Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Kenneth L. Wright
- H. Lee Moffitt Cancer Center, Departments of Interdisciplinary Oncology and Molecular Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Janet F. Piskurich
- Division of Basic Medical Sciences, Mercer University School of Medicine, 1550 College St., Macon, GA 31207, USA
- * Corresponding author. Tel.: +1 478 301 4035; fax: +1 478 301 5489. E-mail address: (J.F. Piskurich)
| |
Collapse
|
33
|
Piskurich JF, Gilbert CA, Ashley BD, Zhao M, Chen H, Wu J, Bolick SC, Wright KL. Expression of the MHC class II transactivator (CIITA) type IV promoter in B lymphocytes and regulation by IFN-gamma. Mol Immunol 2005; 43:519-28. [PMID: 15950283 PMCID: PMC1482792 DOI: 10.1016/j.molimm.2005.05.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2004] [Indexed: 10/25/2022]
Abstract
The MHC class II transactivator (CIITA), the master regulator of MHC class II (MHC II) expression, is a co-activator that controls MHC II transcription. Human B lymphocytes express MHC II constitutively due to persistent activity of CIITA promoter III (pIII), one of the four potential promoters (pI-pIV) of this gene. Although increases in MHC II expression in B cells in response to cytokines have been observed and induction of MHC II and CIITA by IFN-gamma has been studied in a number of different cell types, the specific effects of IFN-gamma on CIITA expression in B cells have not been studied. To investigate the regulation of CIITA expression by IFN-gamma in B cells, RT-PCR, in vivo and in vitro protein/DNA binding studies, and functional promoter analyses were performed. Both MHC II and CIITA type IV-specific RNAs increased in human B lymphocytes in response to IFN-gamma treatment. CIITA promoter analysis confirmed that pIV is IFN-gamma inducible in B cells and that the GAS and IRF-E sites are necessary for full induction. DNA binding of IRF-1 and IRF-2, members of the IFN regulatory factor family, was up-regulated in B cells in response to IFN-gamma and increased the activity of CIITA pIV. In vivo genomic footprint analysis demonstrated proteins binding at the GAS, IRF-E and E box sites of CIITA pIV. Although CIITA pIII is considered to be the hematopoietic-specific promoter of CIITA, these findings demonstrate that pIV is active in B lymphocytes and potentially contributes to the expression of CIITA and MHC II in these cells.
Collapse
Affiliation(s)
- Janet F Piskurich
- Division of Basic Sciences, Mercer University School of Medicine, 1550 College St., Macon, GA 31207, USA.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
|
35
|
LeibundGut-Landmann S, Waldburger JM, Reis e Sousa C, Acha-Orbea H, Reith W. MHC class II expression is differentially regulated in plasmacytoid and conventional dendritic cells. Nat Immunol 2004; 5:899-908. [PMID: 15322541 DOI: 10.1038/ni1109] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Accepted: 07/29/2004] [Indexed: 01/19/2023]
Abstract
Major histocompatibility complex (MHC) class II-restricted antigen presentation is essential for the function of dendritic cells (DCs). We show here that plasmacytoid DCs (pDCs) differ from all other DC subsets with respect to expression of CIITA, the 'master regulator' of MHC class II genes. The gene encoding CIITA is controlled by three cell type-specific promoters: pI, pIII and pIV. With gene targeting in mice, we demonstrate that pDCs rely strictly on the B cell promoter pIII, whereas macrophages and all other DCs depend on pI. The molecular mechanisms driving MHC class II expression in pDCs are thus akin to those operating in lymphoid rather than myeloid cells.
Collapse
|
36
|
Reply: CIITA methylation and decreased levels of HLA-DR in tumour progression. Br J Cancer 2004. [PMCID: PMC2364781 DOI: 10.1038/sj.bjc.6602047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
37
|
Takamura Y, Ikeda H, Kanaseki T, Toyota M, Tokino T, Imai K, Houkin K, Sato N. Regulation of MHC class II expression in glioma cells by class II transactivator (CIITA). Glia 2004; 45:392-405. [PMID: 14966870 DOI: 10.1002/glia.10343] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We first classified 12 malignant glioma cell lines into three different groups (types 1-3) with respect to major histocompatibility complex (MHC) class II expression and analyzed each group based on the different expression status of the class II transactivator (CIITA) gene. Glioma type 1 (2 of 12) showed constitutive expression of all class II molecules that might be mediated by activation of B cell-specific CIITA promoter III. Glioma type 2 represented the major phenotype (66.7 %) of malignant glioma cell lines, and MHC class II expression was induced by interferon-gamma (IFN-gamma) in this phenotype. Analysis of glioma tissue samples revealed that CIITA promoter IV was detected in 9 of 11 patients (81.8%); however, promoter III was only in two (18.2%). Moreover, cultured glioma cells obtained from a fresh tumor sample upregulated expression of CIITA and class II molecules in the presence of IFN-gamma, strongly suggesting that glioma type 2 might be predominant in glioma tissues. Glioma type 3 (2 of 12) showed CIITA transcripts but loss of MHC class II expression even in the presence of IFN-gamma. In addition, we determined that the constitutive MHC class II expression in the glioma cell lines (type 1) was the result of transcriptional activation of the CIITA gene. This phenomenon was mediated by global histone acetylation over 6 kb upstream from the transcriptional start site of CIITA promoter III. Moreover, stable transfection of CIITA promoter IV as well as promoter III into MHC class II inducible cell lines restored the constitutive expression of all class II molecules. These studies lay the foundation to understand the molecular basis for the expression of class II molecules in gliomas.
Collapse
Affiliation(s)
- Yukio Takamura
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Ito T, Ito N, Bettermann A, Tokura Y, Takigawa M, Paus R. Collapse and restoration of MHC class-I-dependent immune privilege: exploiting the human hair follicle as a model. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 164:623-34. [PMID: 14742267 PMCID: PMC1602279 DOI: 10.1016/s0002-9440(10)63151-3] [Citation(s) in RCA: 208] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The collapse of major histocompatibility complex (MHC) class-I-dependent immune privilege can lead to autoimmune disease or fetal rejection. Pragmatic and instructive models are needed to clarify the as yet obscure controls of MHC class I down-regulation in situ, to dissect the principles of immune privilege generation, maintenance, and collapse as well as to develop more effective strategies for immune privilege restoration. Here, we propose that human scalp hair follicles, which are abundantly available and easily studied, are ideally suited for this purpose: interferon-gamma induces ectopic MHC class I expression in the constitutively MHC class-I-negative hair matrix epithelium of organ-cultured anagen hair bulbs, likely via interferon regulatory factor-1, along with up-regulation of the MHC class I pathway molecules beta(2)microglobulin and transporter associated with antigen processing (TAP-2). In the first report to identify natural immunomodulators capable of down-regulating MHC class I expression in situ in a normal, neuroectoderm-derived human tissue, we show that ectopic MHC class I expression in human anagen hair bulbs can be normalized by treatment with alpha-MSH, IGF-1, or TGF-beta1, all of which are locally generated, as well as by FK506. These agents are promising candidates for immune privilege restoration and for suppressing MHC class I expression where this is clinically desired (eg, in alopecia areata, multiple sclerosis, autoimmune uveitis, mumps orchitis, and fetal or allograft rejection).
Collapse
Affiliation(s)
- Taisuke Ito
- Department of Dermatology, University Hospital Hamburg-Eppendorf, University of Hamburg, Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
39
|
Yang I, Kremen TJ, Giovannone AJ, Paik E, Odesa SK, Prins RM, Liau LM. Modulation of major histocompatibility complex Class I molecules and major histocompatibility complex—bound immunogenic peptides induced by interferon-α and interferon-γ treatment of human glioblastoma multiforme. J Neurosurg 2004; 100:310-9. [PMID: 15086239 DOI: 10.3171/jns.2004.100.2.0310] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Little is known about the quantitative modulation of major histocompatibility complex (MHC) Class I expression on human gliomas that is effected by interferons; even less is known about the immunogenic peptides that are accommodated in the peptide-binding motifs of MHC Class I alleles in these brain tumors. In this article the authors investigated the ability of interferon (IFN)alpha and IFNgamma to upregulate MHC Class I expression and to modulate acid-eluted Class I-bound peptides on human glioblastoma multiforme (GBM) cells in vitro. METHODS Early-passage primary human GBM cell cultures and U87MG GBM cells were incubated with varying doses of INFalpha or IFNgamma ranging between 0 and 2000 U/ml. Upregulation of MHC Class I expression was assayed by immunocytochemical analysis, flow cytometry, and Western blot analysis. Modulation of acid-eluted MHC Class I-bound peptides from the IFN-treated GBM cells was examined with the aid of mass spectroscopy. The in vitro expression of the MHC Class I molecule was upregulated by both IFNalpha and IFNgamma in a dose-dependent manner. Interferon-gamma exhibited a more potent effect on MHC Class I upregulation, peaking at 10 U/ml; whereas the effect of IFNalpha was less marked, reaching a plateau at 500 U/ml. In addition, a native peptide eluted from MHC Class I molecules of human GBM cells was identified and found to be consistently upregulated by IFN treatment. CONCLUSIONS Interferon-alpha and IFN-gamma can significantly upregulate the MHC Class I molecules that are expressed on the cell surface of human GBM cells as well as the potentially immunogenic peptides bound to the MHC. These results may help explain the molecular basis for increased immunogenicity with IFN treatment of human GBMs and might provide added insight into the design of future antitumor vaccines for human brain tumors.
Collapse
Affiliation(s)
- Isaac Yang
- UCLA Division of Neurosurgery, University of California at Los Angeles School of Medicine, Los Angeles, California 90095-6901, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Holtz R, Choi JC, Petroff MG, Piskurich JF, Murphy SP. Class II transactivator (CIITA) promoter methylation does not correlate with silencing of CIITA transcription in trophoblasts. Biol Reprod 2003; 69:915-24. [PMID: 12748124 DOI: 10.1095/biolreprod.103.017103] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Trophoblast cells are unique because they do not express major histocompatibility complex (MHC) class II antigens, either constitutively or after exposure to interferon-gamma (IFN-gamma). The absence of MHC class II antigens on trophoblasts is thought to play a critical role in preventing rejection of the fetus by the maternal immune system. The inability of trophoblasts to express MHC class II genes is primarily due to lack of the class II transactivator (CIITA), a transacting factor that is required for constitutive and IFN-gamma-inducible MHC class II transcription. We, therefore, investigated the silencing of CIITA expression in trophoblasts. In transient transfection assays, transcription from the IFN-gamma-responsive CIITA type IV promoter was upregulated by IFN-gamma in trophoblasts, which suggests that CIITA is silenced by an epigenetic mechanism in these cells. Polymerase chain reaction analysis demonstrated that the CIITA type IV promoter is methylated in both the human choriocarcinoma cell lines JEG-3 and Jar and in 2fTGH fibrosarcoma cells, which are IFN-gamma inducible for CIITA. Conversely, methylation of the CIITA type IV promoter was not observed in human primary cytotrophoblasts isolated from term placentae or in mouse or rat trophoblast cell lines. Simultaneous treatment with IFN-gamma and the histone deacetylase inhibitor trichostatin A weakly activated CIITA transcription in mouse trophoblasts. Stable hybrids between human choriocarcinoma and fibrosarcoma cells and between mouse trophoblasts and fibroblasts expressed CIITA following treatment with IFN-gamma. These results suggest that silencing of CIITA transcription is recessive in trophoblasts and involves an epigenetic mechanism other than promoter methylation. The fact that CIITA is expressed in the stable hybrids implies that trophoblasts may be missing a factor that regulates chromatin structure at the CIITA promoter.
Collapse
Affiliation(s)
- Renae Holtz
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | | | | | | | |
Collapse
|
41
|
Marras C, Mendola C, Legnani FG, DiMeco F. Immunotherapy and biological modifiers for the treatment of malignant brain tumors. Curr Opin Oncol 2003; 15:204-8. [PMID: 12778012 DOI: 10.1097/00001622-200305000-00004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The relative ineffectiveness of current therapies for malignant gliomas has led to the need for novel therapeutics. Therapies based on biologic modifiers are among a variety of cancer treatments currently in use or under experimental evaluation and have shown great promise, especially since several potent stimulators of the immune system have been cloned and are now available for clinical use. Early attempts at glioma therapy based on biologic modifiers, however, have failed to demonstrate significant effectiveness. In this review, we select and summarize the results of preclinical and clinical studies published during the past two years that focus on immunotherapy and biologic modifiers for treating gliomas. Despite limited clinical success, we conclude that an increased understanding of molecular biology and immunology from recent studies may pave the way for more effective approaches.
Collapse
Affiliation(s)
- Carlo Marras
- Department of Neurosurgery, Istituto Nazionale Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy
| | | | | | | |
Collapse
|
42
|
Youssef S, Stüve O, Patarroyo JC, Ruiz PJ, Radosevich JL, Hur EM, Bravo M, Mitchell DJ, Sobel RA, Steinman L, Zamvil SS. The HMG-CoA reductase inhibitor, atorvastatin, promotes a Th2 bias and reverses paralysis in central nervous system autoimmune disease. Nature 2002; 420:78-84. [PMID: 12422218 DOI: 10.1038/nature01158] [Citation(s) in RCA: 843] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2002] [Accepted: 09/20/2002] [Indexed: 12/18/2022]
Abstract
Statins, 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors, which are approved for cholesterol reduction, may also be beneficial in the treatment of inflammatory diseases. Atorvastatin (Lipitor) was tested in chronic and relapsing experimental autoimmune encephalomyelitis, a CD4(+) Th1-mediated central nervous system (CNS) demyelinating disease model of multiple sclerosis. Here we show that oral atorvastatin prevented or reversed chronic and relapsing paralysis. Atorvastatin induced STAT6 phosphorylation and secretion of Th2 cytokines (interleukin (IL)-4, IL-5 and IL-10) and transforming growth factor (TGF)-beta. Conversely, STAT4 phosphorylation was inhibited and secretion of Th1 cytokines (IL-2, IL-12, interferon (IFN)-gamma and tumour necrosis factor (TNF)-alpha) was suppressed. Atorvastatin promoted differentiation of Th0 cells into Th2 cells. In adoptive transfer, these Th2 cells protected recipient mice from EAE induction. Atorvastatin reduced CNS infiltration and major histocompatibility complex (MHC) class II expression. Treatment of microglia inhibited IFN-gamma-inducible transcription at multiple MHC class II transactivator (CIITA) promoters and suppressed class II upregulation. Atorvastatin suppressed IFN-gamma-inducible expression of CD40, CD80 and CD86 co-stimulatory molecules. l-Mevalonate, the product of HMG-CoA reductase, reversed atorvastatin's effects on antigen-presenting cells (APC) and T cells. Atorvastatin treatment of either APC or T cells suppressed antigen-specific T-cell activation. Thus, atorvastatin has pleiotropic immunomodulatory effects involving both APC and T-cell compartments. Statins may be beneficial for multiple sclerosis and other Th1-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Sawsan Youssef
- Department of Neurology and Neurological Sciences, Beckman Center for Molecular Medicine, Stanford University, Stanford, California 94305, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Pai RK, Askew D, Boom WH, Harding CV. Regulation of class II MHC expression in APCs: roles of types I, III, and IV class II transactivator. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:1326-33. [PMID: 12133955 DOI: 10.4049/jimmunol.169.3.1326] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Class II transactivator (CIITA) is necessary for expression of class II MHC (MHC-II) molecules. In mice, CIITA expression is regulated by three promoters (pI, pIII, and pIV), producing types I, III, and IV CIITA. The relative roles of different CIITA types remain unclear. Unstimulated bone marrow-derived macrophages expressed low levels of CIITA mRNA; type I CIITA was nine times more abundant than type IV (type III CIITA was barely detected). Exposure to IFN-gamma (6 h) dramatically increased types I and IV CIITA mRNA to similar absolute levels. Type IV CIITA declined over time, but type I was stable for over 72 h. Thus, the dominant form of CIITA evolved with time during activation by IFN-gamma, and type I CIITA explained prolonged expression of MHC-II by macrophages. mRNA half-life was shorter for type I than type IV CIITA, suggesting that sustained transcription contributed to stable expression of type I CIITA induced by IFN-gamma. Splenic B cells expressed mRNA for type III CIITA but very little for types I or IV. Treatment with IL-4 increased surface expression of MHC-II protein, but mRNA for MHC-II and CIITA (total, I, III, and IV) remained unchanged, suggesting posttranslational regulation. Splenic dendritic cells expressed type I CIITA but little type III or IV; CpG DNA induced their maturation and decreased types I and III CIITA, consistent with decreased MHC-II protein synthesis. CIITA types differ in regulation in various APCs under different stimuli, and the predominant type of CIITA varies at different stages of APC activation.
Collapse
Affiliation(s)
- Rish K Pai
- Department of Pathology and Division of Infectious Disease, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | |
Collapse
|