1
|
Wu X, Yang Z, Zou J, Gao H, Shao Z, Li C, Lei P. Protein kinases in neurodegenerative diseases: current understandings and implications for drug discovery. Signal Transduct Target Ther 2025; 10:146. [PMID: 40328798 PMCID: PMC12056177 DOI: 10.1038/s41392-025-02179-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/03/2025] [Accepted: 02/12/2025] [Indexed: 05/08/2025] Open
Abstract
Neurodegenerative diseases (e.g., Alzheimer's, Parkinson's, Huntington's disease, and Amyotrophic Lateral Sclerosis) are major health threats for the aging population and their prevalences continue to rise with the increasing of life expectancy. Although progress has been made, there is still a lack of effective cures to date, and an in-depth understanding of the molecular and cellular mechanisms of these neurodegenerative diseases is imperative for drug development. Protein phosphorylation, regulated by protein kinases and protein phosphatases, participates in most cellular events, whereas aberrant phosphorylation manifests as a main cause of diseases. As evidenced by pharmacological and pathological studies, protein kinases are proven to be promising therapeutic targets for various diseases, such as cancers, central nervous system disorders, and cardiovascular diseases. The mechanisms of protein phosphatases in pathophysiology have been extensively reviewed, but a systematic summary of the role of protein kinases in the nervous system is lacking. Here, we focus on the involvement of protein kinases in neurodegenerative diseases, by summarizing the current knowledge on the major kinases and related regulatory signal transduction pathways implicated in diseases. We further discuss the role and complexity of kinase-kinase networks in the pathogenesis of neurodegenerative diseases, illustrate the advances of clinical applications of protein kinase inhibitors or novel kinase-targeted therapeutic strategies (such as antisense oligonucleotides and gene therapy) for effective prevention and early intervention.
Collapse
Affiliation(s)
- Xiaolei Wu
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhangzhong Yang
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jinjun Zou
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huile Gao
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Zhenhua Shao
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chuanzhou Li
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Park G, Jin Z, Lu H, Du J. Clearing Amyloid-Beta by Astrocytes: The Role of Rho GTPases Signaling Pathways as Potential Therapeutic Targets. Brain Sci 2024; 14:1239. [PMID: 39766438 PMCID: PMC11674268 DOI: 10.3390/brainsci14121239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 01/11/2025] Open
Abstract
Astrocytes, vital support cells in the central nervous system (CNS), are crucial for maintaining neuronal health. In neurodegenerative diseases such as Alzheimer's disease (AD), astrocytes play a key role in clearing toxic amyloid-β (Aβ) peptides. Aβ, a potent neuroinflammatory trigger, stimulates astrocytes to release excessive glutamate and inflammatory factors, exacerbating neuronal dysfunction and death. Recent studies underscore the role of Rho GTPases-particularly RhoA, Rac1, and Cdc42-in regulating Aβ clearance and neuroinflammation. These key regulators of cytoskeletal dynamics and intracellular signaling pathways function independently through distinct mechanisms but may converge to modulate inflammatory responses. Their influence on astrocyte structure and function extends to regulating endothelin-converting enzyme (ECE) activity, which modulates vasoactive peptides such as endothelin-1 (ET-1). Through these processes, Rho GTPases impact vascular permeability and neuroinflammation, contributing to AD pathogenesis by affecting both Aβ clearance and cerebrovascular interactions. Understanding the interplay between Rho GTPases and the cerebrovascular system provides fresh insights into AD pathogenesis. Targeting Rho GTPase signaling pathways in astrocytes could offer a promising therapeutic approach to mitigate neuroinflammation, enhance Aβ clearance, and slow disease progression, ultimately improving cognitive outcomes in AD patients.
Collapse
Affiliation(s)
- Gyeongah Park
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Zhen Jin
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Hui Lu
- Department of Pharmacology and Physiology, School of Medicine, The George Washington University, Washington, DC 20037, USA;
| | - Jianyang Du
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| |
Collapse
|
3
|
Ye Q, Li X, Gao W, Gao J, Zheng L, Zhang M, Yang F, Li H. Role of Rho-associated kinases and their inhibitor fasudil in neurodegenerative diseases. Front Neurosci 2024; 18:1481983. [PMID: 39628659 PMCID: PMC11613983 DOI: 10.3389/fnins.2024.1481983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 11/01/2024] [Indexed: 12/06/2024] Open
Abstract
Neurodegenerative diseases (NDDs) are prevalent in the elderly. The pathogenesis of NDDs is complex, and currently, there is no cure available. With the increase in aging population, over 20 million people are affected by common NDDs alone (Alzheimer's disease and Parkinson's disease). Therefore, NDDs have profound negative impacts on patients, their families, and society, making them a major global health concern. Rho-associated kinases (ROCKs) belong to the serine/threonine protein kinases family, which modulate diverse cellular processes (e.g., apoptosis). ROCKs may elevate the risk of various NDDs (including Huntington's disease, Parkinson's disease, and Alzheimer's disease) by disrupting synaptic plasticity and promoting inflammatory responses. Therefore, ROCK inhibitors have been regarded as ideal therapies for NDDs in recent years. Fasudil, one of the classic ROCK inhibitor, is a potential drug for treating NDDs, as it repairs nerve damage and promotes axonal regeneration. Thus, the current review summarizes the relationship between ROCKs and NDDs and the mechanism by which fasudil inhibits ROCKs to provide new ideas for the treatment of NDDs.
Collapse
Affiliation(s)
- Qiuyan Ye
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xue Li
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wei Gao
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
- Jiangsu College of Nursing, Huaian, China
| | - Jiayue Gao
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Liping Zheng
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Miaomiao Zhang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Fengge Yang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Honglin Li
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
4
|
Koch JC, Leha A, Bidner H, Cordts I, Dorst J, Günther R, Zeller D, Braun N, Metelmann M, Corcia P, De La Cruz E, Weydt P, Meyer T, Großkreutz J, Soriani MH, Attarian S, Weishaupt JH, Weyen U, Kuttler J, Zurek G, Rogers ML, Feneberg E, Deschauer M, Neuwirth C, Wuu J, Ludolph AC, Schmidt J, Remane Y, Camu W, Friede T, Benatar M, Weber M, Lingor P. Safety, tolerability, and efficacy of fasudil in amyotrophic lateral sclerosis (ROCK-ALS): a phase 2, randomised, double-blind, placebo-controlled trial. Lancet Neurol 2024; 23:1133-1146. [PMID: 39424560 DOI: 10.1016/s1474-4422(24)00373-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/18/2024] [Accepted: 08/29/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Fasudil is a small molecule inhibitor of Rho-associated kinase (ROCK) and is approved for the treatment of subarachnoid haemorrhage. In preclinical studies, fasudil has been shown to attenuate neurodegeneration, modulate neuroinflammation, and foster axonal regeneration. We aimed to investigate the safety, tolerability, and efficacy of fasudil in patients with amyotrophic lateral sclerosis. METHODS ROCK-ALS was a phase 2, randomised, double-blind, placebo-controlled trial conducted at 19 amyotrophic lateral sclerosis centres in Germany, France, and Switzerland. Individuals (aged 18-80 years) with at least probable amyotrophic lateral sclerosis (as per the revised El Escorial criteria), a disease duration of 6-24 months, and a slow vital capacity greater than 65% of predicted normal were eligible for inclusion. Patients were randomly assigned (1:1:1) to receive 30 mg (15 mg twice daily) or 60 mg (30 mg twice daily) fasudil or matched placebo intravenously for 20 days over a 4-week period. Follow-up assessments were performed at 45, 90, and 180 days after treatment initiation. The co-primary endpoints were safety until day 180 (defined as the proportion without drug-related serious adverse events) and tolerability during the treatment period (defined as the proportion who did not discontinue treatment due to suspected drug-related adverse events). The primary analyses were carried out in the intention-to-treat population, which included all participants who entered the treatment phase. This trial is registered at ClinicalTrials.gov (NCT03792490) and Eudra-CT (2017-003676-31) and is now completed. FINDINGS Between Feb 20, 2019, and April 20, 2022, 120 participants were enrolled and randomised; two individuals assigned fasudil 30 mg withdrew consent before the baseline visit. Thus, the intention-to-treat population comprised 35 in the fasudil 30 mg group, 39 in the fasudil 60 mg group, and 44 in the placebo group. The estimated proportion without a drug-related serious adverse event was 1·00 (95% CI 0·91 to 1·00) with placebo, 1·00 (0·89 to 1·00) with fasudil 30 mg, and 1·00 (0·90 to 1·00) with fasudil 60 mg; the difference in proportions was 0·00 (95% CI -0·11 to 0·10; p>0·99) for fasudil 30 mg versus placebo and 0·00 (-0·10 to 0·10; p>0·99) for fasudil 60 mg versus placebo. Treatment tolerability (the estimated proportion who did not discontinue) was 0·93 (95% CI 0·81 to 0·99) with placebo, 1·00 (0·90 to 1·00) with fasudil 30 mg, and 0·90 (0·76 to 0·97) with fasudil 60 mg; the difference in proportions was 0·07 (95% CI -0·05 to 0·20; p=0·25) for fasudil 30 mg versus placebo, and -0·03 (-0·18 to 0·10; p=0·70) for fasudil 60 mg versus placebo. Eight deaths occurred: two in the placebo group, four in the fasudil 30 mg group, and two in the fasudil 60 mg group. The most common serious adverse events were respiratory failure (seven events), gastrostomy (five events), pneumonia (four events), and dysphagia (four events). No serious adverse events or deaths were attributed to study treatment. Adverse events, which were mainly related to disease progression, occurred in 139 participants in the placebo group, 108 in the fasudil 30 mg group, and 105 in the fasudil 60 mg group. INTERPRETATION Fasudil was well tolerated and safe in people with amyotrophic lateral sclerosis. The effect of fasudil on efficacy outcomes should be explored in larger clinical trials with a longer treatment duration, oral administration, and potentially higher dose of the trial drug. FUNDING Framework of the E-Rare Joint Transnational Call 2016 "Clinical research for new therapeutic uses of already existing molecules (repurposing) in rare diseases".
Collapse
Affiliation(s)
- Jan C Koch
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Andreas Leha
- Department of Medical Statistics, University Medical Center Göttingen, Göttingen, Germany
| | - Helen Bidner
- Münchner Studienzentrum, Technical University Munich, School of Medicine and Health, Munich, Germany
| | - Isabell Cordts
- Department of Neurology, Klinikum rechts der Isar, Technical University Munich, School of Medicine and Health, Munich, Germany
| | | | - René Günther
- Department of Neurology, University Hospital Carl Gustav Carus, Technical University Dresden, Dresden, Germany; German Centre for Neurodegenerative Diseases, Site Dresden, Dresden, Germany
| | - Daniel Zeller
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Nathalie Braun
- Neuromuscular Diseases Unit/ALS Clinic, Cantonal Hospital St Gallen, St Gallen, Switzerland
| | - Moritz Metelmann
- Department of Neurology, University Hospital Leipzig, Leipzig, Germany
| | - Philippe Corcia
- Centre de Référence Maladie Rare (CRMR) SLA et les Autres Maladies du Neurone Moteur (FILSLAN), Tours, France; Faculté de Médecine, INSERM U1253, "iBrain Imaging Brain and Neuropsychiatry" Université François-Rabelais de Tours, Tours, France
| | - Elisa De La Cruz
- ALS centre, CHU Gui de Chauliac, Univ Montpellier, INM, INSERM, Montpellier, France
| | - Patrick Weydt
- Department for Neuromuscular Disorders, University Hospital Bonn, Bonn, Germany; German Centre for Neurodegenerative Diseases, Site Bonn, Bonn, Germany
| | - Thomas Meyer
- Department of Neurology, Center for ALS and Other Motor Neuron Disorders, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Julian Großkreutz
- Department of Neurology, Jena University Hospital, Jena, Germany; Precision Neurology of Neuromuscular and Motoneuron Diseases, University of Lübeck, Lübeck, Germany
| | - Marie-Hélène Soriani
- ALS Reference Centre, Pasteur 2 Hospital, CHU de Nice, Université Côte d'Azur, UMR2CA, Nice, France
| | - Shahram Attarian
- Neuromuscular Disease and ALS Reference Center, Timone University Hospital, Aix-Marseille University, CHU Timone, Marseille, France
| | - Jochen H Weishaupt
- Division for Neurodegenerative Diseases, Neurology Department, Mannheim Center for Translational Medicine, University Medicine Mannheim, Heidelberg University, Mannheim, Germany
| | - Ute Weyen
- Department of Neurology, Ruhr-University Bochum, BG-Kliniken Bergmannsheil, Bochum, Germany
| | - Josua Kuttler
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | | | - Mary-Louise Rogers
- MND&NR Lab, FHMRI, College of Medicine and Public health, Flinders University, Bedford Park, Adelaide, SA, Australia
| | - Emily Feneberg
- Department of Neurology, Klinikum rechts der Isar, Technical University Munich, School of Medicine and Health, Munich, Germany
| | - Marcus Deschauer
- Department of Neurology, Klinikum rechts der Isar, Technical University Munich, School of Medicine and Health, Munich, Germany
| | - Christoph Neuwirth
- Neuromuscular Diseases Unit/ALS Clinic, Cantonal Hospital St Gallen, St Gallen, Switzerland
| | - Joanne Wuu
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Albert C Ludolph
- Department of Neurology, Ulm University, Ulm, Germany; German Center for Neurodegenerative Diseases, Site Ulm, Ulm, Germany
| | - Jens Schmidt
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany; Department of Neurology and Pain Treatment, Neuromuscular Center, Center for Translational Medicine, Immanuel University Hospital Rüdersdorf, Brandenburg Medical School Theodor Fontane, Rüdersdorf bei Berlin, Berlin, Germany; Faculty of Health Sciences Brandenburg, Brandenburg Medical School Theodor Fontane, Rüdersdorf bei Berlin, Berlin, Germany
| | - Yvonne Remane
- Central Pharmacy, Leipzig University Medical Center, Leipzig, Germany
| | - William Camu
- ALS centre, CHU Gui de Chauliac, Univ Montpellier, INM, INSERM, Montpellier, France
| | - Tim Friede
- Department of Medical Statistics, University Medical Center Göttingen, Göttingen, Germany
| | - Michael Benatar
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Markus Weber
- Neuromuscular Diseases Unit/ALS Clinic, Cantonal Hospital St Gallen, St Gallen, Switzerland
| | - Paul Lingor
- Department of Neurology, Klinikum rechts der Isar, Technical University Munich, School of Medicine and Health, Munich, Germany; German Center for Neurodegenerative Diseases, Site Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
5
|
Tian Z, Zhang Y, Xu J, Yang Q, Hu D, Feng J, Gai C. Primary cilia in Parkinson's disease: summative roles in signaling pathways, genes, defective mitochondrial function, and substantia nigra dopaminergic neurons. Front Aging Neurosci 2024; 16:1451655. [PMID: 39364348 PMCID: PMC11447156 DOI: 10.3389/fnagi.2024.1451655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/02/2024] [Indexed: 10/05/2024] Open
Abstract
Primary cilia (PC) are microtubules-based, independent antennal-like sensory organelles, that are seen in most vertebrate cells of different types, including astrocytes and neurons. They send signals to cells to control many physiological and cellular processes by detecting changes in the extracellular environment. Parkinson's disease (PD), a neurodegenerative disease that progresses over time, is primarily caused by a gradual degradation of the dopaminergic pathway in the striatum nigra, which results in a large loss of neurons in the substantia nigra compact (SNpc) and a depletion of dopamine (DA). PD samples have abnormalities in the structure and function of PC. The alterations contribute to the cause, development, and recovery of PD via influencing signaling pathways (SHH, Wnt, Notch-1, α-syn, and TGFβ), genes (MYH10 and LRRK2), defective mitochondrial function, and substantia nigra dopaminergic neurons. Thus, restoring the normal structure and physiological function of PC and neurons in the brain are effective treatment for PD. This review summarizes the function of PC in neurodegenerative diseases and explores the pathological mechanisms caused by PC alterations in PD, in order to provide references and ideas for future research.
Collapse
Affiliation(s)
- Zijiao Tian
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yixin Zhang
- College of Acupuncture and Massage, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Xu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qianwen Yang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Die Hu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Feng
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Cong Gai
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
6
|
Ye J, Wang J, Zhao J, Xia M, Wang H, Sun L, Zhang WB. RhoA/ROCK-TAZ Axis regulates bone formation within calvarial trans-sutural distraction osteogenesis. Cell Signal 2024; 121:111300. [PMID: 39004327 DOI: 10.1016/j.cellsig.2024.111300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/29/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Craniofacial skeletal deformities can be addressed by applying tensile force to sutures to prompt sutural bone formation. The intricate process of mechanical modulation in craniofacial sutures involves complex biomechanical signal transduction. The small GTPase Ras homolog gene family member A (RhoA) functions as a key mechanotransduction protein, orchestrating the dynamic assembly of the cytoskeleton by activating the Rho-associated coiled-coil containing protein kinase (ROCK). Transcriptional coactivator with PDZ-binding motif (TAZ) serves as a crucial mediator in the regulation of genes and the orchestration of biological functions within the mechanotransduction signaling pathway. However, the role of RhoA/ROCK-TAZ in trans-sutural distraction osteogenesis has not been reported. METHODS We utilized pre-osteoblast-specific RhoA deletion mice to establish an in vivo calvarial trans-sutural distraction model and an in vitro mechanical stretch model for pre-osteoblasts isolated from neonatal mice. Micro-CT and histological staining were utilized to detect the formation of new bone in the sagittal suture of the skull as well as the activation of RhoA, Osterix and TAZ. The activation of ROCK-limk-cofilin and the nuclear translocation of TAZ in pre-osteoblasts under mechanical tension were detected through Western blot, qRT-PCR, and immunofluorescence. RESULTS The osteogenic differentiation of pre-osteoblasts was facilitated by mechanical tension through the activation of RhoA and Rho-associated kinase (ROCK), while ablation of RhoA impaired osteogenesis by inhibiting pre-osteoblast differentiation after suture expansion. Furthermore, inhibiting RhoA expression could block tensile-stimulated nuclear translocation of TAZ by preventing F-actin assembly through ROCK-LIM-domain kinase (LIMK)-cofilin pathway. In addition, the TAZ agonist TM-25659 could attenuate impaired osteogenesis caused by ablation of RhoA in pre-osteoblasts by increasing TAZ nuclear accumulation. CONCLUSIONS This study demonstrates that mechanical stretching promotes the osteogenic differentiation of pre-osteoblasts in trans-sutural distraction osteogenesis, and this process is mediated by the RhoA/ROCK-TAZ signaling axis. Overall, our results may provide an insight for potential treatment strategies for craniosynostosis patients through trans-sutural distraction osteogenesis.
Collapse
Affiliation(s)
- Junjie Ye
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Jialu Wang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing 210000, China
| | - Jing Zhao
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Meng Xia
- Changsha Stomatological Hospital, Changsha, Hunan 410000, China
| | - Hua Wang
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Lian Sun
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, China.
| | - Wei-Bing Zhang
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, China; The Fourth Affiliated Hospital of Soochow University, Medical Center of Soochow University, Suzhou 215000, China.
| |
Collapse
|
7
|
Wolff AW, Peine J, Höfler J, Zurek G, Hemker C, Lingor P. SAFE-ROCK: A Phase I Trial of an Oral Application of the ROCK Inhibitor Fasudil to Assess Bioavailability, Safety, and Tolerability in Healthy Participants. CNS Drugs 2024; 38:291-302. [PMID: 38416402 PMCID: PMC10980656 DOI: 10.1007/s40263-024-01070-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/09/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND The intravenous (IV) formulation of Rho-kinase (ROCK) inhibitor fasudil has been approved for the treatment of subarachnoid haemorrhage since 1995. Additionally, fasudil has shown promising preclinical results for various chronic diseases, including neurodegenerative diseases such as amyotrophic lateral sclerosis, Parkinson's disease, and dementia, in which long-term intravenous (IV) administration might not be suitable. OBJECTIVE The objective of this study was to assess the absolute bioavailability of oral, in comparison to IV, application of the approved formulation of fasudil (ERIL®) and to evaluate the safety and tolerability of the oral application of fasudil. METHODS This was a phase I, single-center, open-label, randomized, two period cross-over clinical trial in healthy women and men. By applying a cross-over design, each subject served as their own control. Two treatments were investigated, separated by a wash out phase of at least 3 days. Oral fasudil was administered once on day 1 to assess pharmacokinetics and three times on day 2, at an interval of 8 ± 1 h, to assess safety and gastrointestinal tolerability. For pharmacometrics of IV fasudil, it was administered once on day 1. Plasma profiles of fasudil and its active metabolite hydroxyfasudil after oral or IV administration were measured by liquid chromatography electrospray tandem mass spectrometry. Tolerability was assessed as proportion of subjects without significant drug intolerance, and safety was assessed by the proportion of subjects without clinical or laboratory treatment-associated serious adverse events. Gastrointestinal safety was assessed by applying the gastrointestinal symptom rating scale (GSRS). RESULTS Fourteen subjects aged 30-70 years were included in this trial. After oral administration, fasudil concentrations in blood were mostly very low [1.4 g/L; coefficient of variation (CV) 41.0%]. After IV application, the peak concentration was 100.6 µg/L (CV 74.2%); however, a high variance in peak concentrations were assessed for both treatments. The maximal concentrations of hydroxyfasudil in blood were similar after oral and IV treatment [111.6 µg/L (CV 24.1%) and 108.4 µg/L (CV 19.7%), respectively]. Exposure of hydroxyfasudil (assessed as AUC0-tz) differed between both treatments, with 449 µg × h/L after IV treatment and 309 µg × h/L after oral treatment. Therefore, the absolute bioavailability of hydroxyfasudil after the oral treatment was approximately 69% of the IV treatment. No serious adverse events (SAEs) occurred during this trial, and good tolerability of oral fasudil (90 mg/day) was documented. CONCLUSIONS Oral fasudil was generally well tolerated in the studied population, and no safety concerns were identified. However, systemic bioavailability of oral hydroxyfasudil corresponded to 69%, and dose adjustments need to considered. The results presented here lay grounds for future trials of fasudil in chronic diseases, which require an oral long-term application. This trial was registered with EudraCT (no. 2019-001805-26).
Collapse
Affiliation(s)
- Andreas W Wolff
- Clinical Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Jörg Peine
- Institute for Clinical Research, AtoZ-CRO GmbH, Overath, Germany
| | | | | | - Claus Hemker
- CTC North GmbH & Co. KG at the University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Paul Lingor
- Clinical Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
8
|
Yan J, Wang YM, Hellwig A, Bading H. TwinF interface inhibitor FP802 stops loss of motor neurons and mitigates disease progression in a mouse model of ALS. Cell Rep Med 2024; 5:101413. [PMID: 38325382 PMCID: PMC10897598 DOI: 10.1016/j.xcrm.2024.101413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 10/16/2023] [Accepted: 01/14/2024] [Indexed: 02/09/2024]
Abstract
Toxic signaling by extrasynaptic NMDA receptors (eNMDARs) is considered an important promoter of amyotrophic lateral sclerosis (ALS) disease progression. To exploit this therapeutically, we take advantage of TwinF interface (TI) inhibition, a pharmacological principle that, contrary to classical NMDAR pharmacology, allows selective elimination of eNMDAR-mediated toxicity via disruption of the NMDAR/TRPM4 death signaling complex while sparing the vital physiological functions of synaptic NMDARs. Post-disease onset treatment of the SOD1G93A ALS mouse model with FP802, a modified TI inhibitor with a safe pharmacology profile, stops the progressive loss of motor neurons in the spinal cord, resulting in a reduction in the serum biomarker neurofilament light chain, improved motor performance, and an extension of life expectancy. FP802 also effectively blocks NMDA-induced death of neurons in ALS patient-derived forebrain organoids. These results establish eNMDAR toxicity as a key player in ALS pathogenesis. TI inhibitors may provide an effective treatment option for ALS patients.
Collapse
Affiliation(s)
- Jing Yan
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany
| | - Yu Meng Wang
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany
| | - Andrea Hellwig
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany
| | - Hilmar Bading
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany.
| |
Collapse
|
9
|
Wolff AW, Bidner H, Remane Y, Zimmer J, Aarsland D, Rascol O, Wyse RK, Hapfelmeier A, Lingor P. Protocol for a randomized, placebo-controlled, double-blind phase IIa study of the safety, tolerability, and symptomatic efficacy of the ROCK-inhibitor Fasudil in patients with Parkinson's disease (ROCK-PD). Front Aging Neurosci 2024; 16:1308577. [PMID: 38419648 PMCID: PMC10899319 DOI: 10.3389/fnagi.2024.1308577] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/01/2024] [Indexed: 03/02/2024] Open
Abstract
Background The Rho-kinase (ROCK) inhibitor Fasudil has shown symptomatic and disease-modifying effects in Parkinson's disease (PD) models in vitro and in vivo. In Japan, Fasudil has been approved for the treatment of subarachnoid haemorrhage since 1995 and shows a favourable safety profile. Objectives/design To investigate the safety, tolerability, and symptomatic efficacy of ROCK-inhibitor Fasudil in comparison to placebo in a randomized, national, multicenter, double-blind phase IIa study in patients with PD. Methods/analysis We plan to include 75 patients with at least 'probable' PD (MDS criteria), Hoehn and Yahr stages 1-3, and age 30-80 years in 13 German study sites. Patients must be non-fluctuating and their response to PD medication must have been stable for 6 weeks. Patients will be randomly allocated to treatment with the oral investigational medicinal product (IMP) containing either Fasudil in two dosages, or placebo, for a total of 22 days. As primary analysis, non-inferiority of low/high dose of Fasudil on the combined endpoint consisting of occurrence of intolerance and/or treatment-related serious adverse events (SAEs) over 22 days will be assessed in a sequential order, starting with the lower dose. Secondary endpoints will include tolerability alone over 22 days and occurrence of treatment-related SAEs (SARs) over 22 and 50 days and will be compared on group level. Additional secondary endpoints include efficacy on motor and non-motor symptoms, measured on established scales, and will be assessed at several timepoints. Biomaterial will be collected to determine pharmacokinetics of Fasudil and its active metabolite, and to evaluate biomarkers of neurodegeneration. Ethics/registration/discussion After positive evaluation by the competent authority and the ethics committee, patient recruitment started in the 3rd quarter of 2023. ROCK-PD is registered with Eudra-CT (2021-003879-34) and clinicaltrials.gov (NCT05931575). Results of this trial can pave way for conducting extended-duration studies assessing both symptomatic efficacy and disease-modifying properties of Fasudil.
Collapse
Affiliation(s)
- Andreas W Wolff
- Department of Neurology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Helen Bidner
- Münchner Studienzentrum (MSZ), School of Medicine, Technical University of Munich, Munich, Germany
| | - Yvonne Remane
- Department of Clinical Pharmacy and Drug Safety Center, Leipzig University, Leipzig, Germany
| | - Janine Zimmer
- Department of Clinical Pharmacy and Drug Safety Center, Leipzig University, Leipzig, Germany
| | - Dag Aarsland
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- Centre for Age-Related Research, Stavanger University Hospital, Stavanger, Norway
| | - Olivier Rascol
- Clinical Investigation Center CIC1436, Departments of Clinical Pharmacology and Neurosciences, University of Toulouse 3, University Hospital of Toulouse, INSERM, Toulouse, France
| | | | - Alexander Hapfelmeier
- Institute of AI and Informatics in Medicine, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of General Practice and Health Services Research, School of Medicine, Technical University of Munich, Munich, Germany
| | - Paul Lingor
- Department of Neurology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
10
|
Saini A, Chawla PA. Breaking barriers with tofersen: Enhancing therapeutic opportunities in amyotrophic lateral sclerosis. Eur J Neurol 2024; 31:e16140. [PMID: 37975798 PMCID: PMC11235929 DOI: 10.1111/ene.16140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/13/2023] [Accepted: 10/21/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND AND PURPOSE Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that primarily affects adults, characterized by muscle weakness resulting from the specific death of motor neurons in the spinal cord and brain. The pathogenesis of ALS is associated with the accumulation of mutant superoxide dismutase 1 (SOD1) proteins and neurofilaments in motor neurons, highlighting the critical need for disease-modifying treatments. Current therapies, such as riluzole and edaravone, provide only symptomatic relief. Recently, tofersen gained approval from the US FDA under the brand name Qalsody as the first and only gene therapy for ALS, addressing a significant pathological aspect of the disease. METHODS We carried out a literature survey using PubMed, Scopus, National Institutes of Health, and Biogen for articles published in the English language concerned with "amyotrophic lateral sclerosis", pathophysiology, current treatment, treatment under clinical trial, and the newly approved drug "tofersen" and its detailed summary. RESULTS A comprehensive review of the literature on the pathophysiology, available treatment, and newly approved drug for this condition revealed convincing evidence that we are now able to better monitor and treat ALS. CONCLUSIONS Although treatment of ALS is difficult, the newly approved drug tofersen has emerged as a potential therapy to slow down the progression of ALS by targeting SOD1 mRNA, representing a significant advancement in the treatment of ALS.
Collapse
Affiliation(s)
- Aniket Saini
- Department of Pharmaceutical AnalysisISF College of PharmacyMogaPunjabIndia
| | - Pooja A. Chawla
- Department of Pharmaceutical AnalysisISF College of PharmacyMogaPunjabIndia
| |
Collapse
|
11
|
He D, Xu Y, Liu M, Cui L. The Inflammatory Puzzle: Piecing together the Links between Neuroinflammation and Amyotrophic Lateral Sclerosis. Aging Dis 2024; 15:96-114. [PMID: 37307819 PMCID: PMC10796096 DOI: 10.14336/ad.2023.0519] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/19/2023] [Indexed: 06/14/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that has a complex genetic basis. Through advancements in genetic screening, researchers have identified more than 40 mutant genes associated with ALS, some of which impact immune function. Neuroinflammation, with abnormal activation of immune cells and excessive production of inflammatory cytokines in the central nervous system, significantly contributes to the pathophysiology of ALS. In this review, we examine recent evidence on the involvement of ALS-associated mutant genes in immune dysregulation, with a specific focus on the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway and N6-methyladenosine (m6A)-mediated immune regulation in the context of neurodegeneration. We also discuss the perturbation of immune cell homeostasis in both the central nervous system and peripheral tissues in ALS. Furthermore, we explore the advancements made in the emerging genetic and cell-based therapies for ALS. This review underscores the complex relationship between ALS and neuroinflammation, highlighting the potential to identify modifiable factors for therapeutic intervention. A deeper understanding of the connection between neuroinflammation and the risk of ALS is crucial for advancing effective treatments for this debilitating disorder.
Collapse
Affiliation(s)
- Di He
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Yan Xu
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Mingsheng Liu
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Liying Cui
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| |
Collapse
|
12
|
Groh J, Abdelwahab T, Kattimani Y, Hörner M, Loserth S, Gudi V, Adalbert R, Imdahl F, Saliba AE, Coleman M, Stangel M, Simons M, Martini R. Microglia-mediated demyelination protects against CD8 + T cell-driven axon degeneration in mice carrying PLP defects. Nat Commun 2023; 14:6911. [PMID: 37903797 PMCID: PMC10616105 DOI: 10.1038/s41467-023-42570-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 10/16/2023] [Indexed: 11/01/2023] Open
Abstract
Axon degeneration and functional decline in myelin diseases are often attributed to loss of myelin but their relation is not fully understood. Perturbed myelinating glia can instigate chronic neuroinflammation and contribute to demyelination and axonal damage. Here we study mice with distinct defects in the proteolipid protein 1 gene that develop axonal damage which is driven by cytotoxic T cells targeting myelinating oligodendrocytes. We show that persistent ensheathment with perturbed myelin poses a risk for axon degeneration, neuron loss, and behavioral decline. We demonstrate that CD8+ T cell-driven axonal damage is less likely to progress towards degeneration when axons are efficiently demyelinated by activated microglia. Mechanistically, we show that cytotoxic T cell effector molecules induce cytoskeletal alterations within myelinating glia and aberrant actomyosin constriction of axons at paranodal domains. Our study identifies detrimental axon-glia-immune interactions which promote neurodegeneration and possible therapeutic targets for disorders associated with myelin defects and neuroinflammation.
Collapse
Affiliation(s)
- Janos Groh
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany.
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany.
| | - Tassnim Abdelwahab
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Yogita Kattimani
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Michaela Hörner
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
- Department of Neurology, Section of Neurodegeneration, University Hospital Heidelberg, Heidelberg, Germany
| | - Silke Loserth
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Viktoria Gudi
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Robert Adalbert
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
- Department of Anatomy, Histology and Embryology, University of Szeged, Szeged, Hungary
- Institute of Health Sciences Education, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Fabian Imdahl
- Helmholtz Institute for RNA-based Infection Research, Helmholtz-Center for Infection Research, Würzburg, Germany
| | - Antoine-Emmanuel Saliba
- Helmholtz Institute for RNA-based Infection Research, Helmholtz-Center for Infection Research, Würzburg, Germany
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
| | - Michael Coleman
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| | - Martin Stangel
- Department of Neurology, Hannover Medical School, Hannover, Germany
- Translational Medicine, Novartis Institute of Biomedical Research, Basel, Switzerland
| | - Mikael Simons
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
- German Center for Neurodegenerative Diseases, Munich, Germany
- Munich Cluster of Systems Neurology, Munich, Germany
| | - Rudolf Martini
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany.
| |
Collapse
|
13
|
Guan X, Wei D, Liang Z, Xie L, Wang Y, Huang Z, Wu J, Pang T. FDCA Attenuates Neuroinflammation and Brain Injury after Cerebral Ischemic Stroke. ACS Chem Neurosci 2023; 14:3839-3854. [PMID: 37768739 DOI: 10.1021/acschemneuro.3c00456] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023] Open
Abstract
Ischemic stroke is a deleterious cerebrovascular disease with few therapeutic options, and its functional recovery is highly associated with the integrity of the blood-brain barrier and neuroinflammation. The Rho-associated coiled-coil containing protein kinase (ROCK) inhibitor fasudil (F) and the pyruvate dehydrogenase kinase (PDK) inhibitor dichloroacetate (DCA) have been demonstrated to exhibit neuroprotection in a series of neurological disorders. Hence, we synthesized and biologically examined the new salt fasudil dichloroacetate (FDCA) and validated that FDCA was eligible for attenuating ischemic volume and neurological deficits in the rat transient middle cerebral artery occlusion (tMCAO) model. Additionally, FDCA exerted superior effects than fasudil and dichloroacetate alone or in combination in reducing cerebral ischemic injury. Particularly, FDCA could maintain the blood-brain barrier (BBB) integrity by inhibiting matrix metalloproteinase 9 (MMP-9) protein expression and the degradation of zonula occludens (ZO-1) and Occludin protein. Meanwhile, FDCA could mitigate the neuroinflammation induced by microglia. The in vivo and in vitro experiments further demonstrated that FDCA disrupted the phosphorylations of myosin phosphatase target subunit 1 (MYPT1), mitogen-activated protein kinase (MAPK) cascade, including p38 and c-Jun N-terminal kinase (JNK), and pyruvate dehydrogenase (PDH) and limited excessive lactic acid metabolites, resulting in inhibition of BBB disruption and neuroinflammation. In addition, FDCA potently mitigated inflammatory response in human monocytes isolated from ischemic stroke patients, which provides the possibilities of a clinical translation perspective. Overall, these findings provided a therapeutic potential for FDCA as a candidate agent for ischemic stroke and other neurological diseases associated with BBB disruption and neuroinflammation.
Collapse
Affiliation(s)
- Xin Guan
- State Key Laboratory of Natural Medicines, Center of Drug Discovery, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Dasha Wei
- State Key Laboratory of Natural Medicines, Center of Drug Discovery, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Zhuangzhuang Liang
- State Key Laboratory of Natural Medicines, Center of Drug Discovery, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Luyang Xie
- State Key Laboratory of Natural Medicines, Center of Drug Discovery, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Yifang Wang
- Department of Neurology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, P. R. China
| | - Zhangjian Huang
- State Key Laboratory of Natural Medicines, Center of Drug Discovery, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jin Wu
- Department of Neurology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, P. R. China
| | - Tao Pang
- State Key Laboratory of Natural Medicines, Center of Drug Discovery, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
14
|
Benarroch E. What Is the Role of the Rho-ROCK Pathway in Neurologic Disorders? Neurology 2023; 101:536-543. [PMID: 37722862 PMCID: PMC10516277 DOI: 10.1212/wnl.0000000000207779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 09/20/2023] Open
|
15
|
Killick R, Elliott C, Ribe E, Broadstock M, Ballard C, Aarsland D, Williams G. Neurodegenerative Disease Associated Pathways in the Brains of Triple Transgenic Alzheimer's Model Mice Are Reversed Following Two Weeks of Peripheral Administration of Fasudil. Int J Mol Sci 2023; 24:11219. [PMID: 37446396 PMCID: PMC10342807 DOI: 10.3390/ijms241311219] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
The pan Rho-associated coiled-coil-containing protein kinase (ROCK) inhibitor fasudil acts as a vasodilator and has been used as a medication for post-cerebral stroke for the past 29 years in Japan and China. More recently, based on the involvement of ROCK inhibition in synaptic function, neuronal survival, and processes associated with neuroinflammation, it has been suggested that the drug may be repurposed for neurodegenerative diseases. Indeed, fasudil has demonstrated preclinical efficacy in many neurodegenerative disease models. To facilitate an understanding of the wider biological processes at play due to ROCK inhibition in the context of neurodegeneration, we performed a global gene expression analysis on the brains of Alzheimer's disease model mice treated with fasudil via peripheral IP injection. We then performed a comparative analysis of the fasudil-driven transcriptional profile with profiles generated from a meta-analysis of multiple neurodegenerative diseases. Our results show that fasudil tends to drive gene expression in a reverse sense to that seen in brains with post-mortem neurodegenerative disease. The results are most striking in terms of pathway enrichment analysis, where pathways perturbed in Alzheimer's and Parkinson's diseases are overwhelmingly driven in the opposite direction by fasudil treatment. Thus, our results bolster the repurposing potential of fasudil by demonstrating an anti-neurodegenerative phenotype in a disease context and highlight the potential of in vivo transcriptional profiling of drug activity.
Collapse
Affiliation(s)
- Richard Killick
- Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Denmark Hill, London SE5 8AF, UK; (R.K.); (E.R.); (D.A.)
- College of Medicine and Health, University of Exeter, Exeter EX1 2UL, UK;
| | - Christina Elliott
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
| | - Elena Ribe
- Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Denmark Hill, London SE5 8AF, UK; (R.K.); (E.R.); (D.A.)
| | - Martin Broadstock
- Wolfson CARD, King’s College London, London Bridge, London SE1 1UL, UK;
| | - Clive Ballard
- College of Medicine and Health, University of Exeter, Exeter EX1 2UL, UK;
| | - Dag Aarsland
- Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Denmark Hill, London SE5 8AF, UK; (R.K.); (E.R.); (D.A.)
| | - Gareth Williams
- Wolfson CARD, King’s College London, London Bridge, London SE1 1UL, UK;
| |
Collapse
|
16
|
You Y, Zhu K, Wang J, Liang Q, Li W, Wang L, Guo B, Zhou J, Feng X, Shi J. ROCK inhibitor: Focus on recent updates. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
17
|
Wei C, Zhu Y, Li S, Chen W, Li C, Jiang S, Xu R. Identification of an immune-related gene prognostic index for predicting prognosis, immunotherapeutic efficacy, and candidate drugs in amyotrophic lateral sclerosis. Front Cell Neurosci 2022; 16:993424. [PMID: 36589282 PMCID: PMC9798295 DOI: 10.3389/fncel.2022.993424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Rationale and objectives Considering the great insufficiency in the survival prediction and therapy of amyotrophic lateral sclerosis (ALS), it is fundamental to determine an accurate survival prediction for both the clinical practices and the design of treatment trials. Therefore, there is a need for more accurate biomarkers that can be used to identify the subtype of ALS which carries a high risk of progression to guide further treatment. Methods The transcriptome profiles and clinical parameters of a total of 561 ALS patients in this study were analyzed retrospectively by analysis of four public microarray datasets. Based on the results from a series of analyses using bioinformatics and machine learning, immune signatures are able to be used to predict overall survival (OS) and immunotherapeutic response in ALS patients. Apart from other comprehensive analyses, the decision tree and the nomogram, based on the immune signatures, were applied to guide individual risk stratification. In addition, molecular docking methodology was employed to screen potential small molecular to which the immune signatures might response. Results Immune was determined as a major risk factor contributing to OS among various biomarkers of ALS patients. As compared with traditional clinical features, the immune-related gene prognostic index (IRGPI) had a significantly higher capacity for survival prediction. The determination of risk stratification and assessment was optimized by integrating the decision tree and the nomogram. Moreover, the IRGPI may be used to guide preventative immunotherapy for patients at high risks for mortality. The administration of 2MIU IL2 injection in the short-term was likely to be beneficial for the prolongment of survival time, whose dosage should be reduced to 1MIU if the long-term therapy was required. Besides, a useful clinical application for the IRGPI was to screen potential compounds by the structure-based molecular docking methodology. Conclusion Ultimately, the immune-derived signatures in ALS patients were favorable biomarkers for the prediction of survival probabilities and immunotherapeutic responses, and the promotion of drug development.
Collapse
Affiliation(s)
- Caihui Wei
- Department of Neurology, Jiangxi Provincial People’s Hospital, Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Yu Zhu
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Shu Li
- Department of Neurology, Jiangxi Provincial People’s Hospital, Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Wenzhi Chen
- Department of Neurology, Jiangxi Provincial People’s Hospital, Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Cheng Li
- Department of Neurology, Jiangxi Provincial People’s Hospital, Medical College of Nanchang University, Nanchang, Jiangxi, China,Department of Neurology, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Shishi Jiang
- Department of Neurology, Jiangxi Provincial People’s Hospital, Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Renshi Xu
- Department of Neurology, Jiangxi Provincial People’s Hospital, Medical College of Nanchang University, Nanchang, Jiangxi, China,Department of Neurology, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China,*Correspondence: Renshi Xu, ;
| |
Collapse
|
18
|
Fujimura M. Fasudil, a ROCK inhibitor, prevents neuropathic pain in Minamata disease model rats. Toxicol Lett 2022; 371:38-45. [PMID: 36244566 DOI: 10.1016/j.toxlet.2022.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/24/2022] [Accepted: 10/11/2022] [Indexed: 02/13/2023]
Abstract
Methylmercury (MeHg), an environmental toxicant, is known to cause sensory impairment by inducing neurodegeneration of sensory nervous systems. However, in recent years, it has been revealed that neuropathic pain occurs in the chronic phase of MeHg poisoning, that is, in current Minamata disease patients. Our recent study using Minamata disease model rats demonstrated that MeHg-mediated neurodegeneration in the sensory nervous system may induce inflammatory microglia production in the dorsal horn of the spinal cord and subsequent somatosensory cortical rewiring, leading to neuropathic pain. We hypothesized that inhibition of the Rho-associated coiled coil-forming protein kinase (ROCK) pathway could prevent MeHg-induced neuropathic pain because the ROCK pathway is known to be involved in inducing the production of inflammatory microglia. Here, we showed for the first time that Fasudil, a ROCK inhibitor, can prevent neuropathic pain in Minamata disease model rats. In this model, Fasudil significantly suppressed nerve injury-induced inflammatory microglia production in the dorsal horn of the spinal cord and prevented subsequent somatosensory cortical rewiring. These results suggest that the ROCK pathway is involved in the onset and development of neuropathic pain in the chronic phase of Minamata disease, and that its inhibition is effective in pain prevention.
Collapse
Affiliation(s)
- Masatake Fujimura
- Department of Basic Medical Sciences, National Institute for Minamata Disease, 4058-18 Hama, Minamata, Kumamoto 867-0008, Japan.
| |
Collapse
|
19
|
RhoA Signaling in Neurodegenerative Diseases. Cells 2022; 11:cells11091520. [PMID: 35563826 PMCID: PMC9103838 DOI: 10.3390/cells11091520] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/25/2022] [Accepted: 04/29/2022] [Indexed: 02/04/2023] Open
Abstract
Ras homolog gene family member A (RhoA) is a small GTPase of the Rho family involved in regulating multiple signal transduction pathways that influence a diverse range of cellular functions. RhoA and many of its downstream effector proteins are highly expressed in the nervous system, implying an important role for RhoA signaling in neurons and glial cells. Indeed, emerging evidence points toward a role of aberrant RhoA signaling in neurodegenerative diseases such as Parkinson’s disease, Alzheimer’s disease, Huntington’s disease, and amyotrophic lateral sclerosis. In this review, we summarize the current knowledge of RhoA regulation and downstream cellular functions with an emphasis on the role of RhoA signaling in neurodegenerative diseases and the therapeutic potential of RhoA inhibition in neurodegeneration.
Collapse
|
20
|
Wang M, Kang L, Wang Y, Yang B, Zhang C, Lu Y, Kang L. Microglia in motor neuron disease: Signaling evidence from last 10 years. Dev Neurobiol 2022; 82:625-638. [PMID: 36309345 PMCID: PMC9828749 DOI: 10.1002/dneu.22905] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 07/09/2022] [Accepted: 10/19/2022] [Indexed: 01/30/2023]
Abstract
Motor neuron disease (MND), including amyotrophic lateral sclerosis, spinal muscular atrophy and others, involved the upper or lower motor neurons selective loss, is characterized by neurodegeneration and neuroinflammation, in conjunction with microglia. We summarized that pathways and key mediators are associated with microglia, such as fractalkine signaling, purinergic signaling, NF-κB signaling, p38 MAPK signaling, TREM2-APOE signaling, ROCK signaling, C1q signaling, and Ion channel, which are involved in the activation, proliferation, and inflammation of microglia. This review aims to identify the microglia-related molecular target and explore potential treatment strategies for MND based on that target.
Collapse
Affiliation(s)
- Min‐Jia Wang
- School of Sports Medicine and HealthChengdu Sports UniversityChengduChina
| | - Lu Kang
- School of Sports Medicine and HealthChengdu Sports UniversityChengduChina
| | - Yao‐Zheng Wang
- School of Sports Medicine and HealthChengdu Sports UniversityChengduChina
| | - Bi‐Ru Yang
- Department of Postpartum RehabilitationSichuan Jinxin Women & Children HospitalChengduChina
| | - Chun Zhang
- School of Sports Medicine and HealthChengdu Sports UniversityChengduChina
| | - Yu‐Feng Lu
- School of Sports Medicine and HealthChengdu Sports UniversityChengduChina
| | - Liang Kang
- Institute of Sports Medicine and HealthChengdu Sports UniversityChengduChina
| |
Collapse
|
21
|
Duman JG, Blanco FA, Cronkite CA, Ru Q, Erikson KC, Mulherkar S, Saifullah AB, Firozi K, Tolias KF. Rac-maninoff and Rho-vel: The symphony of Rho-GTPase signaling at excitatory synapses. Small GTPases 2022; 13:14-47. [PMID: 33955328 PMCID: PMC9707551 DOI: 10.1080/21541248.2021.1885264] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 01/15/2023] Open
Abstract
Synaptic connections between neurons are essential for every facet of human cognition and are thus regulated with extreme precision. Rho-family GTPases, molecular switches that cycle between an active GTP-bound state and an inactive GDP-bound state, comprise a critical feature of synaptic regulation. Rho-GTPases are exquisitely controlled by an extensive suite of activators (GEFs) and inhibitors (GAPs and GDIs) and interact with many different signalling pathways to fulfill their roles in orchestrating the development, maintenance, and plasticity of excitatory synapses of the central nervous system. Among the mechanisms that control Rho-GTPase activity and signalling are cell surface receptors, GEF/GAP complexes that tightly regulate single Rho-GTPase dynamics, GEF/GAP and GEF/GEF functional complexes that coordinate multiple Rho-family GTPase activities, effector positive feedback loops, and mutual antagonism of opposing Rho-GTPase pathways. These complex regulatory mechanisms are employed by the cells of the nervous system in almost every step of development, and prominently figure into the processes of synaptic plasticity that underlie learning and memory. Finally, misregulation of Rho-GTPases plays critical roles in responses to neuronal injury, such as traumatic brain injury and neuropathic pain, and in neurodevelopmental and neurodegenerative disorders, including intellectual disability, autism spectrum disorder, schizophrenia, and Alzheimer's Disease. Thus, decoding the mechanisms of Rho-GTPase regulation and function at excitatory synapses has great potential for combatting many of the biggest current challenges in mental health.
Collapse
Affiliation(s)
- Joseph G. Duman
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Francisco A. Blanco
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Integrative Molecular and Biomedical Science Graduate Program, Baylor College of Medicine, Houston, TX, USA
| | - Christopher A. Cronkite
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Qin Ru
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Kelly C. Erikson
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Shalaka Mulherkar
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Ali Bin Saifullah
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Karen Firozi
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Kimberley F. Tolias
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
22
|
Liu E, Karpf L, Bohl D. Neuroinflammation in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia and the Interest of Induced Pluripotent Stem Cells to Study Immune Cells Interactions With Neurons. Front Mol Neurosci 2022; 14:767041. [PMID: 34970118 PMCID: PMC8712677 DOI: 10.3389/fnmol.2021.767041] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022] Open
Abstract
Inflammation is a shared hallmark between amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). For long, studies were conducted on tissues of post-mortem patients and neuroinflammation was thought to be only bystander result of the disease with the immune system reacting to dying neurons. In the last two decades, thanks to improving technologies, the identification of causal genes and the development of new tools and models, the involvement of inflammation has emerged as a potential driver of the diseases and evolved as a new area of intense research. In this review, we present the current knowledge about neuroinflammation in ALS, ALS-FTD, and FTD patients and animal models and we discuss reasons of failures linked to therapeutic trials with immunomodulator drugs. Then we present the induced pluripotent stem cell (iPSC) technology and its interest as a new tool to have a better immunopathological comprehension of both diseases in a human context. The iPSC technology giving the unique opportunity to study cells across differentiation and maturation times, brings the hope to shed light on the different mechanisms linking neurodegeneration and activation of the immune system. Protocols available to differentiate iPSC into different immune cell types are presented. Finally, we discuss the interest in studying monocultures of iPS-derived immune cells, co-cultures with neurons and 3D cultures with different cell types, as more integrated cellular approaches. The hope is that the future work with human iPS-derived cells helps not only to identify disease-specific defects in the different cell types but also to decipher the synergistic effects between neurons and immune cells. These new cellular tools could help to find new therapeutic approaches for all patients with ALS, ALS-FTD, and FTD.
Collapse
Affiliation(s)
- Elise Liu
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Léa Karpf
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Delphine Bohl
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| |
Collapse
|
23
|
Immune Signaling Kinases in Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD). Int J Mol Sci 2021; 22:ijms222413280. [PMID: 34948077 PMCID: PMC8707599 DOI: 10.3390/ijms222413280] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common neurodegenerative disorder of motor neurons in adults, with a median survival of 3-5 years after appearance of symptoms, and with no curative treatment currently available. Frontotemporal dementia (FTD) is also an adult-onset neurodegenerative disease, displaying not only clinical overlap with ALS, but also significant similarities at genetic and pathologic levels. Apart from the progressive loss of neurons and the accumulation of protein inclusions in certain cells and tissues, both disorders are characterized by chronic inflammation mediated by activated microglia and astrocytes, with an early and critical impact of neurodegeneration along the disease course. Despite the progress made in the last two decades in our knowledge around these disorders, the underlying molecular mechanisms of such non-cell autonomous neuronal loss still need to be clarified. In particular, immune signaling kinases are currently thought to have a key role in determining the neuroprotective or neurodegenerative nature of the central and peripheral immune states in health and disease. This review provides a comprehensive and updated view of the proposed mechanisms, therapeutic potential, and ongoing clinical trials of immune-related kinases that have been linked to ALS and/or FTD, by covering the more established TBK1, RIPK1/3, RACK I, and EPHA4 kinases, as well as other emerging players in ALS and FTD immune signaling.
Collapse
|
24
|
Stern S, Hilton BJ, Burnside ER, Dupraz S, Handley EE, Gonyer JM, Brakebusch C, Bradke F. RhoA drives actin compaction to restrict axon regeneration and astrocyte reactivity after CNS injury. Neuron 2021; 109:3436-3455.e9. [PMID: 34508667 DOI: 10.1016/j.neuron.2021.08.014] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 07/16/2021] [Accepted: 08/11/2021] [Indexed: 12/26/2022]
Abstract
An inhibitory extracellular milieu and neuron-intrinsic processes prevent axons from regenerating in the adult central nervous system (CNS). Here we show how the two aspects are interwoven. Genetic loss-of-function experiments determine that the small GTPase RhoA relays extracellular inhibitory signals to the cytoskeleton by adapting mechanisms set in place during neuronal polarization. In response to extracellular inhibitors, neuronal RhoA restricts axon regeneration by activating myosin II to compact actin and, thereby, restrain microtubule protrusion. However, astrocytic RhoA restricts injury-induced astrogliosis through myosin II independent of microtubules by activating Yes-activated protein (YAP) signaling. Cell-type-specific deletion in spinal-cord-injured mice shows that neuronal RhoA activation prevents axon regeneration, whereas astrocytic RhoA is beneficial for regenerating axons. These data demonstrate how extracellular inhibitors regulate axon regeneration, shed light on the capacity of reactive astrocytes to be growth inhibitory after CNS injury, and reveal cell-specific RhoA targeting as a promising therapeutic avenue.
Collapse
Affiliation(s)
- Sina Stern
- Laboratory of Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Venusberg Campus 1/99, 53127 Bonn, Germany
| | - Brett J Hilton
- Laboratory of Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Venusberg Campus 1/99, 53127 Bonn, Germany
| | - Emily R Burnside
- Laboratory of Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Venusberg Campus 1/99, 53127 Bonn, Germany
| | - Sebastian Dupraz
- Laboratory of Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Venusberg Campus 1/99, 53127 Bonn, Germany
| | - Emily E Handley
- Laboratory of Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Venusberg Campus 1/99, 53127 Bonn, Germany
| | - Jessica M Gonyer
- Laboratory of Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Venusberg Campus 1/99, 53127 Bonn, Germany
| | - Cord Brakebusch
- Biotech Research and Innovation Centre, Biomedical Institute, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Frank Bradke
- Laboratory of Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Venusberg Campus 1/99, 53127 Bonn, Germany.
| |
Collapse
|
25
|
Scheiblich H, Dansokho C, Mercan D, Schmidt SV, Bousset L, Wischhof L, Eikens F, Odainic A, Spitzer J, Griep A, Schwartz S, Bano D, Latz E, Melki R, Heneka MT. Microglia jointly degrade fibrillar alpha-synuclein cargo by distribution through tunneling nanotubes. Cell 2021; 184:5089-5106.e21. [PMID: 34555357 PMCID: PMC8527836 DOI: 10.1016/j.cell.2021.09.007] [Citation(s) in RCA: 203] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 06/05/2021] [Accepted: 09/03/2021] [Indexed: 12/21/2022]
Abstract
Microglia are the CNS resident immune cells that react to misfolded proteins through pattern recognition receptor ligation and activation of inflammatory pathways. Here, we studied how microglia handle and cope with α-synuclein (α-syn) fibrils and their clearance. We found that microglia exposed to α-syn establish a cellular network through the formation of F-actin-dependent intercellular connections, which transfer α-syn from overloaded microglia to neighboring naive microglia where the α-syn cargo got rapidly and effectively degraded. Lowering the α-syn burden attenuated the inflammatory profile of microglia and improved their survival. This degradation strategy was compromised in cells carrying the LRRK2 G2019S mutation. We confirmed the intercellular transfer of α-syn assemblies in microglia using organotypic slice cultures, 2-photon microscopy, and neuropathology of patients. Together, these data identify a mechanism by which microglia create an "on-demand" functional network in order to improve pathogenic α-syn clearance.
Collapse
Affiliation(s)
- Hannah Scheiblich
- Department of Neurodegenerative Disease and Geriatric Psychiatry/Neurology, University of Bonn Medical Center, 53127 Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Cira Dansokho
- Department of Neurodegenerative Disease and Geriatric Psychiatry/Neurology, University of Bonn Medical Center, 53127 Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Dilek Mercan
- Department of Neurodegenerative Disease and Geriatric Psychiatry/Neurology, University of Bonn Medical Center, 53127 Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Susanne V Schmidt
- Institute of Innate Immunity, University of Bonn Medical Center, 53127 Bonn, Germany
| | - Luc Bousset
- Institut François Jacob, MIRCen, CEA and Laboratory of Neurodegenerative Diseases, CNRS, 92265 Fontenay-aux-Roses, France
| | - Lena Wischhof
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Frederik Eikens
- Department of Neurodegenerative Disease and Geriatric Psychiatry/Neurology, University of Bonn Medical Center, 53127 Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Alexandru Odainic
- Institute of Innate Immunity, University of Bonn Medical Center, 53127 Bonn, Germany
| | - Jasper Spitzer
- Institute of Innate Immunity, University of Bonn Medical Center, 53127 Bonn, Germany
| | - Angelika Griep
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Stephanie Schwartz
- Department of Neurodegenerative Disease and Geriatric Psychiatry/Neurology, University of Bonn Medical Center, 53127 Bonn, Germany
| | - Daniele Bano
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Eicke Latz
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany; Institute of Innate Immunity, University of Bonn Medical Center, 53127 Bonn, Germany
| | - Ronald Melki
- Institut François Jacob, MIRCen, CEA and Laboratory of Neurodegenerative Diseases, CNRS, 92265 Fontenay-aux-Roses, France
| | - Michael T Heneka
- Department of Neurodegenerative Disease and Geriatric Psychiatry/Neurology, University of Bonn Medical Center, 53127 Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany; Divison of Infectious Diseases and Immunology, University of Massachusetts Medical School, 01605 Worcester, MA, USA.
| |
Collapse
|
26
|
Schneider B, Baudry A, Pietri M, Alleaume-Butaux A, Bizingre C, Nioche P, Kellermann O, Launay JM. The Cellular Prion Protein-ROCK Connection: Contribution to Neuronal Homeostasis and Neurodegenerative Diseases. Front Cell Neurosci 2021; 15:660683. [PMID: 33912016 PMCID: PMC8072021 DOI: 10.3389/fncel.2021.660683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/15/2021] [Indexed: 01/10/2023] Open
Abstract
Amyloid-based neurodegenerative diseases such as prion, Alzheimer's, and Parkinson's diseases have distinct etiologies and clinical manifestations, but they share common pathological events. These diseases are caused by abnormally folded proteins (pathogenic prions PrPSc in prion diseases, β-amyloids/Aβ and Tau in Alzheimer's disease, α-synuclein in Parkinson's disease) that display β-sheet-enriched structures, propagate and accumulate in the nervous central system, and trigger neuronal death. In prion diseases, PrPSc-induced corruption of the physiological functions exerted by normal cellular prion proteins (PrPC) present at the cell surface of neurons is at the root of neuronal death. For a decade, PrPC emerges as a common cell surface receptor for other amyloids such as Aβ and α-synuclein, which relays, at least in part, their toxicity. In lipid-rafts of the plasma membrane, PrPC exerts a signaling function and controls a set of effectors involved in neuronal homeostasis, among which are the RhoA-associated coiled-coil containing kinases (ROCKs). Here we review (i) how PrPC controls ROCKs, (ii) how PrPC-ROCK coupling contributes to neuronal homeostasis, and (iii) how the deregulation of the PrPC-ROCK connection in amyloid-based neurodegenerative diseases triggers a loss of neuronal polarity, affects neurotransmitter-associated functions, contributes to the endoplasmic reticulum stress cascade, renders diseased neurons highly sensitive to neuroinflammation, and amplifies the production of neurotoxic amyloids.
Collapse
Affiliation(s)
- Benoit Schneider
- Inserm UMR-S1124, Paris, France.,Université de Paris, Faculté des Sciences, Paris, France
| | - Anne Baudry
- Inserm UMR-S1124, Paris, France.,Université de Paris, Faculté des Sciences, Paris, France
| | - Mathéa Pietri
- Inserm UMR-S1124, Paris, France.,Université de Paris, Faculté des Sciences, Paris, France
| | - Aurélie Alleaume-Butaux
- Inserm UMR-S1124, Paris, France.,Université de Paris, Faculté des Sciences, Paris, France.,Université de Paris - BioMedTech Facilities- INSERM US36
- CNRS UMS2009 - Structural and Molecular Analysis Platform, Paris, France
| | - Chloé Bizingre
- Inserm UMR-S1124, Paris, France.,Université de Paris, Faculté des Sciences, Paris, France
| | - Pierre Nioche
- Inserm UMR-S1124, Paris, France.,Université de Paris, Faculté des Sciences, Paris, France.,Université de Paris - BioMedTech Facilities- INSERM US36
- CNRS UMS2009 - Structural and Molecular Analysis Platform, Paris, France
| | - Odile Kellermann
- Inserm UMR-S1124, Paris, France.,Université de Paris, Faculté des Sciences, Paris, France
| | - Jean-Marie Launay
- Inserm UMR 942, Hôpital Lariboisière, Paris, France.,Pharma Research Department, Hoffmann-La-Roche Ltd., Basel, Switzerland
| |
Collapse
|
27
|
Therapeutic news in ALS. Rev Neurol (Paris) 2021; 177:544-549. [PMID: 33781562 DOI: 10.1016/j.neurol.2020.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/21/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by death of motor neurons in the cortex and the spinal cord. This loss of motor neurons causes progressive weakness and amyotrophy. To date, the median duration of survival in patients with ALS, from first symptoms to death, is estimated to be 36 months. Currently the treatment is limited to two options: riluzole which prolongs survival for a few months and edaravone which is available in only a few countries and also has a small impact on disease progression. There is an urgent need for more effective drugs in this disease to significantly improve progression. Over the last 30 years, all trials have failed to find a curative drug for ALS. This is due, partially, to the heterogeneity of the clinical features and the pathophysiology of motor neuron death. We present in this review the various treatment options currently being developed for ALS, with an emphasis on the range of therapeutic approaches being explored, from old drugs tested in a new indication to innovative drugs obtained via biotechnology or gene therapy.
Collapse
|
28
|
Weber AJ, Herskowitz JH. Perspectives on ROCK2 as a Therapeutic Target for Alzheimer's Disease. Front Cell Neurosci 2021; 15:636017. [PMID: 33790742 PMCID: PMC8005730 DOI: 10.3389/fncel.2021.636017] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
Rho-associated coiled-coil containing kinase isoform 2 (ROCK2) is a member of the AGC family of serine/threonine kinases and an extensively studied regulator of actin-mediated cytoskeleton contractility. Over the past decade, new evidence has emerged that suggests ROCK2 regulates autophagy. Recent studies indicate that dysregulation of autophagy contributes to the development of misfolded tau aggregates among entorhinal cortex (EC) excitatory neurons in early Alzheimer's disease (AD). While the accumulation of tau oligomers and fibrils is toxic to neurons, autophagy facilitates the degradation of these pathologic species and represents a major cellular pathway for tau disposal in neurons. ROCK2 is expressed in excitatory neurons and pharmacologic inhibition of ROCK2 can induce autophagy pathways. In this mini-review, we explore potential mechanisms by which ROCK2 mediates autophagy and actin dynamics and discuss how these pathways represent therapeutic avenues for Alzheimer's disease.
Collapse
Affiliation(s)
| | - Jeremy H. Herskowitz
- Center for Neurodegeneration and Experimental Therapeutics, Departments of Neurology and Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
29
|
Bustos A, Selvi Sabater P, Benlloch M, Drehmer E, López-Rodríguez MM, Platero F, Platero JL, Escribá-Alepuz J, de la Rubia Ortí JE. Metabolic and Functional Improvements in a Patient with Charcot-Marie-Tooth Disease Type 2 after EGCG Administration: A Case Report. ACTA ACUST UNITED AC 2021; 57:medicina57020104. [PMID: 33498819 PMCID: PMC7912075 DOI: 10.3390/medicina57020104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/13/2021] [Accepted: 01/22/2021] [Indexed: 11/17/2022]
Abstract
Background and objectives: The aim of this study was to report a case of a patient with Charcot-Marie-Tooth disease type 2 (CMT2) treated with epigallocatechin gallate (EGCG) for 4 months in order to assess its therapeutic potential in CMT2. Materials and Methods: The study included a brother and a sister who have CMT2. The sister received 800 mg of EGCG for 4 months, while her brother received placebo for the same period of time. Both participants were assessed before and after daily administration by means of anthropometry; analysis of inflammatory and oxidation markers of interleukin-6 (IL-6) and paraoxonase 1 (PON1) in the blood sample; and motor tests: 2-min walk test (2MWT), 10-m walk test (10MWT), nine-hole peg test (9HPT) and handgrip strength measurement using a handheld Jamar dynamometer. Results: Regarding muscular and motor functions associated with higher inflammation and oxidation, improvements only observed in the woman in all analysed parameters (both biochemical and clinical associated with the metabolism and functionality) after 4 months of treatment with EGCG are noteworthy. Thus, this treatment is proposed as a good candidate to treat the disease.
Collapse
Affiliation(s)
- Antonio Bustos
- Physical Therapy Clinic, Antonio Bustos, 46007 Valencia, Spain;
| | | | - María Benlloch
- Department of Nursing, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain; (J.L.P.); (J.E.d.l.R.O.)
- Correspondence: ; Tel.: +34-96-3637412
| | - Eraci Drehmer
- Department of Basic Sciences, Catholic University of Valencia San Vicente Mártir, 46900 Torrente, Valencia, Spain;
| | | | - Felix Platero
- Department of Medicine, University of Valencia, 46003 Valencia, Spain;
| | - Jose Luis Platero
- Department of Nursing, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain; (J.L.P.); (J.E.d.l.R.O.)
| | - Jesús Escribá-Alepuz
- Neurophysiology Department, Sagunto University Hospital, 46520 Valencia, Spain;
- Institute of Sleep Medicine, 46021 Valencia, Spain
| | - Jose Enrique de la Rubia Ortí
- Department of Nursing, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain; (J.L.P.); (J.E.d.l.R.O.)
| |
Collapse
|
30
|
Gittings LM, Sattler R. Recent advances in understanding amyotrophic lateral sclerosis and emerging therapies. Fac Rev 2020; 9:12. [PMID: 33659944 PMCID: PMC7886072 DOI: 10.12703/b/9-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that is characterized by degeneration of both upper and lower motor neurons and subsequent progressive loss of muscle function. Within the last decade, significant progress has been made in the understanding of the etiology and pathobiology of the disease; however, treatment options remain limited and only two drugs, which exert a modest effect on survival, are approved for ALS treatment in the US. Therefore, the search for effective ALS therapies continues, and over 60 clinical trials are in progress for patients with ALS and other therapeutics are at the pre-clinical stage of development. Recent advances in understanding the genetics, pathology, and molecular mechanisms of ALS have led to the identification of novel targets and strategies that are being used in emerging ALS therapeutic interventions. Here, we review the current status and mechanisms of action of a selection of emerging ALS therapies in pre-clinical or early clinical development, including gene therapy, immunotherapy, and strategies that target neuroinflammation, phase separation, and protein clearance.
Collapse
Affiliation(s)
- Lauren M Gittings
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Rita Sattler
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| |
Collapse
|
31
|
Benn CL, Dawson LA. Clinically Precedented Protein Kinases: Rationale for Their Use in Neurodegenerative Disease. Front Aging Neurosci 2020; 12:242. [PMID: 33117143 PMCID: PMC7494159 DOI: 10.3389/fnagi.2020.00242] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
Kinases are an intensively studied drug target class in current pharmacological research as evidenced by the large number of kinase inhibitors being assessed in clinical trials. Kinase-targeted therapies have potential for treatment of a broad array of indications including central nervous system (CNS) disorders. In addition to the many variables which contribute to identification of a successful therapeutic molecule, drug discovery for CNS-related disorders also requires significant consideration of access to the target organ and specifically crossing the blood-brain barrier (BBB). To date, only a small number of kinase inhibitors have been reported that are specifically designed to be BBB permeable, which nonetheless demonstrates the potential for success. This review considers the potential for kinase inhibitors in the context of unmet medical need for neurodegenerative disease. A subset of kinases that have been the focus of clinical investigations over a 10-year period have been identified and discussed individually. For each kinase target, the data underpinning the validity of each in the context of neurodegenerative disease is critically evaluated. Selected molecules for each kinase are identified with information on modality, binding site and CNS penetrance, if known. Current clinical development in neurodegenerative disease are summarized. Collectively, the review indicates that kinase targets with sufficient rationale warrant careful design approaches with an emphasis on improving brain penetrance and selectivity.
Collapse
|
32
|
Palomo V, Nozal V, Rojas-Prats E, Gil C, Martinez A. Protein kinase inhibitors for amyotrophic lateral sclerosis therapy. Br J Pharmacol 2020; 178:1316-1335. [PMID: 32737989 DOI: 10.1111/bph.15221] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/03/2020] [Accepted: 07/25/2020] [Indexed: 12/14/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder that causes the progressive loss of motoneurons and, unfortunately, there is no effective treatment for this disease. Interconnecting multiple pathological mechanisms are involved in the neuropathology of this disease, including abnormal aggregation of proteins, neuroinflammation and dysregulation of the ubiquitin proteasome system. Such complex mechanisms, together with the lack of reliable animal models of the disease have hampered the development of drugs for this disease. Protein kinases, a key pharmacological target in several diseases, have been linked to ALS as they play a central role in the pathology of many diseases. Therefore several inhibitors are being currently trailed for clinical proof of concept in ALS patients. In this review, we examine the recent literature on protein kinase inhibitors currently in pharmaceutical development for this diseaseas future therapy for AS together with their involvement in the pathobiology of ALS. LINKED ARTICLES: This article is part of a themed issue on Neurochemistry in Japan. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.6/issuetoc.
Collapse
Affiliation(s)
- Valle Palomo
- Centro de Investigaciones Biológicas-CSIC, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - Vanesa Nozal
- Centro de Investigaciones Biológicas-CSIC, Madrid, Spain
| | | | - Carmen Gil
- Centro de Investigaciones Biológicas-CSIC, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - Ana Martinez
- Centro de Investigaciones Biológicas-CSIC, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto Carlos III, Madrid, Spain
| |
Collapse
|
33
|
Deng XL, Feng L, Wang ZX, Zhao YE, Zhan Q, Wu XM, Xiao B, Shu Y. The Runx1/Notch1 Signaling Pathway Participates in M1/M2 Microglia Polarization in a Mouse Model of Temporal Lobe Epilepsy and in BV-2 Cells. Neurochem Res 2020; 45:2204-2216. [PMID: 32632543 DOI: 10.1007/s11064-020-03082-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/03/2020] [Accepted: 07/01/2020] [Indexed: 12/14/2022]
Abstract
Microglial activation and phenotypic shift play vital roles in many neurological diseases. Runt-related transcription factor-1 (Runx1), which is localized on microglia, inhibits amoeboid microglial proliferation. Preliminary data have indicated that the interaction of Runx1 with the Notch1 pathway affects the hemogenic endothelial cell shift. However, little is known about the effect of Runx1 and the Notch1 signaling pathway on the phenotypic shift of microglia during neuroinflammation, especially in temporal lobe epilepsy (TLE). A mouse model of TLE induced by pilocarpine and the murine microglia cell line BV-2 were used in this study. The proportion of microglia was analyzed using flow cytometry. Western blot (WB) analysis and quantitative real-time polymerase chain reaction were used to analyze protein and gene transcript levels, respectively. Immunohistochemistry was used to show the distribution of Runx1. In the present study, we first found that in a male mouse model of TLE induced by pilocarpine, flow cytometry revealed a time-dependent M2-to-M1 microglial transition after status epilepticus. The dynamic expression patterns of Runx1 and the downstream Notch1/Jagged1/Hes5 signaling pathway molecules in the epileptic hippocampus were determined. Next, Runx1 knockdown by small interfering RNA in BV-2 cells strongly promoted an M2-to-M1 microglial phenotype shift and inhibited Notch1/Jagged1/Hes5 pathway expression. In conclusion, Runx1 may play a critical role in the M2-to-M1 microglial phenotype shift via the Notch1 signaling pathway during epileptogenesis in a TLE mouse model and in BV-2 cells.
Collapse
Affiliation(s)
- Xian-Lian Deng
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiang Ya Road, Changsha, 410008, Hunan, China
| | - Li Feng
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiang Ya Road, Changsha, 410008, Hunan, China
| | - Zi-Xin Wang
- Department of Neurology, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011, Hunan, China
| | - Yue-E Zhao
- Department of Neurology, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011, Hunan, China
| | - Qiong Zhan
- Department of Neurology, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011, Hunan, China
| | - Xiao-Mei Wu
- Department of Neurology, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011, Hunan, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiang Ya Road, Changsha, 410008, Hunan, China.
| | - Yi Shu
- Department of Neurology, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011, Hunan, China.
| |
Collapse
|
34
|
Non-Muscle Myosin 2A (NM2A): Structure, Regulation and Function. Cells 2020; 9:cells9071590. [PMID: 32630196 PMCID: PMC7408548 DOI: 10.3390/cells9071590] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/25/2020] [Accepted: 06/29/2020] [Indexed: 12/30/2022] Open
Abstract
Non-muscle myosin 2A (NM2A) is a motor cytoskeletal enzyme with crucial importance from the early stages of development until adulthood. Due to its capacity to convert chemical energy into force, NM2A powers the contraction of the actomyosin cytoskeleton, required for proper cell division, adhesion and migration, among other cellular functions. Although NM2A has been extensively studied, new findings revealed that a lot remains to be discovered concerning its spatiotemporal regulation in the intracellular environment. In recent years, new functions were attributed to NM2A and its activity was associated to a plethora of illnesses, including neurological disorders and infectious diseases. Here, we provide a concise overview on the current knowledge regarding the structure, the function and the regulation of NM2A. In addition, we recapitulate NM2A-associated diseases and discuss its potential as a therapeutic target.
Collapse
|
35
|
Lu E, Wang Q, Li S, Chen C, Wu W, Xu YXZ, Zhou P, Tu W, Lou X, Rao G, Yang G, Jiang S, Zhou K. Profilin 1 knockdown prevents ischemic brain damage by promoting M2 microglial polarization associated with the RhoA/ROCK pathway. J Neurosci Res 2020; 98:1198-1212. [PMID: 32291804 DOI: 10.1002/jnr.24607] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 02/11/2020] [Accepted: 02/18/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Ermei Lu
- Department of Physical Medicine and Rehabilitation The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou China
- Integrative & Optimized Medicine Research Center Institute for Acupuncture and Rehabilitation Wenzhou Medical University Wenzhou China
- Department of Pharmacy The First People's Hospital of Wenling The Affiliated Wenling Hospital of Wenzhou Medical University Wenling China
| | - Qian Wang
- Department of Pharmacy The First People's Hospital of Wenling The Affiliated Wenling Hospital of Wenzhou Medical University Wenling China
| | - Shengcun Li
- Department of Physical Medicine and Rehabilitation The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou China
- Integrative & Optimized Medicine Research Center Institute for Acupuncture and Rehabilitation Wenzhou Medical University Wenzhou China
| | - Caiming Chen
- Department of Pharmacy The First People's Hospital of Wenling The Affiliated Wenling Hospital of Wenzhou Medical University Wenling China
| | - Weibo Wu
- Department of Pharmacy The First People's Hospital of Wenling The Affiliated Wenling Hospital of Wenzhou Medical University Wenling China
| | - Yang Xin Zi Xu
- Department of Physiology and Pathophysiology University of Manitoba Winnipeg MB Canada
| | - Peng Zhou
- Department of Anatomy Wenzhou Medical University Wenzhou China
| | - Wenzhan Tu
- Department of Physical Medicine and Rehabilitation The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou China
- Integrative & Optimized Medicine Research Center Institute for Acupuncture and Rehabilitation Wenzhou Medical University Wenzhou China
| | - Xinfa Lou
- Integrative & Optimized Medicine Research Center Institute for Acupuncture and Rehabilitation Wenzhou Medical University Wenzhou China
| | - Gaofeng Rao
- Department of Rehabilitation Medicine The First People's Hospital of Wenling The Affiliated Wenling Hospital of Wenzhou Medical University Wenling China
| | - Guanhu Yang
- Department of Physical Medicine and Rehabilitation The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou China
- Integrative & Optimized Medicine Research Center Institute for Acupuncture and Rehabilitation Wenzhou Medical University Wenzhou China
| | - Songhe Jiang
- Department of Physical Medicine and Rehabilitation The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou China
- Integrative & Optimized Medicine Research Center Institute for Acupuncture and Rehabilitation Wenzhou Medical University Wenzhou China
| | - Kecheng Zhou
- Department of Physical Medicine and Rehabilitation The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou China
- Integrative & Optimized Medicine Research Center Institute for Acupuncture and Rehabilitation Wenzhou Medical University Wenzhou China
| |
Collapse
|
36
|
Jin M, Günther R, Akgün K, Hermann A, Ziemssen T. Peripheral proinflammatory Th1/Th17 immune cell shift is linked to disease severity in amyotrophic lateral sclerosis. Sci Rep 2020; 10:5941. [PMID: 32246039 PMCID: PMC7125229 DOI: 10.1038/s41598-020-62756-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 03/18/2020] [Indexed: 12/11/2022] Open
Abstract
Neuroinflammation is involved in the pathogenesis of amyotrophic lateral sclerosis (ALS), but only limited data are available on systematic peripheral and central immune cell profiles in ALS. We studied detailed immune profiles of 73 ALS patients and 48 healthy controls (controls) in peripheral blood by fluorescence-activated cell sorting as well as cytokine expression profiles in serum. In a subgroup of 16 ALS patients and 10 controls we additionally studied cerebrospinal fluid (CSF) samples. In peripheral blood, T cell subtypes presented a shift towards pro-inflammatory Th 1 and Th 17 cells whereas anti-inflammatory Th2 and T regulatory cells were decreased. Important players in innate immunity including distinct monocyte (Mo) and natural killer (NK) cell subtypes were changed in ALS patients compared to controls. Pro-inflammatory serum cytokines such as interleukin (IL)-1 beta, IL-6 and interferon-gamma (IFN-gamma) were increased and the anti-inflammatory cytokine IL-10 was decreased. Correlation analysis revealed moderate negative correlations between Th1 and Th17 to the ALS functional rating scale revised (ALSFRS-R) and to forced vital capacity. In CSF samples, no relevant alteration of the immune profile was found. In conclusion, the immune profile in ALS was shifted towards a Th1/Th17 cell-mediated pro-inflammatory immune response and correlated to disease severity and progression. Large prospective studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Mengmeng Jin
- Department of Neurology, Technische Universität Dresden, Dresden, Germany.,Center for Clinical Neuroscience, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Rene Günther
- Department of Neurology, Technische Universität Dresden, Dresden, Germany. .,German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany.
| | - Katja Akgün
- Department of Neurology, Technische Universität Dresden, Dresden, Germany.,Center for Clinical Neuroscience, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Andreas Hermann
- Department of Neurology, Technische Universität Dresden, Dresden, Germany.,German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany.,Translational Neurodegeneration Section "Albrecht-Kossel", Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany.,German Center for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, Rostock, Germany
| | - Tjalf Ziemssen
- Department of Neurology, Technische Universität Dresden, Dresden, Germany.,Center for Clinical Neuroscience, University Hospital Carl Gustav Carus, Dresden, Germany
| |
Collapse
|
37
|
Fujimura M, Usuki F, Nakamura A. Fasudil, a Rho-Associated Coiled Coil-Forming Protein Kinase Inhibitor, Recovers Methylmercury-Induced Axonal Degeneration by Changing Microglial Phenotype in Rats. Toxicol Sci 2020; 168:126-136. [PMID: 30462329 DOI: 10.1093/toxsci/kfy281] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Methylmercury (MeHg) is an environmental neurotoxicant that induces neuropathological changes. In this study, we established chronic MeHg-intoxicated rats. These rats survived, and sustained MeHg-induced axonal degeneration, including the dorsal root nerve and the dorsal column of the spinal cord; these changes persisted 12 weeks after MeHg withdrawal. We demonstrated for the first time the restorative effect of Fasudil, a specific inhibitor of Rho-associated coiled coil-forming protein kinase, on axonal degeneration and corresponding neural dysfunction in the established chronic MeHg-intoxicated rats. To investigate the mechanism of this restorative effect, we focused on the expression of Rho protein families. This was supported by our previous study, which demonstrated that cotreatment with Fasudil prevented axonal degeneration by mitigating neurite extension/retraction incoordination caused by MeHg-induced suppression of Rac1 in vitro and in subacute MeHg-intoxicated rats. However, the mechanism of the restorative effect of Fasudil on axonal degeneration in chronic MeHg-intoxicated rats differed from MeHg-mediated neuritic extension/retraction incoordination. We found that the restorative effect of Fasudil was caused by the Fasudil-induced change of microglial phenotype, from proinflammatory to anti-inflammatory; moreover, Fasudil suppressed Rho-associated coiled coil-forming protein kinase activity. Treatment with Fasudil decreased the expression of proinflammatory factors, including tumor necrosis factor-α, inducible nitric oxide synthase, interleukin-1β, and interleukin-6; furthermore, it inactivated the nuclear factor kappa-light-chain-enhancer of activated B cells pathway. Additionally, Fasudil treatment was associated with increased levels of anti-inflammatory factors arginase-1 and interleukin-10. These results suggest that Rho-associated coiled coil-forming protein kinase inhibition may recover MeHg-mediated axonal degeneration and neural dysfunction in chronic MeHg intoxication.
Collapse
Affiliation(s)
| | - Fusako Usuki
- Department of Clinical Medicine, National Institute for Minamata Disease, Kumamoto 867-0008, Japan
| | - Atsushi Nakamura
- Department of Clinical Medicine, National Institute for Minamata Disease, Kumamoto 867-0008, Japan
| |
Collapse
|
38
|
Koch JC, Kuttler J, Maass F, Lengenfeld T, Zielke E, Bähr M, Lingor P. Compassionate Use of the ROCK Inhibitor Fasudil in Three Patients With Amyotrophic Lateral Sclerosis. Front Neurol 2020; 11:173. [PMID: 32231638 PMCID: PMC7083210 DOI: 10.3389/fneur.2020.00173] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 02/24/2020] [Indexed: 12/12/2022] Open
Abstract
The Rho kinase (ROCK) inhibitor Fasudil is a promising drug for a disease-modifying therapy of amyotrophic lateral sclerosis (ALS). In preclinical models, Fasudil was shown to increase motor neuron survival, inhibit axonal degeneration, enhance axonal regeneration and modulate microglial function in vitro and in vivo. It prolonged survival and improved motor function of SOD1-G93A-mice. Recently, a phase IIa clinical trial has been commenced to investigate the safety, tolerability, and efficacy of Fasudil in ALS patients at an early stage of disease (ROCK-ALS trial, NCT03792490, Eudra-CT-Nr.: 2017-003676-31). Although Fasudil has been approved in Japan for many years for the treatment of vasospasms following subarachnoid hemorrhage and is known to have a favorable side effect profile in these patients, there is no data on its use in human patients with ALS or any other neurodegenerative conditions. Here, we report the first three cases of compassionate use of Fasudil in patients with ALS. Between May 2017 and February 2019, one male (66 years old) and two female (62 and 68 years old) subjects with probable or definite ALS according to the El Escorial criteria (one of the females having a pathogenic SOD1 mutation) were administered Fasudil 30 mg intravenously twice daily over 45 min on 20 consecutive working days. Blood pressure, heart rate and routine laboratory tests were constantly controlled. All three subjects tolerated the Fasudil infusions well without any obvious side effects. Interestingly, the slow vital capacity showed a significant increase in one of the patients. Taken together, we report here the first compassionate use of the ROCK inhibitor Fasudil in three ALS patients, which was well-tolerated.
Collapse
Affiliation(s)
- Jan C Koch
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Josua Kuttler
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Fabian Maass
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Teresa Lengenfeld
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Eirini Zielke
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Mathias Bähr
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Paul Lingor
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.,Department of Neurology, Technical University of Munich, Munich, Germany
| |
Collapse
|
39
|
Trivedi DV, Nag S, Spudich A, Ruppel KM, Spudich JA. The Myosin Family of Mechanoenzymes: From Mechanisms to Therapeutic Approaches. Annu Rev Biochem 2020; 89:667-693. [PMID: 32169021 DOI: 10.1146/annurev-biochem-011520-105234] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Myosins are among the most fascinating enzymes in biology. As extremely allosteric chemomechanical molecular machines, myosins are involved in myriad pivotal cellular functions and are frequently sites of mutations leading to disease phenotypes. Human β-cardiac myosin has proved to be an excellent target for small-molecule therapeutics for heart muscle diseases, and, as we describe here, other myosin family members are likely to be potentially unique targets for treating other diseases as well. The first part of this review focuses on how myosins convert the chemical energy of ATP hydrolysis into mechanical movement, followed by a description of existing therapeutic approaches to target human β-cardiac myosin. The next section focuses on the possibility of targeting nonmuscle members of the human myosin family for several diseases. We end the review by describing the roles of myosin in parasites and the therapeutic potential of targeting them to block parasitic invasion of their hosts.
Collapse
Affiliation(s)
- Darshan V Trivedi
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, USA; , , .,Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Suman Nag
- MyoKardia Inc., Brisbane, California 94005, USA;
| | - Annamma Spudich
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560-097, India;
| | - Kathleen M Ruppel
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, USA; , , .,Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA.,Division of Pediatric Cardiology, Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - James A Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, USA; , , .,Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
40
|
Stankiewicz TR, Pena C, Bouchard RJ, Linseman DA. Dysregulation of Rac or Rho elicits death of motor neurons and activation of these GTPases is altered in the G93A mutant hSOD1 mouse model of amyotrophic lateral sclerosis. Neurobiol Dis 2020; 136:104743. [PMID: 31931138 DOI: 10.1016/j.nbd.2020.104743] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/18/2019] [Accepted: 01/08/2020] [Indexed: 12/11/2022] Open
Abstract
Rho GTPases play a central role in neuronal survival; however, the antagonistic relationship between Rac and Rho in the regulation of motor neuron survival remains poorly defined. In the current study, we demonstrate that treatment with NSC23766, a selective inhibitor of the Rac-specific guanine nucleotide exchange factors, Tiam1 and Trio, is sufficient to induce the death of embryonic stem cell (ESC)-derived motor neurons. The mode of cell death is primarily apoptotic and is characterized by caspase-3 activation, de-phosphorylation of ERK5 and AKT, and nuclear translocation of the BH3-only protein Bad. As opposed to the inhibition of Rac, motor neuron cell death is also induced by constitutive activation of Rho, via a mechanism that depends on Rho kinase (ROCK) activity. Investigation of Rac and Rho in the G93A mutant, human Cu, Zn-superoxide dismutase (hSOD1) mouse model of amyotrophic lateral sclerosis (ALS), revealed that active Rac1-GTP is markedly decreased in spinal cord motor neurons of transgenic mice at disease onset and end-stage, when compared to age-matched wild type (WT) littermates. Furthermore, although there is no significant change in active RhoA-GTP, total RhoB displays a striking redistribution from motor neuron nuclei in WT mouse spinal cord to motor neuron axons in end-stage G93A mutant hSOD1 mice. Collectively, these data suggest that the intricate balance between pro-survival Rac signaling and pro-apoptotic Rho/ROCK signaling is critical for motor neuron survival and therefore, disruption in the balance of their activities and/or localization may contribute to the death of motor neurons in ALS.
Collapse
Affiliation(s)
- Trisha R Stankiewicz
- University of Denver, Department of Biological Sciences, Denver, CO 80208, United States
| | - Claudia Pena
- University of Denver, Department of Biological Sciences, Denver, CO 80208, United States
| | - Ron J Bouchard
- Research Service, Veterans Affairs Medical Center, Denver, CO, 80220, United States
| | - Daniel A Linseman
- University of Denver, Department of Biological Sciences, Eleanor Roosevelt Institute, and Knoebel Institute for Healthy Aging, 2155 E. Wesley Ave., Denver, CO, 80208, United States.
| |
Collapse
|
41
|
Hamano T, Shirafuji N, Yen SH, Yoshida H, Kanaan NM, Hayashi K, Ikawa M, Yamamura O, Fujita Y, Kuriyama M, Nakamoto Y. Rho-kinase ROCK inhibitors reduce oligomeric tau protein. Neurobiol Aging 2019; 89:41-54. [PMID: 31982202 DOI: 10.1016/j.neurobiolaging.2019.12.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/21/2022]
Abstract
Neurofibrillary tangles, one of the pathological hallmarks of Alzheimer's disease, consist of highly phosphorylated tau proteins. Tau protein binds to microtubules and is best known for its role in regulating microtubule dynamics. However, if tau protein is phosphorylated by activated major tau kinases, including glycogen synthase kinase 3β or cyclin-dependent kinase 5, or inactivated tau phosphatase, including protein phosphatase 2A, its affinity for microtubules is reduced, and the free tau is believed to aggregate, thereby forming neurofibrillary tangles. We previously reported that pitavastatin decreases the total and phosphorylated tau protein using a cellular model of tauopathy. The reduction of tau was considered to be due to Rho-associated coiled-coil protein kinase (ROCK) inhibition by pitavastatin. ROCK plays important roles to organize the actin cytoskeleton, an expected therapeutic target of human disorders. Several ROCK inhibitors are clinically applied to prevent vasospasm postsubarachnoid hemorrhage (fasudil) and for the treatment of glaucoma (ripasudil). We have examined the effects of ROCK inhibitors (H1152, Y-27632, and fasudil [HA-1077]) on tau protein phosphorylation in detail. A human neuroblastoma cell line (M1C cells) that expresses wild-type tau protein (4R0N) by tetracycline-off (TetOff) induction, primary cultured mouse neurons, and a mouse model of tauopathy (rTG4510 line) were used. The levels of phosphorylated tau and caspase-cleaved tau were reduced by the ROCK inhibitors. Oligomeric tau levels were also reduced by ROCK inhibitors. After ROCK inhibitor treatment, glycogen synthase kinase 3β, cyclin-dependent kinase 5, and caspase were inactivated, protein phosphatase 2A was activated, and the levels of IFN-γ were reduced. ROCK inhibitors activated autophagy and proteasome pathways, which are considered important for the degradation of tau protein. Collectively, these results suggest that ROCK inhibitors represent a viable therapeutic route to reduce the pathogenic forms of tau protein in tauopathies, including Alzheimer's disease.
Collapse
Affiliation(s)
- Tadanori Hamano
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan; Department of Aging and Dementia (DAD), Faculty of Medical Sciences, University of Fukui, Fukui, Japan; Life Science Innovation Center, University of Fukui, Fukui, Japan.
| | - Norimichi Shirafuji
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan; Department of Aging and Dementia (DAD), Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | | | - Hirotaka Yoshida
- National Center for Geriatrics and Gerontology (NCGG), Aichi, Japan
| | - Nicholas M Kanaan
- Department of Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Kouji Hayashi
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Masamichi Ikawa
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Osamu Yamamura
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Youshi Fujita
- Department of Neurology, Fujita Neurology Hospital, Fukui, Japan
| | | | - Yasunari Nakamoto
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| |
Collapse
|
42
|
Reducing EphA4 before disease onset does not affect survival in a mouse model of Amyotrophic Lateral Sclerosis. Sci Rep 2019; 9:14112. [PMID: 31575928 PMCID: PMC6773754 DOI: 10.1038/s41598-019-50615-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/16/2019] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that affects motor neurons resulting in severe neurological symptoms. Previous findings of our lab suggested that the axonal guidance tyrosine-kinase receptor EphA4 is an ALS disease-modifying gene. Reduction of EphA4 from developmental stages onwards rescued a motor neuron phenotype in zebrafish, and heterozygous deletion before birth in the SOD1G93A mouse model of ALS resulted in improved survival. Here, we aimed to gain more insights in the cell-specific role of decreasing EphA4 expression in addition to timing and amount of EphA4 reduction. To evaluate the therapeutic potential of lowering EphA4 later in life, we ubiquitously reduced EphA4 levels to 50% in SOD1G93A mice at 60 days of age, which did not modify disease parameters. Even further lowering EphA4 levels ubiquitously or in neurons, did not improve disease onset or survival. These findings suggest that lowering EphA4 as target in ALS may suffer from a complex therapeutic time window. In addition, the complexity of the Eph-ephrin signalling system may also possibly limit the therapeutic potential of such an approach in ALS. We suggest here that a specific EphA4 knockdown in adulthood may have a limited therapeutic potential for ALS.
Collapse
|
43
|
Wang Z, Koenig AL, Lavine KJ, Apte RS. Macrophage Plasticity and Function in the Eye and Heart. Trends Immunol 2019; 40:825-841. [PMID: 31422901 DOI: 10.1016/j.it.2019.07.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/05/2019] [Accepted: 07/17/2019] [Indexed: 12/12/2022]
Abstract
Macrophages are important mediators of inflammation and tissue remodeling. Recent insights into the heterogeneity of macrophage subpopulations have renewed interest in their functional diversity in homeostasis and disease. In addition, their plasticity enables them to perform a variety of functions in response to changing tissue contexts, such as those imposed by aging. These qualities make macrophages particularly intriguing cells given their dichotomous role in protecting against, or accelerating, diseases of the cardiovascular system and the eye, two tissues that are particularly susceptible to the effects of aging. We review novel perspectives on macrophage biology, as informed by recent studies detailing the diversity of macrophage identity and function, as well as mechanisms influencing macrophage behavior that might offer opportunities for new therapeutic strategies.
Collapse
Affiliation(s)
- Zelun Wang
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA; Neuroscience Graduate Program, Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrew L Koenig
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Kory J Lavine
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Immunology and Pathology, Washington University School of Medicine, St. Louis, MO, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Rajendra S Apte
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
44
|
Hirunpattarasilp C, Attwell D, Freitas F. The role of pericytes in brain disorders: from the periphery to the brain. J Neurochem 2019; 150:648-665. [PMID: 31106417 DOI: 10.1111/jnc.14725] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/15/2019] [Accepted: 05/15/2019] [Indexed: 12/13/2022]
Abstract
It is becoming increasingly apparent that disorders of the brain microvasculature contribute to many neurological disorders. In recent years it has become clear that a major player in these events is the capillary pericyte which, in the brain, is now known to control the blood-brain barrier, regulate blood flow, influence immune cell entry and be crucial for angiogenesis. In this review we consider the under-explored possibility that peripheral diseases which affect the microvasculature, such as hypertension, kidney disease and diabetes, produce central nervous system (CNS) dysfunction by mechanisms affecting capillary pericytes within the CNS. We highlight how cellular messengers produced peripherally can act via signalling pathways within CNS pericytes to reshape blood vessels, restrict blood flow or compromise blood-brain barrier function, thus causing neuronal dysfunction. Increased understanding of how renin-angiotensin, Rho-kinase and PDGFRβ signalling affect CNS pericytes may suggest novel therapeutic approaches to reducing the CNS effects of peripheral disorders.
Collapse
Affiliation(s)
- Chanawee Hirunpattarasilp
- Department of Neuroscience, Andrew Huxley Building, University College London, Physiology & Pharmacology, Gower Street, London, UK
| | - David Attwell
- Department of Neuroscience, Andrew Huxley Building, University College London, Physiology & Pharmacology, Gower Street, London, UK
| | - Felipe Freitas
- Department of Neuroscience, Andrew Huxley Building, University College London, Physiology & Pharmacology, Gower Street, London, UK
| |
Collapse
|
45
|
Joshi AR, Muke I, Bobylev I, Lehmann HC. ROCK inhibition improves axonal regeneration in a preclinical model of amyotrophic lateral sclerosis. J Comp Neurol 2019; 527:2334-2340. [PMID: 30861116 DOI: 10.1002/cne.24679] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 12/13/2022]
Abstract
Alteration of the RhoA/ROCK (Rho kinase) pathway has been shown to be neuroprotective in SOD1G93A mice, the most commonly used animal model of ALS. Since previous studies indicate that, apart from neuroprotection, ROCK inhibitor Y-27632 can also accelerate regeneration of motor axons, we here assessed the regenerative capability of axons in SOD1G93A mice with and without treatment with Y-27632. Regeneration of axons was examined after sciatic nerve crush in pre- and symptomatic SOD1G93A mice. Proregenerative effects of Y-27632 were studied during the disease course in the SOD1G93A mouse model. In symptomatic SOD1G93A mice, axonal regeneration was markedly reduced compared to presymptomatic SOD1G93A mice and wild types. Treatment with Y-27632 improved functional and morphological measures of motor axons after sciatic crush in all tested conditions. Y-27632 treatment did not increase the lifespan of symptomatic SOD1G93A mice, but did improve axonal (re)innervation of neuromuscular junctions. Our study provides proof of concept that axonal regeneration of motor neurons harboring SOD1G93A is impaired, but amenable for pharmacological interventions aiming to accelerate axonal regeneration. Given the lack of treatments for ALS, approaches to improve axonal regeneration, including by inhibiting ROCK, should be further explored.
Collapse
Affiliation(s)
- Abhijeet R Joshi
- Department of Neurology, University Hospital of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Germany
| | - Ines Muke
- Department of Neurology, University Hospital of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Germany
| | - Ilja Bobylev
- Department of Neurology, University Hospital of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Germany
| | - Helmar C Lehmann
- Department of Neurology, University Hospital of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Germany
| |
Collapse
|
46
|
Lingor P, Weber M, Camu W, Friede T, Hilgers R, Leha A, Neuwirth C, Günther R, Benatar M, Kuzma-Kozakiewicz M, Bidner H, Blankenstein C, Frontini R, Ludolph A, Koch JC. ROCK-ALS: Protocol for a Randomized, Placebo-Controlled, Double-Blind Phase IIa Trial of Safety, Tolerability and Efficacy of the Rho Kinase (ROCK) Inhibitor Fasudil in Amyotrophic Lateral Sclerosis. Front Neurol 2019; 10:293. [PMID: 30972018 PMCID: PMC6446974 DOI: 10.3389/fneur.2019.00293] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/06/2019] [Indexed: 12/12/2022] Open
Abstract
Objectives: Disease-modifying therapies for amyotrophic lateral sclerosis (ALS) are still not satisfactory. The Rho kinase (ROCK) inhibitor fasudil has demonstrated beneficial effects in cell culture and animal models of ALS. For many years, fasudil has been approved in Japan for the treatment of vasospasm in patients with subarachnoid hemorrhage with a favorable safety profile. Here we describe a clinical trial protocol to repurpose fasudil as a disease-modifying therapy for ALS patients. Methods: ROCK-ALS is a multicenter, double-blind, randomized, placebo-controlled phase IIa trial of fasudil in ALS patients (EudraCT: 2017-003676-31, NCT: 03792490). Safety and tolerability are the primary endpoints. Efficacy is a secondary endpoint and will be assessed by the change in ALSFRS-R, ALSAQ-5, slow vital capacity (SVC), ECAS, and the motor unit number index (MUNIX), as well as survival. Efficacy measures will be assessed before (baseline) and immediately after the infusion therapy as well as on days 90 and 180. Patients will receive a daily dose of either 30 or 60 mg fasudil, or placebo in two intravenous applications for a total of 20 days. Regular assessments of safety will be performed throughout the treatment period, and in the follow-up period until day 180. Additionally, we will collect biological fluids to assess target engagement and evaluate potential biomarkers for disease progression. A total of 120 patients with probable or definite ALS (revised El Escorial criteria) and within 6-18 months of the onset of weakness shall be included in 16 centers in Germany, Switzerland and France. Results and conclusions: The ROCK-ALS trial is a phase IIa trial to evaluate the ROCK-inhibitor fasudil in early-stage ALS-patients that started patient recruitment in 2019.
Collapse
Affiliation(s)
- Paul Lingor
- Department of Neurology, Technical University of Munich, Munich, Germany
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Markus Weber
- Neuromuscular Diseases Unit/ALS Clinic, Kantonsspital St. Gallen, St., Gallen, Switzerland
| | - William Camu
- Reference Center for ALS and Other Rare Motoneuron Disorders, University Hospital Gui de Chauliac, Montpellier, France
| | - Tim Friede
- Department of Medical Statistics, University Medical Center Göttingen, Göttingen, Germany
| | - Reinhard Hilgers
- Department of Medical Statistics, University Medical Center Göttingen, Göttingen, Germany
| | - Andreas Leha
- Department of Medical Statistics, University Medical Center Göttingen, Göttingen, Germany
| | - Christoph Neuwirth
- Neuromuscular Diseases Unit/ALS Clinic, Kantonsspital St. Gallen, St., Gallen, Switzerland
| | - René Günther
- Department of Neurology, Technical University of Dresden, Dresden, Germany
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | - Michael Benatar
- Department of Neurology, University of Miami, Miami, FL, United States
| | | | - Helen Bidner
- Münchner Studienzentrum, Technical University of Munich, Munich, Germany
| | | | - Roberto Frontini
- Pharmacy at the University of Leipzig Medical Center, Leipzig, Germany
| | - Albert Ludolph
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Jan C. Koch
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
47
|
Suppression of glioblastoma by a drug cocktail reprogramming tumor cells into neuronal like cells. Sci Rep 2019; 9:3462. [PMID: 30837577 PMCID: PMC6401026 DOI: 10.1038/s41598-019-39852-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 01/09/2019] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive malignant tumor in adult brain. Even with the current standard therapy including surgical resection followed by postoperative radiotherapy and chemotherapy with temozolomide (Temo), GBM patients still have a poor median survival. Reprogramming of tumor cells into non-malignant cells might be a promising therapeutic strategy for malignant tumors, including GBM. Based on previous studies using small molecules to reprogram astrocytes into neuronal cells, here we further identified a FTT cocktail of three commonly used drugs (Fasudil, Tranilast, and Temo) to reprogram patient-derived GBM cells, either cultured in serum containing or serum-free medium, into neuronal like cells. FTT-treated GBM cells displayed a neuronal like morphology, expressed neuronal genes, exhibited neuronal electrophysiological properties, and showed attenuated malignancy. More importantly, FTT cocktail more significantly suppressed tumor growth and prolonged survival in GBM patient derived xenograft than Temo alone. Our study provided preclinical evidence that the neuronal reprogramming drug cocktail might be a promising strategy to improve the existing treatment for GBM.
Collapse
|
48
|
Wang J, Sui RX, Miao Q, Wang Q, Song LJ, Yu JZ, Li YH, Xiao BG, Ma CG. Hydroxyfasudil alleviates demyelination through the inhibition of MOG antibody and microglia activation in cuprizone mouse model. Clin Immunol 2019; 201:35-47. [PMID: 30660624 DOI: 10.1016/j.clim.2019.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 01/14/2019] [Accepted: 01/14/2019] [Indexed: 02/06/2023]
Abstract
Multiple sclerosis (MS) is an immune-mediated demyelinating disease of the central nervous system characterized by oligodendrocyte loss and progressive neurodegeneration. The cuprizone (CPZ)-induced demyelination is widely used to investigate the demyelination/remyelination. Here, we explored the therapeutic effects of Hydroxyfasudil (HF), an active metabolite of Fasudil, in CPZ model. HF improved behavioral abnormality and reduced myelin damage in the corpus callosum. Splenic atrophy and myelin oligodendrocyte glycoprotein (MOG) antibody were observed in CPZ model, which were partially restored and obviously inhibited by HF, therefore reducing pathogenic binding of MOG antibody to oligodendrocytes. HF inhibited the percentages of CD4+IL-17+ T cells from splenocytes and infiltration of CD4+ T cells and CD68+ macrophages in the brain. HF also declined microglia-mediated neuroinflammation, and promoted the production of astrocyte-derived brain derived neurotrophic factor (BDNF) and regeneration of NG2+ oligodendrocyte precursor cells. These results provide potent evidence for the therapeutic effects of HF in CPZ-induced demyelination.
Collapse
Affiliation(s)
- Jing Wang
- Shanxi Medical University, Taiyuan030001, China
| | - Ruo-Xuan Sui
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Traditional Chinese Medicine, Taiyuan030024, China
| | - Qiang Miao
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Traditional Chinese Medicine, Taiyuan030024, China
| | - Qing Wang
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Traditional Chinese Medicine, Taiyuan030024, China
| | - Li-Juan Song
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Traditional Chinese Medicine, Taiyuan030024, China
| | - Jie-Zhong Yu
- Institute of Brain Science, Shanxi Datong University, Datong037009, China
| | - Yan-Hua Li
- Institute of Brain Science, Shanxi Datong University, Datong037009, China
| | - Bao-Guo Xiao
- Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200025, China.
| | - Cun-Gen Ma
- Shanxi Medical University, Taiyuan030001, China; The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Traditional Chinese Medicine, Taiyuan030024, China; Institute of Brain Science, Shanxi Datong University, Datong037009, China.
| |
Collapse
|
49
|
Iridoy MO, Zubiri I, Zelaya MV, Martinez L, Ausín K, Lachen-Montes M, Santamaría E, Fernandez-Irigoyen J, Jericó I. Neuroanatomical Quantitative Proteomics Reveals Common Pathogenic Biological Routes between Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD). Int J Mol Sci 2018; 20:E4. [PMID: 30577465 PMCID: PMC6337647 DOI: 10.3390/ijms20010004] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/10/2018] [Accepted: 12/19/2018] [Indexed: 12/12/2022] Open
Abstract
(1) Background: Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are neurodegenerative disorders with an overlap in clinical presentation and neuropathology. Common and differential mechanisms leading to protein expression changes and neurodegeneration in ALS and FTD were studied trough a deep neuroproteome mapping of the spinal cord. (2) Methods: A liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis of the spinal cord from ALS-TAR DNA-binding protein 43 (TDP-43) subjects, ubiquitin-positive frontotemporal lobar degeneration (FTLD-U) subjects and controls without neurodegenerative disease was performed. (3) Results: 281 differentially expressed proteins were detected among ALS versus controls, while 52 proteins were dysregulated among FTLD-U versus controls. Thirty-three differential proteins were shared between both syndromes. The resulting data was subjected to network-driven proteomics analysis, revealing mitochondrial dysfunction and metabolic impairment, both for ALS and FTLD-U that could be validated through the confirmation of expression levels changes of the Prohibitin (PHB) complex. (4) Conclusions: ALS-TDP-43 and FTLD-U share molecular and functional alterations, although part of the proteostatic impairment is region- and disease-specific. We have confirmed the involvement of specific proteins previously associated with ALS (Galectin 2 (LGALS3), Transthyretin (TTR), Protein S100-A6 (S100A6), and Protein S100-A11 (S100A11)) and have shown the involvement of proteins not previously described in the ALS context (Methanethiol oxidase (SELENBP1), Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (PIN-1), Calcyclin-binding protein (CACYBP) and Rho-associated protein kinase 2 (ROCK2)).
Collapse
Affiliation(s)
- Marina Oaia Iridoy
- Department of Neurology ComplejoHospitalario de Navarra (CHN), IdiSNA (Navarra Institute for Health Research), Irunlarrea 3, 31008 Pamplona, Spain.
| | - Irene Zubiri
- Proteored-ISCIII, Proteomics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Irunlarrea 3, 31008 Pamplona, Spain.
| | - María Victoria Zelaya
- Pathological Anatomyservice Complejo Hospitalario de Navarra (CHN), IdiSNA (Navarra Institute for Health Research), Irunlarrea 3, 31008 Pamplona, Spain.
| | - Leyre Martinez
- Department of Neurology ComplejoHospitalario de Navarra (CHN), IdiSNA (Navarra Institute for Health Research), Irunlarrea 3, 31008 Pamplona, Spain.
| | - Karina Ausín
- Proteored-ISCIII, Proteomics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Irunlarrea 3, 31008 Pamplona, Spain.
| | - Mercedes Lachen-Montes
- Proteored-ISCIII, Proteomics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Irunlarrea 3, 31008 Pamplona, Spain.
- Clinical Neuroproteomics Group, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Irunlarrea 3, 31008 Pamplona, Spain.
| | - Enrique Santamaría
- Proteored-ISCIII, Proteomics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Irunlarrea 3, 31008 Pamplona, Spain.
- Clinical Neuroproteomics Group, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Irunlarrea 3, 31008 Pamplona, Spain.
| | - Joaquín Fernandez-Irigoyen
- Proteored-ISCIII, Proteomics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Irunlarrea 3, 31008 Pamplona, Spain.
- Clinical Neuroproteomics Group, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Irunlarrea 3, 31008 Pamplona, Spain.
| | - Ivonne Jericó
- Department of Neurology ComplejoHospitalario de Navarra (CHN), IdiSNA (Navarra Institute for Health Research), Irunlarrea 3, 31008 Pamplona, Spain.
| |
Collapse
|
50
|
Pan JZ, Eckenhoff RG. Between a ROCK and an IR Place. Anesth Analg 2018; 126:750-751. [PMID: 29461324 DOI: 10.1213/ane.0000000000002821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jonathan Z Pan
- From the Department of Anesthesia and Perioperative Care, University of California at San Francisco, San Francisco, California
| | - Roderic G Eckenhoff
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|