1
|
Chen Y, Deng H, Zhang N. Autophagy-targeting modulation to promote peripheral nerve regeneration. Neural Regen Res 2025; 20:1864-1882. [PMID: 39254547 PMCID: PMC11691477 DOI: 10.4103/nrr.nrr-d-23-01948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/22/2024] [Accepted: 03/29/2024] [Indexed: 09/11/2024] Open
Abstract
Nerve regeneration following traumatic peripheral nerve injuries and neuropathies is a complex process modulated by diverse factors and intricate molecular mechanisms. Past studies have focused on factors that stimulate axonal outgrowth and myelin regeneration. However, recent studies have highlighted the pivotal role of autophagy in peripheral nerve regeneration, particularly in the context of traumatic injuries. Consequently, autophagy-targeting modulation has emerged as a promising therapeutic approach to enhancing peripheral nerve regeneration. Our current understanding suggests that activating autophagy facilitates the rapid clearance of damaged axons and myelin sheaths, thereby enhancing neuronal survival and mitigating injury-induced oxidative stress and inflammation. These actions collectively contribute to creating a favorable microenvironment for structural and functional nerve regeneration. A range of autophagy-inducing drugs and interventions have demonstrated beneficial effects in alleviating peripheral neuropathy and promoting nerve regeneration in preclinical models of traumatic peripheral nerve injuries. This review delves into the regulation of autophagy in cell types involved in peripheral nerve regeneration, summarizing the potential drugs and interventions that can be harnessed to promote this process. We hope that our review will offer novel insights and perspectives on the exploitation of autophagy pathways in the treatment of peripheral nerve injuries and neuropathies.
Collapse
Affiliation(s)
- Yan Chen
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Key Laboratory of Birth Defects and Women and Children’s Diseases, Ministry of Education, Sichuan University, Chengdu, Sichuan Province, China
- Laboratory of Reproductive Endocrinology and Reproductive Regulation, Sichuan University, Chengdu, Sichuan Province, China
| | - Hongxia Deng
- Key Laboratory of Birth Defects and Women and Children’s Diseases, Ministry of Education, Sichuan University, Chengdu, Sichuan Province, China
- Laboratory of Reproductive Endocrinology and Reproductive Regulation, Sichuan University, Chengdu, Sichuan Province, China
| | - Nannan Zhang
- Key Laboratory of Birth Defects and Women and Children’s Diseases, Ministry of Education, Sichuan University, Chengdu, Sichuan Province, China
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
2
|
Gambarotto L, Russo L, Bresolin S, Persano L, D'Amore R, Ronchi G, Zen F, Muratori L, Cani A, Negro S, Megighian A, Calabrò S, Braghetta P, Bizzotto D, Cescon M. Schwann Cell-Specific Ablation of Beclin 1 Impairs Myelination and Leads to Motor and Sensory Neuropathy in Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2308965. [PMID: 39680476 PMCID: PMC11792035 DOI: 10.1002/advs.202308965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 07/24/2024] [Indexed: 12/18/2024]
Abstract
The core component of the class III phosphatidylinositol 3-kinase complex, Beclin 1, takes part in different protein networks, thus switching its role from inducing autophagy to regulating autophagosomal maturation and endosomal trafficking. While assessed in neurons, astrocytes, and microglia, its role is far less investigated in myelinating glia, including Schwann cells (SCs), responsible for peripheral nerve myelination. Remarkably, the dysregulation in endosomal trafficking is emerging as a pathophysiological mechanism underlying peripheral neuropathies, such as demyelinating Charcot-Marie-Tooth (CMT) diseases. By knocking out Beclin 1 in SCs here a novel mouse model (Becn1 cKO) is generated, developing a severe and progressive neuropathy, accompanied by involuntary tremors, body weight loss, and premature death. Ultrastructural analysis revealed abated myelination and SCs displaying enlarged cytoplasm with progressive accumulation of intracellular vesicles. Transcriptomic and histological analysis from sciatic nerves of 10-day and 2-month-old mice revealed pro-mitotic gene deregulation and increased SCs proliferation at both stages with axonal loss and increased immune infiltration in adults, well reflecting the progressive motor and sensory functional impairment that characterizes Becn1 cKO mice, compared to controls. The study establishes a further step in understanding key mechanisms in SC development and points to Beclin 1 and its regulated pathways as targets for demyelinating CMT forms.
Collapse
Affiliation(s)
- Lisa Gambarotto
- Department of Molecular MedicineUniversity of PadovaVia U. Bassi 58/BPadova35131Italy
- Department of BiologyUniversity of PadovaVia U. Bassi 58/BPadova35131Italy
| | - Loris Russo
- Department of Molecular MedicineUniversity of PadovaVia U. Bassi 58/BPadova35131Italy
| | - Silvia Bresolin
- Department of Women and Children's HealthUniversity of Padovavia Giustiniani 3Padova35127Italy
- Istituto di Ricerca Pediatrica – Città della SperanzaCorso Stati Uniti 4Padova35128Italy
| | - Luca Persano
- Department of Women and Children's HealthUniversity of Padovavia Giustiniani 3Padova35127Italy
- Istituto di Ricerca Pediatrica – Città della SperanzaCorso Stati Uniti 4Padova35128Italy
| | - Rachele D'Amore
- Department of Molecular MedicineUniversity of PadovaVia U. Bassi 58/BPadova35131Italy
| | - Giulia Ronchi
- Department of Clinical and Biological Sciences & Neuroscience Institute Cavalieri Ottolenghi (NICO)University of TorinoRegione Gonzole 10, OrbassanoTorino10043Italy
| | - Federica Zen
- Department of Clinical and Biological Sciences & Neuroscience Institute Cavalieri Ottolenghi (NICO)University of TorinoRegione Gonzole 10, OrbassanoTorino10043Italy
| | - Luisa Muratori
- Department of Clinical and Biological Sciences & Neuroscience Institute Cavalieri Ottolenghi (NICO)University of TorinoRegione Gonzole 10, OrbassanoTorino10043Italy
| | - Alice Cani
- Department of Women and Children's HealthUniversity of Padovavia Giustiniani 3Padova35127Italy
| | - Samuele Negro
- U.O.C. Clinica NeurologicaAzienda Ospedale‐Università PadovaVia Giustiniani 5Padova35128Italy
| | - Aram Megighian
- Department of Biomedical SciencesUniversity of PadovaVia U. Bassi 58/BPadova35131Italy
- Padova Neuroscience CenterUniversity of PadovaVia G. Orus, 2Padova35131Italy
| | - Sonia Calabrò
- Department of Molecular MedicineUniversity of PadovaVia U. Bassi 58/BPadova35131Italy
- Department of BiologyUniversity of PadovaVia U. Bassi 58/BPadova35131Italy
| | - Paola Braghetta
- Department of Molecular MedicineUniversity of PadovaVia U. Bassi 58/BPadova35131Italy
| | - Dario Bizzotto
- Department of Molecular MedicineUniversity of PadovaVia U. Bassi 58/BPadova35131Italy
| | - Matilde Cescon
- Department of Molecular MedicineUniversity of PadovaVia U. Bassi 58/BPadova35131Italy
| |
Collapse
|
3
|
Liu J, Guan X, Zheng S, Shi J, Wang X, Shen Z, Chen Z, Liao C, Zhang Z. Neuritin accelerates Schwann cell dedifferentiation via PI3K/Akt/mTOR signalling pathway during Wallerian degeneration. J Cell Mol Med 2024; 28:e70012. [PMID: 39187917 PMCID: PMC11347127 DOI: 10.1111/jcmm.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/08/2024] [Accepted: 08/05/2024] [Indexed: 08/28/2024] Open
Abstract
Neuritin, also known as candidate plasticity gene 15 (CPG15), was first identified as one of the activity-dependent gene products in the brain. Previous studies have been reported that Neuritin induces neuritogenesis, neurite arborization, neurite outgrowth and synapse formation, which are involved in the development and functions of the central nervous system. However, the role of Neuritin in peripheral nerve injury is still unknown. Given the importance and necessity of Schwann cell dedifferentiation response to peripheral nerve injury, we aim to investigate the molecular mechanism of Neuritin steering Schwann cell dedifferentiation during Wallerian degeneration (WD) in injured peripheral nerve. Herein, using the explants of sciatic nerve, an ex vivo model of nerve degeneration, we provided evidences indicating that Neuritin vividly accelerates Schwann cell dedifferentiation. Moreover, we found that Neuritin promotes Schwann cell demyelination as well as axonal degeneration, phagocytosis, secretion capacity. In summary, we first described Neuritin acts as a positive regulator for Schwann cell dedifferentiation and WD after peripheral nerve injury.
Collapse
Affiliation(s)
- Jingmin Liu
- Department of Spine Orthopedics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Xin Guan
- Department of EndoscopySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Shuai Zheng
- Department of Spine Orthopedics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Jiawei Shi
- Department of Spine Orthopedics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Xiaobo Wang
- Department of Spine Orthopedics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Zetao Shen
- Department of Spine Orthopedics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Zefu Chen
- Department of Spine Orthopedics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Congrui Liao
- Department of Spine Orthopedics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Zhongmin Zhang
- Department of Spine Orthopedics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
4
|
Li Q, Peng G, Liu H, Wang L, Lu R, Li L. Molecular mechanisms of secretory autophagy and its potential role in diseases. Life Sci 2024; 347:122653. [PMID: 38663839 DOI: 10.1016/j.lfs.2024.122653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024]
Abstract
Autophagy is a cellular degradation system that recycles or degrades damaged organelles, viral particles, and aggregated proteins through the lysosomal pathway. Autophagy plays an indispensable role in cellular homeostasis and communication processes. An interesting aspect is that autophagy also mediates the secretion of cellular contents, a process known as secretory autophagy. Secretory autophagy differs from macroautophagy, which sequesters recruited proteins, organelles, or viral particles into autophagosomes and degrades these sequesters in lysosomes, while the secretory autophagy pathway participates in the extracellular export of cellular contents sequestered by autophagosomes through autophagy and endosomal modulators. Recent evidence reveals that secretory autophagy is pivotal in the occurrence and progression of diseases. In this review, we summarize the molecular mechanisms of secretory autophagy. Furthermore, we review the impact of secretory autophagy on diseases, including cancer, viral infectious diseases, neurodegenerative diseases, and cardiovascular diseases. Considering the pleiotropic actions of secretory autophagy on diseases, studying the mechanism of secretory autophagy may help to understand the relevant pathophysiological processes.
Collapse
Affiliation(s)
- Qin Li
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, Hunan, China
| | - Guolong Peng
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, Hunan, China
| | - Huimei Liu
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, Hunan, China
| | - Liwen Wang
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, Hunan, China
| | - Ruirui Lu
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, Hunan, China.
| | - Lanfang Li
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, Hunan, China.
| |
Collapse
|
5
|
Van Lent J, Prior R, Pérez Siles G, Cutrupi AN, Kennerson ML, Vangansewinkel T, Wolfs E, Mukherjee-Clavin B, Nevin Z, Judge L, Conklin B, Tyynismaa H, Clark AJ, Bennett DL, Van Den Bosch L, Saporta M, Timmerman V. Advances and challenges in modeling inherited peripheral neuropathies using iPSCs. Exp Mol Med 2024; 56:1348-1364. [PMID: 38825644 PMCID: PMC11263568 DOI: 10.1038/s12276-024-01250-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/21/2024] [Accepted: 03/18/2024] [Indexed: 06/04/2024] Open
Abstract
Inherited peripheral neuropathies (IPNs) are a group of diseases associated with mutations in various genes with fundamental roles in the development and function of peripheral nerves. Over the past 10 years, significant advances in identifying molecular disease mechanisms underlying axonal and myelin degeneration, acquired from cellular biology studies and transgenic fly and rodent models, have facilitated the development of promising treatment strategies. However, no clinical treatment has emerged to date. This lack of treatment highlights the urgent need for more biologically and clinically relevant models recapitulating IPNs. For both neurodevelopmental and neurodegenerative diseases, patient-specific induced pluripotent stem cells (iPSCs) are a particularly powerful platform for disease modeling and preclinical studies. In this review, we provide an update on different in vitro human cellular IPN models, including traditional two-dimensional monoculture iPSC derivatives, and recent advances in more complex human iPSC-based systems using microfluidic chips, organoids, and assembloids.
Collapse
Grants
- R01 NS119678 NINDS NIH HHS
- U01 ES032673 NIEHS NIH HHS
- Wellcome Trust
- R01 AG072052 NIA NIH HHS
- DOC-PRO4 Universiteit Antwerpen (University of Antwerp)
- RF1 AG072052 NIA NIH HHS
- This work was supported in part by the University of Antwerp (DOC-PRO4 PhD fellowship to J.V.L. and TOP-BOF research grant no. 38694 to V.T.), the Association Française contre les Myopathies (AFM research grant no. 24063 to V.T.), Association Belge contre les Maladies Neuromusculaires (ABMM research grant no. 1 to J.V.L and V.T), the interuniversity research fund (iBOF project to. L.V.D.B, E.W. and V.T.). V.T. is part of the μNEURO Research Centre of Excellence of the University of Antwerp and is an active member of the European Network for Stem Cell Core Facilities (CorEUStem, COST Action CA20140). Work in the M.L.K group was supported by the NHMRC Ideas Grant (APP1186867), CMT Australia Grant awarded to M.L.K and G.P.-S and the Australian Medical Research Future Fund (MRFF) Genomics Health Futures Mission Grant 2007681. B.M.C. is supported by the American Academy of Neurology and the Passano Foundation. L.M.J. and B.R.C. are supported by the Charcot-Marie-Tooth Association, NINDS R01 NS119678, NIEHS U01 ES032673. H.T. is supported by Academy of Finland Centre of Excellence in Stem Cell Metabolism and Sigrid Juselius Foundation. Work in the D.L.B. group is supported by a Wellcome Investigator Grant (223149/Z/21/Z), the MRC (MR/T020113/1), and with funding from the MRC and Versus Arthritis to the PAINSTORM consortium as part of the Advanced Pain Discovery Platform (MR/W002388/1).
- Australian Medical Association (Australian Medical Association Limited)
- Universiteit Hasselt (UHasselt)
- American Academy of Neurology (AAN)
- Gladstone Institutes (J. David Gladstone Institutes)
- Academy of Finland (Suomen Akatemia)
- Academy of Medical Royal Colleges (AoMRC)
- Wellcome Trust (Wellcome)
- Oxford University Hospitals NHS Trust (Oxford University Hospitals National Health Service Trust)
- KU Leuven (Katholieke Universiteit Leuven)
- Vlaams Instituut voor Biotechnologie (Flanders Institute for Biotechnology)
- Miami University | Leonard M. Miller School of Medicine (Miller School of Medicine)
Collapse
Affiliation(s)
- Jonas Van Lent
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, 2610, Antwerp, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, 2610, Antwerp, Belgium
- Institute of Oncology Research (IOR), BIOS+, 6500, Bellinzona, Switzerland
- Università della Svizzera Italiana, 6900, Lugano, Switzerland
| | - Robert Prior
- Universitätsklinikum Bonn (UKB), University of Bonn, Bonn, Germany
| | - Gonzalo Pérez Siles
- Northcott Neuroscience Laboratory, ANZAC Research Institute Sydney Local Health District and Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Anthony N Cutrupi
- Northcott Neuroscience Laboratory, ANZAC Research Institute Sydney Local Health District and Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Marina L Kennerson
- Northcott Neuroscience Laboratory, ANZAC Research Institute Sydney Local Health District and Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Molecular Medicine Laboratory, Concord Hospital, Sydney, NSW, Australia
| | - Tim Vangansewinkel
- UHasselt - Hasselt University, BIOMED, Laboratory for Functional Imaging and Research on Stem Cells (FIERCE Lab), Agoralaan, 3590, Diepenbeek, Belgium
- VIB-Center for Brain and Disease Research, Laboratory of Neurobiology, 3000, Leuven, Belgium
| | - Esther Wolfs
- UHasselt - Hasselt University, BIOMED, Laboratory for Functional Imaging and Research on Stem Cells (FIERCE Lab), Agoralaan, 3590, Diepenbeek, Belgium
| | | | | | - Luke Judge
- Gladstone Institutes, San Francisco, CA, USA
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Bruce Conklin
- Gladstone Institutes, San Francisco, CA, USA
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Henna Tyynismaa
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
| | - Alex J Clark
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - David L Bennett
- Nuffield Department of Clinical Neuroscience, Oxford University, Oxford, UK
| | - Ludo Van Den Bosch
- VIB-Center for Brain and Disease Research, Laboratory of Neurobiology, 3000, Leuven, Belgium
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute, KU Leuven-University of Leuven, 3000, Leuven, Belgium
| | - Mario Saporta
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, 2610, Antwerp, Belgium.
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, 2610, Antwerp, Belgium.
| |
Collapse
|
6
|
Yoon BA, Kim YH, Nam SH, Lee HJ, Oh SI, Kim N, Kim KH, Jo YR, Kim JK, Choi BO, Park HT. p62/sequestosome-1 as a severity-reflecting plasma biomarker in Charcot-Marie-Tooth disease type 1A. Sci Rep 2024; 14:10972. [PMID: 38745059 PMCID: PMC11094036 DOI: 10.1038/s41598-024-61794-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 05/09/2024] [Indexed: 05/16/2024] Open
Abstract
Autophagy is a self-degradation system for recycling to maintain homeostasis. p62/sequestosome-1 (p62) is an autophagy receptor that accumulates in neuroglia in neurodegenerative diseases. The objective of this study was to determine the elevation of plasma p62 protein levels in patients with Charcot-Marie-Tooth disease 1A (CMT1A) for its clinical usefulness to assess disease severity. We collected blood samples from 69 CMT1A patients and 59 healthy controls. Plasma concentrations of p62 were analyzed by ELISA, and we compared them with Charcot-Marie-Tooth neuropathy score version 2 (CMTNSv2). A mouse CMT1A model (C22) was employed to determine the source and mechanism of plasma p62 elevation. Plasma p62 was detected in healthy controls with median value of 1978 pg/ml, and the levels were significantly higher in CMT1A (2465 pg/ml, p < 0.001). The elevated plasma p62 levels were correlated with CMTNSv2 (r = 0.621, p < 0.0001), motor nerve conduction velocity (r = - 0.490, p < 0.0001) and disease duration (r = 0.364, p < 0.01). In C22 model, increased p62 expression was observed not only in pathologic Schwann cells but also in plasma. Our findings indicate that plasma p62 measurement could be a valuable tool for evaluating CMT1A severity and Schwann cell pathology.
Collapse
Affiliation(s)
- Byeol-A Yoon
- Peripheral Neuropathy Research Center (PNRC), Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan, 49201, Republic of Korea
- Department of Neurology, Dong-A University College of Medicine, Busan, 49201, Republic of Korea
| | - Young Hee Kim
- Peripheral Neuropathy Research Center (PNRC), Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan, 49201, Republic of Korea
- Department of Molecular Neuroscience and Translational Biomedical Sciences, Dong-A University College of Medicine, Busan, 49201, Republic of Korea
| | - Soo Hyun Nam
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, Republic of Korea
| | - Hye-Jin Lee
- Peripheral Neuropathy Research Center (PNRC), Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan, 49201, Republic of Korea
- Department of Molecular Neuroscience and Translational Biomedical Sciences, Dong-A University College of Medicine, Busan, 49201, Republic of Korea
| | - Seong-Il Oh
- Department of Neurology, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul, 02447, Republic of Korea
| | - Namhee Kim
- Department of Laboratory Medicine, Dong-A University College of Medicine, Busan, 49201, Republic of Korea
| | - Kyeong-Hee Kim
- Department of Laboratory Medicine, Dong-A University College of Medicine, Busan, 49201, Republic of Korea
| | - Young Rae Jo
- Department of Molecular Neuroscience and Translational Biomedical Sciences, Dong-A University College of Medicine, Busan, 49201, Republic of Korea
| | - Jong Kuk Kim
- Peripheral Neuropathy Research Center (PNRC), Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan, 49201, Republic of Korea
- Department of Neurology, Dong-A University College of Medicine, Busan, 49201, Republic of Korea
| | - Byung-Ok Choi
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, Republic of Korea.
- Department of Neurology, Samsung Medical Center, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, Republic of Korea.
| | - Hwan Tae Park
- Peripheral Neuropathy Research Center (PNRC), Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan, 49201, Republic of Korea.
- Department of Molecular Neuroscience and Translational Biomedical Sciences, Dong-A University College of Medicine, Busan, 49201, Republic of Korea.
| |
Collapse
|
7
|
Sun S, Liu Y, Gao H, Guan W, Zhao Y, Li G. Cell culture on suspended fiber for tissue regeneration: A review. Int J Biol Macromol 2024; 268:131827. [PMID: 38670204 DOI: 10.1016/j.ijbiomac.2024.131827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/16/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024]
Abstract
Cell culturing is a cornerstone of tissue engineering, playing a crucial role in tissue regeneration, drug screening, and the study of disease mechanisms. Among various culturing techniques, 3D culture systems, particularly those utilizing suspended fiber scaffolds, offer a more physiologically relevant environment than traditional 2D monolayer cultures. These 3D scaffolds enhance cell growth, differentiation, and proliferation by mimicking the in vivo cellular milieu. This review focuses on the critical role of suspended fiber scaffolds in tissue engineering. We compare the effectiveness of 3D suspended fiber scaffolds with 2D culture systems, discussing their respective benefits and limitations in the context of tissue regeneration. Furthermore, we explore the preparation methods of suspended fiber scaffolds and their potential applications. The review concludes by considering future research directions for optimizing suspended fiber scaffolds to address specific challenges in tissue regeneration, underscoring their significant promise in advancing tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Shaolan Sun
- Co-innovation Center of Neuroregeneration, Key laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001 Nantong, PR China
| | - Yaqiong Liu
- Co-innovation Center of Neuroregeneration, Key laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001 Nantong, PR China
| | - Hongxia Gao
- Co-innovation Center of Neuroregeneration, Key laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001 Nantong, PR China
| | - Wenchao Guan
- Co-innovation Center of Neuroregeneration, Key laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001 Nantong, PR China
| | - Yahong Zhao
- Co-innovation Center of Neuroregeneration, Key laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001 Nantong, PR China
| | - Guicai Li
- Co-innovation Center of Neuroregeneration, Key laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001 Nantong, PR China; NMPA Key Laboratory for Quality Evaluation of Medical Protective and Implant Devices, 450018 Zhengzhou, PR China.
| |
Collapse
|
8
|
Cai Z. Interruptible demyelination in avian riboflavin deficient neuropathy. Cell Biosci 2024; 14:52. [PMID: 38649908 PMCID: PMC11036723 DOI: 10.1186/s13578-024-01233-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND AND AIMS The evolution of demyelination in individual internodes remains unclear although it has been noticed the paranodal demyelination precedes internodal demyelination in neuropathies with diverse aetiologies. For therapeutic purpose, it is fundamental to know whether the demyelinating procedure in affected internodes can be interrupted. This study aimed to delineate the development of demyelination in individual internodes in avian riboflavin deficient neuropathy. METHODS Newborn broiler meat chickens were maintained either on a routine diet containing 5.0 mg/kg riboflavin, a riboflavin deficient diet containing 1.8 mg/kg riboflavin, or initially a riboflavin deficient diet for 11 days and then routine diet plus riboflavin repletion from day 12. Evolution of demyelination in individual internodes was analyzed by teased nerve fibre studies from day 11 to 21. RESULTS In riboflavin deficient chickens, demyelination was the predominant feature: it was mainly confined to the paranodal region at day 11; extended into internodal region, but less than half of the internodal length in most affected internodes at day 16; involved more than half or whole internode at day 21. In the internode undergoing demyelination, myelin degeneration of varying degrees was noticed in the cytoplasm of the Schwann cell wrapping the internode. Two days after riboflavin repletion, co-existence of remyelination and active demyelination within individual internodes was noticed. Remyelination together with preserved short original internodes was the characteristic feature 4 and 9 days after riboflavin repletion. CONCLUSION Riboflavin repletion interrupts the progression from paranodal to internodal demyelination in riboflavin deficient chickens and promotes remyelination before complete internodal demyelination.
Collapse
Affiliation(s)
- Zhao Cai
- Division of Anatomical Pathology, SA Pathology, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia.
- School of Medicine, Faculty of Health & Medical Science, University of Adelaide, Adelaide, Australia.
| |
Collapse
|
9
|
Gitik M, Elberg G, Reichert F, Tal M, Rotshenker S. Deletion of CD47 from Schwann cells and macrophages hastens myelin disruption/dismantling and scavenging in Schwann cells and augments myelin debris phagocytosis in macrophages. J Neuroinflammation 2023; 20:243. [PMID: 37872624 PMCID: PMC10594853 DOI: 10.1186/s12974-023-02929-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 10/10/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND Myelin that surrounds axons breaks in trauma and disease; e.g., peripheral nerve and spinal cord injuries (PNI and SCI) and multiple sclerosis (MS). Resulting myelin debris hinders repair if not effectively scavenged by Schwann cells and macrophages in PNI and by microglia in SCI and MS. We showed previously that myelin debris evades phagocytosis as CD47 on myelin ligates SIRPα (signal regulatory protein-α) on macrophages and microglia, triggering SIRPα to inhibit phagocytosis in phagocytes. Using PNI as a model, we tested the in vivo significance of SIRPα-dependent phagocytosis inhibition in SIRPα null mice, showing that SIRPα deletion leads to accelerated myelin debris clearance, axon regeneration and recovery of function from PNI. Herein, we tested how deletion of CD47, a SIRPα ligand and a cell surface receptor on Schwann cells and phagocytes, affects recovery from PNI. METHODS Using CD47 null (CD47-/-) and wild type mice, we studied myelin disruption/dismantling and debris clearance, axon regeneration and recovery of function from PNI. RESULTS As expected from CD47 on myelin acting as a SIRPα ligand that normally triggers SIRPα-dependent phagocytosis inhibition in phagocytes, myelin debris clearance, axon regeneration and function recovery were all faster in CD47-/- mice than in wild type mice. Unexpectedly compared with wild type mice, myelin debris clearance started sooner and CD47-deleted Schwann cells displayed enhanced disruption/dismantling and scavenging of myelin in CD47-/- mice. Furthermore, CD47-deleted macrophages from CD47-/- mice phagocytosed more myelin debris than CD47-expressing phagocytes from wild type mice. CONCLUSIONS This study reveals two novel normally occurring CD47-dependent mechanisms that impede myelin debris clearance. First, CD47 expressed on Schwann cells inhibits myelin disruption/dismantling and debris scavenging in Schwann cells. Second, CD47 expressed on macrophages inhibits myelin debris phagocytosis in phagocytes. The two add to a third mechanism that we previously documented whereby CD47 on myelin ligates SIRPα on macrophages and microglia, triggering SIRPα-dependent phagocytosis inhibition in phagocytes. Thus, CD47 plays multiple inhibitory roles that combined impede myelin debris clearance, leading to delayed recovery from PNI. Similar inhibitory roles in microglia may hinder recovery from other pathologies in which repair depends on efficient phagocytosis (e.g., SCI and MS).
Collapse
Affiliation(s)
- Miri Gitik
- Medical Neurobiology, Faculty of Medicine, IMRIC, Hebrew University, Ein-Kerem Campus, 12272, 91120, Jerusalem, Israel
- Genomic Research Branch, Division of Neuroscience and Basic Behavioral Science (DNBBS), National Institute of Mental Health (NIMH), NIH, Rockville, USA
| | - Gerard Elberg
- Medical Neurobiology, Faculty of Medicine, IMRIC, Hebrew University, Ein-Kerem Campus, 12272, 91120, Jerusalem, Israel
| | - Fanny Reichert
- Medical Neurobiology, Faculty of Medicine, IMRIC, Hebrew University, Ein-Kerem Campus, 12272, 91120, Jerusalem, Israel
| | - Michael Tal
- Medical Neurobiology, Faculties of Medicine and Dentistry, Center for Research on Pain, Hebrew University, Jerusalem, Israel
| | - Shlomo Rotshenker
- Medical Neurobiology, Faculty of Medicine, IMRIC, Hebrew University, Ein-Kerem Campus, 12272, 91120, Jerusalem, Israel.
| |
Collapse
|
10
|
Weiß EM, Geldermann M, Martini R, Klein D. Macrophages influence Schwann cell myelin autophagy after nerve injury and in a model of Charcot-Marie-Tooth disease. J Peripher Nerv Syst 2023; 28:341-350. [PMID: 37209383 DOI: 10.1111/jns.12561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/04/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND AND AIMS The complex cellular and molecular interactions between Schwann cells (SCs) and macrophages during Wallerian degeneration are a prerequisite to allow rapid uptake and degradation of myelin debris and axonal regeneration after peripheral nerve injury. In contrast, in non-injured nerves of Charcot-Marie-Tooth 1 neuropathies, aberrant macrophage activation by SCs carrying myelin gene defects is a disease amplifier that drives nerve damage and subsequent functional decline. Consequently, targeting nerve macrophages might be a translatable treatment strategy to mitigate disease outcome in CMT1 patients. Indeed, in previous approaches, macrophage targeting alleviated the axonopathy and promoted sprouting of damaged fibers. Surprisingly, this was still accompanied by robust myelinopathy in a model for CMT1X, suggesting additional cellular mechanisms of myelin degradation in mutant peripheral nerves. We here investigated the possibility of an increased SC-related myelin autophagy upon macrophage targeting in Cx32def mice. METHODS Combining ex vivo and in vivo approaches, macrophages were targeted by PLX5622 treatment. SC autophagy was investigated by immunohistochemical and electron microscopical techniques. RESULTS We demonstrate a robust upregulation of markers for SC autophagy after injury and in genetically-mediated neuropathy when nerve macrophages are pharmacologically depleted. Corroborating these findings, we provide ultrastructural evidence for increased SC myelin autophagy upon treatment in vivo. INTERPRETATION These findings reveal a novel communication and interaction between SCs and macrophages. This identification of alternative pathways of myelin degradation may have important implications for a better understanding of therapeutic mechanisms of pharmacological macrophage targeting in diseased peripheral nerves.
Collapse
Affiliation(s)
- Eva Maria Weiß
- Department of Neurology, Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Miriam Geldermann
- Department of Neurology, Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Rudolf Martini
- Department of Neurology, Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Dennis Klein
- Department of Neurology, Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
11
|
Kim YH, Yoon BA, Jo YR, Nam SH, Kim NH, Kim KH, Kim JK, Choi BO, Park HT. Neural cell adhesion molecule 1 is a cellular target engaged plasma biomarker in demyelinating Charcot-Marie-Tooth disease. Eur J Neurol 2023; 30:1745-1754. [PMID: 36856547 DOI: 10.1111/ene.15763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 02/03/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023]
Abstract
BACKGROUND AND PURPOSE Elevated plasma concentrations of neural cell adhesion molecule 1 (NCAM1) and p75 neurotrophin receptor (p75) in patients with peripheral neuropathy have been reported. This study aimed to determine the specificity of plasma concentration elevation of either NCAM1 or p75 in a subtype of Charcot-Marie-Tooth disease (CMT) and its correlation with pathologic nerve status and disease severity. METHODS Blood samples were collected from 138 patients with inherited peripheral neuropathy and 51 healthy controls. Disease severity was measured using Charcot-Marie-Tooth Neuropathy Score version 2 (CMTNSv2), and plasma concentrations of NCAM1 and p75 were analyzed by enzyme-linked immunosorbent assay. Eight sural nerves from CMT patients were examined to determine the relation of histopathology and plasma NCAM1 levels. RESULTS Plasma concentration of NCAM1, but not p75, was specifically increased in demyelinating subtypes of CMT (median = 7100 pg/mL, p < 0.001), including CMT1A, but not in axonal subtype (5964 pg/mL, p > 0.05), compared to the control (3859 pg/mL). CMT1A patients with mild or moderate severity (CMTNSv2 < 20) showed higher levels of plasma NCAM1 than healthy controls. Immunofluorescent NCAM1 staining for the sural nerves of CMT patients showed that NCAM1-positive onion bulb cells and possible demyelinating Schwann cells might be associated with the specific increase of plasma NCAM1 in demyelinating CMT. CONCLUSIONS The plasma NCAM1 levels in demyelinating CMT might be a surrogate biomarker reflecting pathological Schwann cell status and disease progression.
Collapse
Affiliation(s)
- Young Hee Kim
- Peripheral Neuropathy Research Center, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Byeol-A Yoon
- Peripheral Neuropathy Research Center, Dong-A University College of Medicine, Busan, Republic of Korea.,Department of Neurology, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Young Rae Jo
- Peripheral Neuropathy Research Center, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Soo Hyun Nam
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Nam Hee Kim
- Department of Laboratory Medicine, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Kyoung Hee Kim
- Department of Laboratory Medicine, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Jong Kuk Kim
- Peripheral Neuropathy Research Center, Dong-A University College of Medicine, Busan, Republic of Korea.,Department of Neurology, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Byung-Ok Choi
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea.,Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Department of Health Sciences and Technology, The Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Hwan Tae Park
- Peripheral Neuropathy Research Center, Dong-A University College of Medicine, Busan, Republic of Korea.,Department of Molecular Neuroscience, Dong-A University College of Medicine, Busan, Republic of Korea
| |
Collapse
|
12
|
Jo YR, Oh Y, Kim YH, Shin YK, Kim HR, Go H, Shin J, Park HJ, Koh H, Kim JK, Shin JE, Lee KE, Park HT. Adaptive autophagy reprogramming in Schwann cells during peripheral demyelination. Cell Mol Life Sci 2023; 80:34. [PMID: 36622429 PMCID: PMC9829575 DOI: 10.1007/s00018-022-04683-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 01/10/2023]
Abstract
The myelin sheath is an essential structure for the rapid transmission of electrical impulses through axons, and peripheral myelination is a well-programmed postnatal process of Schwann cells (SCs), the myelin-forming peripheral glia. SCs transdifferentiate into demyelinating SCs (DSCs) to remove the myelin sheath during Wallerian degeneration after axonal injury and demyelinating neuropathies, and macrophages are responsible for the degradation of myelin under both conditions. In this study, the mechanism by which DSCs acquire the ability of myelin exocytosis was investigated. Using serial ultrastructural evaluation, we found that autophagy-related gene 7-dependent formation of a "secretory phagophore (SP)" and tubular phagophore was necessary for exocytosis of large myelin chambers by DSCs. DSCs seemed to utilize myelin membranes for SP formation and employed p62/sequestosome-1 (p62) as an autophagy receptor for myelin excretion. In addition, the acquisition of the myelin exocytosis ability of DSCs was associated with the decrease in canonical autolysosomal flux and was demonstrated by p62 secretion. Finally, this SC demyelination mechanism appeared to also function in inflammatory demyelinating neuropathies. Our findings show a novel autophagy-mediated myelin clearance mechanism by DSCs in response to nerve damage.
Collapse
Affiliation(s)
- Young Rae Jo
- Peripheral Neuropathy Research Center (PNRC), Department of Molecular Neuroscience, College of Medicine, Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Dong-A University, Busan, 49201 Republic of Korea
| | - Yuna Oh
- Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792 Republic of Korea
| | - Young Hee Kim
- Peripheral Neuropathy Research Center (PNRC), Department of Molecular Neuroscience, College of Medicine, Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Dong-A University, Busan, 49201 Republic of Korea
| | - Yoon Kyung Shin
- Peripheral Neuropathy Research Center (PNRC), Department of Molecular Neuroscience, College of Medicine, Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Dong-A University, Busan, 49201 Republic of Korea
| | - Hye Ran Kim
- Peripheral Neuropathy Research Center (PNRC), Department of Molecular Neuroscience, College of Medicine, Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Dong-A University, Busan, 49201 Republic of Korea
| | - Hana Go
- Peripheral Neuropathy Research Center (PNRC), Department of Molecular Neuroscience, College of Medicine, Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Dong-A University, Busan, 49201 Republic of Korea
| | - Jaekyoon Shin
- Department of Molecular and Cellular Biology, College of Medicine, Sungkyunkwan University, Suwon-Si, 16419 Republic of Korea
| | - Hye Ji Park
- Department of Pharmacology, College of Medicine, Dong-A University, Busan, 49201 Republic of Korea
| | - Hyongjong Koh
- Department of Pharmacology, College of Medicine, Dong-A University, Busan, 49201 Republic of Korea
| | - Jong Kuk Kim
- Department of Neurology, College of Medicine, Dong-A University, Busan, 49201 Republic of Korea
| | - Jung Eun Shin
- Peripheral Neuropathy Research Center (PNRC), Department of Molecular Neuroscience, College of Medicine, Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Dong-A University, Busan, 49201 Republic of Korea
| | - Kyung Eun Lee
- Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792 Republic of Korea
| | - Hwan Tae Park
- Peripheral Neuropathy Research Center (PNRC), Department of Molecular Neuroscience, College of Medicine, Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Dong-A University, Busan, 49201 Republic of Korea
| |
Collapse
|
13
|
Berner J, Weiss T, Sorger H, Rifatbegovic F, Kauer M, Windhager R, Dohnal A, Ambros PF, Ambros IM, Boztug K, Steinberger P, Taschner‐Mandl S. Human repair-related Schwann cells adopt functions of antigen-presenting cells in vitro. Glia 2022; 70:2361-2377. [PMID: 36054432 PMCID: PMC9804420 DOI: 10.1002/glia.24257] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 07/16/2022] [Accepted: 07/25/2022] [Indexed: 01/05/2023]
Abstract
The plastic potential of Schwann cells (SCs) is increasingly recognized to play a role after nerve injury and in diseases of the peripheral nervous system. Reports on the interaction between immune cells and SCs indicate their involvement in inflammatory processes. However, the immunocompetence of human SCs has been primarily deduced from neuropathies, but whether after nerve injury SCs directly regulate an adaptive immune response is unknown. Here, we performed comprehensive analysis of immunomodulatory capacities of human repair-related SCs (hrSCs), which recapitulate SC response to nerve injury in vitro. We used our well-established culture model of primary hrSCs from human peripheral nerves and analyzed the transcriptome, secretome, and cell surface proteins for pathways and markers relevant in innate and adaptive immunity, performed phagocytosis assays, and monitored T-cell subset activation in allogeneic co-cultures. Our findings show that hrSCs are phagocytic, which is in line with high MHCII expression. Furthermore, hrSCs express co-regulatory proteins, such as CD40, CD80, B7H3, CD58, CD86, and HVEM, release a plethora of chemoattractants, matrix remodeling proteins and pro- as well as anti-inflammatory cytokines, and upregulate the T-cell inhibiting PD-L1 molecule upon pro-inflammatory stimulation with IFNγ. In contrast to monocytes, hrSC alone are not sufficient to trigger allogenic CD4+ and CD8+ T-cells, but limit number and activation status of exogenously activated T-cells. This study demonstrates that hrSCs possess features and functions typical for professional antigen-presenting cells in vitro, and suggest a new role of these cells as negative regulators of T-cell immunity during nerve regeneration.
Collapse
Affiliation(s)
- Jakob Berner
- St. Anna Children's Cancer Research Institute (CCRI)ViennaAustria
- St. Anna Children's HospitalViennaAustria
| | - Tamara Weiss
- St. Anna Children's Cancer Research Institute (CCRI)ViennaAustria
- Department of Plastic, Reconstructive and Aesthetic SurgeryMedical University of Vienna
| | - Helena Sorger
- St. Anna Children's Cancer Research Institute (CCRI)ViennaAustria
| | | | - Max Kauer
- St. Anna Children's Cancer Research Institute (CCRI)ViennaAustria
| | - Reinhard Windhager
- Department of Orthopedics and Trauma SurgeryMedical University of ViennaViennaAustria
| | - Alexander Dohnal
- St. Anna Children's Cancer Research Institute (CCRI)ViennaAustria
| | - Peter F. Ambros
- St. Anna Children's Cancer Research Institute (CCRI)ViennaAustria
| | - Inge M. Ambros
- St. Anna Children's Cancer Research Institute (CCRI)ViennaAustria
| | - Kaan Boztug
- St. Anna Children's Cancer Research Institute (CCRI)ViennaAustria
- St. Anna Children's HospitalViennaAustria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI‐RUD)ViennaAustria
- Center for Molecular Medicine (CeMM)ViennaAustria
| | | | | |
Collapse
|
14
|
Reed CB, Feltri ML, Wilson ER. Peripheral glia diversity. J Anat 2022; 241:1219-1234. [PMID: 34131911 PMCID: PMC8671569 DOI: 10.1111/joa.13484] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022] Open
Abstract
Recent years have seen an evolving appreciation for the role of glial cells in the nervous system. As we move away from the typical neurocentric view of neuroscience, the complexity and variability of central nervous system glia is emerging, far beyond the three main subtypes: astrocytes, oligodendrocytes, and microglia. Yet the diversity of the glia found in the peripheral nervous system remains rarely discussed. In this review, we discuss the developmental origin, morphology, and function of the different populations of glia found in the peripheral nervous system, including: myelinating Schwann cells, Remak Schwann cells, repair Schwann cells, satellite glia, boundary cap-derived glia, perineurial glia, terminal Schwann cells, glia found in the skin, olfactory ensheathing cells, and enteric glia. The morphological and functional heterogeneity of glia found in the periphery reflects the diverse roles the nervous system performs throughout the body. Further, it highlights a complexity that should be appreciated and considered when it comes to a complete understanding of the peripheral nervous system in health and disease.
Collapse
Affiliation(s)
- Chelsey B. Reed
- Hunter James Kelly Research InstituteJacobs School of Medicine and Biomedical Sciences StateUniversity of New York at BuffaloBuffaloNew YorkUSA
- Department of NeurologyJacobs School of Medicine and Biomedical SciencesState University of New York at BuffaloBuffaloNew YorkUSA
| | - M. Laura Feltri
- Hunter James Kelly Research InstituteJacobs School of Medicine and Biomedical Sciences StateUniversity of New York at BuffaloBuffaloNew YorkUSA
- Department of NeurologyJacobs School of Medicine and Biomedical SciencesState University of New York at BuffaloBuffaloNew YorkUSA
- Department of BiochemistryJacobs School of Medicine and Biomedical SciencesState University of New York at BuffaloBuffaloNew YorkUSA
| | - Emma R. Wilson
- Hunter James Kelly Research InstituteJacobs School of Medicine and Biomedical Sciences StateUniversity of New York at BuffaloBuffaloNew YorkUSA
- Department of BiochemistryJacobs School of Medicine and Biomedical SciencesState University of New York at BuffaloBuffaloNew YorkUSA
| |
Collapse
|
15
|
Tricaud N, Gautier B, Berthelot J, Gonzalez S, Van Hameren G. Traumatic and Diabetic Schwann Cell Demyelination Is Triggered by a Transient Mitochondrial Calcium Release through Voltage Dependent Anion Channel 1. Biomedicines 2022; 10:biomedicines10061447. [PMID: 35740468 PMCID: PMC9220872 DOI: 10.3390/biomedicines10061447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022] Open
Abstract
A large number of peripheral neuropathies, among which are traumatic and diabetic peripheral neuropathies, result from the degeneration of the myelin sheath, a process called demyelination. Demyelination does not result from Schwann cell death but from Schwann cell dedifferentiation, which includes reprograming and several catabolic and anabolic events. Starting around 4 h after nerve injury, activation of MAPK/cJun pathways is the earliest characterized step of this dedifferentiation program. Here we show, using real-time in vivo imaging, that Schwann cell mitochondrial pH, motility and calcium content are altered as soon as one hour after nerve injury. Mitochondrial calcium release occurred through the VDAC outer membrane channel and mPTP inner membrane channel. This calcium influx in the cytoplasm induced Schwann-cell demyelination via MAPK/c-Jun activation. Blocking calcium release through VDAC silencing or VDAC inhibitor TRO19622 prevented demyelination. We found that the kinetics of mitochondrial calcium release upon nerve injury were altered in the Schwann cells of diabetic mice suggesting a permanent leak of mitochondrial calcium in the cytoplasm. TRO19622 treatment alleviated peripheral nerve defects and motor deficit in diabetic mice. Together, these data indicate that mitochondrial calcium homeostasis is instrumental in the Schwann cell demyelination program and that blocking VDAC constitutes a molecular basis for developing anti-demyelinating drugs for diabetic peripheral neuropathy.
Collapse
Affiliation(s)
- Nicolas Tricaud
- Institut des Neurosciences de Montpellier, Univ. Montpellier, INSERM, 34000 Montpellier, France; (B.G.); (J.B.); (S.G.); (G.V.H.)
- I-Stem, UEVE/UPS U861, INSERM U861, AFM, 91100 Corbeil-Essonnes, France
- Correspondence:
| | - Benoit Gautier
- Institut des Neurosciences de Montpellier, Univ. Montpellier, INSERM, 34000 Montpellier, France; (B.G.); (J.B.); (S.G.); (G.V.H.)
| | - Jade Berthelot
- Institut des Neurosciences de Montpellier, Univ. Montpellier, INSERM, 34000 Montpellier, France; (B.G.); (J.B.); (S.G.); (G.V.H.)
| | - Sergio Gonzalez
- Institut des Neurosciences de Montpellier, Univ. Montpellier, INSERM, 34000 Montpellier, France; (B.G.); (J.B.); (S.G.); (G.V.H.)
| | - Gerben Van Hameren
- Institut des Neurosciences de Montpellier, Univ. Montpellier, INSERM, 34000 Montpellier, France; (B.G.); (J.B.); (S.G.); (G.V.H.)
| |
Collapse
|
16
|
Klein D, Groh J, Yuan X, Berve K, Stassart R, Fledrich R, Martini R. Early targeting of endoneurial macrophages alleviates the neuropathy and affects abnormal Schwann cell differentiation in a mouse model of Charcot-Marie-Tooth 1A. Glia 2022; 70:1100-1116. [PMID: 35188681 DOI: 10.1002/glia.24158] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 12/11/2022]
Abstract
We have previously shown that targeting endoneurial macrophages with the orally applied CSF-1 receptor specific kinase (c-FMS) inhibitor PLX5622 from the age of 3 months onwards led to a substantial alleviation of the neuropathy in mouse models of Charcot-Marie-Tooth (CMT) 1X and 1B disease, which are genetically-mediated nerve disorders not treatable in humans. The same approach failed in a model of CMT1A (PMP22-overexpressing mice, line C61), representing the most frequent form of CMT. This was unexpected since previous studies identified macrophages contributing to disease severity in the same CMT1A model. Here we re-approached the possibility of alleviating the neuropathy in a model of CMT1A by targeting macrophages at earlier time points. As a proof-of-principle experiment, we genetically inactivated colony-stimulating factor-1 (CSF-1) in CMT1A mice, which resulted in lower endoneurial macrophage numbers and alleviated the neuropathy. Based on these observations, we pharmacologically ablated macrophages in newborn CMT1A mice by feeding their lactating mothers with chow containing PLX5622, followed by treatment of the respective progenies after weaning until the age of 6 months. We found that peripheral neuropathy was substantially alleviated after early postnatal treatment, leading to preserved motor function in CMT1A mice. Moreover, macrophage depletion affected the altered Schwann cell differentiation phenotype. These findings underscore the targetable role of macrophage-mediated inflammation in peripheral nerves of inherited neuropathies, but also emphasize the need for an early treatment start confined to a narrow therapeutic time window in CMT1A models and potentially in respective patients.
Collapse
Affiliation(s)
- Dennis Klein
- Department of Neurology, Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Janos Groh
- Department of Neurology, Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Xidi Yuan
- Department of Neurology, Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Kristina Berve
- Department of Neurology, Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Ruth Stassart
- Paul-Flechsig-Institute of Neuropathology, University Clinic Leipzig, Leipzig, Germany
| | - Robert Fledrich
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Rudolf Martini
- Department of Neurology, Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
17
|
Koike H, Nishi R, Ohyama K, Morozumi S, Kawagashira Y, Furukawa S, Mouri N, Fukami Y, Iijima M, Sobue G, Katsuno M. ANCA-Associated Vasculitic Neuropathies: A Review. Neurol Ther 2022; 11:21-38. [PMID: 35044596 PMCID: PMC8857368 DOI: 10.1007/s40120-021-00315-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/08/2021] [Indexed: 01/21/2023] Open
Abstract
Anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis is a systemic disorder that frequently affects the peripheral nervous system and consists of three distinct conditions: microscopic polyangiitis (MPA), granulomatosis with polyangiitis (GPA, previously Wegener’s granulomatosis), and eosinophilic granulomatosis with polyangiitis (EGPA, previously Churg-Strauss syndrome). The neuropathic features associated with this condition usually include mononeuritis multiplex, which reflects the locality of lesions. Findings suggestive of vasculitis are usually found in the epineurium and occur diffusely throughout the nerve trunk. Nerve fiber degeneration resulting from ischemia is sometimes focal or asymmetric and tends to become conspicuous at the middle portion of the nerve trunk. The attachment of neutrophils to endothelial cells in the epineurial vessels is frequently observed in patients with ANCA-associated vasculitis; neutrophils play an important role in vascular inflammation by binding of ANCA. The positivity rate of ANCA in EGPA is lower than that in MPA and GPA, and intravascular and tissue eosinophils appear to participate in neuropathy. Immunotherapy for ANCA-associated vasculitis involves the induction and maintenance of remission to prevent the relapse of the disease. A combination of glucocorticoids along with cyclophosphamide, rituximab, methotrexate, or mycophenolate mofetil is considered depending on the severity of the condition of the organ to induce remission. A combination of low-dose glucocorticoids and azathioprine, rituximab, methotrexate, or mycophenolate mofetil is recommended to maintain remission. The efficacy of anti-interleukin-5 therapy (i.e., mepolizumab) was demonstrated in the case of refractory or relapsing EGPA. Several other new agents, including avacopan, vilobelimab, and abatacept, are under development for the treatment of ANCA-associated vasculitis. Multidisciplinary approaches are required for the diagnosis and management of the disorder because of its systemic nature. Furthermore, active participation of neurologists is required because the associated neuropathic symptoms can significantly disrupt the day-to-day functioning and quality of life of patients with ANCA-associated vasculitis.
Collapse
Affiliation(s)
- Haruki Koike
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan.
| | - Ryoji Nishi
- Department of Neurology, Daido Hospital, Nagoya, Japan
| | - Ken Ohyama
- Department of Neurology, Okazaki City Hospital, Okazaki, Japan
| | - Saori Morozumi
- Department of Neurology, Japanese Red Cross Aichi Medical Center Nagoya Daini Hospital, Nagoya, Japan
| | | | - Soma Furukawa
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Naohiro Mouri
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Yuki Fukami
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Masahiro Iijima
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Gen Sobue
- Aichi Medical University, Nagakute, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| |
Collapse
|
18
|
Li Y, Cai M, Feng Y, Yung B, Wang Y, Gao N, Xu X, Zhang H, Huang H, Yao D. Effect of lncRNA H19 on nerve degeneration and regeneration after sciatic nerve injury in rats. Dev Neurobiol 2021; 82:98-111. [PMID: 34818452 DOI: 10.1002/dneu.22861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 09/24/2021] [Accepted: 11/04/2021] [Indexed: 11/09/2022]
Abstract
Hundreds of millions of people worldwide suffer from peripheral nerve damage resulting from car accidents, falls, industrial accidents, residential accidents, and wars. The purpose of our study was to further investigate the effects of Wallerian degeneration (WD) after rat sciatic nerve injury and to screen for critical long noncoding RNAs (lncRNAs) in WD. We found H19 to be essential for nerve degeneration and regeneration and to be highly expressed in the sciatic nerves of rats with WD. lncRNA H19 potentially impaired the recovery of sciatic nerve function in rats. H19 was mainly localized in the cytoplasm of Schwann cells (SCs) and promoted their migration. H19 promoted the apoptosis of dorsal root ganglion (DRG) neurons and slowed the growth of DRG axons. The lncRNA H19 may play a role in WD through the Wnt/β-catenin signaling pathway and is coexpressed with a variety of crucial mRNAs during WD. These data provide further insight into the molecular mechanisms of WD.
Collapse
Affiliation(s)
- Yuting Li
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, P. R. China
| | - Min Cai
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, P. R. China.,Diagnostic laboratory, Medical School of Nantong University, Nantong, P. R. China
| | - Yumei Feng
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, P. R. China
| | - Bryant Yung
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, P. R. China
| | - Yi Wang
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, P. R. China
| | - Nannan Gao
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, P. R. China
| | - Xi Xu
- Rehabilitation Medical Center, Affiliated Hospital of Nantong University, Nantong, P. R. China
| | - Huanhuan Zhang
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, P. R. China
| | - Huiwei Huang
- Diagnostic laboratory, Medical School of Nantong University, Nantong, P. R. China
| | - Dengbing Yao
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, P. R. China
| |
Collapse
|
19
|
Myelination, axonal loss and Schwann cell characteristics in axonal polyneuropathy compared to controls. PLoS One 2021; 16:e0259654. [PMID: 34735549 PMCID: PMC8568174 DOI: 10.1371/journal.pone.0259654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 10/23/2021] [Indexed: 12/12/2022] Open
Abstract
Introduction Polyneuropathy is a debilitating condition characterized by distal sensory and motor deficits. Schwann cell dysfunction and axonal loss are integral factors in pathophysiology and disease progression of polyneuropathy. Aims The aim of this study was the assessment of Schwann cell characteristics, nerve fibers and myelination parameters in polyneuropathy patients compared to controls. Methods Nerve tissue was obtained from polyneuropathy patients (n = 10) undergoing diagnostic sural nerve biopsies. Biopsies of healthy peripheral nerves (n = 5) were harvested during elective sural nerve grafting for chronic peripheral nerve lesions. Exclusion criteria for the healthy control group were recent neurological trauma, diabetes, neurological and cardiovascular disease, as well as active malignancies and cytotoxic medication within the last 12 months. The over-all architecture of nerve sections and myelination parameters were histomorphometrically analyzed. Immunofluorescent imaging was used to evaluate Schwann cell phenotypes, senescence markers and myelination parameters. Results Histomorphometric analysis of nerve biopsies showed significant axonal loss in polyneuropathy patients compared to controls, which was in accordance with the neuropathological findings. Immunofluorescent staining of Schwann cells and myelin basic protein indicated a significant impairment of myelination and lower Schwann cell counts compared to controls. Phenotypic alterations and increased numbers of non-myelinating p75-positive Schwann cells were found in polyneuropathy patients. Discussion This study provided quantitative data of axonal loss, reduced myelination and Schwann cell dysfunction of polyneuropathy patients compared to neurologically healthy controls. Phenotypic alterations of Schwann cells were similar to those seen after peripheral nerve injury, highlighting the clinical relevance of Schwann cell dysfunction.
Collapse
|
20
|
Ki SM, Jeong HS, Lee JE. Primary Cilia in Glial Cells: An Oasis in the Journey to Overcoming Neurodegenerative Diseases. Front Neurosci 2021; 15:736888. [PMID: 34658775 PMCID: PMC8514955 DOI: 10.3389/fnins.2021.736888] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/31/2021] [Indexed: 12/29/2022] Open
Abstract
Many neurodegenerative diseases have been associated with defects in primary cilia, which are cellular organelles involved in diverse cellular processes and homeostasis. Several types of glial cells in both the central and peripheral nervous systems not only support the development and function of neurons but also play significant roles in the mechanisms of neurological disease. Nevertheless, most studies have focused on investigating the role of primary cilia in neurons. Accordingly, the interest of recent studies has expanded to elucidate the role of primary cilia in glial cells. Correspondingly, several reports have added to the growing evidence that most glial cells have primary cilia and that impairment of cilia leads to neurodegenerative diseases. In this review, we aimed to understand the regulatory mechanisms of cilia formation and the disease-related functions of cilia, which are common or specific to each glial cell. Moreover, we have paid close attention to the signal transduction and pathological mechanisms mediated by glia cilia in representative neurodegenerative diseases. Finally, we expect that this field of research will clarify the mechanisms involved in the formation and function of glial cilia to provide novel insights and ideas for the treatment of neurodegenerative diseases in the future.
Collapse
Affiliation(s)
- Soo Mi Ki
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
| | - Hui Su Jeong
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
| | - Ji Eun Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
- Samsung Medical Center, Samsung Biomedical Research Institute, Seoul, South Korea
| |
Collapse
|
21
|
Li R, Wang B, Wu C, Li D, Wu Y, Ye L, Ye L, Chen X, Li P, Yuan Y, Zhang H, Xie L, Li X, Xiao J, Wang J. Acidic fibroblast growth factor attenuates type 2 diabetes-induced demyelination via suppressing oxidative stress damage. Cell Death Dis 2021; 12:107. [PMID: 33479232 PMCID: PMC7819983 DOI: 10.1038/s41419-021-03407-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023]
Abstract
Prolonged type 2 diabetes mellitus (T2DM) produces a common complication, peripheral neuropathy, which is accompanied by nerve fiber disorder, axon atrophy, and demyelination. Growing evidence has characterized the beneficial effects of acidic fibroblast growth factor (aFGF) and shown that it relieves hyperglycemia, increases insulin sensitivity, and ameliorates neuropathic impairment. However, there is scarce evidence on the role of aFGF on remodeling of aberrant myelin under hyperglycemia condition. Presently, we observed that the expression of aFGF was rapidly decreased in a db/db T2DM mouse model. Administration of exogenous aFGF was sufficient to block acute demyelination and nerve fiber disorganization. Furthermore, this strong anti-demyelinating effect was most likely dominated by an aFGF-mediated increase of Schwann cell (SC) proliferation and migration as well as suppression of its apoptosis. Mechanistically, the beneficial biological effects of aFGF on SC behavior and abnormal myelin morphology were likely due to the inhibition of hyperglycemia-induced oxidative stress activation, which was most likely activated by kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid-derived-like 2 (Nrf2) signaling. Thus, this evidence indicates that aFGF is a promising protective agent for relieving myelin pathology through countering oxidative stress signaling cascades under diabetic conditions.
Collapse
Affiliation(s)
- Rui Li
- grid.268099.c0000 0001 0348 3990Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, 325000 Wenzhou, Zhejiang China ,grid.268099.c0000 0001 0348 3990Research Center, Affiliated Xiangshang Hospital, Wenzhou Medical University, 315700 Ningbo, Zhejiang China ,grid.12981.330000 0001 2360 039XSchool of Chemistry, Sun Yat-sen University, 510275 Guangzhou, Guangdong China
| | - Beini Wang
- grid.268099.c0000 0001 0348 3990Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, 325000 Wenzhou, Zhejiang China
| | - Chengbiao Wu
- grid.268099.c0000 0001 0348 3990Research Center, Affiliated Xiangshang Hospital, Wenzhou Medical University, 315700 Ningbo, Zhejiang China
| | - Duohui Li
- grid.268099.c0000 0001 0348 3990Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, 325000 Wenzhou, Zhejiang China
| | - Yanqing Wu
- grid.268099.c0000 0001 0348 3990Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, 325000 Wenzhou, Zhejiang China
| | - Libing Ye
- grid.268099.c0000 0001 0348 3990Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, 325000 Wenzhou, Zhejiang China
| | - Luxia Ye
- grid.268099.c0000 0001 0348 3990Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, 325000 Wenzhou, Zhejiang China
| | - Xiongjian Chen
- grid.268099.c0000 0001 0348 3990Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, 325000 Wenzhou, Zhejiang China
| | - Peifeng Li
- grid.268099.c0000 0001 0348 3990Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, 325000 Wenzhou, Zhejiang China
| | - Yuan Yuan
- grid.268099.c0000 0001 0348 3990Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, 325000 Wenzhou, Zhejiang China
| | - Hongyu Zhang
- grid.268099.c0000 0001 0348 3990Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, 325000 Wenzhou, Zhejiang China
| | - Ling Xie
- grid.268099.c0000 0001 0348 3990Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, 325000 Wenzhou, Zhejiang China
| | - Xiaokun Li
- grid.268099.c0000 0001 0348 3990Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, 325000 Wenzhou, Zhejiang China
| | - Jian Xiao
- grid.268099.c0000 0001 0348 3990Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, 325000 Wenzhou, Zhejiang China
| | - Jian Wang
- grid.268099.c0000 0001 0348 3990Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, 325000 Wenzhou, Zhejiang China
| |
Collapse
|
22
|
Li L, Xu Y, Wang X, Liu J, Hu X, Tan D, Li Z, Guo J. Ascorbic acid accelerates Wallerian degeneration after peripheral nerve injury. Neural Regen Res 2021; 16:1078-1085. [PMID: 33269753 PMCID: PMC8224114 DOI: 10.4103/1673-5374.300459] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Wallerian degeneration occurs after peripheral nerve injury and provides a beneficial microenvironment for nerve regeneration. Our previous study demonstrated that ascorbic acid promotes peripheral nerve regeneration, possibly through promoting Schwann cell proliferation and phagocytosis and enhancing macrophage proliferation, migration, and phagocytosis. Because Schwann cells and macrophages are the main cells involved in Wallerian degeneration, we speculated that ascorbic acid may accelerate this degenerative process. To test this hypothesis, 400 mg/kg ascorbic acid was administered intragastrically immediately after sciatic nerve transection, and 200 mg/kg ascorbic acid was then administered intragastrically every day. In addition, rat sciatic nerve explants were treated with 200 μM ascorbic acid. Ascorbic acid significantly accelerated the degradation of myelin basic protein-positive myelin and neurofilament 200-positive axons in both the transected nerves and nerve explants. Furthermore, ascorbic acid inhibited myelin-associated glycoprotein expression, increased c-Jun expression in Schwann cells, and increased both the number of macrophages and the amount of myelin fragments in the macrophages. These findings suggest that ascorbic acid accelerates Wallerian degeneration by accelerating the degeneration of axons and myelin in the injured nerve, promoting the dedifferentiation of Schwann cells, and enhancing macrophage recruitment and phagocytosis. The study was approved by the Southern Medical University Animal Care and Use Committee (approval No. SMU-L2015081) on October 15, 2015.
Collapse
Affiliation(s)
- Lixia Li
- Department of Histology and Embryology; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University; Department of Anatomy, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Yizhou Xu
- Department of Histology and Embryology; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xianghai Wang
- Department of Histology and Embryology; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong Province, China;, China
| | - Jingmin Liu
- Department of Histology and Embryology; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong Province, China;, China
| | - Xiaofang Hu
- Department of Histology and Embryology; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong Province, China;, China
| | - Dandan Tan
- Department of Histology and Embryology; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Zhenlin Li
- Department of Histology and Embryology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jiasong Guo
- Department of Histology and Embryology; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering; Department of Spine Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province; Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, Guangdong Province, China
| |
Collapse
|
23
|
Hyung S, Lee SR, Kim J, Kim Y, Kim S, Kim HN, Jeon NL. A 3D disease and regeneration model of peripheral nervous system-on-a-chip. SCIENCE ADVANCES 2021; 7:eabd9749. [PMID: 33514550 PMCID: PMC7846159 DOI: 10.1126/sciadv.abd9749] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/11/2020] [Indexed: 05/09/2023]
Abstract
Demyelinating diseases involve loss of myelin sheaths and eventually lead to neurological problems. Unfortunately, the precise mechanisms remain unknown, and there are no effective therapies. To overcome these limitations, a reliable and physiologically relevant in vitro model is required. Here, we present a three-dimensional peripheral nervous system (PNS) microfluidic platform that recapitulates the full spectrum of myelination, demyelination, and remyelination using primary Schwann cells (SCs) and motor neurons (MNs). The platform enables reproducible hydrogel patterning and long-term stable coculture of MNs and SCs over 40 days in vitro based on three distinct design factors. Furthermore, the on-demand detachable substrate allows in-depth biological analysis. We demonstrated the possibility of mimicking segmental demyelination by lysophosphatidylcholine, and recovery of myelin structure by application of two drugs: benzatropine or methylcobalamin. This 3D PNS disease-on-a-chip may serve as a potential platform for understanding the pathophysiology of demyelination and screening drugs for remyelination.
Collapse
Affiliation(s)
- Sujin Hyung
- Department of Mechanical Engineering, Seoul National University, Seoul, Republic of Korea
- Bio-MAX Institute, Seoul National University, Seoul, Republic of Korea
| | - Seung-Ryeol Lee
- Department of Mechanical Engineering, Seoul National University, Seoul, Republic of Korea
| | - Jiho Kim
- Department of Mechanical Engineering, Seoul National University, Seoul, Republic of Korea
| | - Youngtaek Kim
- Department of Mechanical Engineering, Seoul National University, Seoul, Republic of Korea
| | - Suryong Kim
- Department of Mechanical Engineering, Seoul National University, Seoul, Republic of Korea
| | - Hong Nam Kim
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Noo Li Jeon
- Department of Mechanical Engineering, Seoul National University, Seoul, Republic of Korea.
- Institute of Advanced Machinery and Design Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
24
|
Myelination of peripheral nerves is controlled by PI4KB through regulation of Schwann cell Golgi function. Proc Natl Acad Sci U S A 2020; 117:28102-28113. [PMID: 33106410 DOI: 10.1073/pnas.2007432117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Better understanding myelination of peripheral nerves would benefit patients affected by peripheral neuropathies, including Charcot-Marie-Tooth disease. Little is known about the role the Golgi compartment plays in Schwann cell (SC) functions. Here, we studied the role of Golgi in myelination of peripheral nerves in mice through SC-specific genetic inactivation of phosphatidylinositol 4-kinase beta (PI4KB), a Golgi-associated lipid kinase. Sciatic nerves of such mice showed thinner myelin of large diameter axons and gross aberrations in myelin organization affecting the nodes of Ranvier, the Schmidt-Lanterman incisures, and Cajal bands. Nonmyelinating SCs showed a striking inability to engulf small diameter nerve fibers. SCs of mutant mice showed a distorted Golgi morphology and disappearance of OSBP at the cis-Golgi compartment, together with a complete loss of GOLPH3 from the entire Golgi. Accordingly, the cholesterol and sphingomyelin contents of sciatic nerves were greatly reduced and so was the number of caveolae observed in SCs. Although the conduction velocity of sciatic nerves of mutant mice showed an 80% decrease, the mice displayed only subtle impairment in their motor functions. Our analysis revealed that Golgi functions supported by PI4KB are critically important for proper myelination through control of lipid metabolism, protein glycosylation, and organization of microvilli in the nodes of Ranvier of peripheral nerves.
Collapse
|
25
|
Reed CB, Frick LR, Weaver A, Sidoli M, Schlant E, Feltri ML, Wrabetz L. Deletion of Calcineurin in Schwann Cells Does Not Affect Developmental Myelination, But Reduces Autophagy and Delays Myelin Clearance after Peripheral Nerve Injury. J Neurosci 2020; 40:6165-6176. [PMID: 32641402 PMCID: PMC7406276 DOI: 10.1523/jneurosci.0951-20.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/09/2020] [Accepted: 06/20/2020] [Indexed: 11/21/2022] Open
Abstract
In the PNS, myelination occurs postnatally when Schwann cells (SCs) contact axons. Axonal factors, such as Neuregulin-1 Type III, trigger promyelinating signals that upregulate myelin genes. Neuregulin-1 Type III has been proposed to activate calcineurin signaling in immature SCs to initiate differentiation and myelination. However, little is known about the role of calcineurin in promyelinating SCs after birth. By creating a SC conditional KO of calcineurin B (CnBscko), we assessed the effects of CnB ablation on peripheral myelination after birth in both male and female mice. Surprisingly, CnBscko mice have minimal myelination defects, no alteration of myelin thickness, and normal KROX20 expression. In contrast, we did find a unique role for calcineurin in SCs after nerve injury. Following nerve crush, CnBscko mice have slower degeneration of myelin compared with WT mice. Furthermore, absence of CnB in primary SCs delays clearance of myelin debris. SCs clear myelin via autophagy and recent literature has demonstrated that calcineurin can regulate autophagy via dephosphorylation of transcription factor EB (TFEB), a master regulator of lysosomal biogenesis and autophagy. We demonstrate that loss of CnB reduces autophagic flux in primary SCs, indicating a possible mechanism for impaired myelin clearance. In addition, ablation of CnB impairs TFEB translocation to the nucleus 3 d after crush, suggesting that calcineurin may regulate autophagy in SCs via TFEB activation. Together, our data indicate that calcineurin is not essential for myelination but has a novel role in myelin clearance after injury.SIGNIFICANCE STATEMENT Our data offer a novel mechanism for activation of autophagy after peripheral nerve injury. Efficient clearance of myelin after injury by Schwann cells is important for axonal regrowth and remyelination, which is one reason why the PNS is significantly better at recovery compared with the CNS. Improved understanding of myelin clearance allows for the identification of pathways that are potentially accessible to increase myelin clearance and improve remyelination and recovery. Finally, this paper clarifies the role of calcineurin in Schwann cells and myelination.
Collapse
Affiliation(s)
- Chelsey B Reed
- Hunter James Kelly Research Institute
- Department of Neurology
| | - Luciana R Frick
- Hunter James Kelly Research Institute
- Department of Neurology
| | | | - Mariapaola Sidoli
- Hunter James Kelly Research Institute
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203
- Department of Developmental Biology, School of Medicine, Stanford University, Stanford, California 94305
| | - Elizabeth Schlant
- Hunter James Kelly Research Institute
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203
| | - M Laura Feltri
- Hunter James Kelly Research Institute
- Department of Neurology
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203
| | - Lawrence Wrabetz
- Hunter James Kelly Research Institute
- Department of Neurology
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203
| |
Collapse
|
26
|
Horie M, Yoshioka N, Kusumi S, Sano H, Kurose M, Watanabe‐Iida I, Hossain I, Chiken S, Abe M, Yamamura K, Sakimura K, Nambu A, Shibata M, Takebayashi H. Disruption of
dystonin
in Schwann cells results in late‐onset neuropathy and sensory ataxia. Glia 2020; 68:2330-2344. [DOI: 10.1002/glia.23843] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/26/2020] [Accepted: 04/28/2020] [Indexed: 01/26/2023]
Affiliation(s)
- Masao Horie
- Division of Neurobiology and AnatomyGraduate School of Medical and Dental Sciences, Niigata University Niigata Japan
- Department of Morphological SciencesKagoshima University Kagoshima Japan
- Department of NursingNiigata College of Nursing Niigata Japan
| | - Nozomu Yoshioka
- Division of Neurobiology and AnatomyGraduate School of Medical and Dental Sciences, Niigata University Niigata Japan
| | - Satoshi Kusumi
- Department of Morphological SciencesKagoshima University Kagoshima Japan
| | - Hiromi Sano
- Division of System NeurophysiologyNational Institute for Physiological Sciences Okazaki Japan
- Department of Physiological SciencesSOKENDAI Okazaki Japan
| | - Masayuki Kurose
- Division of Oral PhysiologyGraduate School of Medical and Dental Sciences, Niigata University Niigata Japan
- Department of Physiology, School of Dentistry, Iwate Medical University Morioka Japan
| | - Izumi Watanabe‐Iida
- Department of Cellular NeurobiologyBrain Research Institute, Niigata University Niigata Japan
- Division of Oral Biochemistry, Graduate School of Medical and Dental Sciences, Niigata University Niigata Japan
| | - Ibrahim Hossain
- Division of Neurobiology and AnatomyGraduate School of Medical and Dental Sciences, Niigata University Niigata Japan
- Department of Biochemistry and Molecular BiologyJahangirnagar University Savar Dhaka Bangladesh
| | - Satomi Chiken
- Division of System NeurophysiologyNational Institute for Physiological Sciences Okazaki Japan
- Department of Physiological SciencesSOKENDAI Okazaki Japan
| | - Manabu Abe
- Department of Cellular NeurobiologyBrain Research Institute, Niigata University Niigata Japan
- Department of Animal Model DevelopmentBrain Research Institute, Niigata University Niigata Japan
| | - Kensuke Yamamura
- Division of Oral PhysiologyGraduate School of Medical and Dental Sciences, Niigata University Niigata Japan
| | - Kenji Sakimura
- Department of Cellular NeurobiologyBrain Research Institute, Niigata University Niigata Japan
- Department of Animal Model DevelopmentBrain Research Institute, Niigata University Niigata Japan
| | - Atsushi Nambu
- Division of System NeurophysiologyNational Institute for Physiological Sciences Okazaki Japan
- Department of Physiological SciencesSOKENDAI Okazaki Japan
| | - Masahiro Shibata
- Department of Morphological SciencesKagoshima University Kagoshima Japan
| | - Hirohide Takebayashi
- Division of Neurobiology and AnatomyGraduate School of Medical and Dental Sciences, Niigata University Niigata Japan
- Center for Coordination of Research FacilitiesNiigata University Niigata Japan
| |
Collapse
|
27
|
Abstract
Toxic peripheral neuropathies are an important form of acquired polyneuropathy produced by a variety of xenobiotics and different exposure scenarios. Delineating the mechanisms of neurotoxicants and determining the degenerative biological pathways triggered by peripheral neurotoxicants will facilitate the development of sensitive and specific biochemical-based methods for identifying neurotoxicants, designing therapeutic interventions, and developing structure-activity relationships for predicting potential neurotoxicants. This review presents an overview of the general concepts of toxic peripheral neuropathies with the goal of providing insight into why certain agents target the peripheral nervous system and produce their associated lesions. Experimental data and the main hypotheses for the mechanisms of selected agents that produce neuronopathies, axonopathies, or myelinopathies including covalent or noncovalent modifications, compromised energy or protein biosynthesis, and oxidative injury and disruption of ionic gradients across membranes are presented. The relevance of signaling between the main components of peripheral nerve, that is, glia, neuronal perikaryon, and axon, as a target for neurotoxicants and the contribution of active programmed degenerative pathways to the lesions observed in toxic peripheral neuropathies is also discussed.
Collapse
|
28
|
Park HT, Kim YH, Lee KE, Kim JK. Behind the pathology of macrophage-associated demyelination in inflammatory neuropathies: demyelinating Schwann cells. Cell Mol Life Sci 2019; 77:2497-2506. [PMID: 31884566 PMCID: PMC7320037 DOI: 10.1007/s00018-019-03431-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 03/11/2023]
Abstract
In inflammatory peripheral demyelinating disorders, demyelination represents segmental demyelination in which the myelin sheath of a myelinating Schwann cell (SC) is completely removed by macrophages or a partial myelin degeneration in the paranode occurring due to autoantibodies attacking the node/paranode. For the segmental demyelination from living myelin-forming SCs, macrophages infiltrate within the endoneurium and insinuate between myelin lamellae and the cytoplasm of SCs, and the myelin is then removed via phagocytosis. During the macrophage invasion into the SC cytoplasm from the node of Ranvier and internodal areas, the attacked SCs do not remain quiescent but transdifferentiate into inflammatory demyelinating SCs (iDSCs), which exhibit unique demyelination pathologies, such as myelin uncompaction from Schmidt-Lanterman incisures with myelin lamellae degeneration. The longitudinal extension of this self-myelin clearance process of iDSCs into the nodal region is associated with the degeneration of nodal microvilli and paranodal loops, which provides a potential locus for macrophage infiltration. In addition to the nodal intrusion, macrophages appear to be able to invade fenestrated internodal plasma membrane or the degenerated outer mesaxon of iDSC. These SC demyelination morphologies indicate that the SC reprogramming to iDSCs may be a prerequisite for macrophage-mediated inflammatory demyelination. In contrast, paranodal demyelination caused by autoantibodies to nodal/paranodal antigens does not result in iDSC-dependent macrophage infiltration and subsequent segmental demyelination. In the context of inflammatory demyelination, the novel perspective of iDSCs provides an important viewpoint to understand the pathophysiology of demyelinating peripheral neuropathies and establish diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Hwan Tae Park
- Peripheral Neuropathy Research Center (PNRC), Dong-A University College of Medicine, Busan, 49201, South Korea. .,Department of Molecular Neuroscience, Dong-A University College of Medicine, Busan, 49201, Republic of Korea.
| | - Young Hee Kim
- Peripheral Neuropathy Research Center (PNRC), Dong-A University College of Medicine, Busan, 49201, South Korea
| | - Kyung Eun Lee
- Advanced Analysis Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, South Korea
| | - Jong Kuk Kim
- Peripheral Neuropathy Research Center (PNRC), Dong-A University College of Medicine, Busan, 49201, South Korea.,Department of Neurology, Dong-A University College of Medicine, Busan, 49201, South Korea
| |
Collapse
|
29
|
Kim YH, Kim YH, Shin YK, Jo YR, Park DK, Song M, Yoon B, Nam SH, Kim JH, Choi B, Shin HY, Kim SW, Kim SH, Hong YB, Kim JK, Park HT. p75 and neural cell adhesion molecule 1 can identify pathologic Schwann cells in peripheral neuropathies. Ann Clin Transl Neurol 2019; 6:1292-1301. [PMID: 31353867 PMCID: PMC6649441 DOI: 10.1002/acn3.50828] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE Myelinated Schwann cells (SCs) in adult peripheral nerves dedifferentiate into immature cells in demyelinating neuropathies and Wallerian degeneration. This plastic SC change is actively involved in the myelin destruction and clearance as demyelinating SCs (DSCs). In inherited demyelinating neuropathy, pathologically differentiated and dysmyelinated SCs constitute the main nerve pathology. METHODS We investigated whether this SC plastic status in human neuropathic nerves could be determined by patient sera to develop disease-relevant serum biomarkers. Based on proteomics analysis of the secreted exosomes from immature SCs, we traced p75 neurotrophin receptor (p75) and neural cell adhesion molecule 1 (NCAM) in the sera of patients with peripheral neuropathy. RESULTS Enzyme-linked immunosorbent assay (ELISA) revealed that p75 and NCAM were subtype-specifically expressed in the sera of patients with peripheral neuropathy. In conjunction with these ELISA data, pathological analyses of animal models and human specimens suggested that the presence of DSCs in inflammatory neuropathy and of supernumerary nonmyelinating or dysmyelinating SCs in inherited neuropathy could potentially be distinguished by comparing the expression profiles of p75 and NCAM. INTERPRETATION This study indicates that the identification of disease-specific pathological SC stages might be a valuable tool for differential diagnosis of peripheral neuropathies.
Collapse
Affiliation(s)
- Young Hee Kim
- Peripheral Neuropathy Research Center (PNRC)Dong‐A University College of MedicineBusan49201Republic of Korea
| | - Young Hye Kim
- Biomedical Omics GroupKorea Basic Science InstituteCheongjuChungbuk28119Republic of Korea
| | - Yoon Kyung Shin
- Peripheral Neuropathy Research Center (PNRC)Dong‐A University College of MedicineBusan49201Republic of Korea
| | - Young Rae Jo
- Peripheral Neuropathy Research Center (PNRC)Dong‐A University College of MedicineBusan49201Republic of Korea
| | - Da Kyeong Park
- Biomedical Omics GroupKorea Basic Science InstituteCheongjuChungbuk28119Republic of Korea
| | - Min‐Young Song
- Biomedical Omics GroupKorea Basic Science InstituteCheongjuChungbuk28119Republic of Korea
| | - Byeol‐A. Yoon
- Peripheral Neuropathy Research Center (PNRC)Dong‐A University College of MedicineBusan49201Republic of Korea
- Department of NeurologyDong‐A University College of MedicineBusan49201Republic of Korea
| | - Soo Hyun Nam
- Department of NeurologySungkyunkwan University School of MedicineSeoul06351Republic of Korea
| | - Jong Hyun Kim
- Laboratory of Stem Cell Differentiation, Department of Biological ScienceHyupsung UniversityHwasung‐si18330Republic of Korea
| | - Byung‐Ok Choi
- Department of NeurologySungkyunkwan University School of MedicineSeoul06351Republic of Korea
- Stem Cell & Regenerative Medicine InstituteSamsung Medical Center81 Irwon‐roGangnam‐guSeoul06351Republic of Korea
| | - Ha Young Shin
- Department of NeurologyYonsei University College of Medicine50‐1 Yonsei‐roSeodaemun‐guSeoul03772Republic of Korea
| | - Seung Woo Kim
- Department of NeurologyYonsei University College of Medicine50‐1 Yonsei‐roSeodaemun‐guSeoul03772Republic of Korea
| | - Se Hoon Kim
- Department of PathologyYonsei University College of Medicine50‐1 Yonsei‐roSeodaemun‐guSeoul03772Republic of Korea
| | - Young Bin Hong
- Department of BiochemistryDong‐A University College of MedicineBusan49201Republic of Korea
| | - Jong Kuk Kim
- Peripheral Neuropathy Research Center (PNRC)Dong‐A University College of MedicineBusan49201Republic of Korea
- Department of NeurologyDong‐A University College of MedicineBusan49201Republic of Korea
| | - Hwan Tae Park
- Peripheral Neuropathy Research Center (PNRC)Dong‐A University College of MedicineBusan49201Republic of Korea
- Department of Molecular NeuroscienceDong‐A University College of MedicineBusan49201Republic of Korea
| |
Collapse
|
30
|
Hu T, Yao B, Huang S, Fu X. Insight into cellular dedifferentiation in regenerative medicine. SCIENCE CHINA-LIFE SCIENCES 2019; 63:301-304. [PMID: 31187305 DOI: 10.1007/s11427-019-9571-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 05/12/2019] [Indexed: 11/26/2022]
Affiliation(s)
- Tian Hu
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Sciences, General Hospital of PLA, Beijing, 100853, China
- Key Laboratory of Tissue Repair and Regeneration of PLA, Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, the Fourth Medical Center of General Hospital of PLA, Beijing, 100048, China
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Bin Yao
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Sciences, General Hospital of PLA, Beijing, 100853, China
- Key Laboratory of Tissue Repair and Regeneration of PLA, Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, the Fourth Medical Center of General Hospital of PLA, Beijing, 100048, China
- The Shenzhen Key Laboratory of Health Sciences and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, 518055, China
| | - Sha Huang
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Sciences, General Hospital of PLA, Beijing, 100853, China.
- Key Laboratory of Tissue Repair and Regeneration of PLA, Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, the Fourth Medical Center of General Hospital of PLA, Beijing, 100048, China.
| | - Xiaobing Fu
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Sciences, General Hospital of PLA, Beijing, 100853, China.
- Key Laboratory of Tissue Repair and Regeneration of PLA, Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, the Fourth Medical Center of General Hospital of PLA, Beijing, 100048, China.
| |
Collapse
|