1
|
Almohmadi NH, Al-Kuraishy HM, Al-Gareeb AI, Albuhadily AK, Abdelaziz AM, Jabir MS, Alexiou A, Papadakis M, Batiha GES. Glutamatergic dysfunction in neurodegenerative diseases focusing on Parkinson's disease: Role of glutamate modulators. Brain Res Bull 2025; 225:111349. [PMID: 40252703 DOI: 10.1016/j.brainresbull.2025.111349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/02/2025] [Accepted: 04/15/2025] [Indexed: 04/21/2025]
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disorder resulting from the degeneration of dopamenergic neurons in the substantia nigra pars compacta (SNpc). Research has predominantly centered on understanding the dysfunction of dopaminergic neurotransmission in PD. Recently, more studies discussed the potential role of other neurotransmitters in PD neuropathology. One of the most important non-dopaminergic neurotransmitters involved in the pathogenesis of PD is glutamate, which is widely involved in glutamatergic neurotransmission in different brain regions, including SNpc. The development and progression of PD neuropathology and levodopa-induced dyskinesias (LID) are associated with glutamate neurotoxicity. Therefore, this review seeks to explore the possible involvement of glutamatergic signaling in PD development and assess the therapeutic potential of glutamate receptor antagonists in treating the disorder.
Collapse
Affiliation(s)
- Najlaa Hamed Almohmadi
- Clinical Nutrition Department, College of Applied Medical Sciences, Umm Al-Qura University, Makkah 24381, Saudi Arabia.
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriyah University, Baghdad, Iraq.
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriyah University, Baghdad, Iraq; Jabir ibn Hayyan Medical University Al-Ameer Qu, Po. Box (13), Kufa, Najaf, Iraq.
| | - Ali K Albuhadily
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriyah University, Baghdad, Iraq.
| | - Ahmed M Abdelaziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University-Arish Branch, Arish 45511, Egypt.
| | - Majid S Jabir
- Department of Applied Science, University of Technology-Iraq, Baghdad, Iraq.
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia; University Centre for Research & Development, Chandigarh University, Mohali, India; Department of Research & Development, Funogen, Athens, Greece.
| | - Marios Papadakis
- University Hospital Witten-Herdecke, University of Witten, Herdecke, Heusnerstrasse 40, Wuppertal 42283, Germany.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhur University, Damanhur, AlBeheira 22511, Egypt.
| |
Collapse
|
2
|
Di Giovanni S. The neuronal-like behaviour of macrophages. Trends Cell Biol 2025:S0962-8924(25)00091-1. [PMID: 40335360 DOI: 10.1016/j.tcb.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 05/09/2025]
Abstract
Tissue-resident macrophages (TRMs) contribute to both organ physiology and pathology by communicating with the nervous system and tissue-resident cells. They have been increasingly reported to be extremely plastic and adaptable, as shown by their broad range of molecular signatures and functional roles well beyond their classical duties as phagocytes. It has recently been found that macrophages can reside in proximity to muscle spindles, which are sensory neurons sensing muscle length. Surprisingly muscle spindle macrophages express neuron-like gene expression signatures and support muscle contraction by releasing glutamate. This behaviour is more in keeping with neurons rather than immune cells. Here, the potential additional roles for muscle spindle macrophages in muscle contraction and locomotion at homeostasis and in disease states will be discussed. It will also be debated whether the use of neurotransmitters by myeloid cells as shared currency to optimise cell to cell communication, to favour neural circuit development, homeostasis and repair is an exception or could rather be the rule.
Collapse
Affiliation(s)
- Simone Di Giovanni
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK.
| |
Collapse
|
3
|
Liu X, Hebron ML, Stevenson M, Moussa C. A Novel Small Molecule Enhances Stable Dopamine Delivery to the Brain in Models of Parkinson's Disease. Int J Mol Sci 2025; 26:4251. [PMID: 40362491 DOI: 10.3390/ijms26094251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 05/15/2025] Open
Abstract
Levodopa is the gold standard symptomatic treatment for Parkinson's disease. Disease progression due to alpha-synuclein accumulation, brain inflammation, and the loss of dopamine neurons, as well as motor fluctuations, due to variations in levodopa plasma levels, remain a significant problem for Parkinson's patients. Developing a therapeutic option that can simultaneously reduce the neuropathology associated with alpha-synuclein aggregation, attenuate oxidative stress and inflammation, and overcome variations in levodopa plasma levels is an unmet need to treat Parkinson's disease. We determined the pharmacokinetics and pharmacodynamics of a small molecule, dubbed Pegasus, that conjugates dopamine with a nonantibiotic doxycycline derivative via a molecular linker. Mice harboring the human A53T mutation of alpha-synuclein or treated with MPTP were injected once daily with 50 mg/kg Pegasus for 2 weeks and assessed for motor, behavioral, and cognitive effects, followed by biochemical and histochemical analysis. Pegasus is a poor brain penetrant but it was metabolized to stable dopamine and tetracycline derivatives, and abundant plasma and brain levels of these metabolites were detected. Pegasus reduced soluble and insoluble alpha-synuclein levels, protected dopamine-producing neurons, and reduced astrocytic activation in A53T mice. Mice treated with Pegasus exhibited motor improvement (6.5 h) and reduction in anxiety-like behavior. Rotarod and grip strength improved in MPTP-treated mice when mice were treated with Pegasus or levodopa. Pegasus may be a multi-modal therapeutic option that can deliver stable dopamine into the CNS and reduce misfolded alpha-synuclein, activate dopamine receptors, and attenuate variations in dopamine levels.
Collapse
Affiliation(s)
- Xiaoguang Liu
- Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Department of Neurology, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Michaeline L Hebron
- Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Department of Neurology, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Max Stevenson
- Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Department of Neurology, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Charbel Moussa
- Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Department of Neurology, Georgetown University Medical Center, Washington, DC 20007, USA
| |
Collapse
|
4
|
Dorababu A. Experimentation of Heterocycles (2013-22) as Potent Pharmacophores in Drug Design of Multiple Sclerosis. Drug Dev Res 2025; 86:e70059. [PMID: 39907074 DOI: 10.1002/ddr.70059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/15/2025] [Accepted: 01/23/2025] [Indexed: 02/06/2025]
Abstract
Multiple sclerosis (MS) is a demyelinating disease in which the insulating cover (myelin sheath) of the brain and spinal cord is damaged. Demyelination results in a decreased signal transmission in the nervous system. Symptoms include double vision, muscle weakness, and difficulty with coordination. Genetic and viral infections have been proposed as plausible factors responsible for MS. Although there is no cure for MS, treatment prevents future attacks. At present, chemotherapy and monoclonal antibodies are the available treatments for MS. Heterocyclic compounds are currently being tested clinically for their efficacy. Some heterocyclic scaffolds have been found to be promising for the treatment of MS. In view of this, research has been conducted towards the design and discovery of chemical agents for MS. Hence, the literature relevant to drug design for MS in the last decade has been collated and described comprehensively so that it would be helpful for efficient drug design for MS in the future. Additionally, through the structure-activity relationship, the importance of crucial structural features was emphasized. The classification was primarily based on the type of heterocycle.
Collapse
Affiliation(s)
- Atukuri Dorababu
- SKNG Government First Grade College, Gangavathi, 583227, Karnataka, India
| |
Collapse
|
5
|
Qin Q, Wang D, Qu Y, Li J, An K, Mao Z, Li J, Xiong Y, Min Z, Xue Z. Enhanced glycolysis-derived lactate promotes microglial activation in Parkinson's disease via histone lactylation. NPJ Parkinsons Dis 2025; 11:3. [PMID: 39753581 PMCID: PMC11698869 DOI: 10.1038/s41531-024-00858-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 12/09/2024] [Indexed: 01/06/2025] Open
Abstract
The switch from oxidative phosphorylation to glycolysis is crucial for microglial activation. Recent studies highlight that histone lactylation promotes macrophage homeostatic gene expression via transcriptional regulation, but its role in microglia activation in Parkinson's disease (PD) remains unclear. Here, we demonstrated that inhibiting glycolysis with 2-deoxy-D-glucose alleviates microgliosis, neuroinflammation and dopaminergic neurons damage by reducing lactate accumulation in PD mice. Notably, we observed a marked increase in histone lactylation, particularly H3K9 lactylation, in microglia in the substantia nigra of PD mice. Mechanistically, CUT&Tag and Chip-qPCR analyses revealed that H3K9 lactylation enriched at the SLC7A11promoter and activated its expression. Importantly, inhibiting SLC7A11 by sulfasalazine mitigated microglia-mediated neuroinflammation and improved motor function in PD mice. Moreover, we found that lactate-induce histone lactylation is dependent on P300/CBP. Collectively, our findings demonstrate that glycolysis-derived lactate promotes microglial activation via histone lactylation and provide a potential therapeutic strategy for PD.
Collapse
Affiliation(s)
- Qixiong Qin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Danlei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Qu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiangting Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke An
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhijuan Mao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingyi Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongjie Xiong
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhe Min
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Zheng Xue
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of General Practice, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
6
|
Zhang CJ, Wang Y, Jin YQ, Zhu YW, Zhu SG, Wang QM, Jing MR, Zhang YX, Cai CB, Feng ZF, Ji XY, Wu DD. Recent advances in the role of hydrogen sulfide in age-related diseases. Exp Cell Res 2024; 441:114172. [PMID: 39053869 DOI: 10.1016/j.yexcr.2024.114172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
In recent years, the impact of age-related diseases on human health has become increasingly severe, and developing effective drugs to deal with these diseases has become an urgent task. Considering the essential regulatory role of hydrogen sulfide (H2S) in these diseases, it is regarded as a promising target for treatment. H2S is a novel gaseous transmitter involved in many critical physiological activities, including anti-oxidation, anti-inflammation, and angiogenesis. H2S also regulates cell activities such as cell proliferation, migration, invasion, apoptosis, and autophagy. These regulatory effects of H2S contribute to relieving and treating age-related diseases. In this review, we mainly focus on the pathogenesis and treatment prospects of H2S in regulating age-related diseases.
Collapse
Affiliation(s)
- Chao-Jing Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Municipal Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yan Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Municipal Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yu-Qing Jin
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Municipal Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yi-Wen Zhu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Municipal Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Shuai-Gang Zhu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Municipal Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Qi-Meng Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Municipal Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Mi-Rong Jing
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Municipal Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yan-Xia Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Municipal Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Chun-Bo Cai
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Municipal Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Zhi-Fen Feng
- School of Nursing and Health, Henan University, Kaifeng, Henan, 475004, China.
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Municipal Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China; Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan, 450064, China.
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Municipal Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China; Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China.
| |
Collapse
|
7
|
Liu X, Li Y, Huang L, Kuang Y, Wu X, Ma X, Zhao B, Lan J. Unlocking the therapeutic potential of P2X7 receptor: a comprehensive review of its role in neurodegenerative disorders. Front Pharmacol 2024; 15:1450704. [PMID: 39139642 PMCID: PMC11319138 DOI: 10.3389/fphar.2024.1450704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 07/19/2024] [Indexed: 08/15/2024] Open
Abstract
The P2X7 receptor (P2X7R), an ATP-gated ion channel, has emerged as a crucial player in neuroinflammation and a promising therapeutic target for neurodegenerative disorders. This review explores the current understanding of P2X7R's structure, activation, and physiological roles, focusing on its expression and function in microglial cells. The article examines the receptor's involvement in calcium signaling, microglial activation, and polarization, as well as its role in the pathogenesis of Alzheimer's disease, Parkinson's disease, multiple sclerosis, and amyotrophic lateral sclerosis. The review highlights the complex nature of P2X7R signaling, discussing its potential neuroprotective and neurotoxic effects depending on the disease stage and context. It also addresses the development of P2X7R antagonists and their progress in clinical trials, identifying key research gaps and future perspectives for P2X7R-targeted therapy development. By providing a comprehensive overview of the current state of knowledge and future directions, this review serves as a valuable resource for researchers and clinicians interested in exploring the therapeutic potential of targeting P2X7R for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Xiaoming Liu
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Yiwen Li
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Liting Huang
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Yingyan Kuang
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Xiaoxiong Wu
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Xiangqiong Ma
- Henan Hospital of Integrated Chinese and Western Medicine, Zhengzhou, China
| | - Beibei Zhao
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Jiao Lan
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| |
Collapse
|
8
|
Xian M, Li J, Liu T, Hou K, Sun L, Wei J. β-Synuclein Intermediates α-Synuclein Neurotoxicity in Parkinson's Disease. ACS Chem Neurosci 2024; 15:2445-2453. [PMID: 38905183 DOI: 10.1021/acschemneuro.4c00263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024] Open
Abstract
Parkinson's disease (PD) is the second most common age-related neurodegenerative disease in the world, and synuclein is closely related to the onset and progression of PD. Synuclein is considered a therapeutic target for PD. Recent studies have found that abnormal aggregation of α-synuclein (α-Syn) in the brains of PD patients leads to mitochondrial dysfunction and neuroinflammation. Research in the field of neuroscience has confirmed that β-synuclein (β-Syn) also plays a role in Parkinson's disease. However, there has been little research on the role mechanisms and interactions between β-Syn and α-Syn in PD. Therefore, the purpose of this study is to clarify the relationship between α-Syn, β-Syn, and PD and to explore the roles and interactions of β-Syn and α-Syn in PD.
Collapse
Affiliation(s)
- Meiyan Xian
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Jingwen Li
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Tingting Liu
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Kaiying Hou
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Lin Sun
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Jianshe Wei
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, P.R. China
| |
Collapse
|
9
|
Escobar-Espinal DM, Vivanco-Estela AN, Barros N, Dos Santos Pereira M, Guimaraes FS, Del Bel E, Nascimento GC. Cannabidiol and it fluorinate analog PECS-101 reduces hyperalgesia and allodynia in trigeminal neuralgia via TRPV1 receptors. Prog Neuropsychopharmacol Biol Psychiatry 2024; 132:110996. [PMID: 38508408 DOI: 10.1016/j.pnpbp.2024.110996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/04/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
Trigeminal neuralgia (TN) is an intense and debilitating orofacial pain. The gold standard treatment for TN is carbamazepine. This antiepileptic drug provides pain relief with limited efficacy and side effects. To study the antinociceptive potential of cannabidiol (CBD) and its fluorinated analog PECS-101 (former HUF-101), we induced unilateral chronic constriction injury of the infraorbital nerve (IoN-CCI) in male Wistar rats. Seven days of treatment with CBD (30 mg/kg), PECS-101 (3, 10, and 30 mg/kg), or carbamazepine (10 and 30 mg/kg) reduced allodynia and hyperalgesia responses. Unlike carbamazepine, CBD and PECS-101 did not impair motor activity. The relief of the hypersensitive reactions has been associated with transient receptor potential vanilloid type 1 (TRPV1) modulation in the trigeminal spinal nucleus. CBD (30 mg/kg) and PECS-101 (10 and 30 mg/kg) reversed the increased expression of TRPV1 induced by IoN-CCI in this nucleus. Using a pharmacological strategy, the combination of the selective TRPV1 antagonist (capsazepine-CPZ - 5 mg/kg) with sub-effective doses of CBD (3 and 10 mg/kg) is also able to reverse the IoN-CCI-induced allodynia and hyperalgesia responses. This effect was accompanied by reduced TRPV1 protein expression in the trigeminal spinal nucleus. Our results suggest that CBD and PECS-101 may benefit trigeminal neuralgia without motor coordination impairments. PECS-101 is more potent against the hypernociceptive and motor impairment induced by TN compared to CBD and carbamazepine. The antinociceptive effect of these cannabinoids is partially mediated by TRPV1 receptors in the caudal part of the trigeminal spinal nucleus, the first central station of orofacial pain processing.
Collapse
Affiliation(s)
- Daniela Maria Escobar-Espinal
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14040-904, Brazil
| | - Airam Nicole Vivanco-Estela
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14040-904, Brazil
| | - Núbia Barros
- Department of Neuroscience, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14049-900, Brazil
| | - Maurício Dos Santos Pereira
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14040-904, Brazil
| | - Francisco Silveira Guimaraes
- Department of Neuroscience, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14049-900, Brazil
| | - Elaine Del Bel
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14040-904, Brazil; Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14049-900, Brazil; Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14049-900, Brazil.
| | - Glauce C Nascimento
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14040-904, Brazil.
| |
Collapse
|
10
|
Deng W, Yi P, Xiong Y, Ying J, Lin Y, Dong Y, Wei G, Wang X, Hua F. Gut Metabolites Acting on the Gut-Brain Axis: Regulating the Functional State of Microglia. Aging Dis 2024; 15:480-502. [PMID: 37548933 PMCID: PMC10917527 DOI: 10.14336/ad.2023.0727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/27/2023] [Indexed: 08/08/2023] Open
Abstract
The gut-brain axis is a communication channel that mediates a complex interplay of intestinal flora with the neural, endocrine, and immune systems, linking gut and brain functions. Gut metabolites, a group of small molecules produced or consumed by biochemical processes in the gut, are involved in central nervous system regulation via the highly interconnected gut-brain axis affecting microglia indirectly by influencing the structure of the gut-brain axis or directly affecting microglia function and activity. Accordingly, pathological changes in the central nervous system are connected with changes in intestinal metabolite levels as well as altered microglia function and activity, which may contribute to the pathological process of each neuroinflammatory condition. Here, we discuss the mechanisms by which gut metabolites, for instance, the bile acids, short-chain fatty acids, and tryptophan metabolites, regulate the structure of each component of the gut-brain axis, and explore the important roles of gut metabolites in the central nervous system from the perspective of microglia. At the same time, we highlight the roles of gut metabolites affecting microglia in the pathogenesis of neurodegenerative diseases and neurodevelopmental disorders. Understanding the relationship between microglia, gut microbiota, neuroinflammation, and neurodevelopmental disorders will help us identify new strategies for treating neuropsychiatric disorders.
Collapse
Affiliation(s)
- Wenze Deng
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi, China.
| | - Pengcheng Yi
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi, China.
| | - Yanhong Xiong
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi, China.
| | - Jun Ying
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi, China.
| | - Yue Lin
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi, China.
| | - Yao Dong
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi, China.
| | - Gen Wei
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi, China.
| | - Xifeng Wang
- Department of Anesthesiology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| | - Fuzhou Hua
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi, China.
| |
Collapse
|
11
|
Dos Santos Pereira M, Maitan Santos B, Gimenez R, Guimarães FS, Raisman-Vozari R, Del Bel E, Michel PP. The two synthetic cannabinoid compounds 4'-F-CBD and HU-910 efficiently restrain inflammatory responses of brain microglia and astrocytes. Glia 2024; 72:529-545. [PMID: 38013496 DOI: 10.1002/glia.24489] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/23/2023] [Accepted: 10/31/2023] [Indexed: 11/29/2023]
Abstract
To study the anti-inflammatory potential of the two synthetic cannabinoids 4'-F-CBD and HU-910, we used post-natal brain cultures of mouse microglial cells and astrocytes activated by reference inflammogens. We found that 4'-F-CBD and HU-910 efficiently curtailed the release of TNF-α, IL-6, and IL-1β in microglia and astrocytes activated by the bacterial Toll-Like Receptor (TLR)4 ligand LPS. Upon LPS challenge, 4'-F-CBD and HU-910 also prevented the activation of phenotypic activation markers specific to microglia and astrocytes, that is, Iba-1 and GFAP, respectively. In microglial cells, the two test compounds also efficiently restrained LPS-stimulated release of glutamate, a non-cytokine inflammation marker for these cells. The immunosuppressive effects of the two cannabinoid compounds were concentration-dependent and observable between 1 and 10 μM. These effects were not dependent on cannabinoid or cannabinoid-like receptors. Both 4'-F-CBD and HU-910 were also capable of restraining the inflammogenic activity of Pam3CSK4, a lipopeptide that activates TLR2, and of BzATP, a prototypic agonist of P2X7 purinergic receptors, suggesting that these two cannabinoids could exert immunosuppressive effects against a variety of inflammatory stimuli. Using LPS-stimulated microglia and astrocytes, we established that the immunosuppressive action of 4'-F-CBD and HU-910 resulted from the inhibition of ROS produced by NADPH oxidase and subsequent repression of NF-κB-dependent signaling events. Our results suggest that 4'-F-CBD and HU-910 may have therapeutic utility in pathological conditions where neuroinflammatory processes are prominent.
Collapse
Affiliation(s)
- Maurício Dos Santos Pereira
- Department of Basic and Oral Biology, FORP, Campus USP, University of São Paulo, Ribeirão Preto, Brazil
- Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Sorbonne Université, Paris, France
| | - Bruna Maitan Santos
- Department of Basic and Oral Biology, FORP, Campus USP, University of São Paulo, Ribeirão Preto, Brazil
- Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Sorbonne Université, Paris, France
| | - Rocio Gimenez
- Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Sorbonne Université, Paris, France
- IREN Center, National Technological University, Buenos Aires, Argentina
| | | | - Rita Raisman-Vozari
- Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Sorbonne Université, Paris, France
| | - Elaine Del Bel
- Department of Basic and Oral Biology, FORP, Campus USP, University of São Paulo, Ribeirão Preto, Brazil
| | - Patrick Pierre Michel
- Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Sorbonne Université, Paris, France
| |
Collapse
|
12
|
Yildirim-Balatan C, Fenyi A, Besnault P, Gomez L, Sepulveda-Diaz JE, Michel PP, Melki R, Hunot S. Parkinson's disease-derived α-synuclein assemblies combined with chronic-type inflammatory cues promote a neurotoxic microglial phenotype. J Neuroinflammation 2024; 21:54. [PMID: 38383421 PMCID: PMC10882738 DOI: 10.1186/s12974-024-03043-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/12/2024] [Indexed: 02/23/2024] Open
Abstract
Parkinson's disease (PD) is a common age-related neurodegenerative disorder characterized by the aggregation of α-Synuclein (αSYN) building up intraneuronal inclusions termed Lewy pathology. Mounting evidence suggests that neuron-released αSYN aggregates could be central to microglial activation, which in turn mounts and orchestrates neuroinflammatory processes potentially harmful to neurons. Therefore, understanding the mechanisms that drive microglial cell activation, polarization and function in PD might have important therapeutic implications. Here, using primary microglia, we investigated the inflammatory potential of pure αSYN fibrils derived from PD patients. We further explored and characterized microglial cell responses to a chronic-type inflammatory stimulation combining PD patient-derived αSYN fibrils (FPD), Tumor necrosis factor-α (TNFα) and prostaglandin E2 (PGE2) (TPFPD). We showed that FPD hold stronger inflammatory potency than pure αSYN fibrils generated de novo. When combined with TNFα and PGE2, FPD polarizes microglia toward a particular functional phenotype departing from FPD-treated cells and featuring lower inflammatory cytokine and higher glutamate release. Whereas metabolomic studies showed that TPFPD-exposed microglia were closely related to classically activated M1 proinflammatory cells, notably with similar tricarboxylic acid cycle disruption, transcriptomic analysis revealed that TPFPD-activated microglia assume a unique molecular signature highlighting upregulation of genes involved in glutathione and iron metabolisms. In particular, TPFPD-specific upregulation of Slc7a11 (which encodes the cystine-glutamate antiporter xCT) was consistent with the increased glutamate response and cytotoxic activity of these cells toward midbrain dopaminergic neurons in vitro. Together, these data further extend the structure-pathological relationship of αSYN fibrillar polymorphs to their innate immune properties and demonstrate that PD-derived αSYN fibrils, TNFα and PGE2 act in concert to drive microglial cell activation toward a specific and highly neurotoxic chronic-type inflammatory phenotype characterized by robust glutamate release and iron retention.
Collapse
Affiliation(s)
- Cansu Yildirim-Balatan
- Sorbonne Université, Paris, France
- Institut du Cerveau - Paris Brain Institute - ICM, Hôpital de la Pitié-Salpêtrière, 91 Bd de l'Hôpital, 75013, Paris, France
- Inserm UMRS 1127, Paris, France
- CNRS UMR 7225, Paris, France
| | - Alexis Fenyi
- CEA and Laboratory of Neurodegenerative Diseases, CNRS, Institut François Jacob, MIRCen, 92265, Fontenay-aux-Roses, France
| | - Pierre Besnault
- Sorbonne Université, Paris, France
- Institut du Cerveau - Paris Brain Institute - ICM, Hôpital de la Pitié-Salpêtrière, 91 Bd de l'Hôpital, 75013, Paris, France
- Inserm UMRS 1127, Paris, France
- CNRS UMR 7225, Paris, France
| | - Lina Gomez
- Sorbonne Université, Paris, France
- Institut du Cerveau - Paris Brain Institute - ICM, Hôpital de la Pitié-Salpêtrière, 91 Bd de l'Hôpital, 75013, Paris, France
- Inserm UMRS 1127, Paris, France
- CNRS UMR 7225, Paris, France
| | - Julia E Sepulveda-Diaz
- Sorbonne Université, Paris, France
- Institut du Cerveau - Paris Brain Institute - ICM, Hôpital de la Pitié-Salpêtrière, 91 Bd de l'Hôpital, 75013, Paris, France
- Inserm UMRS 1127, Paris, France
- CNRS UMR 7225, Paris, France
| | - Patrick P Michel
- Sorbonne Université, Paris, France
- Institut du Cerveau - Paris Brain Institute - ICM, Hôpital de la Pitié-Salpêtrière, 91 Bd de l'Hôpital, 75013, Paris, France
- Inserm UMRS 1127, Paris, France
- CNRS UMR 7225, Paris, France
| | - Ronald Melki
- CEA and Laboratory of Neurodegenerative Diseases, CNRS, Institut François Jacob, MIRCen, 92265, Fontenay-aux-Roses, France
| | - Stéphane Hunot
- Sorbonne Université, Paris, France.
- Institut du Cerveau - Paris Brain Institute - ICM, Hôpital de la Pitié-Salpêtrière, 91 Bd de l'Hôpital, 75013, Paris, France.
- Inserm UMRS 1127, Paris, France.
- CNRS UMR 7225, Paris, France.
| |
Collapse
|
13
|
Lapshina KV, Ekimova IV. Aquaporin-4 and Parkinson's Disease. Int J Mol Sci 2024; 25:1672. [PMID: 38338949 PMCID: PMC10855351 DOI: 10.3390/ijms25031672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/15/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
The water-selective channel aquaporin-4 (AQP4) is implicated in water homeostasis and the functioning of the glymphatic system, which eliminates various metabolites from the brain tissue, including amyloidogenic proteins. Misfolding of the α-synuclein protein and its post-translational modifications play a crucial role in the development of Parkinson's disease (PD) and other synucleopathies, leading to the formation of cytotoxic oligomers and aggregates that cause neurodegeneration. Human and animal studies have shown an interconnection between AQP4 dysfunction and α-synuclein accumulation; however, the specific role of AQP4 in these mechanisms remains unclear. This review summarizes the current knowledge on the role of AQP4 dysfunction in the progression of α-synuclein pathology, considering the possible effects of AQP4 dysregulation on brain molecular mechanisms that can impact α-synuclein modification, accumulation and aggregation. It also highlights future directions that can help study the role of AQP4 in the functioning of the protective mechanisms of the brain during the development of PD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Ksenia V. Lapshina
- Laboratory of Comparative Thermophysiology, Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS, 194223 Saint Petersburg, Russia;
| | | |
Collapse
|
14
|
Miao Y, Meng H. The involvement of α-synucleinopathy in the disruption of microglial homeostasis contributes to the pathogenesis of Parkinson's disease. Cell Commun Signal 2024; 22:31. [PMID: 38216911 PMCID: PMC10785555 DOI: 10.1186/s12964-023-01402-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/18/2023] [Indexed: 01/14/2024] Open
Abstract
The intracellular deposition and intercellular transmission of α-synuclein (α-syn) are shared pathological characteristics among neurodegenerative disorders collectively known as α-synucleinopathies, including Parkinson's disease (PD). Although the precise triggers of α-synucleinopathies remain unclear, recent findings indicate that disruption of microglial homeostasis contributes to the pathogenesis of PD. Microglia play a crucial role in maintaining optimal neuronal function by ensuring a homeostatic environment, but this function is disrupted during the progression of α-syn pathology. The involvement of microglia in the accumulation, uptake, and clearance of aggregated proteins is critical for managing disease spread and progression caused by α-syn pathology. This review summarizes current knowledge on the interrelationships between microglia and α-synucleinopathies, focusing on the remarkable ability of microglia to recognize and internalize extracellular α-syn through diverse pathways. Microglia process α-syn intracellularly and intercellularly to facilitate the α-syn neuronal aggregation and cell-to-cell propagation. The conformational state of α-synuclein distinctly influences microglial inflammation, which can affect peripheral immune cells such as macrophages and lymphocytes and may regulate the pathogenesis of α-synucleinopathies. We also discuss ongoing research efforts to identify potential therapeutic approaches targeting both α-syn accumulation and inflammation in PD. Video Abstract.
Collapse
Affiliation(s)
- Yongzhen Miao
- Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
| | - Hongrui Meng
- Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China.
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
15
|
Prieto SG, Almeida MC, Silva JCS, Del-Bel E, Echeverry MB. Extrapyramidal Side Effects with Chronic Atypical Antipsychotic Can Be Predicted by Labeling Pattern of FosB and phosphoThr 34-DARPP-32 in Nucleus Accumbens. Biomedicines 2023; 11:2677. [PMID: 37893051 PMCID: PMC10604349 DOI: 10.3390/biomedicines11102677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023] Open
Abstract
Extrapyramidal side effects (EPS) can be induced by neuroleptics that regulate the expression of transcription factor FosB and dopaminergic mediator DARPP-32 in the striatum. However, the long-term neurobiological changes in striatal projection neurons resulting from a cumulative dosage of typical and atypical antipsychotics are poorly understood. The present study aimed to determine the differential and long-lasting changes in FosB distribution and DARPP-32 phosphorylation in the striatum and nucleus accumbens (NAc) associated with chronic antipsychotic-induced EPS. Male C57Bl/6J mice received daily injections of Olanzapine (Olz, 15 mg/kg), Clozapine (Clz, 20 mg/kg), or Haloperidol (Hal, 1 mg/kg), for a period of 11 weeks with a 4-day withdrawal period before the last dosage. Catalepsy for detection of EPS, along with open-field and rotarod tests, were assessed as behavioral correlates of motor responses. Additionally, FosB and phosphorylated-DARPP-32 immunohistochemistry were examined in striatal regions after treatment. All antipsychotics produced catalepsy and reduced open-field exploration, such as impaired rota-rod performance after Olz and Hal. The washout period was critical for Clz-induced side effects reduction. Both Olz and Clz increased FosB in NAc Shell-region, and phosphoThr34-DARPP-32 in NAc. Only Clz reduced phosphoThr75-DARPP-32 in the dorsal striatum and showed FosB/phosphoThr34-Darpp-32-ir in the NAc Core region. This study provides evidence that atypical antipsychotics such as Olz and Clz also give rise to EPS effects frequently associated with a cumulative dosage of typical neuroleptics such as Hal. Nevertheless, FosB/phosphoThr34-Darpp-32-ir in the NAc Core region is associated with hypokinetic movements inhibition.
Collapse
Affiliation(s)
- Sonia G. Prieto
- Center for Mathematics, Computation and Cognition, Federal University of ABC, São Bernardo do Campo 09606-045, SP, Brazil; (S.G.P.); (J.C.S.S.)
| | - Maria Camila Almeida
- Center for Natural and Human Sciences, Federal University of ABC, São Bernardo do Campo 09606-045, SP, Brazil;
| | - João C. S. Silva
- Center for Mathematics, Computation and Cognition, Federal University of ABC, São Bernardo do Campo 09606-045, SP, Brazil; (S.G.P.); (J.C.S.S.)
| | - Elaine Del-Bel
- Department of Morphology, Physiology and Basic Pathology, Dental School of Ribeirão Preto, University of São Paulo, Ribeirão Preto 05508-000, SP, Brazil;
| | - Marcela B. Echeverry
- Center for Mathematics, Computation and Cognition, Federal University of ABC, São Bernardo do Campo 09606-045, SP, Brazil; (S.G.P.); (J.C.S.S.)
- Neuroscience Laboratory, School of Medicine, Universidad de Santander (UDES), Bucaramanga 39006-39005, Santander, Colombia
| |
Collapse
|
16
|
Eugenín J, Eugenín-von Bernhardi L, von Bernhardi R. Age-dependent changes on fractalkine forms and their contribution to neurodegenerative diseases. Front Mol Neurosci 2023; 16:1249320. [PMID: 37818457 PMCID: PMC10561274 DOI: 10.3389/fnmol.2023.1249320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/06/2023] [Indexed: 10/12/2023] Open
Abstract
The chemokine fractalkine (FKN, CX3CL1), a member of the CX3C subfamily, contributes to neuron-glia interaction and the regulation of microglial cell activation. Fractalkine is expressed by neurons as a membrane-bound protein (mCX3CL1) that can be cleaved by extracellular proteases generating several sCX3CL1 forms. sCX3CL1, containing the chemokine domain, and mCX3CL1 have high affinity by their unique receptor (CX3CR1) which, physiologically, is only found in microglia, a resident immune cell of the CNS. The activation of CX3CR1contributes to survival and maturation of the neural network during development, glutamatergic synaptic transmission, synaptic plasticity, cognition, neuropathic pain, and inflammatory regulation in the adult brain. Indeed, the various CX3CL1 forms appear in some cases to serve an anti-inflammatory role of microglia, whereas in others, they have a pro-inflammatory role, aggravating neurological disorders. In the last decade, evidence points to the fact that sCX3CL1 and mCX3CL1 exhibit selective and differential effects on their targets. Thus, the balance in their level and activity will impact on neuron-microglia interaction. This review is focused on the description of factors determining the emergence of distinct fractalkine forms, their age-dependent changes, and how they contribute to neuroinflammation and neurodegenerative diseases. Changes in the balance among various fractalkine forms may be one of the mechanisms on which converge aging, chronic CNS inflammation, and neurodegeneration.
Collapse
Affiliation(s)
- Jaime Eugenín
- Facultad de Química y Biología, Departamento de Biología, Universidad de Santiago de Chile, USACH, Santiago, Chile
| | | | - Rommy von Bernhardi
- Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Santiago, Chile
| |
Collapse
|
17
|
Gao Y, Liu N, Chen J, Zheng P, Niu J, Tang S, Peng X, Wu J, Yu J, Ma L. Neuropharmacological insight into preventive intervention in posttraumatic epilepsy based on regulating glutamate homeostasis. CNS Neurosci Ther 2023; 29:2430-2444. [PMID: 37309302 PMCID: PMC10401093 DOI: 10.1111/cns.14294] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 05/15/2023] [Accepted: 05/27/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Posttraumatic epilepsy (PTE) is one of the most critical complications of traumatic brain injury (TBI), significantly increasing TBI patients' neuropsychiatric symptoms and mortality. The abnormal accumulation of glutamate caused by TBI and its secondary excitotoxicity are essential reasons for neural network reorganization and functional neural plasticity changes, contributing to the occurrence and development of PTE. Restoring glutamate balance in the early stage of TBI is expected to play a neuroprotective role and reduce the risk of PTE. AIMS To provide a neuropharmacological insight for drug development to prevent PTE based on regulating glutamate homeostasis. METHODS We discussed how TBI affects glutamate homeostasis and its relationship with PTE. Furthermore, we also summarized the research progress of molecular pathways for regulating glutamate homeostasis after TBI and pharmacological studies aim to prevent PTE by restoring glutamate balance. RESULTS TBI can lead to the accumulation of glutamate in the brain, which increases the risk of PTE. Targeting the molecular pathways affecting glutamate homeostasis helps restore normal glutamate levels and is neuroprotective. DISCUSSION Taking glutamate homeostasis regulation as a means for new drug development can avoid the side effects caused by direct inhibition of glutamate receptors, expecting to alleviate the diseases related to abnormal glutamate levels in the brain, such as PTE, Parkinson's disease, depression, and cognitive impairment. CONCLUSION It is a promising strategy to regulate glutamate homeostasis through pharmacological methods after TBI, thereby decreasing nerve injury and preventing PTE.
Collapse
Affiliation(s)
- Yuan Gao
- Department of PharmacologyNingxia Medical UniversityYinchuanChina
- Hunan Province Key Laboratory for Antibody‐Based Drug and Intelligent Delivery System, School of Pharmaceutical SciencesHunan University of MedicineHuaihuaChina
| | - Ning Liu
- Department of PharmacologyNingxia Medical UniversityYinchuanChina
| | - Juan Chen
- Department of PharmacologyNingxia Medical UniversityYinchuanChina
| | - Ping Zheng
- Department of PharmacologyNingxia Medical UniversityYinchuanChina
| | - Jianguo Niu
- Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous RegionNingxia Medical UniversityYinchuanChina
| | - Shengsong Tang
- Hunan Province Key Laboratory for Antibody‐Based Drug and Intelligent Delivery System, School of Pharmaceutical SciencesHunan University of MedicineHuaihuaChina
| | - Xiaodong Peng
- Department of PharmacologyNingxia Medical UniversityYinchuanChina
| | - Jing Wu
- Department of PharmacologyNingxia Medical UniversityYinchuanChina
| | - Jianqiang Yu
- Department of PharmacologyNingxia Medical UniversityYinchuanChina
| | - Lin Ma
- Department of PharmacologyNingxia Medical UniversityYinchuanChina
- Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous RegionNingxia Medical UniversityYinchuanChina
| |
Collapse
|
18
|
Azimullah S, Meeran MFN, Ayoob K, Arunachalam S, Ojha S, Beiram R. Tannic Acid Mitigates Rotenone-Induced Dopaminergic Neurodegeneration by Inhibiting Inflammation, Oxidative Stress, Apoptosis, and Glutamate Toxicity in Rats. Int J Mol Sci 2023; 24:9876. [PMID: 37373023 DOI: 10.3390/ijms24129876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Parkinson's disease (PD), a movement disorder, is a neurodegenerative disease characterized by the degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc) region of the brain. The etiopathogenesis of PD involves increased oxidative stress, augmented inflammation, impaired autophagy, accumulation of α-synuclein, and α-Glutamate neurotoxicity. The treatment of PD is limited and there is a lack of agents to prevent the disease/delay its progression and inhibit the onset of pathogenic events. Many agents of natural and synthetic origin have been investigated employing experimental models of PD, mimicking human PD. In the present study, we assessed the effect of tannic acid (TA) in a rodent model of PD induced by rotenone (ROT), a pesticide and an environmental toxin of natural origin reported to cause PD in agricultural workers and farmers. Rotenone (2.5 mg/kg/day, i.p.) was administered for 28 days, and TA (50 mg/kg, orally) was administered 30 min before ROT injections. The study results showed an increase in oxidative stress, as evidenced by the depletion of endogenous antioxidants and enhanced formation of lipid peroxidation products, along with the onset of inflammation following a rise in inflammatory mediators and proinflammatory cytokines. ROT injections have also augmented apoptosis, impaired autophagy, promoted synaptic loss, and perturbed α-Glutamate hyperpolarization in rats. ROT injections also induced the loss of dopaminergic neurons subsequent to the activation of microglia and astrocytes. However, TA treatment was observed to reduce lipid peroxidation, prevent loss of endogenous antioxidants, and inhibit the release and synthesis of proinflammatory cytokines, in addition to the favorable modulation of apoptosis and autophagic pathways. Treatment with TA also attenuated the activation of microglia and astrocytes along with preservation of dopaminergic neurons following reduced loss of dopaminergic neurodegeneration and inhibition of synaptic loss and α-Glutamate cytotoxicity. The effects of TA in ROT-induced PD were attributed to the antioxidant, anti-inflammatory, antiapoptotic, and neurogenesis properties. Based on the present study findings, it can be concluded that TA may be a promising novel therapeutic candidate for pharmaceutical as well as nutraceutical development owing to its neuroprotective properties in PD. Further regulatory toxicology and translational studies are suggested for future clinical usage in PD.
Collapse
Affiliation(s)
- Sheikh Azimullah
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Mohamed Fizur Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Khatija Ayoob
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Seenipandi Arunachalam
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Rami Beiram
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
19
|
Parrales-Macias V, Michel PP, Tourville A, Raisman-Vozari R, Haïk S, Hunot S, Bizat N, Lannuzel A. The Pesticide Chlordecone Promotes Parkinsonism-like Neurodegeneration with Tau Lesions in Midbrain Cultures and C. elegans Worms. Cells 2023; 12:1336. [PMID: 37174736 PMCID: PMC10177284 DOI: 10.3390/cells12091336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/10/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Chlordecone (CLD) is an organochlorine pesticide (OCP) that is currently banned but still contaminates ecosystems in the French Caribbean. Because OCPs are known to increase the risk of Parkinson's disease (PD), we tested whether chronic low-level intoxication with CLD could reproduce certain key characteristics of Parkinsonism-like neurodegeneration. For that, we used culture systems of mouse midbrain dopamine (DA) neurons and glial cells, together with the nematode C. elegans as an in vivo model organism. We established that CLD kills cultured DA neurons in a concentration- and time-dependent manner while exerting no direct proinflammatory effects on glial cells. DA cell loss was not impacted by the degree of maturation of the culture. The use of fluorogenic probes revealed that CLD neurotoxicity was the consequence of oxidative stress-mediated insults and mitochondrial disturbances. In C. elegans worms, CLD exposure caused a progressive loss of DA neurons associated with locomotor deficits secondary to alterations in food perception. L-DOPA, a molecule used for PD treatment, corrected these deficits. Cholinergic and serotoninergic neuronal cells were also affected by CLD in C. elegans, although to a lesser extent than DA neurons. Noticeably, CLD also promoted the phosphorylation of the aggregation-prone protein tau (but not of α-synuclein) both in midbrain cell cultures and in a transgenic C. elegans strain expressing a human form of tau in neurons. In summary, our data suggest that CLD is more likely to promote atypical forms of Parkinsonism characterized by tau pathology than classical synucleinopathy-associated PD.
Collapse
Affiliation(s)
- Valeria Parrales-Macias
- Paris Brain Institute—ICM, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, Sorbonne Université, 75013 Paris, France; (V.P.-M.); (P.P.M.); (A.T.); (R.R.-V.); (S.H.); (S.H.)
| | - Patrick P. Michel
- Paris Brain Institute—ICM, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, Sorbonne Université, 75013 Paris, France; (V.P.-M.); (P.P.M.); (A.T.); (R.R.-V.); (S.H.); (S.H.)
| | - Aurore Tourville
- Paris Brain Institute—ICM, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, Sorbonne Université, 75013 Paris, France; (V.P.-M.); (P.P.M.); (A.T.); (R.R.-V.); (S.H.); (S.H.)
| | - Rita Raisman-Vozari
- Paris Brain Institute—ICM, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, Sorbonne Université, 75013 Paris, France; (V.P.-M.); (P.P.M.); (A.T.); (R.R.-V.); (S.H.); (S.H.)
| | - Stéphane Haïk
- Paris Brain Institute—ICM, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, Sorbonne Université, 75013 Paris, France; (V.P.-M.); (P.P.M.); (A.T.); (R.R.-V.); (S.H.); (S.H.)
| | - Stéphane Hunot
- Paris Brain Institute—ICM, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, Sorbonne Université, 75013 Paris, France; (V.P.-M.); (P.P.M.); (A.T.); (R.R.-V.); (S.H.); (S.H.)
| | - Nicolas Bizat
- Paris Brain Institute—ICM, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, Sorbonne Université, 75013 Paris, France; (V.P.-M.); (P.P.M.); (A.T.); (R.R.-V.); (S.H.); (S.H.)
- Faculté de Pharmacie de Paris, Université de Paris Cité, 75006 Paris, France
| | - Annie Lannuzel
- Paris Brain Institute—ICM, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, Sorbonne Université, 75013 Paris, France; (V.P.-M.); (P.P.M.); (A.T.); (R.R.-V.); (S.H.); (S.H.)
- Centre Hospitalier Universitaire de la Guadeloupe, Service de Neurologie, Faculté de Médecine de l’Université des Antilles, Centre d’Investigation Clinique (CIC) 1424, 97159 Pointe-à-Pitre, France
| |
Collapse
|
20
|
Wang Y, Zhu Y, Wang J, Dong L, Liu S, Li S, Wu Q. Purinergic signaling: A gatekeeper of blood-brain barrier permeation. Front Pharmacol 2023; 14:1112758. [PMID: 36825149 PMCID: PMC9941648 DOI: 10.3389/fphar.2023.1112758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/27/2023] [Indexed: 02/10/2023] Open
Abstract
This review outlined evidence that purinergic signaling is involved in the modulation of blood-brain barrier (BBB) permeability. The functional and structural integrity of the BBB is critical for maintaining the homeostasis of the brain microenvironment. BBB integrity is maintained primarily by endothelial cells and basement membrane but also be regulated by pericytes, neurons, astrocytes, microglia and oligodendrocytes. In this review, we summarized the purinergic receptors and nucleotidases expressed on BBB cells and focused on the regulation of BBB permeability by purinergic signaling. The permeability of BBB is regulated by a series of purinergic receptors classified as P2Y1, P2Y4, P2Y12, P2X4, P2X7, A1, A2A, A2B, and A3, which serve as targets for endogenous ATP, ADP, or adenosine. P2Y1 and P2Y4 antagonists could attenuate BBB damage. In contrast, P2Y12-mediated chemotaxis of microglial cell processes is necessary for rapid closure of the BBB after BBB breakdown. Antagonists of P2X4 and P2X7 inhibit the activation of these receptors, reduce the release of interleukin-1 beta (IL-1β), and promote the function of BBB closure. In addition, the CD39/CD73 nucleotidase axis participates in extracellular adenosine metabolism and promotes BBB permeability through A1 and A2A on BBB cells. Furthermore, A2B and A3 receptor agonists protect BBB integrity. Thus, the regulation of the BBB by purinergic signaling is complex and affects the opening and closing of the BBB through different pathways. Appropriate selective agonists/antagonists of purinergic receptors and corresponding enzyme inhibitors could modulate the permeability of the BBB, effectively delivering therapeutic drugs/cells to the central nervous system (CNS) or limiting the entry of inflammatory immune cells into the brain and re-establishing CNS homeostasis.
Collapse
Affiliation(s)
| | | | - Junmeng Wang
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Longcong Dong
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shuqing Liu
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Sihui Li
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | | |
Collapse
|
21
|
Zhang W, Yang X, Liu J, Pan Y, Zhang M, Chen L. Senescent Phenotype of Astrocytes Leads to Activation of BV2 Microglia and N2a Neuronal Cells Death. Molecules 2022; 27:molecules27185925. [PMID: 36144658 PMCID: PMC9506220 DOI: 10.3390/molecules27185925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 11/25/2022] Open
Abstract
(1) Background: Astrocytes, the most abundant cell type in the central nervous system, are essential to tune individual-to-network neuronal activity. Senescence in astrocytes has been discovered as a crucial contributor to several age-related neurological diseases. Here, we aim to observe if astrocytes demonstrate senescence in the process of brain aging, and whether they bring adverse factors, especially harm to neuronal cells. (2) Methods: In vivo, mice were housed for four, 18, and 26 months. An in vitro cell model of aged astrocytes was constructed by serial passaging until passage 20–25, and those within 1–5 were invoked as young astrocytes. Meanwhile, an oxidative induced astrocyte senescence model was constructed by H2O2 induction. (3) Results: In vitro aged astrocytes all showed manifest changes in several established markers of cellular senescence, e.g., P53, P21, and the release of inflammatory cytokine IL-6 and SA-β-gal positive cells. Results also showed mitochondrial dysfunction in the oxidative stress-induced astrocyte senescence model and treatment of berberine could ameliorate these alterations. Two types of senescent astrocytes’ conditioned medium could impact on neuron apoptosis in direct or indirect ways. (4) Conclusions: Senescent astrocyte might affect neurons directly or indirectly acting on the regulation of normal and pathological brain aging.
Collapse
Affiliation(s)
- Wenyou Zhang
- Nanomedicine Engineering Laboratory of Jilin Province, Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Xuehan Yang
- Nanomedicine Engineering Laboratory of Jilin Province, Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Jingyue Liu
- Nanomedicine Engineering Laboratory of Jilin Province, Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Yichen Pan
- School of Life Sciences, Jilin University, Changchun 130021, China
| | - Ming Zhang
- Nanomedicine Engineering Laboratory of Jilin Province, Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
- Correspondence: (M.Z.); (L.C.)
| | - Li Chen
- Nanomedicine Engineering Laboratory of Jilin Province, Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
- School of Nursing, Jilin University, Changchun 130021, China
- Correspondence: (M.Z.); (L.C.)
| |
Collapse
|
22
|
Marchetti B, Giachino C, Tirolo C, Serapide MF. "Reframing" dopamine signaling at the intersection of glial networks in the aged Parkinsonian brain as innate Nrf2/Wnt driver: Therapeutical implications. Aging Cell 2022; 21:e13575. [PMID: 35262262 PMCID: PMC9009237 DOI: 10.1111/acel.13575] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/11/2022] [Accepted: 02/06/2022] [Indexed: 11/30/2022] Open
Abstract
Dopamine (DA) signaling via G protein-coupled receptors is a multifunctional neurotransmitter and neuroendocrine-immune modulator. The DA nigrostriatal pathway, which controls the motor coordination, progressively degenerates in Parkinson's disease (PD), a most common neurodegenerative disorder (ND) characterized by a selective, age-dependent loss of substantia nigra pars compacta (SNpc) neurons, where DA itself is a primary source of oxidative stress and mitochondrial impairment, intersecting astrocyte and microglial inflammatory networks. Importantly, glia acts as a preferential neuroendocrine-immune DA target, in turn, counter-modulating inflammatory processes. With a major focus on DA intersection within the astrocyte-microglial inflammatory network in PD vulnerability, we herein first summarize the characteristics of DA signaling systems, the propensity of DA neurons to oxidative stress, and glial inflammatory triggers dictating the vulnerability to PD. Reciprocally, DA modulation of astrocytes and microglial reactivity, coupled to the synergic impact of gene-environment interactions, then constitute a further level of control regulating midbrain DA neuron (mDAn) survival/death. Not surprisingly, within this circuitry, DA converges to modulate nuclear factor erythroid 2-like 2 (Nrf2), the master regulator of cellular defense against oxidative stress and inflammation, and Wingless (Wnt)/β-catenin signaling, a key pathway for mDAn neurogenesis, neuroprotection, and immunomodulation, adding to the already complex "signaling puzzle," a novel actor in mDAn-glial regulatory machinery. Here, we propose an autoregulatory feedback system allowing DA to act as an endogenous Nrf2/Wnt innate modulator and trace the importance of DA receptor agonists applied to the clinic as immune modifiers.
Collapse
Affiliation(s)
- Bianca Marchetti
- Department of Biomedical and Biotechnological Sciences (BIOMETEC)Pharmacology SectionMedical SchoolUniversity of CataniaCataniaItaly
- OASI Research Institute‐IRCCS, Troina (EN), ItalyTroinaItaly
| | | | - Cataldo Tirolo
- OASI Research Institute‐IRCCS, Troina (EN), ItalyTroinaItaly
| | - Maria F. Serapide
- Department of Biomedical and Biotechnological Sciences (BIOMETEC)Pharmacology SectionMedical SchoolUniversity of CataniaCataniaItaly
| |
Collapse
|
23
|
Ashraf-Uz-Zaman M, Ji G, Tidwell D, Yin L, Thakolwiboon S, Pan J, Junell R, Griffin Z, Shahi S, Barthels D, Sajib MS, Trippier PC, Mikelis CM, Das H, Avila M, Neugebauer V, German NA. Evaluation of Urea-Based Inhibitors of the Dopamine Transporter Using the Experimental Autoimmune Encephalomyelitis Model of Multiple Sclerosis. ACS Chem Neurosci 2022; 13:217-228. [PMID: 34978174 DOI: 10.1021/acschemneuro.1c00647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The dopaminergic system is involved in the regulation of immune responses in various homeostatic and disease conditions. For conditions such as Parkinson's disease and multiple sclerosis (MS), pharmacological modulation of dopamine (DA) system activity is thought to have therapeutic relevance, providing the basis for using dopaminergic agents as a treatment of relevant states. In particular, it was proposed that restoration of DA levels may inhibit neuroinflammation. We have recently reported a new class of dopamine transporter (DAT) inhibitors with high selectivity to the DAT over other G-protein coupled receptors tested. Here, we continue their evaluation as monoamine transporter inhibitors. Furthermore, we show that the urea-like DAT inhibitor (compound 5) has statistically significant anti-inflammatory effects and attenuates motor deficits and pain behaviors in the experimental autoimmune encephalomyelitis model mimicking clinical signs of MS. To the best of our knowledge, this is the first study reporting the beneficial effects of DAT inhibitor-based treatment in animals with induced autoimmune encephalomyelitis, and the observed results provide additional support to the model of DA-related neuroinflammation.
Collapse
Affiliation(s)
- Md Ashraf-Uz-Zaman
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| | - Dalton Tidwell
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| | - Linda Yin
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| | - Smathorn Thakolwiboon
- Neurology Department, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| | - Jie Pan
- Neurology Department, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| | - Riley Junell
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| | - Zach Griffin
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| | - Sadisna Shahi
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| | - Derek Barthels
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| | - Md Sanaullah Sajib
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| | - Paul C. Trippier
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- UNMC Center for Drug Discovery, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Constantinos M. Mikelis
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| | - Hiranmoy Das
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| | - Mirla Avila
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
- Multiple Sclerosis and Demyelinating Diseases Clinic; Department of Neurology, Texas Tech University Health Science Center,Lubbock, Texas 79430, United States
- Neurology Department, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| | - Nadezhda A. German
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| |
Collapse
|
24
|
El-Ansary A, Alhakbany M, Aldbass A, Qasem H, Al-Mazidi S, Bhat RS, Al-Ayadhi L. Alpha-Synuclein, cyclooxygenase-2 and prostaglandins-EP2 receptors as neuroinflammatory biomarkers of autism spectrum disorders: Use of combined ROC curves to increase their diagnostic values. Lipids Health Dis 2021; 20:155. [PMID: 34742290 PMCID: PMC8571879 DOI: 10.1186/s12944-021-01578-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/12/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impairments in social interaction and restricted and repetitive behaviors. Neuroinflammation and abnormal lipid mediators have been identified in multiple investigations as an acknowledged etiological mechanism of ASD that can be targeted for therapeutic intervention. METHODS In this study, multiple regression and combined receiver operating characteristic (ROC) curve analyses were used to determine the relationship between the neuroinflammatory marker α-synuclein and lipid mediator markers related to inflammation induction, such as cyclooxygenase-2 and prostaglandin-EP2 receptors, in the etiology of ASD. Additionally, the study aimed to determine the linear combination that maximizes the partial area under ROC curves for a set of markers. Forty children with ASD and 40 age- and sex-matched controls were enrolled in the study. Using ELISA, the levels of α-synuclein, cyclo-oxygenase-2, and prostaglandin-EP2 receptors were measured in the plasma of both groups. Statistical analyses using ROC curves and multiple and logistic regression models were performed. RESULTS A remarkable increase in the area under the curve was observed using combined ROC curve analyses. Moreover, higher specificity and sensitivity of the combined markers were reported. CONCLUSIONS The present study indicates that measurement of the predictive value of selected biomarkers related to neuroinflammation and lipid metabolism in children with ASD using a ROC curve analysis should lead to a better understanding of the etiological mechanism of ASD and its link with metabolism. This information may facilitate early diagnosis and intervention.
Collapse
Affiliation(s)
- Afaf El-Ansary
- Central Laboratory, Female Center for Medical Studies and Scientific Section, King Saud University, P. O Box 22452, Riyadh, KSA, 11495, Saudi Arabia.
- Autism Research and Treatment Center, Riyadh, Saudi Arabia.
| | - Manan Alhakbany
- Department of Physiology, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Abeer Aldbass
- Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Hanan Qasem
- Department of Physiology, College of Medicine, Al-Imam Mohammed Bin Saud Islamic University, Riyadh, Saudi Arabia
| | - Sarah Al-Mazidi
- Department of Physiology, College of Medicine, Al-Imam Mohammed Bin Saud Islamic University, Riyadh, Saudi Arabia
| | - Ramesa Shafi Bhat
- Department of Physiology, College of Medicine, Al-Imam Mohammed Bin Saud Islamic University, Riyadh, Saudi Arabia
| | - Laila Al-Ayadhi
- Autism Research and Treatment Center, Riyadh, Saudi Arabia
- Department of Physiology, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
25
|
Ferreira Junior NC, dos Santos Pereira M, Francis N, Ramirez P, Martorell P, González-Lizarraga F, Figadère B, Chehin R, Del Bel E, Raisman-Vozari R, Michel PP. The Chemically-Modified Tetracycline COL-3 and Its Parent Compound Doxycycline Prevent Microglial Inflammatory Responses by Reducing Glucose-Mediated Oxidative Stress. Cells 2021; 10:cells10082163. [PMID: 34440932 PMCID: PMC8392055 DOI: 10.3390/cells10082163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 12/31/2022] Open
Abstract
We used mouse microglial cells in culture activated by lipopolysaccharide (LPS) or α-synuclein amyloid aggregates (αSa) to study the anti-inflammatory effects of COL-3, a tetracycline derivative without antimicrobial activity. Under LPS or αSa stimulation, COL-3 (10, 20 µM) efficiently repressed the induction of the microglial activation marker protein Iba-1 and the stimulated-release of the pro-inflammatory cytokine TNF-α. COL-3′s inhibitory effects on TNF-α were reproduced by the tetracycline antibiotic doxycycline (DOX; 50 µM), the glucocorticoid dexamethasone, and apocynin (APO), an inhibitor of the superoxide-producing enzyme NADPH oxidase. This last observation suggested that COL-3 and DOX might also operate themselves by restraining oxidative stress-mediated signaling events. Quantitative measurement of intracellular reactive oxygen species (ROS) levels revealed that COL-3 and DOX were indeed as effective as APO in reducing oxidative stress and TNF-α release in activated microglia. ROS inhibition with COL-3 or DOX occurred together with a reduction of microglial glucose accumulation and NADPH synthesis. This suggested that COL-3 and DOX might reduce microglial oxidative burst activity by limiting the glucose-dependent synthesis of NADPH, the requisite substrate for NADPH oxidase. Coherent with this possibility, the glycolysis inhibitor 2-deoxy-D-glucose reproduced the immunosuppressive action of COL-3 and DOX in activated microglia. Overall, we propose that COL-3 and its parent compound DOX exert anti-inflammatory effects in microglial cells by inhibiting glucose-dependent ROS production. These effects might be strengthened by the intrinsic antioxidant properties of DOX and COL-3 in a self-reinforcing manner.
Collapse
Affiliation(s)
- Nilson Carlos Ferreira Junior
- Sorbonne Université, Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France; (N.C.F.J.); (M.d.S.P.); (N.F.); (P.R.); (P.M.)
- Department of Basic and Oral Biology, FORP, Campus USP, University of São Paulo, Av. Café, s/no, Ribeirão Preto 14040-904, Brazil;
- USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), São Paulo 05508-220, Brazil
| | - Maurício dos Santos Pereira
- Sorbonne Université, Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France; (N.C.F.J.); (M.d.S.P.); (N.F.); (P.R.); (P.M.)
- Department of Basic and Oral Biology, FORP, Campus USP, University of São Paulo, Av. Café, s/no, Ribeirão Preto 14040-904, Brazil;
- USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), São Paulo 05508-220, Brazil
| | - Nour Francis
- Sorbonne Université, Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France; (N.C.F.J.); (M.d.S.P.); (N.F.); (P.R.); (P.M.)
| | - Paola Ramirez
- Sorbonne Université, Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France; (N.C.F.J.); (M.d.S.P.); (N.F.); (P.R.); (P.M.)
| | - Paula Martorell
- Sorbonne Université, Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France; (N.C.F.J.); (M.d.S.P.); (N.F.); (P.R.); (P.M.)
| | - Florencia González-Lizarraga
- Instituto de Investigación en Medicina Molecular y Celular Aplicada (IMMCA) (CONICET-UNT-SIPROSA), CP 4000 Tucumán, Argentina; (F.G.-L.); (R.C.)
| | - Bruno Figadère
- BioCIS, CNRS, Université Paris-Saclay, 92290 Châtenay-Malabry, France;
| | - Rosana Chehin
- Instituto de Investigación en Medicina Molecular y Celular Aplicada (IMMCA) (CONICET-UNT-SIPROSA), CP 4000 Tucumán, Argentina; (F.G.-L.); (R.C.)
| | - Elaine Del Bel
- Department of Basic and Oral Biology, FORP, Campus USP, University of São Paulo, Av. Café, s/no, Ribeirão Preto 14040-904, Brazil;
- USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), São Paulo 05508-220, Brazil
| | - Rita Raisman-Vozari
- Sorbonne Université, Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France; (N.C.F.J.); (M.d.S.P.); (N.F.); (P.R.); (P.M.)
- Correspondence: (R.R.-V.); (P.P.M.); Tel.: +33-(0)157274550 (R.R.-V.); +33-(0)157274534 (P.P.M.)
| | - Patrick Pierre Michel
- Sorbonne Université, Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France; (N.C.F.J.); (M.d.S.P.); (N.F.); (P.R.); (P.M.)
- Correspondence: (R.R.-V.); (P.P.M.); Tel.: +33-(0)157274550 (R.R.-V.); +33-(0)157274534 (P.P.M.)
| |
Collapse
|
26
|
Dual Roles of Microglia in the Basal Ganglia in Parkinson's Disease. Int J Mol Sci 2021; 22:ijms22083907. [PMID: 33918947 PMCID: PMC8070536 DOI: 10.3390/ijms22083907] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/30/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022] Open
Abstract
With the increasing age of the population, the incidence of Parkinson’s disease (PD) has increased exponentially. The development of novel therapeutic interventions requires an understanding of the involvement of senescent brain cells in the pathogenesis of PD. In this review, we highlight the roles played by microglia in the basal ganglia in the pathophysiological processes of PD. In PD, dopaminergic (DAergic) neuronal degeneration in the substantia nigra pars compacta (SNc) activates the microglia, which then promote DAergic neuronal degeneration by releasing potentially neurotoxic factors, including nitric oxide, cytokines, and reactive oxygen species. On the other hand, microglia are also activated in the basal ganglia outputs (the substantia nigra pars reticulata and the globus pallidus) in response to excess glutamate released from hyperactive subthalamic nuclei-derived synapses. The activated microglia then eliminate the hyperactive glutamatergic synapses. Synapse elimination may be the mechanism underlying the compensation that masks the appearance of PD symptoms despite substantial DAergic neuronal loss. Microglial senescence may correlate with their enhanced neurotoxicity in the SNc and the reduced compensatory actions in the basal ganglia outputs. The dual roles of microglia in different basal ganglia regions make it difficult to develop interventions targeting microglia for PD treatment.
Collapse
|
27
|
Metabotropic glutamate receptor 5 inhibits α-synuclein-induced microglia inflammation to protect from neurotoxicity in Parkinson's disease. J Neuroinflammation 2021; 18:23. [PMID: 33461598 PMCID: PMC7814625 DOI: 10.1186/s12974-021-02079-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 01/07/2021] [Indexed: 12/19/2022] Open
Abstract
Background Microglia activation induced by α-synuclein (α-syn) is one of the most important factors in Parkinson’s disease (PD) pathogenesis. However, the molecular mechanisms by which α-syn exerts neuroinflammation and neurotoxicity remain largely elusive. Targeting metabotropic glutamate receptor 5 (mGluR5) has been an attractive strategy to mediate microglia activation for neuroprotection, which might be an essential regulator to modulate α-syn-induced neuroinflammation for the treatment of PD. Here, we showed that mGluR5 inhibited α-syn-induced microglia inflammation to protect from neurotoxicity in vitro and in vivo. Methods Co-immunoprecipitation assays were utilized to detect the interaction between mGluR5 and α-syn in microglia. Griess, ELISA, real-time PCR, western blotting, and immunofluorescence assays were used to detect the regulation of α-syn-induced inflammatory signaling, cytokine secretion, and lysosome-dependent degradation. Results α-syn selectively interacted with mGluR5 but not mGluR3, and α-syn N terminal deletion region was essential for binding to mGluR5 in co-transfected HEK293T cells. The interaction between these two proteins was further detected in BV2 microglia, which was inhibited by the mGluR5 specific agonist CHPG without effect by its selective antagonist MTEP. Moreover, in both BV2 cells and primary microglia, activation of mGluR5 by CHPG partially inhibited α-syn-induced inflammatory signaling and cytokine secretion and also inhibited the microglia activation to protect from neurotoxicity. We further found that α-syn overexpression decreased mGluR5 expression via a lysosomal pathway, as evidenced by the lysosomal inhibitor, NH4Cl, by blocking mGluR5 degradation, which was not evident with the proteasome inhibitor, MG132. Additionally, co-localization of mGluR5 with α-syn was detected in lysosomes as merging with its marker, LAMP-1. Consistently, in vivo experiments with LPS- or AAV-α-syn-induced rat PD model also confirmed that α-syn accelerated lysosome-dependent degradation of mGluR5 involving a complex, to regulate neuroinflammation. Importantly, the binding is strengthened with LPS or α-syn overexpression but alleviated by urate, a potential clinical biomarker for PD. Conclusions These findings provided evidence for a novel mechanism by which the association of α-syn with mGluR5 was attributed to α-syn-induced microglia activation via modulation of mGluR5 degradation and its intracellular signaling. This may be a new molecular target for an effective therapeutic strategy for PD pathology. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02079-1.
Collapse
|
28
|
Dos Santos Pereira M, Abreu GHD, Rocca J, Hamadat S, Raisman-Vozari R, Michel PP, Del Bel E. Contributive Role of TNF-α to L-DOPA-Induced Dyskinesia in a Unilateral 6-OHDA Lesion Model of Parkinson's Disease. Front Pharmacol 2021; 11:617085. [PMID: 33510643 PMCID: PMC7836015 DOI: 10.3389/fphar.2020.617085] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/27/2020] [Indexed: 12/19/2022] Open
Abstract
Our present objective was to better characterize the mechanisms that regulate striatal neuroinflammation in mice developing L-DOPA-induced dyskinesia (LID). For that, we used 6-hydroxydopamine (6-OHDA)-lesioned mice rendered dyskinetic by repeated intraperitoneal injections of 3,4-dihydroxyphenyl-L-alanine (L-DOPA) and quantified ensuing neuroinflammatory changes in the dopamine-denervated dorsal striatum. LID development was associated with a prominent astrocytic response, and a more moderate microglial cell reaction restricted to this striatal area. The glial response was associated with elevations in two pro-inflammatory cytokines, tumor necrosis factor-α (TNF-α) and interleukin-1β. Treatment with the phytocannabinoid cannabidiol and the transient receptor potential vanilloid-1 (TRPV-1) channel antagonist capsazepine diminished LID intensity and decreased TNF-α levels without impacting other inflammation markers. To possibly reproduce the neuroinflammatory component of LID, we exposed astrocyte and microglial cells in culture to candidate molecules that might operate as inflammatory cues during LID development, i.e., L-DOPA, dopamine, or glutamate. Neither L-DOPA nor dopamine produced an inflammatory response in glial cell cultures. However, glutamate enhanced TNF-α secretion and GFAP expression in astrocyte cultures and promoted Iba-1 expression in microglial cultures. Of interest, the antidyskinetic treatment with cannabidiol + capsazepine reduced TNF-α release in glutamate-activated astrocytes. TNF-α, on its own, promoted the synaptic release of glutamate in cortical neuronal cultures, whereas cannabidiol + capsazepine prevented this effect. Therefore, we may assume that the release of TNF-α by glutamate-activated astrocytes may contribute to LID by exacerbating corticostriatal glutamatergic inputs excitability and maintaining astrocytes in an activated state through a self-reinforcing mechanism.
Collapse
Affiliation(s)
- Maurício Dos Santos Pereira
- Department of Basic and Oral Biology, FORP, Campus USP, University of São Paulo, Ribeirão Preto, Brazil.,Department of Physiology, FMRP, Campus USP, University of São Paulo, Ribeirão Preto, Brazil.,USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Brazil.,Paris Brain Institute, Inserm U 1127, CNRS UMR 7225, Sorbonne Université UM75, Paris, France
| | - Gabriel Henrique Dias Abreu
- Department of Basic and Oral Biology, FORP, Campus USP, University of São Paulo, Ribeirão Preto, Brazil.,USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Brazil
| | - Jeremy Rocca
- Paris Brain Institute, Inserm U 1127, CNRS UMR 7225, Sorbonne Université UM75, Paris, France
| | - Sabah Hamadat
- Paris Brain Institute, Inserm U 1127, CNRS UMR 7225, Sorbonne Université UM75, Paris, France
| | - Rita Raisman-Vozari
- Paris Brain Institute, Inserm U 1127, CNRS UMR 7225, Sorbonne Université UM75, Paris, France
| | - Patrick Pierre Michel
- Paris Brain Institute, Inserm U 1127, CNRS UMR 7225, Sorbonne Université UM75, Paris, France
| | - Elaine Del Bel
- Department of Basic and Oral Biology, FORP, Campus USP, University of São Paulo, Ribeirão Preto, Brazil.,Department of Physiology, FMRP, Campus USP, University of São Paulo, Ribeirão Preto, Brazil.,USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Brazil
| |
Collapse
|
29
|
González-Lizárraga F, Ploper D, Ávila CL, Socías SB, Dos-Santos-Pereira M, Machín B, Del-Bel E, Michel PP, Pietrasanta LI, Raisman-Vozari R, Chehín R. CMT-3 targets different α-synuclein aggregates mitigating their toxic and inflammogenic effects. Sci Rep 2020; 10:20258. [PMID: 33219264 PMCID: PMC7679368 DOI: 10.1038/s41598-020-76927-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/03/2020] [Indexed: 12/22/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder for which only symptomatic treatments are available. Repurposing drugs that target α-synuclein aggregation, considered one of the main drivers of PD progression, could accelerate the development of disease-modifying therapies. In this work, we focused on chemically modified tetracycline 3 (CMT-3), a derivative with reduced antibiotic activity that crosses the blood–brain barrier and is pharmacologically safe. We found that CMT-3 inhibited α-synuclein amyloid aggregation and led to the formation of non-toxic molecular species, unlike minocycline. Furthermore, CMT-3 disassembled preformed α-synuclein amyloid fibrils into smaller fragments that were unable to seed in subsequent aggregation reactions. Most interestingly, disaggregated species were non-toxic and less inflammogenic on brain microglial cells. Finally, we modelled the interactions between CMT-3 and α-synuclein aggregates by molecular simulations. In this way, we propose a mechanism for fibril disassembly. Our results place CMT-3 as a potential disease modifier for PD and possibly other synucleinopathies.
Collapse
Affiliation(s)
- Florencia González-Lizárraga
- Instituto de Investigación en Medicina Molecular y Celular Aplicada (IMMCA) (CONICET-UNT-SIPROSA), Pasaje Dorrego 1080, 4000, San Miguel de Tucumán, Argentina
| | - Diego Ploper
- Instituto de Investigación en Medicina Molecular y Celular Aplicada (IMMCA) (CONICET-UNT-SIPROSA), Pasaje Dorrego 1080, 4000, San Miguel de Tucumán, Argentina
| | - César L Ávila
- Instituto de Investigación en Medicina Molecular y Celular Aplicada (IMMCA) (CONICET-UNT-SIPROSA), Pasaje Dorrego 1080, 4000, San Miguel de Tucumán, Argentina
| | - Sergio B Socías
- Instituto de Investigación en Medicina Molecular y Celular Aplicada (IMMCA) (CONICET-UNT-SIPROSA), Pasaje Dorrego 1080, 4000, San Miguel de Tucumán, Argentina
| | | | - Belén Machín
- Instituto de Investigación en Medicina Molecular y Celular Aplicada (IMMCA) (CONICET-UNT-SIPROSA), Pasaje Dorrego 1080, 4000, San Miguel de Tucumán, Argentina
| | - Elaine Del-Bel
- Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Patrick Pierre Michel
- Paris Brain Institute, Inserm U 1127, CNRS UMR 7225, Sorbonne Université UM75, Paris, France
| | - Lía I Pietrasanta
- Departamento de Física-Instituto de Física de Buenos Aires (IFIBA, UBA-CONICET) and Centro de Microscopías Avanzadas (CMA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EHA, Buenos Aires, Argentina
| | - Rita Raisman-Vozari
- Paris Brain Institute, Inserm U 1127, CNRS UMR 7225, Sorbonne Université UM75, Paris, France.
| | - Rosana Chehín
- Instituto de Investigación en Medicina Molecular y Celular Aplicada (IMMCA) (CONICET-UNT-SIPROSA), Pasaje Dorrego 1080, 4000, San Miguel de Tucumán, Argentina.
| |
Collapse
|
30
|
Intranigral Administration of β-Sitosterol- β-D-Glucoside Elicits Neurotoxic A1 Astrocyte Reactivity and Chronic Neuroinflammation in the Rat Substantia Nigra. J Immunol Res 2020; 2020:5907591. [PMID: 33282962 PMCID: PMC7685831 DOI: 10.1155/2020/5907591] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/01/2020] [Accepted: 06/09/2020] [Indexed: 12/23/2022] Open
Abstract
Chronic consumption of β-sitosterol-β-D-glucoside (BSSG), a neurotoxin contained in cycad seeds, leads to Parkinson's disease in humans and rodents. Here, we explored whether a single intranigral administration of BSSG triggers neuroinflammation and neurotoxic A1 reactive astrocytes besides dopaminergic neurodegeneration. We injected 6 μg BSSG/1 μL DMSO or vehicle into the left substantia nigra and immunostained with antibodies against tyrosine hydroxylase (TH) together with markers of microglia (OX42), astrocytes (GFAP, S100β, C3), and leukocytes (CD45). We also measured nitric oxide (NO), lipid peroxidation (LPX), and proinflammatory cytokines (TNF-α, IL-1β, IL-6). The Evans blue assay was used to explore the blood-brain barrier (BBB) permeability. We found that BSSG activates NO production on days 15 and 30 and LPX on day 120. Throughout the study, high levels of TNF-α were present in BSSG-treated animals, whereas IL-1β was induced until day 60 and IL-6 until day 30. Immunoreactivity of activated microglia (899.0 ± 80.20%) and reactive astrocytes (651.50 ± 11.28%) progressively increased until day 30 and then decreased to remain 251.2 ± 48.8% (microglia) and 91.02 ± 39.8 (astrocytes) higher over controls on day 120. C3(+) cells were also GFAP and S100β immunoreactive, showing they were neurotoxic A1 reactive astrocytes. BBB remained permeable until day 15 when immune cell infiltration was maximum. TH immunoreactivity progressively declined, reaching 83.6 ± 1.8% reduction on day 120. Our data show that BSSG acute administration causes chronic neuroinflammation mediated by activated microglia, neurotoxic A1 reactive astrocytes, and infiltrated immune cells. The severe neuroinflammation might trigger Parkinson's disease in BSSG intoxication.
Collapse
|
31
|
P2X7 Receptors Amplify CNS Damage in Neurodegenerative Diseases. Int J Mol Sci 2020; 21:ijms21175996. [PMID: 32825423 PMCID: PMC7504621 DOI: 10.3390/ijms21175996] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 12/11/2022] Open
Abstract
ATP is a (co)transmitter and signaling molecule in the CNS. It acts at a multitude of ligand-gated cationic channels termed P2X to induce rapid depolarization of the cell membrane. Within this receptor-channel family, the P2X7 receptor (R) allows the transmembrane fluxes of Na+, Ca2+, and K+, but also allows the slow permeation of larger organic molecules. This is supposed to cause necrosis by excessive Ca2+ influx, as well as depletion of intracellular ions and metabolites. Cell death may also occur by apoptosis due to the activation of the caspase enzymatic cascade. Because P2X7Rs are localized in the CNS preferentially on microglia, but also at a lower density on neuroglia (astrocytes, oligodendrocytes) the stimulation of this receptor leads to the release of neurodegeneration-inducing bioactive molecules such as pro-inflammatory cytokines, chemokines, proteases, reactive oxygen and nitrogen molecules, and the excitotoxic glutamate/ATP. Various neurodegenerative reactions of the brain/spinal cord following acute harmful events (mechanical CNS damage, ischemia, status epilepticus) or chronic neurodegenerative diseases (neuropathic pain, Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, amyotrophic lateral sclerosis) lead to a massive release of ATP via the leaky plasma membrane of neural tissue. This causes cellular damage superimposed on the original consequences of neurodegeneration. Hence, blood-brain-barrier permeable pharmacological antagonists of P2X7Rs with excellent bioavailability are possible therapeutic agents for these diseases. The aim of this review article is to summarize our present state of knowledge on the involvement of P2X7R-mediated events in neurodegenerative illnesses endangering especially the life quality and duration of the aged human population.
Collapse
|
32
|
Iovino L, Tremblay ME, Civiero L. Glutamate-induced excitotoxicity in Parkinson's disease: The role of glial cells. J Pharmacol Sci 2020; 144:151-164. [PMID: 32807662 DOI: 10.1016/j.jphs.2020.07.011] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/30/2020] [Accepted: 07/27/2020] [Indexed: 12/11/2022] Open
Abstract
Glutamate is the major excitatory neurotransmitter in the central nervous system. Glutamate transmission efficiency depends on the correct functionality and expression of a plethora of receptors and transporters, located both on neurons and glial cells. Of note, glutamate reuptake by dedicated transporters prevents its accumulation at the synapse as well as non-physiological spillover. Indeed, extracellular glutamate increase causes aberrant synaptic signaling leading to neuronal excitotoxicity and death. Moreover, extrasynaptic glutamate diffusion is strongly associated with glia reaction and neuroinflammation. Glutamate-induced excitotoxicity is mainly linked to an impaired ability of glial cells to reuptake and respond to glutamate, then this is considered a common hallmark in many neurodegenerative diseases, including Parkinson's disease (PD). In this review, we discuss the function of astrocytes and microglia in glutamate homeostasis, focusing on how glial dysfunction causes glutamate-induced excitotoxicity leading to neurodegeneration in PD.
Collapse
Affiliation(s)
- L Iovino
- Department of Biology, University of Padova, Italy
| | - M E Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, Canada
| | - L Civiero
- Department of Biology, University of Padova, Italy; IRCCS San Camillo Hospital, Venice, Italy.
| |
Collapse
|
33
|
Andrejew R, Oliveira-Giacomelli Á, Ribeiro DE, Glaser T, Arnaud-Sampaio VF, Lameu C, Ulrich H. The P2X7 Receptor: Central Hub of Brain Diseases. Front Mol Neurosci 2020; 13:124. [PMID: 32848594 PMCID: PMC7413029 DOI: 10.3389/fnmol.2020.00124] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/17/2020] [Indexed: 12/27/2022] Open
Abstract
The P2X7 receptor is a cation channel activated by high concentrations of adenosine triphosphate (ATP). Upon long-term activation, it complexes with membrane proteins forming a wide pore that leads to cell death and increased release of ATP into the extracellular milieu. The P2X7 receptor is widely expressed in the CNS, such as frontal cortex, hippocampus, amygdala and striatum, regions involved in neurodegenerative diseases and psychiatric disorders. Despite P2X7 receptor functions in glial cells have been extensively studied, the existence and roles of this receptor in neurons are still controversially discussed. Regardless, P2X7 receptors mediate several processes observed in neuropsychiatric disorders and brain tumors, such as activation of neuroinflammatory response, stimulation of glutamate release and neuroplasticity impairment. Moreover, P2X7 receptor gene polymorphisms have been associated to depression, and isoforms of P2X7 receptors are implicated in neuropsychiatric diseases. In view of that, the P2X7 receptor has been proposed to be a potential target for therapeutic intervention in brain diseases. This review discusses the molecular mechanisms underlying P2X7 receptor-mediated signaling in neurodegenerative diseases, psychiatric disorders, and brain tumors. In addition, it highlights the recent advances in the development of P2X7 receptor antagonists that are able of penetrating the central nervous system.
Collapse
Affiliation(s)
- Roberta Andrejew
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | | - Deidiane Elisa Ribeiro
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Talita Glaser
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | | - Claudiana Lameu
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
34
|
Thomas AJ, Ascanio-Cortez L, Gomez S, Salem M, Maragkos G, Hanafy KA. Defining the Mechanism of Subarachnoid Hemorrhage-Induced Pyrexia. Neurotherapeutics 2020; 17:1160-1169. [PMID: 32372402 PMCID: PMC7609635 DOI: 10.1007/s13311-020-00866-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Fever can affect the majority of patients with subarachnoid hemorrhage (SAH) and many times no identifiable source is found for the fever whether infectious or sterile, like deep vein thrombosis. We hypothesized that fever in SAH is mediated by a NON-cyclo-oxygenase-dependent mechanism, which we neologized as subarachnoid hemorrhage-induced pyrexia (SAHiP). This hypothesis was investigated using genetically modified mice, pharmacological manipulation, cerebrospinal fluid from SAH patients, and a large cohort of SAH patients. Mice with deletions of neuronal prostaglandin EP3 receptor, global toll-like receptor 4 (TLR4), myeloid TLR4, and microglial TLR4 were subjected to SAH after being implanted with thermometers. Pathways necessary for SAHiP were identified. In SAH patients, cerebrospinal fluid was examined by flow cytometry and correlated with SAHiP. From a large cohort of SAH patients, independent associations with SAHiP were determined using logistic regression analysis. In our mouse model of SAH, microglial TLR4 is necessary for SAHiP, but independent of the neuronal prostaglandin EP3 receptor, cyclo-oxygenase, and prostaglandins. Macrophages from the cerebrospinal fluid of SAH patients with SAHiP expressed more TLR4-co-receptor than SAH patients without SAHiP. In a large cohort of SAH patients, SAHiP was found to be independently, yet inversely, associated with acetaminophen administration. SAHiP is independent of the neuronal prostaglandin EP3 receptor, cyclo-oxygenase, and prostaglandins, but dependent on microglial/macrophage TLR4 with evidence from both SAH mouse models and SAH patients.
Collapse
Affiliation(s)
- Ajith J Thomas
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Luis Ascanio-Cortez
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Santiago Gomez
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Mohamed Salem
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - George Maragkos
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Khalid A Hanafy
- Department of Neurology, Division of Neurointensive Care, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| |
Collapse
|
35
|
Guan Y, Zhao X, Liu F, Yan S, Wang Y, Du C, Cui X, Li R, Zhang CX. Pathogenic Mutations Differentially Regulate Cell-to-Cell Transmission of α-Synuclein. Front Cell Neurosci 2020; 14:159. [PMID: 32595456 PMCID: PMC7303300 DOI: 10.3389/fncel.2020.00159] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/12/2020] [Indexed: 12/15/2022] Open
Abstract
Recent studies suggest that the cell-to-cell spread of pathological α-synuclein (α-syn) plays important roles in the development of Parkinson's disease (PD). PD patients who carry α-syn gene mutations often have an earlier onset and more severe clinical symptoms and pathology than sporadic PD cases who carry the wild-type (WT) α-syn gene. However, the molecular mechanism by which α-syn gene mutations promote PD remains unclear. Here, we hypothesized that pathogenic mutations facilitate the intercellular transfer and cytotoxicity of α-syn, favoring an early disease onset and faster progression. We investigated the effects of eight known pathogenic mutations in human α-syn (A18T, A29S, A30P, E46K, H50Q, G51D, A53E, and A53T) on its pathological transmission in terms of secretion, aggregation, intracellular level, cytotoxicity, seeding, and induction of neuroinflammation in SH-SY5Y neuroblastoma cells, cultured rat neurons, and microglia, and the rat substantia nigra pars compacta. We found that 2 of the 8 mutations (H50Q and A53T) significantly increased α-syn secretion while 6 mutations (A18T, A29S, A30P, G51D, A53E, and E46K) tended to enhance it. In vitroα-syn aggregation experiments showed that H50Q promoted while G51D delayed aggregation most strongly. Interestingly, 3 mutations (E46K, H50Q, and G51D) greatly increased the intracellular α-syn level when cultured cells were treated with preformed α-syn fibrils (PFFs) compared with the WT, while the other 5 had no effect. We also demonstrated that H50Q, G51D, and A53T PFFs, but not E46K PFFs, efficiently seeded in vivo and acutely induced neuroinflammation in rat substantia nigra pars compacta. Our data indicate that pathogenic mutations augment the prion-like spread of α-syn at different steps and blockade of this pathogenic propagation may serve as a promising therapeutic intervention for PD.
Collapse
Affiliation(s)
- Yuan Guan
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.,Department of Anesthesiology, Beijing Huaxin Hospital, First Hospital of Tsinghua University, Beijing, China
| | - Xiaofang Zhao
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Fengwei Liu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Shuxin Yan
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Yalong Wang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Cuilian Du
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.,Institute of Clinical Neuroimmunology, University Hospital and Biomedical Center, Ludwig-Maximilians University Munich, Munich, Germany
| | - Xiuyu Cui
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Rena Li
- Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital and Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Claire Xi Zhang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
36
|
Soto-Rojas LO, Martínez-Dávila IA, Luna-Herrera C, Gutierrez-Castillo ME, Lopez-Salas FE, Gatica-Garcia B, Soto-Rodriguez G, Bringas Tobon ME, Flores G, Padilla-Viveros A, Bañuelos C, Blanco-Alvarez VM, Dávila-Ayala J, Reyes-Corona D, Garcés-Ramírez L, Hidalgo-Alegria O, De La Cruz-lópez F, Martinez-Fong D. Unilateral intranigral administration of β-sitosterol β-D-glucoside triggers pathological α-synuclein spreading and bilateral nigrostriatal dopaminergic neurodegeneration in the rat. Acta Neuropathol Commun 2020; 8:56. [PMID: 32321590 PMCID: PMC7178762 DOI: 10.1186/s40478-020-00933-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/14/2020] [Indexed: 02/05/2023] Open
Abstract
The spreading and accumulation of α-synuclein and dopaminergic neurodegeneration, two hallmarks of Parkinson’s disease (PD), have been faithfully reproduced in rodent brains by chronic, oral administration of β-sitosterol β-D-glucoside (BSSG). We investigated whether a single injection of BSSG (6 μg BSSG/μL DMSO) in the left substantia nigra of Wistar rats causes the same effects. Mock DMSO injections and untreated rats formed control groups. We performed immunostainings against the pathological α-synuclein, the dopaminergic marker tyrosine hydroxylase (TH), the neuroskeleton marker β-III tubulin, the neurotensin receptor type 1 (NTSR1) as non-dopaminergic phenotype marker and Fluro-Jade C (F-J C) label for neurodegeneration. Using β-galactosidase (β-Gal) assay and active caspase-3 immunostaining, we assessed cell death mechanisms. Golgi-Cox staining was used to measure the density and types of dendritic spines of striatal medium spiny neurons. Motor and non-motor alterations were also evaluated. The study period comprised 15 to 120 days after the lesion. In the injured substantia nigra, BSSG caused a progressive α-synuclein aggregation and dopaminergic neurodegeneration caused by senescence and apoptosis. The α-synuclein immunoreactivity was also present within microglia cells. Decreased density of dopaminergic fibers and dendritic spines also occurred in the striatum. Remarkably, all the histopathological changes also appeared on the contralateral nigrostriatal system, and α-synuclein aggregates were present in other brain regions. Motor and non-motor behavioral alterations were progressive. Our data show that the stereotaxic BSSG administration reproduces PD α-synucleinopathy phenotype in the rat. This approach will aid in identifying the spread mechanism of α-synuclein pathology and validate anti-synucleinopathy therapies.
Collapse
|
37
|
Matt SM, Gaskill PJ. Where Is Dopamine and how do Immune Cells See it?: Dopamine-Mediated Immune Cell Function in Health and Disease. J Neuroimmune Pharmacol 2020; 15:114-164. [PMID: 31077015 PMCID: PMC6842680 DOI: 10.1007/s11481-019-09851-4] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/07/2019] [Indexed: 02/07/2023]
Abstract
Dopamine is well recognized as a neurotransmitter in the brain, and regulates critical functions in a variety of peripheral systems. Growing research has also shown that dopamine acts as an important regulator of immune function. Many immune cells express dopamine receptors and other dopamine related proteins, enabling them to actively respond to dopamine and suggesting that dopaminergic immunoregulation is an important part of proper immune function. A detailed understanding of the physiological concentrations of dopamine in specific regions of the human body, particularly in peripheral systems, is critical to the development of hypotheses and experiments examining the effects of physiologically relevant dopamine concentrations on immune cells. Unfortunately, the dopamine concentrations to which these immune cells would be exposed in different anatomical regions are not clear. To address this issue, this comprehensive review details the current information regarding concentrations of dopamine found in both the central nervous system and in many regions of the periphery. In addition, we discuss the immune cells present in each region, and how these could interact with dopamine in each compartment described. Finally, the review briefly addresses how changes in these dopamine concentrations could influence immune cell dysfunction in several disease states including Parkinson's disease, multiple sclerosis, rheumatoid arthritis, inflammatory bowel disease, as well as the collection of pathologies, cognitive and motor symptoms associated with HIV infection in the central nervous system, known as NeuroHIV. These data will improve our understanding of the interactions between the dopaminergic and immune systems during both homeostatic function and in disease, clarify the effects of existing dopaminergic drugs and promote the creation of new therapeutic strategies based on manipulating immune function through dopaminergic signaling. Graphical Abstract.
Collapse
Affiliation(s)
- S M Matt
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - P J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA.
| |
Collapse
|
38
|
Raghunatha P, Vosoughi A, Kauppinen TM, Jackson MF. Microglial NMDA receptors drive pro-inflammatory responses via PARP-1/TRMP2 signaling. Glia 2020; 68:1421-1434. [PMID: 32036619 DOI: 10.1002/glia.23790] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/16/2020] [Accepted: 01/23/2020] [Indexed: 12/16/2022]
Abstract
Chronic neuroinflammation driven by microglia is a characteristic feature associated with numerous neurodegenerative diseases. While acute inflammation can assist with recovery and repair, prolonged microglial pro-inflammatory responses are known to exacerbate neurodegenerative processes. Yet, detrimental outcomes of extended microglial activation are counterbalanced by beneficial outcomes including phagocytosis and release of trophic factors promoting neuronal viability. Our past work has shown that the nuclear enzyme poly(ADP-ribose) polymerase-1 (PARP-1) is a key signaling hub driving pro-inflammatory microglia responses, but the signaling pathway maintaining PARP-1 activation remains elusive. While best understood for its role in promoting DNA repair, our group has shown that PARP-1 activity can be stimulated via Ca2+ influx-dependent ERK1/2-mediated phosphorylation. However, to date, the route of Ca2+ entry responsible for stimulating PARP-1 has not been identified. A likely candidate is via Ca2+ -permeable transient receptor potential melastatin 2 (TRPM2) channels activated downstream of PARP-1 in a cascade that involves ADP-ribose (ADPR) production by poly(ADP-ribose) glycohydrolase (PARG). Here we demonstrate that NMDA receptor (NMDAR) stimulation in primary cultured microglia induces their proliferation, morphological activation and release of pro-inflammatory mediators. These responses were contingent on the recruitment of PARP-1, PARG and Ca2+ permeable TRPM2 channels. Furthermore, we show that Ca2+ influx is necessary to activate PARP-1/TRPM2 signaling, in an ERK1/2-dependent, but DNA damage independent, manner. Our findings, showing that PARP-1/TRPM2 mediate the pro-inflammatory effects of NMDAR stimulation, provides a unifying mechanism linking elevated glutamate levels to chronic neuroinflammation.
Collapse
Affiliation(s)
- Prajwal Raghunatha
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada.,Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Manitoba, Canada
| | - Amir Vosoughi
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Manitoba, Canada
| | - Tiina M Kauppinen
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada.,Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Manitoba, Canada.,The Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Michael F Jackson
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada.,Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Manitoba, Canada
| |
Collapse
|
39
|
Lazdon E, Stolero N, Frenkel D. Microglia and Parkinson's disease: footprints to pathology. J Neural Transm (Vienna) 2020; 127:149-158. [DOI: 10.1007/s00702-020-02154-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 01/26/2020] [Indexed: 12/11/2022]
|
40
|
Acuna L, Corbalán NS, Raisman-Vozari R. Rifampicin quinone pretreatment improves neuronal survival by modulating microglia inflammation induced by α-synuclein. Neural Regen Res 2020; 15:1473-1474. [PMID: 31997807 PMCID: PMC7059564 DOI: 10.4103/1673-5374.274336] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Leonardo Acuna
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta (UNSa), Salta, Argentina
| | - Natalia S Corbalán
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta (UNSa), Salta, Argentina
| | - Rita Raisman-Vozari
- Institut du Cerveau et de la Moelle épiniére (ICM), Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France
| |
Collapse
|
41
|
dos‐Santos‐Pereira M, Guimarães FS, Del‐Bel E, Raisman‐Vozari R, Michel PP. Cannabidiol prevents LPS‐induced microglial inflammation by inhibiting ROS/NF‐κB‐dependent signaling and glucose consumption. Glia 2019; 68:561-573. [DOI: 10.1002/glia.23738] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/04/2019] [Accepted: 10/07/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Mauricio dos‐Santos‐Pereira
- Sorbonne Université, Institut du Cerveau et de la Moelle épinière (ICM)Inserm U 1127, CNRS UMR 7225 Paris France
- Faculdade de Odontologia, Departamento de Morfologia, Fisiologia e Patologia BásicaUniversidade de São Paulo Ribeirão Preto Brazil
- Núcleo de Apoio à Pesquisa em Neurociência Aplicada (NAPNA)Universidade de São Paulo Sao Paulo Brazil
| | - Franscisco S. Guimarães
- Núcleo de Apoio à Pesquisa em Neurociência Aplicada (NAPNA)Universidade de São Paulo Sao Paulo Brazil
- Faculdade de Medicina, Departamento de FarmacologiaUniversidade de São Paulo Ribeirão Preto Brazil
| | - Elaine Del‐Bel
- Faculdade de Odontologia, Departamento de Morfologia, Fisiologia e Patologia BásicaUniversidade de São Paulo Ribeirão Preto Brazil
- Núcleo de Apoio à Pesquisa em Neurociência Aplicada (NAPNA)Universidade de São Paulo Sao Paulo Brazil
| | - Rita Raisman‐Vozari
- Sorbonne Université, Institut du Cerveau et de la Moelle épinière (ICM)Inserm U 1127, CNRS UMR 7225 Paris France
| | - Patrick P. Michel
- Sorbonne Université, Institut du Cerveau et de la Moelle épinière (ICM)Inserm U 1127, CNRS UMR 7225 Paris France
| |
Collapse
|
42
|
Rifampicin and Its Derivative Rifampicin Quinone Reduce Microglial Inflammatory Responses and Neurodegeneration Induced In Vitro by α-Synuclein Fibrillary Aggregates. Cells 2019; 8:cells8080776. [PMID: 31349736 PMCID: PMC6721546 DOI: 10.3390/cells8080776] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/12/2019] [Accepted: 07/18/2019] [Indexed: 12/22/2022] Open
Abstract
: Aggregated forms of the synaptic protein α-synuclein (αS) have been proposed to operate as a molecular trigger for microglial inflammatory processes and neurodegeneration in Parkinson´s disease. Here, we used brain microglial cell cultures activated by fibrillary forms of recombinant human αS to assess the anti-inflammatory and neuroprotective activities of the antibiotic rifampicin (Rif) and its autoxidation product rifampicin quinone (RifQ). Pretreatments with Rif and RifQ reduced the secretion of prototypical inflammatory cytokines (TNF-, IL-6) and the burst of oxidative stress in microglial cells activated with αS fibrillary aggregates. Note, however, that RifQ was constantly more efficacious than its parent compound in reducing microglial activation. We also established that the suppressive effects of Rif and RifQ on cytokine release was probably due to inhibition of both PI3K- and non-PI3K-dependent signaling events. The control of oxidative stress appeared, however, essentially dependent on PI3K inhibition. Of interest, we also showed that RifQ was more efficient than Rif in protecting neuronal cells from toxic factors secreted by microglia activated by αS fibrils. Overall, data with RifQ are promising enough to justify further studies to confirm the potential of this compound as an anti-parkinsionian drug.
Collapse
|
43
|
Cell Responses to Extracellular α-Synuclein. Molecules 2019; 24:molecules24020305. [PMID: 30650656 PMCID: PMC6359176 DOI: 10.3390/molecules24020305] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/07/2019] [Accepted: 01/07/2019] [Indexed: 12/25/2022] Open
Abstract
Synucleins are small naturally unfolded proteins involved in neurodegenerative diseases and cancer. The family contains three members: α-, β-, and -synuclein. α-Synuclein is the most thoroughly investigated because of its close association with Parkinson's disease (PD), dementia with Lewy bodies and multiple system atrophy. Until recently, the synuclein's research was mainly focused on their intracellular forms. However, new studies highlighted the important role of extracellular synucleins. Extracellular forms of synucleins propagate between various types of cells, bind to cell surface receptors and transmit signals, regulating numerous intracellular processes. Here we give an update of the latest results about the mechanisms of action of extracellular synucleins, their binding to cell surface receptors, effect on biochemical pathways and the role in neurodegeneration and neuroinflammation.
Collapse
|