1
|
Tobori S, Tamada K, Uemura N, Sawada K, Kakae M, Nagayasu K, Nakagawa T, Mori Y, Kaneko S, Shirakawa H. Spinal TRPC3 promotes neuropathic pain and coordinates phospholipase C-induced mechanical hypersensitivity. Proc Natl Acad Sci U S A 2025; 122:e2416828122. [PMID: 40080643 PMCID: PMC11929457 DOI: 10.1073/pnas.2416828122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 02/12/2025] [Indexed: 03/15/2025] Open
Abstract
Neuropathic pain is a debilitating chronic condition mainly caused by peripheral nerve injury. However, the cellular and molecular mechanisms underlying this condition remain unclear. Transient receptor potential canonical 3 (TRPC3), a TRP channel that is activated by downstream of the Gq-phospholipase C (PLC) axis, is expressed in the somatosensory system. Therefore, the present study investigated its pathophysiological role in neuropathic pain following peripheral nerve injury. Here, partial sciatic nerve ligation (pSNL) elicited mechanical and thermal hypersensitivity in wild-type mice, which was suppressed in TRPC3-KO mice. In situ hybridization revealed that TRPC3 is predominantly expressed in neurons in the spinal dorsal horn. Furthermore, spinal dorsal horn neuron-specific downregulation using miRNA attenuated pSNL-induced mechanical hypersensitivity. Spinal TRPC3 activation elicited acute mechanical hypersensitivity. Moreover, its genetic ablation reduced the mechanical hypersensitivity caused by spinal NK1R or PLC activation. These findings demonstrate that TRPC3 in spinal dorsal horn neurons facilitates the development of neuropathic pain. Therefore, TRPC3 may be a promising therapeutic target for neuropathic pain caused by peripheral nerve injury.
Collapse
Affiliation(s)
- Shota Tobori
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto606-8501, Japan
| | - Kosei Tamada
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto606-8501, Japan
| | - Nagi Uemura
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto606-8501, Japan
| | - Kyoko Sawada
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto606-8501, Japan
| | - Masashi Kakae
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto606-8501, Japan
- Department of Clinical Pharmacology and Pharmacotherapy, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama640-8156, Japan
| | - Kazuki Nagayasu
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto606-8501, Japan
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka565-0871, Japan
| | - Takayuki Nakagawa
- Department of Clinical Pharmacology and Pharmacotherapy, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama640-8156, Japan
| | - Yasuo Mori
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto615-8510, Japan
| | - Shuji Kaneko
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto606-8501, Japan
| | - Hisashi Shirakawa
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto606-8501, Japan
| |
Collapse
|
2
|
Veiga A, Abreu DS, Dias JD, Azenha P, Barsanti S, Oliveira JF. Calcium-Dependent Signaling in Astrocytes: Downstream Mechanisms and Implications for Cognition. J Neurochem 2025; 169:e70019. [PMID: 39992167 DOI: 10.1111/jnc.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/30/2025] [Accepted: 02/03/2025] [Indexed: 02/25/2025]
Abstract
Astrocytes are glial cells recognized for their diverse roles in regulating brain circuit structure and function. They can sense and adapt to changes in the microenvironment due to their unique structural and biochemical properties. A key aspect of astrocytic function involves calcium (Ca2+)-dependent signaling, which serves as a fundamental mechanism for their interactions with neurons and other cells in the brain. However, while significant progress has been made in understanding the spatio-temporal properties of astrocytic Ca2+ signals, the downstream molecular pathways and exact mechanisms through which astrocytes decode these signals to regulate homeostatic and physiological processes remain poorly understood. To address this topic, we review here the available literature on the sources of intracellular Ca2+, as well as its downstream mechanisms and signaling pathways. We review the well-studied Ca2+-dependent exocytosis but draw attention to additional intracellular Ca2+-dependent mechanisms that are less understood and are, most likely, highly influential for many other cellular functions. Finally, we review how intracellular Ca2+ is thought to underlie neuron-astrocyte signaling in brain regions involved in cognitive processing.
Collapse
Affiliation(s)
- Alexandra Veiga
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Daniela Sofia Abreu
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - José Duarte Dias
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Patrícia Azenha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Sara Barsanti
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - João Filipe Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
3
|
Boda VK, Yasmen N, Jiang J, Li W. Pathophysiological significance and modulation of the transient receptor potential canonical 3 ion channel. Med Res Rev 2024; 44:2510-2544. [PMID: 38715347 PMCID: PMC11452291 DOI: 10.1002/med.22048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/11/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024]
Abstract
Transient receptor potential canonical 3 (TRPC3) protein belongs to the TRP family of nonselective cation channels. Its activation occurs by signaling through a G protein-coupled receptor (GPCR) and a phospholipase C-dependent (PLC) pathway. Perturbations in the expression of TRPC3 are associated with a plethora of pathophysiological conditions responsible for disorders of the cardiovascular, immune, and central nervous systems. The recently solved cryo-EM structure of TRPC3 provides detailed inputs about the underlying mechanistic aspects of the channel, which in turn enables more efficient ways of designing small-molecule modulators. Pharmacologically targeting TRPC3 in animal models has demonstrated great efficacy in treating diseases including cancers, neurological disorders, and cardiovascular diseases. Despite extensive scientific evidence supporting some strong correlations between the expression and activity of TRPC3 and various pathophysiological conditions, therapeutic strategies based on its pharmacological modulations have not led to clinical trials. The development of small-molecule TRPC3 modulators with high safety, sufficient brain penetration, and acceptable drug-like profiles remains in progress. Determining the pathological mechanisms for TRPC3 involvement in human diseases and understanding the requirements for a drug-like TRPC3 modulator will be valuable in advancing small-molecule therapeutics to future clinical trials. In this review, we provide an overview of the origin and activation mechanism of TRPC3 channels, diseases associated with irregularities in their expression, and new development in small-molecule modulators as potential therapeutic interventions for treating TRPC3 channelopathies.
Collapse
Affiliation(s)
- Vijay K. Boda
- Department of Pharmaceutical Sciences, and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | - Nelufar Yasmen
- Department of Pharmaceutical Sciences, and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | - Jianxiong Jiang
- Department of Pharmaceutical Sciences, and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | - Wei Li
- Department of Pharmaceutical Sciences, and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| |
Collapse
|
4
|
Skerjanz J, Bauernhofer L, Lenk K, Emmerstorfer-Augustin A, Leitinger G, Reichmann F, Stockner T, Groschner K, Tiapko O. TRPC1: The housekeeper of the hippocampus. Cell Calcium 2024; 123:102933. [PMID: 39116710 DOI: 10.1016/j.ceca.2024.102933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024]
Abstract
The non-selective cation channel TRPC1 is highly expressed in the brain. Recent research shows that neuronal TRPC1 forms heteromeric complexes with TRPC4 and TRPC5, with a small portion existing as homotetramers, primarily in the ER. Given that most studies have focused on the role of heteromeric TRPC1/4/5 complexes, it is crucial to investigate the specific role of homomeric TRPC1 in maintaining brain homeostasis. This review highlights recent findings on TRPC1 in the brain, with a focus on the hippocampus, and compiles the latest data on modulators and their binding sites within the TRPC1/4/5 subfamily to stimulate new research on more selective TRPC1 ligands.
Collapse
Affiliation(s)
- Julia Skerjanz
- Gottfried Schatz Research Center, Division of Medical Physics and Biophysics, Medical University of Graz, Austria
| | - Lena Bauernhofer
- Biophysics Division, Institute of Molecular Biosciences, NAWI Graz, University of Graz, Austria; BioTechMed-Graz, Austria
| | - Kerstin Lenk
- Institute of Neural Engineering, Graz University of Technology, Austria; BioTechMed-Graz, Austria
| | | | - Gerd Leitinger
- Gottfried Schatz Research Center, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Austria; BioTechMed-Graz, Austria; MEFOgraz, Austria
| | - Florian Reichmann
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Austria; BioTechMed-Graz, Austria
| | - Thomas Stockner
- Department of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Klaus Groschner
- Gottfried Schatz Research Center, Division of Medical Physics and Biophysics, Medical University of Graz, Austria
| | - Oleksandra Tiapko
- Gottfried Schatz Research Center, Division of Medical Physics and Biophysics, Medical University of Graz, Austria; BioTechMed-Graz, Austria; MEFOgraz, Austria.
| |
Collapse
|
5
|
Parmar J, von Jonquieres G, Gorlamandala N, Chung B, Craig AJ, Pinyon JL, Birnbaumer L, Klugmann M, Moorhouse AJ, Power JM, Housley GD. TRPC Channels Activated by G Protein-Coupled Receptors Drive Ca 2+ Dysregulation Leading to Secondary Brain Injury in the Mouse Model. Transl Stroke Res 2024; 15:844-858. [PMID: 37462831 PMCID: PMC11226524 DOI: 10.1007/s12975-023-01173-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/06/2024]
Abstract
Canonical transient receptor potential (TRPC) non-selective cation channels, particularly those assembled with TRPC3, TRPC6, and TRPC7 subunits, are coupled to Gαq-type G protein-coupled receptors for the major classes of excitatory neurotransmitters. Sustained activation of this TRPC channel-based pathophysiological signaling hub in neurons and glia likely contributes to prodigious excitotoxicity-driven secondary brain injury expansion. This was investigated in mouse models with selective Trpc gene knockout (KO). In adult cerebellar brain slices, application of glutamate and the class I metabotropic glutamate receptor agonist (S)-3,5-dihydroxyphenylglycine to Purkinje neurons expressing the GCaMP5g Ca2+ reporter demonstrated that the majority of the Ca2+ loading in the molecular layer dendritic arbors was attributable to the TRPC3 effector channels (Trpc3KO compared with wildtype (WT)). This Ca2+ dysregulation was associated with glutamate excitotoxicity causing progressive disruption of the Purkinje cell dendrites (significantly abated in a GAD67-GFP-Trpc3KO reporter brain slice model). Contribution of the Gαq-coupled TRPC channels to secondary brain injury was evaluated in a dual photothrombotic focal ischemic injury model targeting cerebellar and cerebral cortex regions, comparing day 4 post-injury in WT mice, Trpc3KO, and Trpc1/3/6/7 quadruple knockout (TrpcQKO), with immediate 2-h (primary) brain injury. Neuroprotection to secondary brain injury was afforded in both brain regions by Trpc3KO and TrpcQKO models, with the TrpcQKO showing greatest neuroprotection. These findings demonstrate the contribution of the Gαq-coupled TRPC effector mechanism to excitotoxicity-based secondary brain injury expansion, which is a primary driver for mortality and morbidity in stroke, traumatic brain injury, and epilepsy.
Collapse
Affiliation(s)
- Jasneet Parmar
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Georg von Jonquieres
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Nagarajesh Gorlamandala
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Brandon Chung
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Amanda J Craig
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Jeremy L Pinyon
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Lutz Birnbaumer
- Institute of Biomedical Research (BIOMED), Pontifical Catholic University of Argentina, Av. A Moreau de Justo 1300, C1107AFF, Buenos Aires CABA, Argentina
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, 27709, USA
| | - Matthias Klugmann
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Andrew J Moorhouse
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - John M Power
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Gary D Housley
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia.
| |
Collapse
|
6
|
IP3-dependent Ca2+ signals are tightly controlled by Cavβ3, but not by Cavβ1, 2 and 4. Cell Calcium 2022; 104:102573. [DOI: 10.1016/j.ceca.2022.102573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/17/2022] [Accepted: 03/15/2022] [Indexed: 11/18/2022]
|
7
|
Distribution and Assembly of TRP Ion Channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1349:111-138. [PMID: 35138613 DOI: 10.1007/978-981-16-4254-8_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the last several decades, a large family of ion channels have been identified and studied intensively as cellular sensors for diverse physical and/or chemical stimuli. Named transient receptor potential (TRP) channels, they play critical roles in various aspects of cellular physiology. A large number of human hereditary diseases are found to be linked to TRP channel mutations, and their dysregulations lead to acute or chronical health problems. As TRP channels are named and categorized mostly based on sequence homology rather than functional similarities, they exhibit substantial functional diversity. Rapid advances in TRP channel study have been made in recent years and reported in a vast body of literature; a summary of the latest advancements becomes necessary. This chapter offers an overview of current understandings of TRP channel distribution and subunit assembly.
Collapse
|
8
|
Li W, Ehrich M. Effects of chlorpyrifos on transient receptor potential channels. Toxicol Lett 2022; 358:100-104. [DOI: 10.1016/j.toxlet.2022.01.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/19/2022] [Accepted: 01/27/2022] [Indexed: 01/15/2023]
|
9
|
Schulte A, Bieniussa L, Gupta R, Samtleben S, Bischler T, Doering K, Sodmann P, Rittner H, Blum R. Homeostatic calcium fluxes, ER calcium release, SOCE, and calcium oscillations in cultured astrocytes are interlinked by a small calcium toolkit. Cell Calcium 2021; 101:102515. [PMID: 34896701 DOI: 10.1016/j.ceca.2021.102515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/27/2022]
Abstract
How homeostatic ER calcium fluxes shape cellular calcium signals is still poorly understood. Here we used dual-color calcium imaging (ER-cytosol) and transcriptome analysis to link candidates of the calcium toolkit of astrocytes with homeostatic calcium signals. We found molecular and pharmacological evidence that P/Q-type channel Cacna1a contributes to depolarization-dependent calcium entry in astrocytes. For stimulated ER calcium release, the cells express the phospholipase Cb3, IP3 receptors Itpr1 and Itpr2, but no ryanodine receptors (Ryr1-3). After IP3-induced calcium release, Stim1/2 - Orai1/2/3 most likely mediate SOCE. The Serca2 (Atp2a2) is the candidate for refilling of the ER calcium store. The cells highly express adenosine receptor Adora1a for IP3-induced calcium release. Accordingly, adenosine induces fast ER calcium release and subsequent ER calcium oscillations. After stimulation, calcium refilling of the ER depends on extracellular calcium. In response to SOCE, astrocytes show calcium-induced calcium release, notably even after ER calcium was depleted by extracellular calcium removal in unstimulated cells. In contrast, spontaneous ER-cytosol calcium oscillations were not fully dependent on extracellular calcium, as ER calcium oscillations could persist over minutes in calcium-free solution. Additionally, cell-autonomous calcium oscillations show a second-long spatial and temporal delay in the signal dynamics of ER and cytosolic calcium. Our data reveal a rather strong contribution of homeostatic calcium fluxes in shaping IP3-induced and calcium-induced calcium release as well as spatiotemporal components of intracellular calcium oscillations.
Collapse
Affiliation(s)
- Annemarie Schulte
- Department of Neurology, University Hospital of Würzburg, Würzburg, 97080 Germany; Institute of Clinical Neurobiology, University Hospital of Würzburg, Würzburg, 97078 Germany
| | - Linda Bieniussa
- Institute of Clinical Neurobiology, University Hospital of Würzburg, Würzburg, 97078 Germany; Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Germany
| | - Rohini Gupta
- Department of Neurology, University Hospital of Würzburg, Würzburg, 97080 Germany; Institute of Clinical Neurobiology, University Hospital of Würzburg, Würzburg, 97078 Germany
| | - Samira Samtleben
- Institute of Clinical Neurobiology, University Hospital of Würzburg, Würzburg, 97078 Germany; Department of Cell Biology, University of Alberta, MSM, Edmonton, T6G 2H7 Canada
| | - Thorsten Bischler
- Core Unit Systems Medicine, University of Würzburg, Würzburg, 97080 Germany
| | - Kristina Doering
- Core Unit Systems Medicine, University of Würzburg, Würzburg, 97080 Germany; Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
| | - Philipp Sodmann
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, 97080 Germany
| | - Heike Rittner
- Department of Anesthesiology, Intensive Care, Emergency Medicine and Pain Therapy, University Hospital of Würzburg, Würzburg, 97074 Germany
| | - Robert Blum
- Department of Neurology, University Hospital of Würzburg, Würzburg, 97080 Germany; Institute of Clinical Neurobiology, University Hospital of Würzburg, Würzburg, 97078 Germany.
| |
Collapse
|
10
|
Mira RG, Lira M, Cerpa W. Traumatic Brain Injury: Mechanisms of Glial Response. Front Physiol 2021; 12:740939. [PMID: 34744783 PMCID: PMC8569708 DOI: 10.3389/fphys.2021.740939] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/20/2021] [Indexed: 11/17/2022] Open
Abstract
Traumatic brain injury (TBI) is a heterogeneous disorder that involves brain damage due to external forces. TBI is the main factor of death and morbidity in young males with a high incidence worldwide. TBI causes central nervous system (CNS) damage under a variety of mechanisms, including synaptic dysfunction, protein aggregation, mitochondrial dysfunction, oxidative stress, and neuroinflammation. Glial cells comprise most cells in CNS, which are mediators in the brain’s response to TBI. In the CNS are present astrocytes, microglia, oligodendrocytes, and polydendrocytes (NG2 cells). Astrocytes play critical roles in brain’s ion and water homeostasis, energy metabolism, blood-brain barrier, and immune response. In response to TBI, astrocytes change their morphology and protein expression. Microglia are the primary immune cells in the CNS with phagocytic activity. After TBI, microglia also change their morphology and release both pro and anti-inflammatory mediators. Oligodendrocytes are the myelin producers of the CNS, promoting axonal support. TBI causes oligodendrocyte apoptosis, demyelination, and axonal transport disruption. There are also various interactions between these glial cells and neurons in response to TBI that contribute to the pathophysiology of TBI. In this review, we summarize several glial hallmarks relevant for understanding the brain injury and neuronal damage under TBI conditions.
Collapse
Affiliation(s)
- Rodrigo G Mira
- Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Matías Lira
- Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Waldo Cerpa
- Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| |
Collapse
|
11
|
Shekhar S, Liu Y, Wang S, Zhang H, Fang X, Zhang J, Fan L, Zheng B, Roman RJ, Wang Z, Fan F, Booz GW. Novel Mechanistic Insights and Potential Therapeutic Impact of TRPC6 in Neurovascular Coupling and Ischemic Stroke. Int J Mol Sci 2021; 22:2074. [PMID: 33669830 PMCID: PMC7922996 DOI: 10.3390/ijms22042074] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 12/13/2022] Open
Abstract
Ischemic stroke is one of the most disabling diseases and a leading cause of death globally. Despite advances in medical care, the global burden of stroke continues to grow, as no effective treatments to limit or reverse ischemic injury to the brain are available. However, recent preclinical findings have revealed the potential role of transient receptor potential cation 6 (TRPC6) channels as endogenous protectors of neuronal tissue. Activating TRPC6 in various cerebral ischemia models has been found to prevent neuronal death, whereas blocking TRPC6 enhances sensitivity to ischemia. Evidence has shown that Ca2+ influx through TRPC6 activates the cAMP (adenosine 3',5'-cyclic monophosphate) response element-binding protein (CREB), an important transcription factor linked to neuronal survival. Additionally, TRPC6 activation may counter excitotoxic damage resulting from glutamate release by attenuating the activity of N-methyl-d-aspartate (NMDA) receptors of neurons by posttranslational means. Unresolved though, are the roles of TRPC6 channels in non-neuronal cells, such as astrocytes and endothelial cells. Moreover, TRPC6 channels may have detrimental effects on the blood-brain barrier, although their exact role in neurovascular coupling requires further investigation. This review discusses evidence-based cell-specific aspects of TRPC6 in the brain to assess the potential targets for ischemic stroke management.
Collapse
Affiliation(s)
- Shashank Shekhar
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Yedan Liu
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.L.); (S.W.); (H.Z.); (X.F.); (J.Z.); (L.F.); (B.Z.); (R.J.R.); (F.F.); (G.W.B.)
| | - Shaoxun Wang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.L.); (S.W.); (H.Z.); (X.F.); (J.Z.); (L.F.); (B.Z.); (R.J.R.); (F.F.); (G.W.B.)
| | - Huawei Zhang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.L.); (S.W.); (H.Z.); (X.F.); (J.Z.); (L.F.); (B.Z.); (R.J.R.); (F.F.); (G.W.B.)
| | - Xing Fang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.L.); (S.W.); (H.Z.); (X.F.); (J.Z.); (L.F.); (B.Z.); (R.J.R.); (F.F.); (G.W.B.)
| | - Jin Zhang
- School of Medicine, I.M. Sechenov First Moscow State Medical University, Moscow 119048, Russia
| | - Letao Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.L.); (S.W.); (H.Z.); (X.F.); (J.Z.); (L.F.); (B.Z.); (R.J.R.); (F.F.); (G.W.B.)
| | - Baoying Zheng
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.L.); (S.W.); (H.Z.); (X.F.); (J.Z.); (L.F.); (B.Z.); (R.J.R.); (F.F.); (G.W.B.)
| | - Richard J. Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.L.); (S.W.); (H.Z.); (X.F.); (J.Z.); (L.F.); (B.Z.); (R.J.R.); (F.F.); (G.W.B.)
| | - Zhen Wang
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA;
| | - Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.L.); (S.W.); (H.Z.); (X.F.); (J.Z.); (L.F.); (B.Z.); (R.J.R.); (F.F.); (G.W.B.)
| | - George W. Booz
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.L.); (S.W.); (H.Z.); (X.F.); (J.Z.); (L.F.); (B.Z.); (R.J.R.); (F.F.); (G.W.B.)
| |
Collapse
|
12
|
Jeon J, Bu F, Sun G, Tian JB, Ting SM, Li J, Aronowski J, Birnbaumer L, Freichel M, Zhu MX. Contribution of TRPC Channels in Neuronal Excitotoxicity Associated With Neurodegenerative Disease and Ischemic Stroke. Front Cell Dev Biol 2021; 8:618663. [PMID: 33490083 PMCID: PMC7820370 DOI: 10.3389/fcell.2020.618663] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
The seven canonical members of transient receptor potential (TRPC) proteins form cation channels that evoke membrane depolarization and intracellular calcium concentration ([Ca2+] i ) rise, which are not only important for regulating cell function but their deregulation can also lead to cell damage. Recent studies have implicated complex roles of TRPC channels in neurodegenerative diseases including ischemic stroke. Brain ischemia reduces oxygen and glucose supply to neurons, i.e., Oxygen and Glucose Deprivation (OGD), resulting in [Ca2+] i elevation, ion dyshomeostasis, and excitotoxicity, which are also common in many forms of neurodegenerative diseases. Although ionotropic glutamate receptors, e.g., N-methyl-D-aspartate receptors, are well established to play roles in excitotoxicity, the contribution of metabotropic glutamate receptors and their downstream effectors, i.e., TRPC channels, should not be neglected. Here, we summarize the current findings about contributions of TRPC channels in neurodegenerative diseases, with a focus on OGD-induced neuronal death and rodent models of cerebral ischemia/reperfusion. TRPC channels play both detrimental and protective roles to neurodegeneration depending on the TRPC subtype and specific pathological conditions involved. When illustrated the mechanisms by which TRPC channels are involved in neuronal survival or death seem differ greatly, implicating diverse and complex regulation. We provide our own data showing that TRPC1/C4/C5, especially TRPC4, may be generally detrimental in OGD and cerebral ischemia/reperfusion. We propose that although TRPC channels significantly contribute to ischemic neuronal death, detailed mechanisms and specific roles of TRPC subtypes in brain injury at different stages of ischemia/reperfusion and in different brain regions need to be carefully and systematically investigated.
Collapse
Affiliation(s)
- Jaepyo Jeon
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Fan Bu
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Guanghua Sun
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Jin-Bin Tian
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Shun-Ming Ting
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Jun Li
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Jaroslaw Aronowski
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Lutz Birnbaumer
- Institute for Biomedical Research (BIOMED UCA-CONICET), Buenos Aires, Argentina.,School of Medical Sciences, Catholic University of Argentina (UCA), Buenos Aires, Argentina.,Neurobiology Laboratory, National Institute of Environmental Health Sciences, Durham, NC, United States
| | - Marc Freichel
- Department of Pharmacology, Heidelberg University, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
13
|
Cho J, Huh Y. Astrocytic Calcium Dynamics Along the Pain Pathway. Front Cell Neurosci 2020; 14:594216. [PMID: 33192331 PMCID: PMC7596274 DOI: 10.3389/fncel.2020.594216] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/14/2020] [Indexed: 12/30/2022] Open
Abstract
Astrocytes, once thought to be passive cells merely filling the space between neurons in the nervous system, are receiving attention as active modulators of the brain and spinal cord physiology by providing nutrients, maintaining homeostasis, and modulating synaptic transmission. Accumulating evidence indicates that astrocytes are critically involved in chronic pain regulation. Injury induces astrocytes to become reactive, and recent studies suggest that reactive astrocytes can have either neuroprotective or neurodegenerative effects. While the exact mechanisms underlying the transition from resting astrocytes to reactive astrocytes remain unknown, astrocytic calcium increase, coordinated by inflammatory molecules, has been suggested to trigger this transition. In this mini review article, we will discuss the roles of astrocytic calcium, channels contributing to calcium dynamics in astrocytes, astrocyte activations along the pain pathway, and possible relationships between astrocytic calcium dynamics and chronic pain.
Collapse
Affiliation(s)
- Jeiwon Cho
- Brain and Cognitive Science, Scranton College, Ewha Womans University, Seoul, South Korea
| | - Yeowool Huh
- Department of Medical Science, College of Medicine, Catholic Kwandong University, Incheon, South Korea.,Translational Brain Research Center, Catholic Kwandong University, International St. Mary's Hospital, Incheon, South Korea
| |
Collapse
|
14
|
Huang Q, Wang X, Lin X, Zhang J, You X, Shao A. The Role of Transient Receptor Potential Channels in Blood-Brain Barrier Dysfunction after Ischemic Stroke. Biomed Pharmacother 2020; 131:110647. [PMID: 32858500 DOI: 10.1016/j.biopha.2020.110647] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/11/2020] [Accepted: 08/16/2020] [Indexed: 12/25/2022] Open
Abstract
Stroke is the leading cause of long-term disability, demanding an ever-increasing need to find treatment. Transient receptor potential (TRP) channels are nonselective Ca2+-permeable channels, among which TRPC, TRPM, and TRPV are widely expressed in the brain. Dysfunction of the blood brain barrier (BBB) is a core feature of stroke and is associated with severity of injury. As studies have shown, TRP channels influence various neuronal functions by regulating the BBB. Here, we briefly review the role of TRP channel in the BBB dysfunction after stroke, and explore the therapeutic potential of TRP-targeted therapy.
Collapse
Affiliation(s)
- Qingxia Huang
- Department of Echocardiography, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xianyi Lin
- Department of anesthesiology, Sir run run shaw hospital, school of medicine, zhejiang university, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; Brain Research Institute, Zhejiang University, Hangzhou, China; Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, China
| | - Xiangdong You
- Department of Echocardiography, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
15
|
Zhang LY, Zhang YQ, Zeng YZ, Zhu JL, Chen H, Wei XL, Liu LJ. TRPC1 inhibits the proliferation and migration of estrogen receptor-positive Breast cancer and gives a better prognosis by inhibiting the PI3K/AKT pathway. Breast Cancer Res Treat 2020; 182:21-33. [PMID: 32415497 DOI: 10.1007/s10549-020-05673-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/06/2020] [Indexed: 02/05/2023]
Abstract
PURPOSE Previous studies have indicated that transient receptor potential (TRP) channels can influence cancer development. The TRPC subfamily consists of seven subtypes, TRPC1 - TRPC7. Interestingly, the expression levels of TRPC1 have been shown to be totally different in different breast cancer cell lines. Nevertheless, the underlying mechanism remains unknown. In this study, we explore the significance of TRPC1 expression in breast cancer. METHODS Immunohistochemical TRPC1 staining was performed in 278 samples. TRPC1 expression in different breast tissues were examined. Then, the influence of TRPC1 on migration, invasion and proliferation was explored. We analyzed the protein of TRPC1 by Western blot to prove which pathway may be involved in. Finally, we use online database to predict the prognosis of TRPC1 in breast cancer. RESULTS Through immunohistochemistry and in vitro experiments, we found that the expression level of TRPC1 was higher in breast cancer cells as compared with that in normal breast epithelial cells. Moreover, the expression level of TRPC1 was different between estrogen receptor-positive (ER +) and -negative (ER -) breast cancer. It was shown that TRPC1 inhibited MCF7 cell proliferation, migration, and invasion in vitro. Western blotting revealed that TRPC1 inhibited the PI3K/AKT pathway and epithelium-mesenchymal transformation, leading to subsequent inhibition of cell proliferation and metastasis. In luminal A and luminal B patients, those with high TRPC1 expression had a better prognosis. On the contrary, in basal-like and triple-negative breast cancer (TNBC) subtypes, patients with high-TRPC1 expression had a worse prognosis. CONCLUSIONS We confirmed that TRPC1 was high expression in breast cancer. Overexpression of TRPC1 inhibits proliferation and migration of ER + breast cancer and gives a better prognosis by inhibiting PI3K/AKT pathway activation. TRPC1 may be an independent prognostic predictor in breast cancer patients.
Collapse
Affiliation(s)
- Li-Ying Zhang
- Department of Pathology, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, 515031, People's Republic of China
| | - Yong-Qu Zhang
- Department of Breast Center, Cancer Hospital of Shantou University Medical College, No.7 Raoping Road, shantou, 515031, People's Republic of China
- Department of Breast-Thyroid-Surgery, Xiang'an Hospital of Xiamen University, 2000 Xiang'an East Road, Xiamen, 361101, People's Republic of China
| | - Yun-Zhu Zeng
- Department of Pathology, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, 515031, People's Republic of China
| | - Jian-Ling Zhu
- Department of Pathology, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, 515031, People's Republic of China
| | - Huan Chen
- Department of Pathology, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, 515031, People's Republic of China
| | - Xiao-Long Wei
- Department of Pathology, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, 515031, People's Republic of China.
| | - Li-Juan Liu
- Outpatient Department of Breast Center, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, 515031, People's Republic of China.
| |
Collapse
|
16
|
Lin L, Zhuang X, Huang R, Song S, Wang Z, Wang S, Cheng L, Zhu R. Size-Dependent Effects of Suspended Graphene Oxide Nanoparticles on the Cellular Fate of Mouse Neural Stem Cells. Int J Nanomedicine 2020; 15:1421-1435. [PMID: 32184596 PMCID: PMC7060781 DOI: 10.2147/ijn.s225722] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 02/01/2020] [Indexed: 01/19/2023] Open
Abstract
PURPOSE In this study, we aim to explore the effects of graphene oxide (GO), a derivative of graphene, nanoparticles of four different sizes on the cellular fate of mouse neural stem cells (mNSCs). METHODS GO NPs were characterized with transmission electron microscopy (TEM), scanning electron micrography (SEM), atomic force microscopy (AFM) and Raman Spectra analysis. The cytotoxic effects of the GO NPs of different sizes on the mNSCs were determined using CCK-8 assay, Annexin V-APC/ 7-AAD staining and EdU staining assays. We investigated the biological and the mechanisms of GO NPs on cells using immunofluorescence analysis and quantitative real-time PCR (qPCR). RESULTS The average hydrodynamic sizes of the GO NPs were 417 nm, 663 nm, 1047 nm, and 4651 nm, with a thickness of approximately 22.5 nm, 17.7 nm, 22.4 nm, and 13.4 nm, respectively. GO NPs of all sizes showed low cytotoxicity at a concentration of 20 μg/mL on the mNSCs. Immunostaining demonstrated that treatment with GO NPs, especially the 663 nm ones, enhanced the self-renewal ability of mNSCs in the absence of EGF and bFGF. Under differentiation medium conditions that are free of mitogenic factors, all the GO NPs, particularly the 4651 nm ones, increased the expression level of Tuj1 and GFAP. With regards to the migration ability, we found that 417 nm GO-NP-treated mNSCs migrated over a longer distance than the control group obviously. In addition, higher expression of Rap1, Vinculin and Paxillin was observed in the GO NP-treated groups compared to the control group. mRNA-Sequence analysis and Western blotting results suggested that the 4651 nm GO NPs triggered positive neuronal differentiation through phosphorylation of ERK1/2 by the downregulating of TRPC2. CONCLUSION GO NPs play an important role in the applications of inducing self-renewal and differentiation of mNSC, and are promising in the future for further studies.
Collapse
Affiliation(s)
- Lijuan Lin
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, School of Life Science and Technology, Tongji University, Shanghai, People’s Republic of China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, People’s Republic of China
| | - Xizhen Zhuang
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, School of Life Science and Technology, Tongji University, Shanghai, People’s Republic of China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, People’s Republic of China
| | - Ruiqi Huang
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, School of Life Science and Technology, Tongji University, Shanghai, People’s Republic of China
| | - Simin Song
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, School of Life Science and Technology, Tongji University, Shanghai, People’s Republic of China
| | - Zhaojie Wang
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, School of Life Science and Technology, Tongji University, Shanghai, People’s Republic of China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, People’s Republic of China
| | - Shilong Wang
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, People’s Republic of China
| | - Liming Cheng
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, School of Life Science and Technology, Tongji University, Shanghai, People’s Republic of China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, People’s Republic of China
| | - Rongrong Zhu
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, School of Life Science and Technology, Tongji University, Shanghai, People’s Republic of China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, People’s Republic of China
| |
Collapse
|
17
|
Beiersdorfer A, Lohr C. AMPA Receptor-Mediated Ca 2+ Transients in Mouse Olfactory Ensheathing Cells. Front Cell Neurosci 2019; 13:451. [PMID: 31636544 PMCID: PMC6788192 DOI: 10.3389/fncel.2019.00451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/20/2019] [Indexed: 11/13/2022] Open
Abstract
Ca2+ signaling in glial cells is primarily triggered by metabotropic pathways and the subsequent Ca2+ release from internal Ca2+ stores. However, there is upcoming evidence that various ion channels might also initiate Ca2+ rises in glial cells by Ca2+ influx. We investigated AMPA receptor-mediated inward currents and Ca2+ transients in olfactory ensheathing cells (OECs), a specialized glial cell population in the olfactory bulb (OB), using whole-cell voltage-clamp recordings and confocal Ca2+ imaging. By immunohistochemistry we showed immunoreactivity to the AMPA receptor subunits GluA1, GluA2 and GluA4 in OECs, suggesting the presence of AMPA receptors in OECs. Kainate-induced inward currents were mediated exclusively by AMPA receptors, as they were sensitive to the specific AMPA receptor antagonist, GYKI53655. Moreover, kainate-induced inward currents were reduced by the selective Ca2+-permeable AMPA receptor inhibitor, NASPM, suggesting the presence of functional Ca2+-permeable AMPA receptors in OECs. Additionally, kainate application evoked Ca2+ transients in OECs which were abolished in the absence of extracellular Ca2+, indicating that Ca2+ influx via Ca2+-permeable AMPA receptors contribute to kainate-induced Ca2+ transients. However, kainate-induced Ca2+ transients were partly reduced upon Ca2+ store depletion, leading to the conclusion that Ca2+ influx via AMPA receptor channels is essential to trigger Ca2+ transients in OECs, whereas Ca2+ release from internal stores contributes in part to the kainate-evoked Ca2+ response. Endogenous glutamate release by OSN axons initiated Ca2+ transients in OECs, equally mediated by metabotropic receptors (glutamatergic and purinergic) and AMPA receptors, suggesting a prominent role for AMPA receptor mediated Ca2+ signaling in axon-OEC communication.
Collapse
Affiliation(s)
| | - Christian Lohr
- Division of Neurophysiology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
18
|
Kim J, Ko J, Myeong J, Kwak M, Hong C, So I. TRPC1 as a negative regulator for TRPC4 and TRPC5 channels. Pflugers Arch 2019; 471:1045-1053. [PMID: 31222490 DOI: 10.1007/s00424-019-02289-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/17/2019] [Accepted: 06/04/2019] [Indexed: 12/12/2022]
Abstract
Transient receptor potential canonical (TRPC) channels are calcium permeable, non-selective cation channels with wide tissue-specific distribution. Among 7 TRPC channels, TRPC 1/4/5 and TRPC3/6/7 are subdivided based on amino acid sequence homology. TRPC4 and TRPC5 channels exhibit cationic current with homotetrameric form, but they also form heterotetrameric channel such as TRPC1/4 or TRPC1/5 once TRPC1 is incorporated. The expression of TRPC1 is ubiquitous whereas the expressions of TRPC4 and TRPC5 are rather focused in nervous system. With the help of conditional knock-out of TPRC1, 4 and/or 5 genes, TRPC channels made of these constituents are reported to be involved in various pathophysiological functions such as seizure, anxiety-like behaviour, fear, Huntington's disease, Parkinson's disease and many others. In heterologous expression system, many issues such as activation mechanism, stoichiometry and relative cation permeabilites of homomeric or heteromeric channels have been addressed. In this review, we discussed the role of TRPC1 channel per se in plasma membrane, role of TRPC1 in heterotetrameric conformation (TRPC1/4 or TRPC1/5) and relationship between TRPC1/4/5 channels, calcium influx and voltage-gated calcium channels.
Collapse
Affiliation(s)
- Jinsung Kim
- Department of Physiology, College of Medicine, Seoul National University, Seoul, South Korea
| | - Juyeon Ko
- Department of Physiology, College of Medicine, Seoul National University, Seoul, South Korea
| | - Jongyun Myeong
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, USA
| | - Misun Kwak
- Department of Physiology, College of Medicine, Seoul National University, Seoul, South Korea
| | - Chansik Hong
- Department of Physiology, College of Medicine, Chosun University, Kwangju, South Korea
| | - Insuk So
- Department of Physiology, College of Medicine, Seoul National University, Seoul, South Korea.
| |
Collapse
|
19
|
Kim YW, Zhou T, Ko EA, Kim S, Lee D, Seo Y, Kwon N, Choi T, Lim H, Cho S, Bae G, Hwang Y, Kim D, Park H, Lee M, Jang E, Choi J, Bae H, Lim I, Bang H, Ko JH. Prediction of itching diagnostic marker through RNA sequencing of contact hypersensitivity and skin scratching stimulation mice models. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2019; 23:151-159. [PMID: 30820159 PMCID: PMC6384194 DOI: 10.4196/kjpp.2019.23.2.151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/04/2019] [Accepted: 01/10/2019] [Indexed: 01/28/2023]
Abstract
Pruritus (itching) is classically defined as an unpleasant cutaneous sensation that leads to scratching behavior. Although the scientific criteria of classification for pruritic diseases are not clear, it can be divided as acute or chronic by duration of symptoms. In this study, we investigated whether skin injury caused by chemical (contact hypersensitivity, CHS) or physical (skin-scratching stimulation, SSS) stimuli causes initial pruritus and analyzed gene expression profiles systemically to determine how changes in skin gene expression in the affected area are related to itching. In both CHS and SSS, we ranked the Gene Ontology Biological Process terms that are generally associated with changes. The factors associated with upregulation were keratinization, inflammatory response and neutrophil chemotaxis. The Kyoto Encyclopedia of Genes and Genomes pathway shows the difference of immune system, cell growth and death, signaling molecules and interactions, and signal transduction pathways. Il1a , Il1b and Il22 were upregulated in the CHS, and Tnf, Tnfrsf1b, Il1b, Il1r1 and Il6 were upregulated in the SSS. Trpc1 channel genes were observed in representative itching-related candidate genes. By comparing and analyzing RNA-sequencing data obtained from the skin tissue of each animal model in these characteristic stages, it is possible to find useful diagnostic markers for the treatment of itching, to diagnose itching causes and to apply customized treatment.
Collapse
Affiliation(s)
- Young-Won Kim
- Department of Physiology, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Tong Zhou
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Eun-A Ko
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Seongtae Kim
- Department of Physiology, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Donghee Lee
- Department of Physiology, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Yelim Seo
- Department of Physiology, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Nahee Kwon
- Department of Medicine, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Taeyeon Choi
- Department of Medicine, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Heejung Lim
- Department of Medicine, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Sungvin Cho
- Department of Medicine, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Gwanhui Bae
- Department of Medicine, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Yuseong Hwang
- Department of Medicine, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Dojin Kim
- Department of Medicine, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Hyewon Park
- Department of Medicine, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Minjae Lee
- Department of Medicine, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Eunkyung Jang
- Department of Medicine, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Jeongyoon Choi
- Department of Physiology, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Hyemi Bae
- Department of Physiology, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Inja Lim
- Department of Physiology, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Hyoweon Bang
- Department of Physiology, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Jae-Hong Ko
- Department of Physiology, Chung-Ang University College of Medicine, Seoul 06974, Korea
| |
Collapse
|
20
|
Cornillot M, Giacco V, Hamilton NB. The role of TRP channels in white matter function and ischaemia. Neurosci Lett 2018; 690:202-209. [PMID: 30366011 DOI: 10.1016/j.neulet.2018.10.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 10/09/2018] [Accepted: 10/18/2018] [Indexed: 01/15/2023]
Abstract
Transient receptor potential (TRP) proteins are a large family of tetrameric non-selective cation channels that are widely expressed in the grey and white matter of the CNS, and are increasingly considered as potential therapeutic targets in brain disorders. Here we briefly review the evidence for TRP channel expression in glial cells and their possible role in both glial cell physiology and stroke. Despite their contribution to important functions, our understanding of the roles of TRP channels in glia is still in its infancy. The evidence reviewed here indicates that further investigation is needed to determine whether TRP channel inhibition can decrease damage or increase repair in stroke and other diseases affecting the white matter.
Collapse
Affiliation(s)
- Marion Cornillot
- Wolfson Centre for Age Related Disease, King's College London, Guy's Campus, London, SE1 1UL, United Kingdom
| | - Vincenzo Giacco
- Wolfson Centre for Age Related Disease, King's College London, Guy's Campus, London, SE1 1UL, United Kingdom
| | - Nicola B Hamilton
- Wolfson Centre for Age Related Disease, King's College London, Guy's Campus, London, SE1 1UL, United Kingdom.
| |
Collapse
|
21
|
Myeong J, Ko J, Kwak M, Kim J, Woo J, Ha K, Hong C, Yang D, Kim HJ, Jeon JH, So I. Dual action of the Gα q-PLCβ-PI(4,5)P 2 pathway on TRPC1/4 and TRPC1/5 heterotetramers. Sci Rep 2018; 8:12117. [PMID: 30108272 PMCID: PMC6092394 DOI: 10.1038/s41598-018-30625-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 08/03/2018] [Indexed: 11/09/2022] Open
Abstract
The transient receptor potential canonical (TRPC) 1 channel is widely distributed in mammalian cells and is involved in many physiological processes. TRPC1 is primarily considered a regulatory subunit that forms heterotetrameric channels with either TRPC4 or TRPC5 subunits. Here, we suggest that the regulation of TRPC1/4 and TRPC1/5 heterotetrameric channels by the Gαq-PLCβ pathway is self-limited and dynamically mediated by Gαq and PI(4,5)P2. We provide evidence indicating that Gαq protein directly interacts with either TRPC4 or TRPC5 of the heterotetrameric channels to permit activation. Simultaneously, Gαq-coupled PLCβ activation leads to the breakdown of PI(4,5)P2, which inhibits activity of TRPC1/4 and 1/5 channels.
Collapse
Affiliation(s)
- Jongyun Myeong
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.,Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Juyeon Ko
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Misun Kwak
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jinsung Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Joohan Woo
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Kotdaji Ha
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Chansik Hong
- Department of Physiology, Chosun University School of Medicine, Kwangju, 61452, Republic of Korea
| | - Dongki Yang
- Department of Physiology, Gachon University College of Medicine, Incheon, 21936, Republic of Korea
| | - Hyun Jin Kim
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea.
| | - Ju-Hong Jeon
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Insuk So
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| |
Collapse
|
22
|
Ischemic Brain Injury Leads to Brain Edema via Hyperthermia-Induced TRPV4 Activation. J Neurosci 2018; 38:5700-5709. [PMID: 29793978 DOI: 10.1523/jneurosci.2888-17.2018] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 04/26/2018] [Accepted: 05/03/2018] [Indexed: 01/27/2023] Open
Abstract
Brain edema is characterized by an increase in net brain water content, which results in an increase in brain volume. Although brain edema is associated with a high fatality rate, the cellular and molecular processes of edema remain largely unclear. Here, we developed an in vitro model of ischemic stroke-induced edema in which male mouse brain slices were treated with oxygen-glucose deprivation (OGD) to mimic ischemia. We continuously measured the cross-sectional area of the brain slice for 150 min under macroscopic microscopy, finding that OGD induces swelling of brain slices. OGD-induced swelling was prevented by pharmacologically blocking or genetically knocking out the transient receptor potential vanilloid 4 (TRPV4), a member of the thermosensitive TRP channel family. Because TRPV4 is activated at around body temperature and its activation is enhanced by heating, we next elevated the temperature of the perfusate in the recording chamber, finding that hyperthermia induces swelling via TRPV4 activation. Furthermore, using the temperature-dependent fluorescence lifetime of a fluorescent-thermosensitive probe, we confirmed that OGD treatment increases the temperature of brain slices through the activation of glutamate receptors. Finally, we found that brain edema following traumatic brain injury was suppressed in TRPV4-deficient male mice in vivo Thus, our study proposes a novel mechanism: hyperthermia activates TRPV4 and induces brain edema after ischemia.SIGNIFICANCE STATEMENT Brain edema is characterized by an increase in net brain water content, which results in an increase in brain volume. Although brain edema is associated with a high fatality rate, the cellular and molecular processes of edema remain unclear. Here, we developed an in vitro model of ischemic stroke-induced edema in which mouse brain slices were treated with oxygen-glucose deprivation. Using this system, we showed that the increase in brain temperature and the following activation of the thermosensitive cation channel TRPV4 (transient receptor potential vanilloid 4) are involved in the pathology of edema. Finally, we confirmed that TRPV4 is involved in brain edema in vivo using TRPV4-deficient mice, concluding that hyperthermia activates TRPV4 and induces brain edema after ischemia.
Collapse
|