1
|
Wu WL, Gong XX, Qin ZH, Wang Y. Molecular mechanisms of excitotoxicity and their relevance to the pathogenesis of neurodegenerative diseases-an update. Acta Pharmacol Sin 2025:10.1038/s41401-025-01576-w. [PMID: 40389567 DOI: 10.1038/s41401-025-01576-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 04/26/2025] [Indexed: 05/21/2025]
Abstract
Glutamate excitotoxicity is intricately linked to the pathogenesis of neurodegenerative diseases, exerting a profound influence on cognitive functions such as learning and memory in mammals. Glutamate, while crucial for these processes, can lead to neuronal damage and death when present in excessive amounts. Our previous review delved into the cascade of excitotoxic injury events and the underlying mechanisms of excitotoxicity. Building on that foundation, this update summarizes the latest research on the role of excitotoxicity in neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis, as well as new cutting-edge techniques applied in the study of excitotoxicity. We also explore the mechanisms of action of various excitotoxicity inhibitors and their clinical development status. This comprehensive analysis aims to enhance our understanding of the nexus between excitotoxicity and neurodegenerative diseases, offering valuable insights for therapeutic strategies in these conditions.
Collapse
Affiliation(s)
- Wei-Long Wu
- Department of Pharmacology, College of Pharmaceutical Sciences, Suzhou Key Laboratory of Aging and Nervous Diseases, and Jiangsu Key Laboratory of Drug Discovery and Translational Research for Brain Diseases, Soochow University, Suzhou, 215123, China
| | - Xiao-Xi Gong
- Department of Pharmacology, College of Pharmaceutical Sciences, Suzhou Key Laboratory of Aging and Nervous Diseases, and Jiangsu Key Laboratory of Drug Discovery and Translational Research for Brain Diseases, Soochow University, Suzhou, 215123, China
| | - Zheng-Hong Qin
- Department of Pharmacology, College of Pharmaceutical Sciences, Suzhou Key Laboratory of Aging and Nervous Diseases, and Jiangsu Key Laboratory of Drug Discovery and Translational Research for Brain Diseases, Soochow University, Suzhou, 215123, China
| | - Yan Wang
- Department of Pharmacology, College of Pharmaceutical Sciences, Suzhou Key Laboratory of Aging and Nervous Diseases, and Jiangsu Key Laboratory of Drug Discovery and Translational Research for Brain Diseases, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
2
|
Feng Y, Guo M, You T, Zhang M, Li J, Xie J, Han S, Zhao H, Jiang Y, Zhao Y, Yu J, Dong Q, Cui M. Paranodal instability driven by axonal mitochondrial accumulation in ischemic demyelination and cognitive decline. Mol Psychiatry 2025:10.1038/s41380-025-02936-y. [PMID: 40033045 DOI: 10.1038/s41380-025-02936-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 01/20/2025] [Accepted: 02/14/2025] [Indexed: 03/05/2025]
Abstract
BACKGROUND Subcortical ischemic demyelination is the primary cause of vascular cognitive impairment in the elderly. However, its underlying mechanisms remain elusive. METHODS Using a bilateral common carotid artery stenosis (BACS) mouse model and an in vitro cerebellar slice model treated with low glucose-low oxygen (LGLO), we investigated a novel mechanism of vascular demyelination. RESULTS This work identified syntaphilin-mediated docking of mitochondria as the initial event preceding ischemic demyelination. This axonal insult drives paranodal retraction, myelin instability, and subsequent cognitive impairment through excessive oxidation of protein 4.1B by mitochondrial ROS. Syntaphilin knockdown reestablished the balance of mitochondrial axoplasmic transport, reduced axonal ROS burden, and consequently decreased the abnormal oxidation of protein 4.1B, an essential component that secures the Caspr1/contactin-1/NF155 complex tethered to the axonal cytoskeleton βII-Spectrin within paranodes. This ultimately protected the paranodal structure and myelin and improved cognitive function. CONCLUSIONS Our findings reveal a distinct pathological characteristic of ischemic demyelination and highlight the therapeutic potential of modulating axonal mitochondrial mobility to stabilize myelin structures and improve vascular cognitive impairment.
Collapse
Affiliation(s)
- Yiwei Feng
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Min Guo
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Tongyao You
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Minjie Zhang
- Department of Neurology, The 10th People's Hospital, Tongji University, Shanghai, China
| | - Jincheng Li
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Shanghai, China
| | - Junchao Xie
- Department of Neurology, The 10th People's Hospital, Tongji University, Shanghai, China
| | - Sida Han
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Hongchen Zhao
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yanfeng Jiang
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Shanghai, China
| | - Yanxin Zhao
- Department of Neurology, The 10th People's Hospital, Tongji University, Shanghai, China.
| | - Jintai Yu
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
| | - Qiang Dong
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
| | - Mei Cui
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Rida Zainab S, Zeb Khan J, Khalid Tipu M, Jahan F, Irshad N. A review on multiple sclerosis: Unravelling the complexities of pathogenesis, progression, mechanisms and therapeutic innovations. Neuroscience 2025; 567:133-149. [PMID: 39709058 DOI: 10.1016/j.neuroscience.2024.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/25/2024] [Accepted: 12/14/2024] [Indexed: 12/23/2024]
Abstract
Multiple sclerosis (MS) is a chronic, inflammatory demyelinating disorder of the central nervous system (CNS) targeting myelinated axons. Pathogenesis of MS entails an intricate genetic, environmental, and immunological interaction. Dysregulation of immune response i.e. autoreactive T & B-Cells and macrophage infiltration into the CNS leads to inflammation, demyelination, and neurodegeneration. Disease progression of MS varies among individuals transitioning from one form of relapsing-remitting to secondary progressive MS (SPMS). Research advances have unfolded various molecular targets involved in MS from oxidative stress to blood-brain barrier (BBB) disruption. Different pathways are being targeted so far such as inflammatory and cytokine signaling pathways to overcome disease progression. Therapeutic innovations have significantly transformed the management of MS, especially the use of disease-modifying therapies (DMTs) to reduce relapse rates and control disease progression. Advancements in research, neuroprotective strategies, and remyelination strategies hold promising results in reversing CNS damage. Various mice models are being adopted for testing new entities in MS research.
Collapse
Affiliation(s)
- Syeda Rida Zainab
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Jehan Zeb Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Muhammad Khalid Tipu
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Faryal Jahan
- Shifa College of Pharmaceutical Sciences, STMU, Islamabad, Pakistan.
| | - Nadeem Irshad
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
4
|
Li A, Zheng X, Liu D, Huang R, Ge H, Cheng L, Zhang M, Cheng H. Physical Activity and Depression in Breast Cancer Patients: Mechanisms and Therapeutic Potential. Curr Oncol 2025; 32:77. [PMID: 39996878 PMCID: PMC11854877 DOI: 10.3390/curroncol32020077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 02/26/2025] Open
Abstract
Breast cancer is a significant traumatic experience that often leads to chronic stress and mental health challenges. Research has consistently shown that physical activity-especially exercise-can alleviate depressive symptoms; however, the specific biological mechanisms underlying these antidepressant effects remain unclear. In this review, we comprehensively summarize the biological mechanisms of depression and the antidepressant mechanisms of physical activity and explore the biological processes through which exercise exerts its antidepressant effects in breast cancer patients. We focus on the impact of physical activity on inflammation, the endocrine system, glutamate, and other aspects, all of which play crucial roles in the pathophysiology of depression. Moreover, we discuss the heterogeneity of depression in breast cancer patients and the complex interactions between its underlying mechanisms. Additionally, we propose that a deeper understanding of these mechanisms in the breast cancer population can guide the design and implementation of exercise-based interventions that maximize the antidepressant benefits of physical activity. Finally, we summarize the current research and propose future research directions.
Collapse
Affiliation(s)
- Anlong Li
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; (A.L.); (D.L.); (R.H.); (H.G.)
- The Second School of Clinical Medicine, Anhui Medical University, Hefei 230032, China
| | - Xinyi Zheng
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou 510500, China;
- Department of Oncology, Shenzhen Hospital of Southern Medical University, Shenzhen 518000, China
| | - Dajie Liu
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; (A.L.); (D.L.); (R.H.); (H.G.)
- The Second School of Clinical Medicine, Anhui Medical University, Hefei 230032, China
| | - Runze Huang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; (A.L.); (D.L.); (R.H.); (H.G.)
- The Second School of Clinical Medicine, Anhui Medical University, Hefei 230032, China
| | - Han Ge
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; (A.L.); (D.L.); (R.H.); (H.G.)
- The Second School of Clinical Medicine, Anhui Medical University, Hefei 230032, China
- School of Nursing, Anhui Medical University, Hefei 230032, China
| | - Ling Cheng
- Department of Oncology, Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen 518000, China;
| | - Mingjun Zhang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; (A.L.); (D.L.); (R.H.); (H.G.)
- The Second School of Clinical Medicine, Anhui Medical University, Hefei 230032, China
| | - Huaidong Cheng
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; (A.L.); (D.L.); (R.H.); (H.G.)
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou 510500, China;
- Department of Oncology, Shenzhen Hospital of Southern Medical University, Shenzhen 518000, China
| |
Collapse
|
5
|
Verkhratsky A, Sofroniew MV. Neuroglia in stroke. HANDBOOK OF CLINICAL NEUROLOGY 2025; 210:101-111. [PMID: 40148039 DOI: 10.1016/b978-0-443-19102-2.00009-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Stroke, ischemic or hemorrhagic, triggers a complex and coordinated glial response, which, to a large extent, defines the progression and outcome of this focal damage of the nervous tissue. Massive cell death in the infarction core results in a release of damage-associated molecular patterns, which, together with blood-borne factors entering the brain through either ruptured vessels or through compromised blood-brain barrier, trigger reactive gliosis. Microglia are the first to migrate toward the lesion, proliferate, and phagocytose cellular debris in and around the infarct core. Reactive astrogliosis occurs around the margins of the infarct core and is characterized by astrocytic proliferation, morphologic remodeling with loss of territorial domain segregation, and transcriptional reprogramming into wound repair astrocytes that form a periinfarct border that protects the healthy tissue and assists postlesional regeneration.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Bizkaia, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Michael V Sofroniew
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, United States.
| |
Collapse
|
6
|
Li Y, Yang X. A β-mediated synaptic glutamate dynamics and calcium dynamics in astrocytes associated with Alzheimer's disease. Cogn Neurodyn 2024; 18:3401-3426. [PMID: 39712135 PMCID: PMC11655814 DOI: 10.1007/s11571-024-10064-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/12/2023] [Accepted: 12/30/2023] [Indexed: 12/24/2024] Open
Abstract
The accumulation of amyloid β peptide A β is assumed to be one of the main causes of Alzheimer's disease AD . There is increasing evidence that astrocytes are the primary targets of Aβ. Aβ can cause abnormal synaptic glutamate, aberrant extrasynaptic glutamate, and astrocytic calcium dysregulation through astrocyte glutamate transporters facing the synaptic cleft (GLT-syn), astrocyte glutamate transporters facing the extrasynaptic space (GLT-ess), metabotropic glutamate receptors in astrocytes (mGluR), N-methyl-D-aspartate receptors in astrocytes (NMDAR), and glutamatergic gliotransmitter release (Glio-Rel). However, it is difficult to experimentally identify the extent to which each pathway affects synaptic glutamate, extrasynaptic glutamate, and astrocytic calcium signaling. Motivated by these findings, this work established a concise mathematical model of astrocyteCa 2 + dynamics, including the above Aβ-mediated glutamate-related multiple pathways. The model results presented the extent to which five mechanisms acted upon by Aβ affect synaptic glutamate, extrasynaptic glutamate, and astrocytic intracellularCa 2 + signals. We found that GLT-syn is the main pathway through which Aβ affects synaptic glutamate. GLT-ess and Glio-Rel are the main pathways through which A β affects extrasynaptic glutamate. GLT-syn, mGluR, and NMDAR are the main pathways through which Aβ affects astrocytic intracellularCa 2 + signals. Additionally, we discovered a strong, monotonically increasing relationship between the mean glutamate concentration and the meanCa 2 + oscillation amplitude (or frequency). Our results may have therapeutic implications for slowing cell death induced by the combination of glutamate imbalance andCa 2 + dysregulation in AD.
Collapse
Affiliation(s)
- YuPeng Li
- School of Mathematics and Statistics, Shaanxi Normal University, Xi’an, 710119 People’s Republic of China
| | - XiaoLi Yang
- School of Mathematics and Statistics, Shaanxi Normal University, Xi’an, 710119 People’s Republic of China
| |
Collapse
|
7
|
El Samad A, Jaffal J, Ibrahim DR, Schwarz K, Schmitz F. Decreased Expression of the EAAT5 Glutamate Transporter at Photoreceptor Synapses in Early, Pre-Clinical Experimental Autoimmune Encephalomyelitis, a Mouse Model of Multiple Sclerosis. Biomedicines 2024; 12:2545. [PMID: 39595111 PMCID: PMC11591696 DOI: 10.3390/biomedicines12112545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/02/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Multiple sclerosis is a frequent neuroinflammatory and neurodegenerative disease of the central nervous system that includes alterations in the white and gray matter of the brain. The visual system is frequently affected in multiple sclerosis. Glutamate excitotoxicity might play a role in disease pathogenesis. METHODOLOGY In the present study, we analyzed with qualitative and quantitative immunofluorescence microscopy and Western blot analyses whether alterations in the EAAT5 (SLC1A7) glutamate transporter could be involved in the previously observed alterations in structure and function of glutamatergic photoreceptor ribbon synapses in the EAE mouse model of MS. EAAT5 is a presynaptic glutamate transporter located near the presynaptic release sites. RESULTS We found that EAAT5 was strongly reduced at the photoreceptor synapses of EAE retinas in comparison to the photoreceptor synapses of the respective control retinas as early as day 9 post-immunization. The Western blot analyses demonstrated a decreased EAAT5 expression in EAE retinas. CONCLUSIONS Our data illustrate early alterations of the EAAT5 glutamate transporter in the early pre-clinical phase of EAE/MS and suggest an involvement of EAAT5 in the previously observed early synaptic changes at photoreceptor synapses. The precise mechanisms need to be elucidated by future investigations.
Collapse
Affiliation(s)
| | | | | | | | - Frank Schmitz
- Institute of Anatomy, Department of Neuroanatomy, Medical School Homburg, Saarland University, 66421 Homburg, Germany; (A.E.S.); (J.J.); (D.R.I.); (K.S.)
| |
Collapse
|
8
|
Boucher ML, Conley G, Morriss NJ, Ospina-Mora S, Qiu J, Mannix R, Meehan WP. Time-Dependent Long-Term Effect of Memantine following Repetitive Mild Traumatic Brain Injury. J Neurotrauma 2024; 41:e1736-e1758. [PMID: 38666723 DOI: 10.1089/neu.2023.0423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024] Open
Abstract
Repetitive mild traumatic brain injury (rmTBI, e.g., sports concussions) may be associated with both acute and chronic symptoms and neurological changes. Despite the common occurrence of these injuries, therapeutic strategies are limited. One potentially promising approach is N-methyl-D-aspartate receptor (NMDAR) blockade to alleviate the effects of post-injury glutamatergic excitotoxicity. Initial pre-clinical work using the NMDAR antagonist, memantine, suggests that immediate treatment following rmTBI improves a variety of acute outcomes. It remains unclear (1) whether acute memantine treatment has long-term benefits and (2) whether delayed treatment following rmTBI is beneficial, which are both clinically relevant concerns. To test this, animals were subjected to rmTBI via a weight drop model with rotational acceleration (five hits in 5 days) and randomized to memantine treatment immediately, 3 months, or 6 months post-injury, with a treatment duration of one month. Behavioral outcomes were assessed at 1, 4, and 7 months post-injury. Neuropathological outcomes were characterized at 7 months post-injury. We observed chronic changes in behavior (anxiety-like behavior, motor coordination, spatial learning, and memory), as well as neuroinflammation (microglia, astrocytes) and tau phosphorylation (T231). Memantine treatment, either immediately or 6 months post-injury, appears to confer greater rescue of neuroinflammatory changes (microglia) than vehicle or treatment at the 3-month time point. Although memantine is already being prescribed chronically to address persistent symptoms associated with rmTBI, this study represents the first evidence of which we are aware to suggest a small but durable effect of memantine treatment in mild, concussive injuries. This effect suggests that memantine, although potentially beneficial, is insufficient to treat all aspects of rmTBI alone and should be combined with other therapeutic agents in a multi-therapy approach, with attention given to the timing of treatment.
Collapse
Affiliation(s)
- Masen L Boucher
- Division of Emergency Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | | | - Nicholas J Morriss
- University of Rochester School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York, USA
| | | | - Jianhua Qiu
- Division of Emergency Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Rebekah Mannix
- Division of Emergency Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - William P Meehan
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Division of Sports Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
- The Micheli Center for Sports Injury Prevention, Waltham, Massachusetts, USA
| |
Collapse
|
9
|
Planas AM. Role of microglia in stroke. Glia 2024; 72:1016-1053. [PMID: 38173414 DOI: 10.1002/glia.24501] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
Microglia play key roles in the post-ischemic inflammatory response and damaged tissue removal reacting rapidly to the disturbances caused by ischemia and working to restore the lost homeostasis. However, the modified environment, encompassing ionic imbalances, disruption of crucial neuron-microglia interactions, spreading depolarization, and generation of danger signals from necrotic neurons, induce morphological and phenotypic shifts in microglia. This leads them to adopt a proinflammatory profile and heighten their phagocytic activity. From day three post-ischemia, macrophages infiltrate the necrotic core while microglia amass at the periphery. Further, inflammation prompts a metabolic shift favoring glycolysis, the pentose-phosphate shunt, and lipid synthesis. These shifts, combined with phagocytic lipid intake, drive lipid droplet biogenesis, fuel anabolism, and enable microglia proliferation. Proliferating microglia release trophic factors contributing to protection and repair. However, some microglia accumulate lipids persistently and transform into dysfunctional and potentially harmful foam cells. Studies also showed microglia that either display impaired apoptotic cell clearance, or eliminate synapses, viable neurons, or endothelial cells. Yet, it will be essential to elucidate the viability of engulfed cells, the features of the local environment, the extent of tissue damage, and the temporal sequence. Ischemia provides a rich variety of region- and injury-dependent stimuli for microglia, evolving with time and generating distinct microglia phenotypes including those exhibiting proinflammatory or dysfunctional traits and others showing pro-repair features. Accurate profiling of microglia phenotypes, alongside with a more precise understanding of the associated post-ischemic tissue conditions, is a necessary step to serve as the potential foundation for focused interventions in human stroke.
Collapse
Affiliation(s)
- Anna M Planas
- Cerebrovascular Research Laboratory, Department of Neuroscience and Experimental Therapeutics, Instituto de Investigaciones Biomédicas de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
- Cerebrovascular Diseases, Area of Clinical and Experimental Neuroscience, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-Hospital Clínic, Barcelona, Spain
| |
Collapse
|
10
|
Tang Y, Wu X, Li J, Li Y, Xu X, Li G, Zhang P, Qin C, Wu LJ, Tang Z, Tian DS. The Emerging Role of Microglial Hv1 as a Target for Immunomodulation in Myelin Repair. Aging Dis 2024; 15:1176-1203. [PMID: 38029392 PMCID: PMC11081154 DOI: 10.14336/ad.2023.1107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023] Open
Abstract
In the central nervous system (CNS), the myelin sheath ensures efficient interconnection between neurons and contributes to the regulation of the proper function of neuronal networks. The maintenance of myelin and the well-organized subtle process of myelin plasticity requires cooperation among myelin-forming cells, glial cells, and neural networks. The process of cooperation is fragile, and the balance is highly susceptible to disruption by microenvironment influences. Reactive microglia play a critical and complicated role in the demyelination and remyelination process. Recent studies have shown that the voltage-gated proton channel Hv1 is selectively expressed in microglia in CNS, which regulates intracellular pH and is involved in the production of reactive oxygen species, underlying multifaceted roles in maintaining microglia function. This paper begins by examining the molecular mechanisms of demyelination and emphasizes the crucial role of the microenvironment in demyelination. It focuses specifically on the role of Hv1 in myelin repair and its therapeutic potential in CNS demyelinating diseases.
Collapse
Affiliation(s)
- Yingxin Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xuan Wu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jiarui Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yuanwei Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xiaoxiao Xu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Gaigai Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ping Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Chuan Qin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Dai-Shi Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
11
|
Mannino G, Serio G, Gaglio R, Maffei ME, Settanni L, Di Stefano V, Gentile C. Biological Activity and Metabolomics of Griffonia simplicifolia Seeds Extracted with Different Methodologies. Antioxidants (Basel) 2023; 12:1709. [PMID: 37760012 PMCID: PMC10525635 DOI: 10.3390/antiox12091709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Griffonia simplicifolia, a tropical plant endemic to West Africa, is highly regarded for its significant pharmacological potential. The objective of this study was to evaluate the metabolomic profile and to explore the antioxidant properties, antiproliferative activity, and antimicrobial potential of G. simplicifolia seed extracts obtained through either maceration, microwave-assisted extraction (MAE), or Soxhlet extraction using water, acetone, methanol and ethanol as solvents. Overall, methanol possessed superior total extraction efficiency. HPLC analyses confirmed the efficacy of acetone and ethanol as optimal solvents for the extraction of flavonoids and flavan-3-ols, whereas MAE exhibited enhanced effectiveness in extracting N-containing compounds, including 5-hydroxytryptophan (5-HTP). HPLC-MS analyses identified forty-three compounds, including thirty-four phenolic compounds and nine N-containing molecules. Isomyricitrin, taxifolin and a flavonol glucuronide were the main polyphenols, whereas 5-HTP was the main N-containing compound. Hydroalcoholic G. simplicifolia extracts showed the highest radical scavenging and metal-reducing antioxidant power, suggesting that most of the contribution to antioxidant activity depends on the more polar bioactive compounds. G. simplicifolia extracts showed dose-dependent antiproliferative activity against three distinct cancer cell lines (HeLa, HepG2, and MCF-7), with notable variations observed among both the different extracts and cell lines and divergent GI50 values, emphasizing substantial discrepancies in cell sensitivity to the various extracts. Furthermore, G. simplicifolia extracts revealed antibiotic activity against Staphylococcus aureus. Our results highlight the potential of G. simplicifolia phytochemicals in the development of functional foods, nutraceuticals, and dietary supplements.
Collapse
Affiliation(s)
- Giuseppe Mannino
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/A, 10135 Turin, Italy;
| | - Graziella Serio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (G.S.); (V.D.S.)
| | - Raimondo Gaglio
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (R.G.); (L.S.)
| | - Massimo E. Maffei
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/A, 10135 Turin, Italy;
| | - Luca Settanni
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (R.G.); (L.S.)
| | - Vita Di Stefano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (G.S.); (V.D.S.)
| | - Carla Gentile
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (G.S.); (V.D.S.)
| |
Collapse
|
12
|
Spalloni A, de Stefano S, Gimenez J, Greco V, Mercuri NB, Chiurchiù V, Longone P. The Ying and Yang of Hydrogen Sulfide as a Paracrine/Autocrine Agent in Neurodegeneration: Focus on Amyotrophic Lateral Sclerosis. Cells 2023; 12:1691. [PMID: 37443723 PMCID: PMC10341301 DOI: 10.3390/cells12131691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Ever since its presence was reported in the brain, the nature and role of hydrogen sulfide (H2S) in the Central Nervous System (CNS) have changed. Consequently, H2S has been elected as the third gas transmitter, along with carbon monoxide and nitric oxide, and a number of studies have focused on its neuromodulatory and protectant functions in physiological conditions. The research on H2S has highlighted its many facets in the periphery and in the CNS, and its role as a double-faced compound, switching from protective to toxic depending on its concentration. In this review, we will focus on the bell-shaped nature of H2S as an angiogenic factor and as a molecule released by glial cells (mainly astrocytes) and non-neuronal cells acting on the surrounding environment (paracrine) or on the releasing cells themselves (autocrine). Finally, we will discuss its role in Amyotrophic Lateral Sclerosis, a paradigm of a neurodegenerative disease.
Collapse
Affiliation(s)
- Alida Spalloni
- Laboratory of Molecular Neurobiology, Experimental Neurosciences, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (S.d.S.); (J.G.); (P.L.)
| | - Susanna de Stefano
- Laboratory of Molecular Neurobiology, Experimental Neurosciences, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (S.d.S.); (J.G.); (P.L.)
- Department of Systems Medicine, Università di Roma Tor Vergata, 00133 Rome, Italy;
| | - Juliette Gimenez
- Laboratory of Molecular Neurobiology, Experimental Neurosciences, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (S.d.S.); (J.G.); (P.L.)
| | - Viviana Greco
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Unity of Chemistry, Biochemistry and Clinical Molecular Biology, Department of Diagnostic and Laboratory Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Nicola B. Mercuri
- Department of Systems Medicine, Università di Roma Tor Vergata, 00133 Rome, Italy;
- Laboratory of Experimental Neurology, Experimental Neurosciences, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Valerio Chiurchiù
- Institute of Translational Pharmacology, National Research Council (CNR), 00185 Rome, Italy;
- Laboratory of Resolution of Neuroinflammation, Experimental Neurosciences, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Patrizia Longone
- Laboratory of Molecular Neurobiology, Experimental Neurosciences, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (S.d.S.); (J.G.); (P.L.)
| |
Collapse
|
13
|
Huang S, Ren C, Luo Y, Ding Y, Ji X, Li S. New insights into the roles of oligodendrocytes regulation in ischemic stroke recovery. Neurobiol Dis 2023:106200. [PMID: 37321419 DOI: 10.1016/j.nbd.2023.106200] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/20/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023] Open
Abstract
Oligodendrocytes (OLs), the myelin-forming cells of the central nervous system, are integral to axonal integrity and function. Hypoxia-ischemia episodes can cause severe damage to these vulnerable cells through excitotoxicity, oxidative stress, inflammation, and mitochondrial dysfunction, leading to axonal dystrophy, neuronal dysfunction, and neurological impairments. OLs damage can result in demyelination and myelination disorders, severely impacting axonal function, structure, metabolism, and survival. Adult-onset stroke, periventricular leukomalacia, and post-stroke cognitive impairment primarily target OLs, making them a critical therapeutic target. Therapeutic strategies targeting OLs, myelin, and their receptors should be given more emphasis to attenuate ischemia injury and establish functional recovery after stroke. This review summarizes recent advances on the function of OLs in ischemic injury, as well as the present and emerging principles that serve as the foundation for protective strategies against OL deaths.
Collapse
Affiliation(s)
- Shuangfeng Huang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China; Department of Emergency, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Changhong Ren
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China; Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yumin Luo
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China; Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University, Detroit, MI, USA
| | - Xunming Ji
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China; Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Sijie Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China; Department of Emergency, Xuanwu Hospital, Capital Medical University, Beijing, China; Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China.
| |
Collapse
|
14
|
Yi C, Verkhratsky A, Niu J. Pathological potential of oligodendrocyte precursor cells: terra incognita. Trends Neurosci 2023:S0166-2236(23)00103-0. [PMID: 37183154 DOI: 10.1016/j.tins.2023.04.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/12/2023] [Accepted: 04/13/2023] [Indexed: 05/16/2023]
Abstract
Adult oligodendrocyte precursor cells (aOPCs), transformed from fetal OPCs, are idiosyncratic neuroglia of the central nervous system (CNS) that are distinct in many ways from other glial cells. OPCs have been classically studied in the context of their remyelinating capacity. Recent studies, however, revealed that aOPCs not only contribute to post-lesional remyelination but also play diverse crucial roles in multiple neurological diseases. In this review we briefly present the physiology of aOPCs and summarize current knowledge of the beneficial and detrimental roles of aOPCs in different CNS diseases. We discuss unique features of aOPC death, reactivity, and changes during senescence, as well as aOPC interactions with other glial cells and pathological remodeling during disease. Finally, we outline future perspectives for the study of aOPCs in brain pathologies which may instigate the development of aOPC-targeting therapeutic strategies.
Collapse
Affiliation(s)
- Chenju Yi
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China; Department of Pathology, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China; Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen 518107, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, China.
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PL, UK; Achucarro Centre for Neuroscience, Basque Foundation for Science (IKERBASQUE), Bilbao 48011, Spain; Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102 Vilnius, Lithuania; Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
| | - Jianqin Niu
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
15
|
Maruyama T, Tanabe S, Uyeda A, Suzuki T, Muramatsu R. Free fatty acids support oligodendrocyte survival in a mouse model of amyotrophic lateral sclerosis. Front Cell Neurosci 2023; 17:1081190. [PMID: 37252191 PMCID: PMC10213402 DOI: 10.3389/fncel.2023.1081190] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the white matter degeneration. Although changes in blood lipids are involved in the pathogenesis of neurological diseases, the pathological role of blood lipids in ALS remains unclear. Methods and results We performed lipidome analysis on the plasma of ALS model mice, mutant superoxide dismutase 1 (SOD1G93A) mice, and found that the concentration of free fatty acids (FFAs), including oleic acid (OA) and linoleic acid (LA), decreased prior to disease onset. An in vitro study revealed that OA and LA directly inhibited glutamate-induced oligodendrocytes cell death via free fatty acid receptor 1 (FFAR1). A cocktail containing OA/LA suppressed oligodendrocyte cell death in the spinal cord of SOD1G93A mice. Discussion These results suggested that the reduction of FFAs in the plasma is a pathogenic biomarker for ALS in the early stages, and supplying a deficiency in FFAs is a potential therapeutic approach for ALS by preventing oligodendrocyte cell death.
Collapse
Affiliation(s)
- Takashi Maruyama
- Department of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
- Department of Pharmacoscience, Graduate School of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Shogo Tanabe
- Department of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Akiko Uyeda
- Department of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Tatsunori Suzuki
- Department of Pharmacoscience, Graduate School of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
- Department of Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Rieko Muramatsu
- Department of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| |
Collapse
|
16
|
VanderZwaag J, Halvorson T, Dolhan K, Šimončičová E, Ben-Azu B, Tremblay MÈ. The Missing Piece? A Case for Microglia's Prominent Role in the Therapeutic Action of Anesthetics, Ketamine, and Psychedelics. Neurochem Res 2023; 48:1129-1166. [PMID: 36327017 DOI: 10.1007/s11064-022-03772-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 08/25/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022]
Abstract
There is much excitement surrounding recent research of promising, mechanistically novel psychotherapeutics - psychedelic, anesthetic, and dissociative agents - as they have demonstrated surprising efficacy in treating central nervous system (CNS) disorders, such as mood disorders and addiction. However, the mechanisms by which these drugs provide such profound psychological benefits are still to be fully elucidated. Microglia, the CNS's resident innate immune cells, are emerging as a cellular target for psychiatric disorders because of their critical role in regulating neuroplasticity and the inflammatory environment of the brain. The following paper is a review of recent literature surrounding these neuropharmacological therapies and their demonstrated or hypothesized interactions with microglia. Through investigating the mechanism of action of psychedelics, such as psilocybin and lysergic acid diethylamide, ketamine, and propofol, we demonstrate a largely under-investigated role for microglia in much of the emerging research surrounding these pharmacological agents. Among others, we detail sigma-1 receptors, serotonergic and γ-aminobutyric acid signalling, and tryptophan metabolism as pathways through which these agents modulate microglial phagocytic activity and inflammatory mediator release, inducing their therapeutic effects. The current review includes a discussion on future directions in the field of microglial pharmacology and covers bidirectional implications of microglia and these novel pharmacological agents in aging and age-related disease, glial cell heterogeneity, and state-of-the-art methodologies in microglial research.
Collapse
Affiliation(s)
- Jared VanderZwaag
- Neuroscience Graduate Program, University of Victoria, Victoria, BC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Torin Halvorson
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Kira Dolhan
- Department of Psychology, University of Victoria, Vancouver, BC, Canada
- Department of Biology, University of Victoria, Vancouver, BC, Canada
| | - Eva Šimončičová
- Neuroscience Graduate Program, University of Victoria, Victoria, BC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Benneth Ben-Azu
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Marie-Ève Tremblay
- Neuroscience Graduate Program, University of Victoria, Victoria, BC, Canada.
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
- Département de médecine moléculaire, Université Laval, Québec City, QC, Canada.
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada.
- Neurology and Neurosurgery Department, McGill University, Montreal, QC, Canada.
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada.
- Institute for Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
17
|
Dirik H, Joha Z. Investigation of the effect of sugammadex on glutamate-induced neurotoxicity in C6 cell line and the roles played by nitric oxide and oxidative stress pathways. Fundam Clin Pharmacol 2023. [PMID: 36880372 DOI: 10.1111/fcp.12890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 01/14/2023] [Accepted: 03/05/2023] [Indexed: 03/08/2023]
Abstract
This experiment was intended to evaluate the effect of sugammadex on the cytotoxicity induced by glutamate, involving the nitric oxide and oxidative stress pathways. C6 glioma cells were used in the study. Glutamate was given to cells in the glutamate group for 24 h. Sugammadex at different concentrations was given to cells in the sugammadex group for 24 h. Cells in the sugammadex + glutamate group were pre-treated with sugammadex at various concentrations for 1 h and then exposed to glutamate for 24 h. XTT assay was used to assess cell viability. Levels of nitric oxide (NO), neuronal nitric oxide synthase (nNOS), total antioxidant (TAS), and total oxidant (TOS) in the cells were calculated using commercial kits. Apoptosis was detected by TUNEL assay. Sugammadex at concentrations of 50 and 100 μg/mL significantly enhanced the cell viability in C6 cells after the cytotoxicity induced by glutamate (p < 0.001). Moreover, sugammadex considerably decreased the levels of nNOS NO and TOS and the number of apoptotic cells and increased the level of TAS (p < 0.001). Sugammadex has protective and antioxidant properties on cytotoxicity and could be an effective supplement for neurodegenerative diseases such as Alzheimer and Parkinson if further research in vivo supports this claim.
Collapse
Affiliation(s)
- Hasan Dirik
- Anestezi ve Yoğun Bakım, Ankara Şehir Hastanesi, Ankara, Turkey
| | - Ziad Joha
- Department of Pharmacology, School of Pharmacy, Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
18
|
Martins LC, Silva MDS, Pinheiro EF, da Penha LKRL, Passos ADCF, de Moraes SAS, Batista EDJO, Herculano AM, Oliveira KRHM. COCHLEAR GLIAL CELLS MEDIATES GLUTAMATE UPTAKE THROUGH A SODIUM-INDEPENDENT TRANSPORTER. Hear Res 2023; 432:108753. [PMID: 37054532 DOI: 10.1016/j.heares.2023.108753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/17/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023]
Abstract
Since glutamate is the primary excitatory neurotransmitter in the mammalian cochlea, the mechanisms for the removal of glutamate from the synaptic and extrasynaptic spaces are critical for maintaining normal function of this region. Glial cells of inner ear are crucial for regulation of synaptic transmission throughout since it closely interacts with neurons along the entire auditory pathway, however little is known about the activity and expression of glutamate transporters in the cochlea. In this study, using primary cochlear glial cells cultures obtained from newborn Balb/C mice, we determined the activity of a sodium-dependent and sodium-independent glutamate uptake mechanisms by means of High Performance Liquid Chromatography. The sodium-independent glutamate transport has a prominent contribution in cochlear glial cells which is similar to what has been demonstrated in other sensory organs, but it is not found in tissues less susceptible to continuous glutamate-mediated injuries. Our results showed that xCG- system is expressed in CGCs and is the main responsible for sodium-independent glutamate uptake. The identification and characterization of the xCG- transporter in the cochlea suggests a possible role of this transporter in the control of extracellular glutamate concentrations and regulation of redox state, that may aid in the preservation of auditory function.
Collapse
Affiliation(s)
- Luana Carvalho Martins
- Laboratory of Experimental Neuropharmacology, Biological Science Institute, UFPa. Belém, PA CEP:66075-110, Brazil
| | - Mateus Dos Santos Silva
- Laboratory of Experimental Neuropharmacology, Biological Science Institute, UFPa. Belém, PA CEP:66075-110, Brazil
| | - Emerson Feio Pinheiro
- Laboratory of Experimental Neuropharmacology, Biological Science Institute, UFPa. Belém, PA CEP:66075-110, Brazil
| | | | | | | | | | - Anderson Manoel Herculano
- Laboratory of Experimental Neuropharmacology, Biological Science Institute, UFPa. Belém, PA CEP:66075-110, Brazil
| | | |
Collapse
|
19
|
Panlilio JM, Hammar KM, Aluru N, Hahn ME. Developmental exposure to domoic acid targets reticulospinal neurons and leads to aberrant myelination in the spinal cord. Sci Rep 2023; 13:2587. [PMID: 36788234 PMCID: PMC9929266 DOI: 10.1038/s41598-023-28166-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/13/2023] [Indexed: 02/16/2023] Open
Abstract
Harmful algal blooms (HABs) produce neurotoxins that affect human health. Developmental exposure of zebrafish embryos to the HAB toxin domoic acid (DomA) causes myelin defects, loss of reticulospinal neurons, and behavioral deficits. However, it is unclear whether DomA primarily targets myelin sheaths, leading to the loss of reticulospinal neurons, or reticulospinal neurons, causing myelin defects. Here, we show that while exposure to DomA at 2 dpf did not reduce the number of oligodendrocyte precursors prior to myelination, it led to fewer myelinating oligodendrocytes that produced shorter myelin sheaths and aberrantly wrapped neuron cell bodies. DomA-exposed larvae lacked Mauthner neurons prior to the onset of myelination, suggesting that axonal loss is not secondary to myelin defects. The loss of the axonal targets may have led oligodendrocytes to inappropriately myelinate neuronal cell bodies. Consistent with this, GANT61, a GLI1/2 inhibitor that reduces oligodendrocyte number, caused a reduction in aberrantly myelinated neuron cell bodies in DomA-exposed fish. Together, these results suggest that DomA initially alters reticulospinal neurons and the loss of axons causes aberrant myelination of nearby cell bodies. The identification of initial targets and perturbed cellular processes provides a mechanistic understanding of how DomA alters neurodevelopment, leading to structural and behavioral phenotypes.
Collapse
Affiliation(s)
- Jennifer M Panlilio
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA.
- Massachusetts Institute of Technology (MIT) - Woods Hole Oceanographic Institution (WHOI) Joint Graduate Program in Oceanography and Oceanographic Engineering, Cambridge, USA.
- Woods Hole Center for Oceans and Human Health, Woods Hole, MA, 02543, USA.
| | - Katherine M Hammar
- Central Microscopy Facility, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA, 02543, USA
| | - Neelakanteswar Aluru
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
- Woods Hole Center for Oceans and Human Health, Woods Hole, MA, 02543, USA
| | - Mark E Hahn
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
- Woods Hole Center for Oceans and Human Health, Woods Hole, MA, 02543, USA
| |
Collapse
|
20
|
Zheng W, Huang X, Wang J, Gao F, Chai Z, Zeng J, Li S, Yu C. The chronification mechanism of orofacial inflammatory pain: Facilitation by GPER1 and microglia in the rostral ventral medulla. Front Mol Neurosci 2023; 15:1078309. [PMID: 36683848 PMCID: PMC9853019 DOI: 10.3389/fnmol.2022.1078309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/12/2022] [Indexed: 01/08/2023] Open
Abstract
Background Chronic orofacial pain is a common and incompletely defined clinical condition. The role of G protein-coupled estrogen receptor 1 (GPER1) as a new estrogen receptor in trunk and visceral pain regulation is well known. Here, we researched the role of GPER1 in the rostral ventral medulla (RVM) during chronic orofacial pain. Methods and Results A pain model was established where rats were injected in the temporomandibular joint with complete Freund's adjuvant (CFA) to simulate chronic orofacial pain. Following this a behavioral test was performed to establish pain threshold and results showed that the rats injected with CFA had abnormal pain in the orofacial regions. Additional Immunostaining and blot analysis indicated that microglia were activated in the RVM and GPER1 and c-Fos were significantly upregulated in the rats. Conversely, when the rats were injected with G15 (a GPER1 inhibitor) the abnormal pain the CFA rats were experiencing was alleviated and microglia activation was prevented. In addition, we found that G15 downregulated the expression of phospholipase C (PLC) and protein kinase C (PKC), inhibited the expression of GluA1, restores aberrant synaptic plasticity and reduces the overexpression of the synapse-associated proteins PSD-95 and syb-2 in the RVM of CFA rats. Conclusion The findings indicate that GPER1 mediates chronic orofacial pain through modulation of the PLC-PKC signal pathway, sensitization of the RVM region and enhancement of neural plasticity. These results of this study therefore suggest that GPER1 may serve as a potential therapeutic target for chronic orofacial pain.
Collapse
Affiliation(s)
- Wenwen Zheng
- The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Xilu Huang
- The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Jing Wang
- The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Feng Gao
- The Sixth People’s Hospital of Chongqing, Anesthesiology, Chongqing, China
| | - Zhaowu Chai
- The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Jie Zeng
- The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Sisi Li
- The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Cong Yu
- The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China,*Correspondence: Cong Yu, ✉
| |
Collapse
|
21
|
Alloo J, Leleu I, Grangette C, Pied S. Parasite infections, neuroinflammation, and potential contributions of gut microbiota. Front Immunol 2022; 13:1024998. [PMID: 36569929 PMCID: PMC9772015 DOI: 10.3389/fimmu.2022.1024998] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Many parasitic diseases (including cerebral malaria, human African trypanosomiasis, cerebral toxoplasmosis, neurocysticercosis and neuroschistosomiasis) feature acute or chronic brain inflammation processes, which are often associated with deregulation of glial cell activity and disruption of the brain blood barrier's intactness. The inflammatory responses of astrocytes and microglia during parasite infection are strongly influenced by a variety of environmental factors. Although it has recently been shown that the gut microbiota influences the physiology and immunomodulation of the central nervous system in neurodegenerative diseases like Alzheimer's disease and Parkinson's, the putative link in parasite-induced neuroinflammatory diseases has not been well characterized. Likewise, the central nervous system can influence the gut microbiota. In parasite infections, the gut microbiota is strongly perturbed and might influence the severity of the central nervous system inflammation response through changes in the production of bacterial metabolites. Here, we review the roles of astrocytes and microglial cells in the neuropathophysiological processes induced by parasite infections and their possible regulation by the gut microbiota.
Collapse
Affiliation(s)
| | | | | | - Sylviane Pied
- Center for Infection and Immunity of Lille-CIIL, Centre National de la Recherche Scientifique-CNRS UMR 9017-Institut National de la Recherche Scientifique et Médicale-Inserm U1019, Institut Pasteur de Lille, Univ. Lille, Lille, France
| |
Collapse
|
22
|
Wei Z, Xie Y, Wei M, Zhao H, Ren K, Feng Q, Xu Y. New insights in ferroptosis: Potential therapeutic targets for the treatment of ischemic stroke. Front Pharmacol 2022; 13:1020918. [PMID: 36425577 PMCID: PMC9679292 DOI: 10.3389/fphar.2022.1020918] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/26/2022] [Indexed: 10/22/2023] Open
Abstract
Stroke is a common disease in clinical practice, which seriously endangers people's physical and mental health. The neurovascular unit (NVU) plays a key role in the occurrence and development of ischemic stroke. Different from other classical types of cell death such as apoptosis, necrosis, autophagy, and pyroptosis, ferroptosis is an iron-dependent lipid peroxidation-driven new form of cell death. Interestingly, the function of NVU and stroke development can be regulated by activating or inhibiting ferroptosis. This review systematically describes the NVU in ischemic stroke, provides a comprehensive overview of the regulatory mechanisms and key regulators of ferroptosis, and uncovers the role of ferroptosis in the NVU and the progression of ischemic stroke. We further discuss the latest progress in the intervention of ferroptosis as a therapeutic target for ischemic stroke and summarize the research progress and regulatory mechanism of ferroptosis inhibitors on stroke. In conclusion, ferroptosis, as a new form of cell death, plays a key role in ischemic stroke and is expected to become a new therapeutic target for this disease.
Collapse
Affiliation(s)
- Ziqing Wei
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yi Xie
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mingze Wei
- The Second Clinical Medical College, Harbin Medical University, Harbin, China
| | - Huijuan Zhao
- Henan International Joint Laboratory of Thrombosis and Hemostasis, Basic Medical College, Henan University of Science and Technology, Luoyang, China
| | - Kaidi Ren
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou, China
- Henan Engineering Research Center for Application & Translation of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Qi Feng
- Research Institute of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
23
|
Spatial and Temporal Diversity of Astrocyte Phenotypes in Spinocerebellar Ataxia Type 1 Mice. Cells 2022; 11:cells11203323. [PMID: 36291186 PMCID: PMC9599982 DOI: 10.3390/cells11203323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/30/2022] [Accepted: 10/17/2022] [Indexed: 11/30/2022] Open
Abstract
While astrocyte heterogeneity is an important feature of the healthy brain, less is understood about spatiotemporal heterogeneity of astrocytes in brain disease. Spinocerebellar ataxia type 1 (SCA1) is a progressive neurodegenerative disease caused by a CAG repeat expansion in the gene Ataxin1 (ATXN1). We characterized astrocytes across disease progression in the four clinically relevant brain regions, cerebellum, brainstem, hippocampus, and motor cortex, of Atxn1154Q/2Q mice, a knock-in mouse model of SCA1. We found brain region-specific changes in astrocyte density and GFAP expression and area, early in the disease and prior to neuronal loss. Expression of astrocytic core homeostatic genes was also altered in a brain region-specific manner and correlated with neuronal activity, indicating that astrocytes may compensate or exacerbate neuronal dysfunction. Late in disease, expression of astrocytic homeostatic genes was reduced in all four brain regions, indicating loss of astrocyte functions. We observed no obvious correlation between spatiotemporal changes in microglia and spatiotemporal astrocyte alterations, indicating a complex orchestration of glial phenotypes in disease. These results support spatiotemporal diversity of glial phenotypes as an important feature of the brain disease that may contribute to SCA1 pathogenesis in a brain region and disease stage-specific manner.
Collapse
|
24
|
3-Hydroxymorphinan protects against hypoxia-induced cell death in primary astrocyte by regulating Ca2+ influx and the glutamate homeostasis. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00276-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
25
|
Bayón-Cordero L, Ochoa-Bueno BI, Ruiz A, Ozalla M, Matute C, Sánchez-Gómez MV. GABA Receptor Agonists Protect From Excitotoxic Damage Induced by AMPA in Oligodendrocytes. Front Pharmacol 2022; 13:897056. [PMID: 35959434 PMCID: PMC9360600 DOI: 10.3389/fphar.2022.897056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022] Open
Abstract
Oligodendrocytes are the myelin forming cells of the central nervous system, and their vulnerability to excitotoxicity induced by glutamate contributes to the pathogenesis of neurological disorders including brain ischemia and neurodegenerative diseases, such as multiple sclerosis. In addition to glutamate receptors, oligodendrocytes express GABA receptors (GABAR) that are involved in their survival and differentiation. The interactions between glutamate and GABAergic systems are well documented in neurons, under both physiological and pathological conditions, but this potential crosstalk in oligodendrocytes has not been studied in depth. Here, we evaluated the protective effect of GABAR agonists, baclofen (GABAB) and muscimol (GABAA), against AMPA-induced excitotoxicity in cultured rat oligodendrocytes. First, we observed that both baclofen and muscimol reduced cell death and caspase-3 activation after AMPA insult, proving their oligoprotective potential. Interestingly, analysis of the cell-surface expression of calcium-impermeable GluR2 subunits in oligodendrocytes revealed that GABAergic agonists significantly reverted GluR2 internalization induced by AMPA. We determined that baclofen and muscimol also impaired AMPA-induced intracellular calcium increase and subsequent mitochondrial membrane potential alteration, ROS generation, and calpain activation. However, AMPA-triggered activation of Src, Akt, JNK and CREB was not affected by baclofen or muscimol. Overall, our results suggest that GABAR activation initiates alternative molecular mechanisms that attenuate AMPA-mediated apoptotic excitotoxicity in oligodendrocytes by interfering with expression of GluR subunits in membranes and with calcium-dependent intracellular signaling pathways. Together, these findings provide evidence of GABAR agonists as potential oligodendroglial protectants in central nervous system disorders.
Collapse
Affiliation(s)
- Laura Bayón-Cordero
- Laboratory of Neurobiology, Achucarro Basque Center for Neuroscience, Leioa, Spain
- Department of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain
| | - Blanca Isabel Ochoa-Bueno
- Laboratory of Neurobiology, Achucarro Basque Center for Neuroscience, Leioa, Spain
- Department of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain
| | - Asier Ruiz
- Laboratory of Neurobiology, Achucarro Basque Center for Neuroscience, Leioa, Spain
- Department of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain
| | - Marina Ozalla
- Department of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Carlos Matute
- Laboratory of Neurobiology, Achucarro Basque Center for Neuroscience, Leioa, Spain
- Department of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain
| | - María Victoria Sánchez-Gómez
- Laboratory of Neurobiology, Achucarro Basque Center for Neuroscience, Leioa, Spain
- Department of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain
| |
Collapse
|
26
|
Beeraka NM, Vikram PRH, Greeshma MV, Uthaiah CA, Huria T, Liu J, Kumar P, Nikolenko VN, Bulygin KV, Sinelnikov MY, Sukocheva O, Fan R. Recent Investigations on Neurotransmitters' Role in Acute White Matter Injury of Perinatal Glia and Pharmacotherapies-Glia Dynamics in Stem Cell Therapy. Mol Neurobiol 2022; 59:2009-2026. [PMID: 35041139 DOI: 10.1007/s12035-021-02700-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 12/10/2021] [Indexed: 02/05/2023]
Abstract
Periventricular leukomalacia (PVL) and cerebral palsy are two neurological disease conditions developed from the premyelinated white matter ischemic injury (WMI). The significant pathophysiology of these diseases is accompanied by the cognitive deficits due to the loss of function of glial cells and axons. White matter makes up 50% of the brain volume consisting of myelinated and non-myelinated axons, glia, blood vessels, optic nerves, and corpus callosum. Studies over the years have delineated the susceptibility of white matter towards ischemic injury especially during pregnancy (prenatal, perinatal) or immediately after child birth (postnatal). Impairment in membrane depolarization of neurons and glial cells by ischemia-invoked excitotoxicity is mediated through the overactivation of NMDA receptors or non-NMDA receptors by excessive glutamate influx, calcium, or ROS overload and has been some of the well-studied molecular mechanisms conducive to the injury of white matter. Expression of glutamate receptors (GluR) and transporters (GLT1, EACC1, and GST) has significant influence in glial and axonal-mediated injury of premyelinated white matter during PVL and cerebral palsy. Predominantly, the central premyelinated axons express extensive levels of functional NMDA GluR receptors to confer ischemic injury to premyelinated white matter which in turn invoke defects in neural plasticity. Several underlying molecular mechanisms are yet to be unraveled to delineate the complete pathophysiology of these prenatal neurological diseases for developing the novel therapeutic modalities to mitigate pathophysiology and premature mortality of newborn babies. In this review, we have substantially discussed the above multiple pathophysiological aspects of white matter injury along with glial dynamics, and the pharmacotherapies including recent insights into the application of MSCs as therapeutic modality in treating white matter injury.
Collapse
Affiliation(s)
- Narasimha M Beeraka
- Cancer Center, Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, People's Republic of China
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, Karnataka, India
- Department of Human Anatomy, I. M. Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, Moscow, 119991, Russia
| | - P R Hemanth Vikram
- Department of Pharmaceutical Chemistry, JSS Pharmacy College, Mysuru, Karnataka, India
| | - M V Greeshma
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, Karnataka, India
| | - Chinnappa A Uthaiah
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, Karnataka, India
| | - Tahani Huria
- Faculty of Medicine, Benghazi University, Benghazi, Libya
- Department of Cell Physiology and Pharmacology, University of Leicester, Leicester, LE1 7RH, UK
| | - Junqi Liu
- Cancer Center, Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, People's Republic of China
| | - Pramod Kumar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER-Guwahati), SilaKatamur (Halugurisuk), Changsari, Kamrup, 781101, Assam, India
| | - Vladimir N Nikolenko
- Department of Human Anatomy, I. M. Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, Moscow, 119991, Russia
- Department of Normal and Topographic Anatomy, Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Kirill V Bulygin
- Department of Human Anatomy, I. M. Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, Moscow, 119991, Russia
| | - Mikhail Y Sinelnikov
- Department of Human Anatomy, I. M. Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, Moscow, 119991, Russia
- Research Institute of Human Morphology, 3 Tsyurupy Street, Moscow, 117418, Russian Federation
| | - Olga Sukocheva
- Discipline of Health Sciences, College of Nursing and Health Sciences, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - Ruitai Fan
- Cancer Center, Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, People's Republic of China.
| |
Collapse
|
27
|
Erythropoietin Nanobots: Their Feasibility for the Controlled Release of Erythropoietin and Their Neuroprotective Bioequivalence in Central Nervous System Injury. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background: Erythropoietin (EPO) plays important roles in neuroprotection in central nervous system injury. Due to the limited therapeutic time window and coexistence of hematopoietic/extrahematopoietic receptors displaying heterogenic and phylogenetic differences, fast, targeted delivery agents, such as nanobots, are needed. To confirm the feasibility of EPO-nanobots (ENBs) as therapeutic tools, the authors evaluated controlled EPO release from ENBs and compared the neuroprotective bioequivalence of these substances after preconditioning sonication. Methods: ENBs were manufactured by a nanospray drying technique with preconditioning sonication. SH-SY5Y neuronal cells were cotreated with thapsigargin and either EPO or ENBs before cell viability, EPO receptor activation, and endoplasmic reticulum stress-related pathway deactivation were determined over 24 h. Results: Preconditioning sonication (50–60 kHz) for 1 h increased the cumulative EPO release from the ENBs (84% versus 25% at 24 h). Between EPO and ENBs at 24 h, both neuronal cell viability (both > 65% versus 15% for thapsigargin alone) and the expression of the proapoptotic/apoptotic biomolecular markers JAK2, PDI, PERK, GRP78, ATF6, CHOP, TGF-β, and caspase-3 were nearly the same or similar. Conclusion: ENBs controlled EPO release in vitro after preconditioning sonication, leading to neuroprotection similar to that of EPO at 24 h.
Collapse
|
28
|
2, 3, 5, 4'-tetrahydroxystilbene-2-O-beta-D-glucoside protects against neuronal cell death and traumatic brain injury-induced pathophysiology. Aging (Albany NY) 2022; 14:2607-2627. [PMID: 35314517 PMCID: PMC9004580 DOI: 10.18632/aging.203958] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/01/2022] [Indexed: 11/25/2022]
Abstract
Traumatic brain injury (TBI) is a global health issue that affects at least 10 million people per year. Neuronal cell death and brain injury after TBI, including apoptosis, inflammation, and excitotoxicity, have led to detrimental effects in TBI. 2, 3, 5, 4’-tetrahydroxystilbene-2-O-beta-D-glucoside (THSG), a water-soluble compound extracted from the Chinese herb Polygonum multiflorum, has been shown to exert various biological functions. However, the effects of THSG on TBI is still poorly understood. THSG reduced L-glutamate-induced DNA fragmentation and protected glial and neuronal cell death after L-glutamate stimulation. Our results also showed that TBI caused significant behavioral deficits in the performance of beam walking, mNSS, and Morris water maze tasks in a mouse model. Importantly, daily administration of THSG (60 mg/kg/day) after TBI for 21 days attenuated the injury severity score, promoted motor coordination, and improved cognitive performance post-TBI. Moreover, administration of THSG also dramatically decreased the brain lesion volume. THSG reduced TBI-induced neuronal apoptosis in the brain cortex 24 h after TBI. Furthermore, THSG increased the number of immature neurons in the subgranular zone (SGZ) of the dentate gyrus (DG) of the hippocampus. Our results demonstrate that THSG exerts neuroprotective effects on glutamate-induced excitotoxicity and glial and neuronal cell death. The present study also demonstrated that THSG effectively protects against TBI-associated motor and cognitive impairment, at least in part, by inhibiting TBI-induced apoptosis and promoting neurogenesis.
Collapse
|
29
|
Sun Y, Langer HF. Platelets, Thromboinflammation and Neurovascular Disease. Front Immunol 2022; 13:843404. [PMID: 35309326 PMCID: PMC8930842 DOI: 10.3389/fimmu.2022.843404] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 02/07/2022] [Indexed: 12/18/2022] Open
Abstract
The brain and spinal cord are immune-privileged organs, but in the disease state protection mechanisms such as the blood brain barrier (BBB) are ineffective or overcome by pathological processes. In neuroinflammatory diseases, microglia cells and other resident immune cells contribute to local vascular inflammation and potentially a systemic inflammatory response taking place in parallel. Microglia cells interact with other cells impacting on the integrity of the BBB and propagate the inflammatory response through the release of inflammatory signals. Here, we discuss the activation and response mechanisms of innate and adaptive immune processes in response to neuroinflammation. Furthermore, the clinical importance of neuroinflammatory mediators and a potential translational relevance of involved mechanisms are addressed also with focus on non-classical immune cells including microglia cells or platelets. As illustrative examples, novel agents such as Anfibatide or Revacept, which result in reduced recruitment and activation of platelets, a subsequently blunted activation of the coagulation cascade and further inflammatory process, demonstrating that mechanisms of neuroinflammation and thrombosis are interconnected and should be further subject to in depth clinical and basic research.
Collapse
Affiliation(s)
- Ying Sun
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
- University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Harald F. Langer
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
- University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
- DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany
- *Correspondence: Harald F. Langer,
| |
Collapse
|
30
|
O'Grady KP, Satish S, Owen QR, Box BA, Bagnato F, Combes AJE, Cook SR, Westervelt HJ, Feiler HR, Lawless RD, Sarma A, Malone SD, Ndolo JM, Yoon K, Dortch RD, Rogers BP, Smith SA. Relaxation-Compensated Chemical Exchange Saturation Transfer MRI in the Brain at 7T: Application in Relapsing-Remitting Multiple Sclerosis. Front Neurol 2022; 13:764690. [PMID: 35299614 PMCID: PMC8923037 DOI: 10.3389/fneur.2022.764690] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 02/01/2022] [Indexed: 11/16/2022] Open
Abstract
Chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) can probe tissue biochemistry in vivo with high resolution and sensitivity without requiring exogenous contrast agents. Applying CEST MRI at ultrahigh field provides advantages of increasing spectral resolution and improving sensitivity to metabolites with faster proton exchange rates such as glutamate, a critical neurotransmitter in the brain. Prior magnetic resonance spectroscopy and CEST MRI studies have revealed altered regulation of glutamate in patients with multiple sclerosis (MS). While CEST imaging facilitates new strategies for investigating the pathology underlying this complex and heterogeneous neurological disease, CEST signals are contaminated or diluted by concurrent effects (e.g., semi-solid magnetization transfer (MT) and direct water saturation) and are scaled by the T1 relaxation time of the free water pool which may also be altered in the context of disease. In this study of 20 relapsing-remitting MS patients and age- and sex-matched healthy volunteers, glutamate-weighted CEST data were acquired at 7.0 T. A Lorentzian fitting procedure was used to remove the asymmetric MT contribution from CEST z-spectra, and the apparent exchange-dependent relaxation (AREX) correction was applied using an R1 map derived from an inversion recovery sequence to further isolate glutamate-weighted CEST signals from concurrent effects. Associations between AREX and cognitive function were examined using the Minimal Assessment of Cognitive Function in MS battery. After isolating CEST effects from MT, direct water saturation, and T1 effects, glutamate-weighted AREX contrast remained higher in gray matter than in white matter, though the difference between these tissues decreased. Glutamate-weighted AREX in normal-appearing gray and white matter in MS patients did not differ from healthy gray and white matter but was significantly elevated in white matter lesions. AREX in some cortical regions and in white matter lesions correlated with disability and measures of cognitive function in MS patients. However, further studies with larger sample sizes are needed to confirm these relationships due to potential confounding effects. The application of MT and AREX corrections in this study demonstrates the importance of isolating CEST signals for more specific characterization of the contribution of metabolic changes to tissue pathology and symptoms in MS.
Collapse
Affiliation(s)
- Kristin P. O'Grady
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Sanjana Satish
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Quinn R. Owen
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Bailey A. Box
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Francesca Bagnato
- Neuroimaging Unit, Division of Neuroimmunology, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Neurology, Nashville VA Medical Center, TN Valley Healthcare System, Nashville, TN, United States
| | - Anna J. E. Combes
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Sarah R. Cook
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Holly James Westervelt
- Division of Behavioral and Cognitive Neurology, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Haley R. Feiler
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Richard D. Lawless
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Asha Sarma
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Shekinah D. Malone
- School of Medicine, Meharry Medical College, Nashville, TN, United States
| | - Josephine M. Ndolo
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Keejin Yoon
- Neuroimaging Unit, Division of Neuroimmunology, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Richard D. Dortch
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Baxter P. Rogers
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
- Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
| | - Seth A. Smith
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
- Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
31
|
Przykaza Ł. Understanding the Connection Between Common Stroke Comorbidities, Their Associated Inflammation, and the Course of the Cerebral Ischemia/Reperfusion Cascade. Front Immunol 2021; 12:782569. [PMID: 34868060 PMCID: PMC8634336 DOI: 10.3389/fimmu.2021.782569] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/29/2021] [Indexed: 01/13/2023] Open
Abstract
Despite the enormous progress in the understanding of the course of the ischemic stroke over the last few decades, a therapy that effectively protects neurovascular units (NVUs) and significantly improves neurological functions in stroke patients has still not been achieved. The reasons for this state are unclear, but it is obvious that the cerebral ischemia and reperfusion cascade is a highly complex phenomenon, which includes the intense neuroinflammatory processes, and comorbid stroke risk factors strongly worsen stroke outcomes and likely make a substantial contribution to the pathophysiology of the ischemia/reperfusion, enhancing difficulties in searching of successful treatment. Common concomitant stroke risk factors (arterial hypertension, diabetes mellitus and hyperlipidemia) strongly drive inflammatory processes during cerebral ischemia/reperfusion; because these factors are often present for a long time before a stroke, causing low-grade background inflammation in the brain, and already initially disrupting the proper functions of NVUs. Broad consideration of this situation in basic research may prove to be crucial for the success of future clinical trials of neuroprotection, vasculoprotection and immunomodulation in stroke. This review focuses on the mechanism by which coexisting common risk factors for stroke intertwine in cerebral ischemic/reperfusion cascade and the dysfunction and disintegration of NVUs through inflammatory processes, principally activation of pattern recognition receptors, alterations in the expression of adhesion molecules and the subsequent pathophysiological consequences.
Collapse
Affiliation(s)
- Łukasz Przykaza
- Laboratory of Experimental and Clinical Neurosurgery, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
32
|
Taskiran AS, Ergul M. The effect of salmon calcitonin against glutamate-induced cytotoxicity in the C6 cell line and the roles the inflammatory and nitric oxide pathways play. Metab Brain Dis 2021; 36:1985-1993. [PMID: 34370176 DOI: 10.1007/s11011-021-00793-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 07/09/2021] [Indexed: 10/20/2022]
Abstract
Recent evidence has shown that salmon calcitonin (sCT) has positive effects on the nervous system. However, its effect and mechanisms on glutamate-induced cytotoxicity are still unclear. The current experiment was designed to examine the effect of sCT on glutamate-induced cytotoxicity in C6 cells, involving the inflammatory and nitric oxide stress pathways. The study used the C6 glioma cell line. Four cell groups were prepared to evaluate the effect of sCT on glutamate-induced cytotoxicity. The control group was without any treatment. Cells in the glutamate group were treated with 10 mM glutamate for 24 h. Cells in the sCT group were treated with various concentrations (3, 6, 12, 25, and 50 µg/mL) of sCT for 24 h. Cells in the sCT + glutamate group were pre-treated with various concentrations of sCT for 1 h and then exposed to glutamate for 24 h. The cell viability was evaluated with an XTT assay. Nuclear factor kappa b (NF-kB), tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), neuronal nitric oxide synthase (nNOS), nitric oxide (NO), cyclic guanosine monophosphate (cGMP), caspase-3, and caspase-9 levels in the cells were measured by ELISA kits. Apoptosis was detected by flow cytometry method. sCT at all concentrations significantly improved the cell viability in C6 cells after glutamate-induced cytotoxicity (p < 0.001). Moreover, sCT significantly reduced the levels of NF-kB (p < 0.001), TNF-α, and IL-6 levels (p < 0.001). sCT also decreased nNOS, NO, and cGMP levels (P < 0.001). Furthermore, it decreased the apoptosis rate and increased the live-cell rate in the flow cytometry (P < 0.001). In conclusion, sCT has protective effects on glutamate-induced cytotoxicity in C6 glial cells by inhibiting inflammatory and nitric oxide pathways. sCT could be a useful supportive agent for people with neurodegenerative symptoms.
Collapse
Affiliation(s)
- Ahmet Sevki Taskiran
- Department of Physiology, Sivas Cumhuriyet University School of Medicine, 58140, Sivas, Turkey.
| | - Merve Ergul
- Department of Pharmacology, Sivas Cumhuriyet University School of Pharmacy, Sivas, Turkey
| |
Collapse
|
33
|
Green JL, Dos Santos WF, Fontana ACK. Role of glutamate excitotoxicity and glutamate transporter EAAT2 in epilepsy: Opportunities for novel therapeutics development. Biochem Pharmacol 2021; 193:114786. [PMID: 34571003 DOI: 10.1016/j.bcp.2021.114786] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/21/2022]
Abstract
Epilepsy is a complex neurological syndrome characterized by seizures resulting from neuronal hyperexcitability and sudden and synchronized bursts of electrical discharges. Impaired astrocyte function that results in glutamate excitotoxicity has been recognized to play a key role in the pathogenesis of epilepsy. While there are 26 drugs marketed as anti-epileptic drugs no current treatments are disease modifying as they only suppress seizures rather than the development and progression of epilepsy. Excitatory amino acid transporters (EAATs) are critical for maintaining low extracellular glutamate concentrations and preventing excitotoxicity. When extracellular glutamate concentrations rise to abnormal levels, glutamate receptor overactivation and the subsequent excessive influx of calcium into the post-synaptic neuron can trigger cell death pathways. In this review we discuss targeting EAAT2, the predominant glutamate transporter in the CNS, as a promising approach for developing therapies for epilepsy. EAAT2 upregulation via transcriptional and translational regulation has proven successful in vivo in reducing spontaneous recurrent seizures and offering neuroprotective effects. Another approach to regulate EAAT2 activity is through positive allosteric modulation (PAM). Novel PAMs of EAAT2 have recently been identified and are under development, representing a promising approach for the advance of novel therapeutics for epilepsy.
Collapse
Affiliation(s)
- Jennifer Leigh Green
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, United States
| | | | | |
Collapse
|
34
|
Chen X, Beltran DJ, Tsygankova VD, Woolwine BJ, Patel T, Baer W, Felger JC, Miller AH, Haroon E. Kynurenines increase MRS metabolites in basal ganglia and decrease resting-state connectivity in frontostriatal reward circuitry in depression. Transl Psychiatry 2021; 11:456. [PMID: 34482366 PMCID: PMC8418602 DOI: 10.1038/s41398-021-01587-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/04/2021] [Accepted: 08/19/2021] [Indexed: 12/25/2022] Open
Abstract
Inflammation is associated with the development of anhedonia in major depression (MD), but the pathway by which inflammatory molecules gain access to the brain and lead to anhedonia is not clear. Molecules of the kynurenine pathway (KP), which is activated by inflammation, readily influx into the brain and generate end products that alter brain chemistry, disrupt circuit functioning, and result in the expression of inflammatory behaviors such as anhedonia. We examined the impact of plasma and CSF KP metabolites on brain chemistry and neural function using multimodal neuroimaging in 49 depressed subjects. We measured markers of glial dysfunction and distress including glutamate (Glu) and myo-inositol in the left basal ganglia using magnetic resonance spectroscopy (MRS); metrics of local activity coherence (regional homogeneity, ReHo) and functional connectivity from resting-state functional MRI measures; and anhedonia from the Inventory for Depressive Symptoms-Self Report Version (IDS-SR). Plasma kynurenine/tryptophan (KYN/TRP) ratio and cerebrospinal fluid (CSF) 3-hydroxykynurenine (3HK) were associated with increases in left basal ganglia myo-inositol. Plasma kynurenic acid (KYNA) and KYNA/QA were associated with decreases and quinolinic acid (QA) with increases in left basal ganglia Glu. Plasma and CSF KP were associated with decreases in ReHo in the basal ganglia and dorsomedial prefrontal regions (DMPFC) and impaired functional connectivity between these two regions. DMPFC-basal ganglia mediated the effect of plasma and CSF KP on anhedonia. These findings highlight the pathological impact of KP system dysregulation in mediating inflammatory behaviors such as anhedonia.
Collapse
Affiliation(s)
- Xiangchuan Chen
- Emory Behavioral Immunology Program, Atlanta, GA, USA
- Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA
| | - Diana J Beltran
- Emory Behavioral Immunology Program, Atlanta, GA, USA
- Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA
| | - Valeriya D Tsygankova
- Emory Behavioral Immunology Program, Atlanta, GA, USA
- Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA
| | - Bobbi J Woolwine
- Emory Behavioral Immunology Program, Atlanta, GA, USA
- Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA
| | - Trusharth Patel
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Wendy Baer
- Emory Behavioral Immunology Program, Atlanta, GA, USA
- Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA
| | - Jennifer C Felger
- Emory Behavioral Immunology Program, Atlanta, GA, USA
- Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA
| | - Andrew H Miller
- Emory Behavioral Immunology Program, Atlanta, GA, USA
- Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA
| | - Ebrahim Haroon
- Emory Behavioral Immunology Program, Atlanta, GA, USA.
- Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA.
| |
Collapse
|
35
|
Li Z, Wang Q, Hu H, Zheng W, Gao C. Research advances of biomaterials-based microenvironment-regulation therapies for repair and regeneration of spinal cord injury. Biomed Mater 2021; 16. [PMID: 34384071 DOI: 10.1088/1748-605x/ac1d3c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 08/12/2021] [Indexed: 12/15/2022]
Abstract
Traumatic spinal cord injury (SCI) usually results in restricted behaviour recovery and even life-changing paralysis, accompanied with numerous complications. Pathologically, the initial injuries trigger a series of secondary injuries, leading to an expansion of lesion site, a mass of neuron loss, and eventual failure of endogenous axon regeneration. As the advances rapidly spring up in regenerative medicine and tissue engineering biomaterials, regulation of these secondary injuries becomes possible, shedding a light on normal functional restoration. The successful tissue regeneration lies in proper regulation of the inflammatory microenvironment, including the inflammatory immune cells and inflammatory factors that lead to oxidative stress, inhibitory glial scar and neuroexcitatory toxicity. Specifically, the approaches based on microenvironment-regulating biomaterials have shown great promise in the repair and regeneration of SCI. In this review, the pathological inflammatory microenvironments of SCI are discussed, followed by the introduction of microenvironment-regulating biomaterials in terms of their impressive therapeutic effect in attenuation of secondary inflammation and promotion of axon regrowth. With the emphasis on regulating secondary events, the biomaterials for SCI treatment will become promising for clinical applications.
Collapse
Affiliation(s)
- Ziming Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, People's Republic of China
| | - Qiaoxuan Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, People's Republic of China
| | - Haijun Hu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, People's Republic of China
| | - Weiwei Zheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, People's Republic of China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, People's Republic of China.,Dr Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
36
|
Przykaza Ł, Kozniewska E. Ligands of the Neuropeptide Y Y2 Receptors as a Potential Multitarget Therapeutic Approach for the Protection of the Neurovascular Unit Against Acute Ischemia/Reperfusion: View from the Perspective of the Laboratory Bench. Transl Stroke Res 2021; 13:12-24. [PMID: 34292517 PMCID: PMC8766383 DOI: 10.1007/s12975-021-00930-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 01/02/2023]
Abstract
Ischemic stroke is the third leading cause of death and disability worldwide, with no available satisfactory prevention or treatment approach. The current treatment is limited to the use of “reperfusion methods,” i.e., an intravenous or intra-arterial infusion of a fibrinolytic agent, mechanical removal of the clot by thrombectomy, or a combination of both methods. It should be stressed, however, that only approximately 5% of all acute strokes are eligible for fibrinolytic treatment and fewer than 10% for thrombectomy. Despite the tremendous progress in understanding of the pathomechanisms of cerebral ischemia, the promising results of basic research on neuroprotection are not currently transferable to human stroke. A possible explanation for this failure is that experiments on in vivo animal models involve healthy young animals, and the experimental protocols seldom consider the importance of protecting the whole neurovascular unit (NVU), which ensures intracranial homeostasis and is seriously damaged by ischemia/reperfusion. One of the endogenous protective systems activated during ischemia and in neurodegenerative diseases is represented by neuropeptide Y (NPY). It has been demonstrated that activation of NPY Y2 receptors (Y2R) by a specific ligand decreases the volume of the postischemic infarction and improves performance in functional tests of rats with arterial hypertension subjected to middle cerebral artery occlusion/reperfusion. This functional improvement suggests the protection of the NVU. In this review, we focus on NPY and discuss the potential, multidirectional protective effects of Y2R agonists against acute focal ischemia/reperfusion injury, with special reference to the NVU.
Collapse
Affiliation(s)
- Łukasz Przykaza
- Laboratory of Experimental and Clinical Neurosurgery, Mossakowski Medical Research Institute Polish Academy of Sciences, A. Pawińskiego Str. 5, 02-106, Warsaw, Poland
| | - Ewa Kozniewska
- Laboratory of Experimental and Clinical Neurosurgery, Mossakowski Medical Research Institute Polish Academy of Sciences, A. Pawińskiego Str. 5, 02-106, Warsaw, Poland.
| |
Collapse
|
37
|
Lucido MJ, Bekhbat M, Goldsmith DR, Treadway MT, Haroon E, Felger JC, Miller AH. Aiding and Abetting Anhedonia: Impact of Inflammation on the Brain and Pharmacological Implications. Pharmacol Rev 2021; 73:1084-1117. [PMID: 34285088 PMCID: PMC11060479 DOI: 10.1124/pharmrev.120.000043] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Exogenous administration of inflammatory stimuli to humans and laboratory animals and chronic endogenous inflammatory states lead to motivational deficits and ultimately anhedonia, a core and disabling symptom of depression present in multiple other psychiatric disorders. Inflammation impacts neurotransmitter systems and neurocircuits in subcortical brain regions including the ventral striatum, which serves as an integration point for reward processing and motivational decision-making. Many mechanisms contribute to these effects of inflammation, including decreased synthesis, release and reuptake of dopamine, increased synaptic and extrasynaptic glutamate, and activation of kynurenine pathway metabolites including quinolinic acid. Neuroimaging data indicate that these inflammation-induced neurotransmitter effects manifest as decreased activation of ventral striatum and decreased functional connectivity in reward circuitry involving ventral striatum and ventromedial prefrontal cortex. Neurocircuitry changes in turn mediate nuanced effects on motivation that include decreased willingness to expend effort for reward while maintaining the ability to experience reward. Taken together, the data reveal an inflammation-induced pathophysiologic phenotype that is agnostic to diagnosis. Given the many mechanisms involved, this phenotype represents an opportunity for development of novel and/or repurposed pharmacological strategies that target inflammation and associated cellular and systemic immunometabolic changes and their downstream effects on the brain. To date, clinical trials have failed to capitalize on the unique nature of this transdiagnostic phenotype, leaving the field bereft of interpretable data for meaningful clinical application. However, novel trial designs incorporating established targets in the brain and/or periphery using relevant outcome variables (e.g., anhedonia) are the future of targeted therapy in psychiatry. SIGNIFICANCE STATEMENT: Emerging understanding of mechanisms by which peripheral inflammation can affect the brain and behavior has created unprecedented opportunities for development of pharmacological strategies to treat deficits in motivation including anhedonia, a core and disabling symptom of depression well represented in multiple psychiatric disorders. Mechanisms include inflammation and cellular and systemic immunometabolism and alterations in dopamine, glutamate, and kynurenine metabolites, revealing a target-rich environment that nevertheless has yet to be fully exploited by current clinical trial designs and drugs employed.
Collapse
Affiliation(s)
- Michael J Lucido
- Emory Behavioral Immunology Program, Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia (M.J.L., M.B., D.R.G., E.H., J.C.F., A.H.M.); and Department of Psychology, Emory University, Atlanta, Georgia (M.T.T.)
| | - Mandy Bekhbat
- Emory Behavioral Immunology Program, Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia (M.J.L., M.B., D.R.G., E.H., J.C.F., A.H.M.); and Department of Psychology, Emory University, Atlanta, Georgia (M.T.T.)
| | - David R Goldsmith
- Emory Behavioral Immunology Program, Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia (M.J.L., M.B., D.R.G., E.H., J.C.F., A.H.M.); and Department of Psychology, Emory University, Atlanta, Georgia (M.T.T.)
| | - Michael T Treadway
- Emory Behavioral Immunology Program, Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia (M.J.L., M.B., D.R.G., E.H., J.C.F., A.H.M.); and Department of Psychology, Emory University, Atlanta, Georgia (M.T.T.)
| | - Ebrahim Haroon
- Emory Behavioral Immunology Program, Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia (M.J.L., M.B., D.R.G., E.H., J.C.F., A.H.M.); and Department of Psychology, Emory University, Atlanta, Georgia (M.T.T.)
| | - Jennifer C Felger
- Emory Behavioral Immunology Program, Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia (M.J.L., M.B., D.R.G., E.H., J.C.F., A.H.M.); and Department of Psychology, Emory University, Atlanta, Georgia (M.T.T.)
| | - Andrew H Miller
- Emory Behavioral Immunology Program, Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia (M.J.L., M.B., D.R.G., E.H., J.C.F., A.H.M.); and Department of Psychology, Emory University, Atlanta, Georgia (M.T.T.)
| |
Collapse
|
38
|
van Putten MJ, Fahlke C, Kafitz KW, Hofmeijer J, Rose CR. Dysregulation of Astrocyte Ion Homeostasis and Its Relevance for Stroke-Induced Brain Damage. Int J Mol Sci 2021; 22:5679. [PMID: 34073593 PMCID: PMC8198632 DOI: 10.3390/ijms22115679] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 12/14/2022] Open
Abstract
Ischemic stroke is a leading cause of mortality and chronic disability. Either recovery or progression towards irreversible failure of neurons and astrocytes occurs within minutes to days, depending on remaining perfusion levels. Initial damage arises from energy depletion resulting in a failure to maintain homeostasis and ion gradients between extra- and intracellular spaces. Astrocytes play a key role in these processes and are thus central players in the dynamics towards recovery or progression of stroke-induced brain damage. Here, we present a synopsis of the pivotal functions of astrocytes at the tripartite synapse, which form the basis of physiological brain functioning. We summarize the evidence of astrocytic failure and its consequences under ischemic conditions. Special emphasis is put on the homeostasis and stroke-induced dysregulation of the major monovalent ions, namely Na+, K+, H+, and Cl-, and their involvement in maintenance of cellular volume and generation of cerebral edema.
Collapse
Affiliation(s)
- Michel J.A.M. van Putten
- Department of Clinical Neurophysiology, University of Twente, 7522 NB Enschede, The Netherlands; (M.J.A.M.v.P.); (J.H.)
| | - Christoph Fahlke
- Institut für Biologische Informationsprozesse, Molekular-und Zellphysiologie (IBI-1), Forschungszentrum Jülich, 52425 Jülich, Germany;
| | - Karl W. Kafitz
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Jeannette Hofmeijer
- Department of Clinical Neurophysiology, University of Twente, 7522 NB Enschede, The Netherlands; (M.J.A.M.v.P.); (J.H.)
| | - Christine R. Rose
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| |
Collapse
|
39
|
Bryant JE, Lahti AC, Briend F, Kraguljac NV. White Matter Neurometabolic Signatures Support the Deficit and Nondeficit Distinction in Antipsychotic-Naïve First-Episode Psychosis Patients. Schizophr Bull 2021; 47:1068-1076. [PMID: 33693906 PMCID: PMC8266628 DOI: 10.1093/schbul/sbab014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The deficit syndrome is thought to be a more homogenous clinical subgroup within the syndrome of schizophrenia that is characterized by enduring negative symptoms. It is hypothesized that distinct pathophysiological processes underlie the subtypes, where the deficit syndrome reflects an early onset nonprogressive developmental process, and the nondeficit form of the illness is characterized by attenuated neuroplasticity secondary to elevated glutamate levels. We used single-voxel magnetic resonance spectroscopy (PRESS; TE: 30 ms) to measure left frontal white matter neurometabolite levels in 61 antipsychotic-naïve first-episode psychosis patients (39 who did not display deficit features, 22 who did display deficit features, assessed with the Schedule for the Deficit Syndrome) and 59 healthy controls. Metabolite levels were quantified with the LCModel. We used a MANCOVA to determine neurometabolite differences between healthy controls, deficit syndrome patients, and nondeficit patients. We report a significant group difference when all metabolites were considered jointly (F[10,208] = 2.16; P = .02). Post hoc analyses showed that patients presenting without deficit features had higher glutamate levels than patients with deficit features and controls. Patients presenting without deficit features also had significantly higher myoinositol levels than controls; myoinositol levels were trend-level higher in patients presenting with deficit features compared to controls. Our data support the idea that the pathophysiology of patients presenting without deficit features may differ from those presenting with deficit features.
Collapse
Affiliation(s)
- James Edward Bryant
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, SC 501, Birmingham, AL, USA
| | - Adrienne Carol Lahti
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, SC 501, Birmingham, AL, USA
| | - Frederic Briend
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, SC 501, Birmingham, AL, USA,UMR1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Nina Vanessa Kraguljac
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, SC 501, Birmingham, AL, USA,To whom correspondence should be addressed; tel: 205-996-7171, e-mail:
| |
Collapse
|
40
|
Shahsavani N, Kataria H, Karimi-Abdolrezaee S. Mechanisms and repair strategies for white matter degeneration in CNS injury and diseases. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166117. [PMID: 33667627 DOI: 10.1016/j.bbadis.2021.166117] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022]
Abstract
White matter degeneration is an important pathophysiological event of the central nervous system that is collectively characterized by demyelination, oligodendrocyte loss, axonal degeneration and parenchymal changes that can result in sensory, motor, autonomic and cognitive impairments. White matter degeneration can occur due to a variety of causes including trauma, neurotoxic exposure, insufficient blood flow, neuroinflammation, and developmental and inherited neuropathies. Regardless of the etiology, the degeneration processes share similar pathologic features. In recent years, a plethora of cellular and molecular mechanisms have been identified for axon and oligodendrocyte degeneration including oxidative damage, calcium overload, neuroinflammatory events, activation of proteases, depletion of adenosine triphosphate and energy supply. Extensive efforts have been also made to develop neuroprotective and neuroregenerative approaches for white matter repair. However, less progress has been achieved in this area mainly due to the complexity and multifactorial nature of the degeneration processes. Here, we will provide a timely review on the current understanding of the cellular and molecular mechanisms of white matter degeneration and will also discuss recent pharmacological and cellular therapeutic approaches for white matter protection as well as axonal regeneration, oligodendrogenesis and remyelination.
Collapse
Affiliation(s)
- Narjes Shahsavani
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Hardeep Kataria
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
41
|
Al-Griw MA, Salter MG, Wood IC. Inhibition of ionotropic GluR signaling preserves oligodendrocyte lineage and myelination in an ex vivo rat model of white matter ischemic injury. Acta Neurobiol Exp (Wars) 2021; 81:233-248. [PMID: 34672294 DOI: 10.21307/ane-2021-022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Preterm infants have a high risk of neonatal white matter injury (WMI). WMI leads to reduced myelination, inflammation, and clinical neurodevelopmental deficits for which there are no effective treatments. Ionotropic glutamate receptor (iGluR) induced excitotoxicity contributes to oligodendrocyte (OL) lineage cell loss and demyelination in brain models of neonatal and adult WMI. Here, we hypothesized that simulated ischemia (oxygen‑glucose deprivation) damages white matter via activation of iGluR signaling, and that iGluR inhibition shortly after WMI could mitigate OL loss, enhance myelination, and suppress inflammation in an ex vivo cerebellar slice model of developing WMI. Inhibition of iGluR signaling by a combined block of AMPA and NMDA receptors, shortly after simulated ischemia, restored myelination, reduced apoptotic OLs, and enhanced OL precursor cell proliferation and maturation as well as upregulated expression of transcription factors regulating OL development and remyelination. Our findings demonstrate that iGluR inhibition post‑injury alleviates OL lineage cell loss and inflammation and promotes myelination upon developing WMI. The findings may help to develop therapeutic interventions for the WMI treatment.
Collapse
Affiliation(s)
- Mohamed A Al-Griw
- Department of Histology and Genetics, Faculty of Medicine, University of Tripoli, Tripoli, Libya;
| | | | - Ian C Wood
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
42
|
Aghajanian S, Teymoori-Rad M, Molaverdi G, Mozhgani SH. Immunopathogenesis and Cellular Interactions in Human T-Cell Leukemia Virus Type 1 Associated Myelopathy/Tropical Spastic Paraparesis. Front Microbiol 2020; 11:614940. [PMID: 33414779 PMCID: PMC7783048 DOI: 10.3389/fmicb.2020.614940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/17/2020] [Indexed: 01/15/2023] Open
Abstract
HTLV-1-Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP) is a neuropathological disorder in 1–3% of individuals infected with Human T-lymphotropic virus 1 (HTLV-1). This condition is characterized by progressive spastic lower limb weakness and paralysis, lower back pain, bladder incontinence, and mild sensory disturbances resembling spinal forms of multiple sclerosis. This disease also causes chronic disability and is therefore associated with high health burden in areas where HTLV-1 infection is endemic. Despite various efforts in understanding the virus and discovery of novel diagnostic markers, and cellular and viral interactions, HAM/TSP management is still unsatisfactory and mainly focused on symptomatic alleviation, and it hasn’t been explained why only a minority of the virus carriers develop HAM/TSP. This comprehensive review focuses on host and viral factors in association with immunopathology of the disease in hope of providing new insights for drug therapies or other forms of intervention.
Collapse
Affiliation(s)
- Sepehr Aghajanian
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Majid Teymoori-Rad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghazale Molaverdi
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Sayed-Hamidreza Mozhgani
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.,Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
43
|
Dupré N, Derambure C, Le Dieu-Lugon B, Hauchecorne M, Detroussel Y, Gonzalez BJ, Marret S, Leroux P. Hypoxia-Ischemia Induced Age-Dependent Gene Transcription Effects at Two Development Stages in the Neonate Mouse Brain. Front Mol Neurosci 2020; 13:587815. [PMID: 33343297 PMCID: PMC7738628 DOI: 10.3389/fnmol.2020.587815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022] Open
Abstract
Human brain lesions in the perinatal period result in life-long neuro-disabilities impairing sensory-motor, cognitive, and behavior functions for years. Topographical aspects of brain lesions depend on gestational age at the time of insult in preterm or term infants and impaired subsequent steps of brain development and maturation. In mice, the Rice-Vannucci procedure of neonate hypoxia-ischemia (HI) was used at 5 days (P5) or P10, mimicking the development of 30 week-gestation fetus/preterm newborn, or full-term infant, respectively. Transcription response to HI was assessed at 3, 6, 12, and 24 h after insult, using micro-array technology. Statistical Pathway and Gene Ontology terms enrichments were investigated using DAVID®, Revigo® and Ingenuity Pathway Analysis (IPA®) to identify a core of transcription response to HI, age-specific regulations, and interactions with spontaneous development. Investigations were based on direction, amplitude, and duration of responses, basal expression, and annotation. Five major points deserve attention; (i) inductions exceeded repressions (60/40%) at both ages, (ii) only 20.3% (393/1938 records) were common to P5 and P10 mice, (iii) at P5, HI effects occurred early and decreased 24 h after insult whereas they were delayed at P10 and increased 24 h after insult, (iv) common responses at P5 and P10 involved inflammation, immunity, apoptosis, and angiogenesis. (v) age-specific effects occurred with higher statistical significance at P5 than at P10. Transient repression of 12 genes encoding cholesterol biosynthesis enzymes was transiently observed 12 h after HI at P5. Synaptogenesis appeared inhibited at P5 while induced at P10, showing reciprocal effects on glutamate receptors. Specific involvement of Il-1 (interleukin-1) implicated in the firing of inflammation was observed at P10. This study pointed out age-differences in HI responses kinetics, e.g., a long-lasting inflammatory response at P10 compared to P5. Whether the specific strong depression of cholesterol biosynthesis genes that could account for white matter-specific vulnerability at P5 or prevent delayed inflammation needs further investigation. Determination of putative involvement of Il-1 and the identification of upstream regulators involved in the delayed inflammation firing at P10 appears promising routes of research in the understandings of age-dependent vulnerabilities in the neonatal brain.
Collapse
Affiliation(s)
- Nicolas Dupré
- INSERM-UMR 1245, Team 4, Epigenetics and Physiopathology of Neurodevelopmental Brain Lesions, Faculté de Médecine et de Pharmacie, Normandie Université, Rouen, France
| | - Céline Derambure
- INSERM-UMR 1245, Team 1, Genetic Predisposition to Cancer, Faculté de Médecine et de Pharmacie, Normandie Université, Rouen, France
| | - Bérénice Le Dieu-Lugon
- INSERM-UMR 1245, Team 4, Epigenetics and Physiopathology of Neurodevelopmental Brain Lesions, Faculté de Médecine et de Pharmacie, Normandie Université, Rouen, France
| | - Michelle Hauchecorne
- INSERM-UMR 1245, Team 4, Epigenetics and Physiopathology of Neurodevelopmental Brain Lesions, Faculté de Médecine et de Pharmacie, Normandie Université, Rouen, France
| | - Yannick Detroussel
- CURIB, Faculté des Sciences et Techniques, Normandie Université, Mont-Saint-Aignan, France
| | - Bruno J. Gonzalez
- INSERM-UMR 1245, Team 4, Epigenetics and Physiopathology of Neurodevelopmental Brain Lesions, Faculté de Médecine et de Pharmacie, Normandie Université, Rouen, France
| | - Stéphane Marret
- INSERM-UMR 1245, Team 4, Epigenetics and Physiopathology of Neurodevelopmental Brain Lesions, Faculté de Médecine et de Pharmacie, Normandie Université, Rouen, France
- Neonatal Pediatrics, Intensive Care Unit and Neuropediatrics, Rouen University Hospital, Rouen, France
| | - Philippe Leroux
- INSERM-UMR 1245, Team 4, Epigenetics and Physiopathology of Neurodevelopmental Brain Lesions, Faculté de Médecine et de Pharmacie, Normandie Université, Rouen, France
| |
Collapse
|
44
|
Panlilio JM, Aluru N, Hahn ME. Developmental Neurotoxicity of the Harmful Algal Bloom Toxin Domoic Acid: Cellular and Molecular Mechanisms Underlying Altered Behavior in the Zebrafish Model. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:117002. [PMID: 33147070 PMCID: PMC7641300 DOI: 10.1289/ehp6652] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
BACKGROUND Harmful algal blooms (HABs) produce potent neurotoxins that threaten human health, but current regulations may not be protective of sensitive populations. Early life exposure to low levels of the HAB toxin domoic acid (DomA) produces long-lasting behavioral deficits in rodent and primate models; however, the mechanisms involved are unknown. The zebrafish is a powerful in vivo vertebrate model system for exploring cellular processes during development and thus may help to elucidate mechanisms of DomA developmental neurotoxicity. OBJECTIVES We used the zebrafish model to investigate how low doses of DomA affect the developing nervous system, including windows of susceptibility to DomA exposure, structural and molecular changes in the nervous system, and the link to behavioral alterations. METHODS To identify potential windows of susceptibility, DomA (0.09-0.18 ng) was delivered to zebrafish through caudal vein microinjection during distinct periods in early neurodevelopment. Following exposure, structural and molecular targets were identified using live imaging of transgenic fish and RNA sequencing. To assess the functional consequences of exposures, we quantified startle behavior in response to acoustic/vibrational stimuli. RESULTS Larvae exposed to DomA at 2 d postfertilization (dpf), but not at 1 or 4 dpf, showed consistent deficits in startle behavior at 7 dpf, including lower responsiveness and altered kinematics. Similarly, myelination in the spinal cord was disorganized after exposure at 2 dpf but not 1 or 4 dpf. Time-lapse imaging revealed disruption of the initial stages of myelination. DomA exposure at 2 dpf down-regulated genes required for maintaining myelin structure and the axonal cytoskeleton. DISCUSSION These results in zebrafish reveal a developmental window of susceptibility to DomA-induced behavioral deficits and identify altered gene expression and disrupted myelin structure as possible mechanisms. The results establish a zebrafish model for investigating the mechanisms of developmental DomA toxicity, including effects with potential relevance to exposed sensitive human populations. https://doi.org/10.1289/EHP6652.
Collapse
Affiliation(s)
- Jennifer M. Panlilio
- Biology Department, Woods Hole Oceanographic Institution (WHOI), Woods Hole, Massachusetts, USA
- Massachusetts Institute of Technology (MIT)–WHOI Joint Graduate Program in Oceanography and Oceanographic Engineering, Department of Earth, Atmospheric and Planetary Sciences, MIT, Cambridge, Massachusetts, USA
- Woods Hole Center for Oceans and Human Health, WHOI, Woods Hole, Massachusetts, USA
| | - Neelakanteswar Aluru
- Biology Department, Woods Hole Oceanographic Institution (WHOI), Woods Hole, Massachusetts, USA
- Woods Hole Center for Oceans and Human Health, WHOI, Woods Hole, Massachusetts, USA
| | - Mark E. Hahn
- Biology Department, Woods Hole Oceanographic Institution (WHOI), Woods Hole, Massachusetts, USA
- Woods Hole Center for Oceans and Human Health, WHOI, Woods Hole, Massachusetts, USA
| |
Collapse
|
45
|
Zhang X, Peng K, Zhang X. The Function of the NMDA Receptor in Hypoxic-Ischemic Encephalopathy. Front Neurosci 2020; 14:567665. [PMID: 33117117 PMCID: PMC7573650 DOI: 10.3389/fnins.2020.567665] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/28/2020] [Indexed: 12/17/2022] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) is one of the main forms of neonatal brain injury which could lead to neonatal disability or even cause neonatal death. Therefore, HIE strongly affects the health of newborns and brings heavy burden to the family and society. It has been well studied that N-methyl-D-aspartate (NMDA) receptors are involved in the excitotoxicity induced by hypoxia ischemia in adult brain. Recently, it has been shown that the NMDA receptor also plays important roles in HIE. In the present review, we made a summary of the molecular mechanism of NMDA receptor in the pathological process of HIE, focusing on the distinct role of GluN2A- and GluN2B-containing NMDA receptor subtypes and aiming to provide some insights into the clinical treatment and drug development of HIE.
Collapse
|
46
|
Signal alterations of glutamate-weighted chemical exchange saturation transfer MRI in lysophosphatidylcholine-induced demyelination in the rat brain. Brain Res Bull 2020; 164:334-338. [PMID: 32926951 DOI: 10.1016/j.brainresbull.2020.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 08/10/2020] [Accepted: 09/05/2020] [Indexed: 01/07/2023]
Abstract
PURPOSE To compare in vivo glutamate-weighted chemical exchange saturation transfer (GluCEST-weighted) signal changes between in a rat model of demyelinated multiple sclerosis and control groups. PROCEDURES Using a pre-clinical 7 T magnetic resonance imaging (MRI) system, CEST imaging was applied to a toxin (lysophosphatidylcholine; LPC) induced rat (MSLPC) and control (CTRL) groups to compare in vivo glutamate signal changes. The GluCEST-weighted signals were analyzed based on the magnetization transfer ratio asymmetry approach at 3.0 ppm on the region-of-interests (ROIs) in the corpus callosum and hippocampus at each hemispheric region. RESULTS GluCEST-weighted signals were significantly changed between the CTRL and MSLPC groups, while higher glutamate signals were indicated in the MSLPC than the CTRL group ([MSLPC / CTRL]; hippocampus: [6.159 ± 0.790 / 4.336 ± 0.446] and corpus callosum: [-3.545 ± 0.945 / -6.038 ± 0.620], all p = 0.001). CONCLUSIONS Our results show increased GluCEST-weighted signals in the LPC-induced demyelination rat brain compared with control. GluCEST-weighted imaging could be a useful tool for defining a biomarker to estimate the glutamate-related metabolism in MS.
Collapse
|
47
|
Hnilicová P, Štrbák O, Kolisek M, Kurča E, Zeleňák K, Sivák Š, Kantorová E. Current Methods of Magnetic Resonance for Noninvasive Assessment of Molecular Aspects of Pathoetiology in Multiple Sclerosis. Int J Mol Sci 2020; 21:E6117. [PMID: 32854318 PMCID: PMC7504207 DOI: 10.3390/ijms21176117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/13/2020] [Accepted: 08/21/2020] [Indexed: 12/29/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease with expanding axonal and neuronal degeneration in the central nervous system leading to motoric dysfunctions, psychical disability, and cognitive impairment during MS progression. The exact cascade of pathological processes (inflammation, demyelination, excitotoxicity, diffuse neuro-axonal degeneration, oxidative and metabolic stress, etc.) causing MS onset is still not fully understood, although several accompanying biomarkers are particularly suitable for the detection of early subclinical changes. Magnetic resonance (MR) methods are generally considered to be the most sensitive diagnostic tools. Their advantages include their noninvasive nature and their ability to image tissue in vivo. In particular, MR spectroscopy (proton 1H and phosphorus 31P MRS) is a powerful analytical tool for the detection and analysis of biomedically relevant metabolites, amino acids, and bioelements, and thus for providing information about neuro-axonal degradation, demyelination, reactive gliosis, mitochondrial and neurotransmitter failure, cellular energetic and membrane alternation, and the imbalance of magnesium homeostasis in specific tissues. Furthermore, the MR relaxometry-based detection of accumulated biogenic iron in the brain tissue is useful in disease evaluation. The early description and understanding of the developing pathological process might be critical for establishing clinically effective MS-modifying therapies.
Collapse
Affiliation(s)
- Petra Hnilicová
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (O.Š.); (M.K.)
| | - Oliver Štrbák
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (O.Š.); (M.K.)
| | - Martin Kolisek
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (O.Š.); (M.K.)
| | - Egon Kurča
- Clinic of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (E.K.); (Š.S.); (E.K.)
| | - Kamil Zeleňák
- Clinic of Radiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia;
| | - Štefan Sivák
- Clinic of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (E.K.); (Š.S.); (E.K.)
| | - Ema Kantorová
- Clinic of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (E.K.); (Š.S.); (E.K.)
| |
Collapse
|
48
|
Bauduin SEEC, van der Pal Z, Pereira AM, Meijer OC, Giltay EJ, van der Wee NJA, van der Werff SJA. Cortical thickness abnormalities in long-term remitted Cushing's disease. Transl Psychiatry 2020; 10:293. [PMID: 32826851 PMCID: PMC7443132 DOI: 10.1038/s41398-020-00980-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 01/06/2023] Open
Abstract
Long-term remitted Cushing's disease (LTRCD) patients commonly continue to present persistent psychological and cognitive deficits, and alterations in brain function and structure. Although previous studies have conducted gray matter volume analyses, assessing cortical thickness and surface area of LTRCD patients may offer further insight into the neuroanatomical substrates of Cushing's disease. Structural 3T magnetic resonance images were obtained from 25 LTRCD patients, and 25 age-, gender-, and education-matched healthy controls (HCs). T1-weighted images were segmented using FreeSurfer software to extract mean cortical thickness and surface area values of 68 cortical gray matter regions and two whole hemispheres. Paired sample t tests explored differences between the anterior cingulate cortex (ACC; region of interest), and the whole brain. Validated scales assessed psychiatric symptomatology, self-reported cognitive functioning, and disease severity. After correction for multiple comparisons, ROI analyses indicated that LTRCD-patients showed reduced cortical thickness of the left caudal ACC and the right rostral ACC compared to HCs. Whole-brain analyses indicated thinner cortices of the left caudal ACC, left cuneus, left posterior cingulate cortex, right rostral ACC, and bilateral precuneus compared to HCs. No cortical surface area differences were identified. Cortical thickness of the left caudal ACC and left cuneus were inversely associated with anxiety symptoms, depressive symptoms, and disease duration, although certain associations did not persist after correction for multiple testing. In six of 68 regions examined, LTRCD patients had reduced cortical thickness in comparison to HCs. Cortical thickness of the left caudal ACC was inversely associated with disease duration. This suggests that prolonged and excessive exposure to glucocorticoids may be related to cortical thinning of brain structures involved in emotional and cognitive processing.
Collapse
Affiliation(s)
- S E E C Bauduin
- Department of Psychiatry, Leiden University Medical Center (LUMC), Leiden, The Netherlands.
- Leiden Institute for Brain and Cognition, Leiden, The Netherlands.
| | - Z van der Pal
- Department of Psychiatry, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - A M Pereira
- Leiden Institute for Brain and Cognition, Leiden, The Netherlands
- Department of Endocrinology and Metabolic Diseases and Center for Endocrine Tumors, Leiden University Medical Center, Leiden, The Netherlands
| | - O C Meijer
- Leiden Institute for Brain and Cognition, Leiden, The Netherlands
- Department of Endocrinology and Metabolic Diseases and Center for Endocrine Tumors, Leiden University Medical Center, Leiden, The Netherlands
| | - E J Giltay
- Department of Psychiatry, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - N J A van der Wee
- Department of Psychiatry, Leiden University Medical Center (LUMC), Leiden, The Netherlands
- Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| | - S J A van der Werff
- Department of Psychiatry, Leiden University Medical Center (LUMC), Leiden, The Netherlands
- Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| |
Collapse
|
49
|
Schepici G, Silvestro S, Bramanti P, Mazzon E. Caffeine: An Overview of Its Beneficial Effects in Experimental Models and Clinical Trials of Parkinson's Disease. Int J Mol Sci 2020; 21:ijms21134766. [PMID: 32635541 PMCID: PMC7369844 DOI: 10.3390/ijms21134766] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/30/2020] [Accepted: 07/03/2020] [Indexed: 12/20/2022] Open
Abstract
Parkinson’s Disease (PD) is a neurological disease characterized by the progressive degeneration of the nigrostriatal dopaminergic pathway with consequent loss of neurons in the substantia nigra pars compacta and dopamine depletion. The cytoplasmic inclusions of α-synuclein (α-Syn), known as Lewy bodies, are the cytologic hallmark of PD. The presence of α-Syn aggregates causes mitochondrial degeneration, responsible for the increase in oxidative stress and consequent neurodegeneration. PD is a progressive disease that shows a complicated pathogenesis. The current therapies are used to alleviate the symptoms of the disease without changing its clinical course. Recently, phytocompounds with neuroprotective effects and antioxidant properties such as caffeine have aroused the interest of researchers. The purpose of this review is to summarize the preclinical studies present in the literature and clinical trials recorded in ClinicalTrial.gov, aimed at illustrating the effects of caffeine used as a nutraceutical compound combined with the current PD therapies. Therefore, the preventive effects of caffeine in the neurodegeneration of dopaminergic neurons encourage the use of this alkaloid as a supplement to reduce the progress of the PD.
Collapse
|
50
|
Villa González M, Vallés-Saiz L, Hernández IH, Avila J, Hernández F, Pérez-Alvarez MJ. Focal cerebral ischemia induces changes in oligodendrocytic tau isoforms in the damaged area. Glia 2020; 68:2471-2485. [PMID: 32515854 DOI: 10.1002/glia.23865] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 12/31/2022]
Abstract
Ischemic stroke is a major cause of death and the first leading cause of long-term disability worldwide. The only therapeutic strategy available to date is reperfusion and not all the patients are suitable for this treatment. Blood flow blockage or reduction leads to considerable brain damage, affecting both gray and white matter. The detrimental effects of ischemia have been studied extensively in the former but not in the latter. Previous reports indicate that preservation of white matter integrity reduces deleterious effect of ischemia on the brain. Oligodendrocytes are sensitive to ischemic damage, however, some reports demonstrate that oligodendrogenesis occurs after ischemia. These glial cells have a complex cytoskeletal network, including tau, that plays a key role to proper myelination. 4R-Tau/3R-Tau, which differ in the presence/absence of Exon 10, are found in oligodendrocytes; but the precise role of each isoform is not understood. Using permanent middle cerebral artery occlusion model and immunofluorescence, we demonstrate that cerebral ischemia induces an increase in 3R-Tau versus 4R-Tau in oligodendrocytes in the damaged area. In addition, cellular distribution of Tau undergoes a change after ischemia, with some oligodendrocytic processes showing positive staining for 3R-Tau. This occurs simultaneously with the amelioration of neurological damage in ischemic rats. We propose that ischemia triggers an endogenous mechanism involving 3R-Tau, that induces colonization of the ischemic damaged area by oligodendrocytes in an attempt to myelinate-injured axons. Understanding the molecular mechanism of this phenomenon could pave the way for the design of therapeutic strategies that exploit glial cells for the treatment of ischemia.
Collapse
Affiliation(s)
- Mario Villa González
- Departamento de Biología (Fisiología Animal), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain.,Departamento de Neuropatología Molecular CSIC-UAM, Centro de Biología Molecular "Severo Ochoa", Madrid, Spain
| | - Laura Vallés-Saiz
- Departamento de Neuropatología Molecular CSIC-UAM, Centro de Biología Molecular "Severo Ochoa", Madrid, Spain
| | - Ivó H Hernández
- Departamento de Biología (Fisiología Animal), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain.,Departamento de Neuropatología Molecular CSIC-UAM, Centro de Biología Molecular "Severo Ochoa", Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Jesús Avila
- Departamento de Neuropatología Molecular CSIC-UAM, Centro de Biología Molecular "Severo Ochoa", Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Félix Hernández
- Departamento de Neuropatología Molecular CSIC-UAM, Centro de Biología Molecular "Severo Ochoa", Madrid, Spain.,Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - María José Pérez-Alvarez
- Departamento de Biología (Fisiología Animal), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain.,Departamento de Neuropatología Molecular CSIC-UAM, Centro de Biología Molecular "Severo Ochoa", Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|