1
|
Schilliger Z, Pavan T, Alemán-Gómez Y, Steullet P, Céléreau E, Binz PA, Celen Z, Piguet C, Merglen A, Hagmann P, Do K, Conus P, Jelescu I, Klauser P, Dwir D. Sex-differences in brain multimodal estimates of white matter microstructure during early adolescence: Sex-specific associations with biological factors. Brain Behav Immun 2025; 126:98-110. [PMID: 39921149 DOI: 10.1016/j.bbi.2025.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 12/21/2024] [Accepted: 01/31/2025] [Indexed: 02/10/2025] Open
Abstract
Adolescence is marked by significant maturation of brain white matter microstructure, with evidence for sex-specific maturational trajectory. Most studies have examined conventional diffusion tensor imaging (DTI) metrics, which lack specificity to the underlying tissue modifications. In this study, we characterized sex-differences in white matter microstructure cross-sectionally using DTI, advanced diffusion spectrum imaging (DSI) and diffusion kurtosis imaging (DKI), as well as the white matter tract integrity-Watson (WMTI-W) biophysical model. We also aimed to explore the effect of age and biological systems undergoing sex-specific changes during adolescence, namely pubertal hormones, hypothalamic-pituitary-adrenal (HPA)-axis function, and glutathione-redox cycle homeostasis. The results indicate widespread sex-differences in all the white matter derived metrics, suggesting more advanced maturation in females compared to males as well as distinct tissue modifications underlying white matter maturation between males and females during this narrow developmental period. Additionally, the three biological factors explored appeared to be associated with indices of white matter maturation in females specifically, emphasizing this period as critical in female white matter development and sensitivity to environmental factors.
Collapse
Affiliation(s)
- Zoé Schilliger
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; Division of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Tommaso Pavan
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Yasser Alemán-Gómez
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Pascal Steullet
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Edgar Céléreau
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Pierre-Alain Binz
- Division of General Pediatrics, Geneva University Hospitals & Faculty of Medicine University of Geneva, Geneva, Switzerland
| | - Zeynep Celen
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Camille Piguet
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Arnaud Merglen
- Service of Clinical Chemistry, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Patric Hagmann
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Kim Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Philippe Conus
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Ileana Jelescu
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Paul Klauser
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; Division of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| | - Daniella Dwir
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
2
|
Chen Y, Zhang F, Wang M, Zekelman LR, Cetin-Karayumak S, Xue T, Zhang C, Song Y, Rushmore J, Makris N, Rathi Y, Cai W, O'Donnell LJ. TractGraphFormer: Anatomically informed hybrid graph CNN-transformer network for interpretable sex and age prediction from diffusion MRI tractography. Med Image Anal 2025; 101:103476. [PMID: 39870000 DOI: 10.1016/j.media.2025.103476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/31/2024] [Accepted: 01/17/2025] [Indexed: 01/29/2025]
Abstract
The relationship between brain connections and non-imaging phenotypes is increasingly studied using deep neural networks. However, the local and global properties of the brain's white matter networks are often overlooked in convolutional network design. We introduce TractGraphFormer, a hybrid Graph CNN-Transformer deep learning framework tailored for diffusion MRI tractography. This model leverages local anatomical characteristics and global feature dependencies of white matter structures. The Graph CNN module captures white matter geometry and grey matter connectivity to aggregate local features from anatomically similar white matter connections, while the Transformer module uses self-attention to enhance global information learning. Additionally, TractGraphFormer includes an attention module for interpreting predictive white matter connections. We apply TractGraphFormer to tasks of sex and age prediction. TractGraphFormer shows strong performance in large datasets of children (n = 9345) and young adults (n = 1065). Overall, our approach suggests that widespread connections in the WM are predictive of the sex and age of an individual. For each prediction task, consistent predictive anatomical tracts are identified across the two datasets. The proposed approach highlights the potential of integrating local anatomical information and global feature dependencies to improve prediction performance in machine learning with diffusion MRI tractography.
Collapse
Affiliation(s)
- Yuqian Chen
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Fan Zhang
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, PR China.
| | - Meng Wang
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Leo R Zekelman
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Suheyla Cetin-Karayumak
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tengfei Xue
- School of Computer Science, The University of Sydney, Sydney, NSW, Australia
| | - Chaoyi Zhang
- School of Computer Science, The University of Sydney, Sydney, NSW, Australia
| | - Yang Song
- School of Computer Science and Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Jarrett Rushmore
- Departments of Anatomy and Neurobiology, Boston University School of Medicine, Boston, USA
| | - Nikos Makris
- Departments of Psychiatry and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yogesh Rathi
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Weidong Cai
- School of Computer Science, The University of Sydney, Sydney, NSW, Australia
| | - Lauren J O'Donnell
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Risk B, Li L, Jones W, Shultz S. Dynamics of infant white matter maturation from birth to 6 months. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.13.638114. [PMID: 39990497 PMCID: PMC11844443 DOI: 10.1101/2025.02.13.638114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The first months after a baby's birth encompass the most rapid period of postnatal change in the human lifespan, but longitudinal trajectories of white matter maturation in this period remain uncharted. Using densely sampled diffusion tensor images collected longitudinally at a mean rate of 1 scan per 1.55 days, we measured non-linear growth and growth rate trajectories of major white matter tracts from birth to 6 months. Growth rates at birth were 6 to 11 times faster than at 6 months, with tracts less mature at birth developing fastest. When matched on chronological age, shorter gestation infants had less mature white matter at birth but faster growth rates than their longer gestation peers; however, growth trajectories were highly similar when corrected for gestational age. This is the first study to estimate white matter trajectories using dense sampling in the first 6 post-natal months, which can inform the study of neurodevelopmental disorders beginning in infancy.
Collapse
Affiliation(s)
- Benjamin Risk
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Longchuan Li
- Marcus Autism Center, Children’s Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Warren Jones
- Marcus Autism Center, Children’s Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Sarah Shultz
- Marcus Autism Center, Children’s Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
4
|
Chan K, Rabba D, Vidarsson L, Wagner MW, Ertl-Wagner BB, Khademi A. Developmental Curves of the Paediatric Brain Using FLAIR MRI Texture Biomarkers. Can Assoc Radiol J 2025; 76:145-152. [PMID: 39054582 DOI: 10.1177/08465371241262175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024] Open
Abstract
Purpose: Analysis of FLAIR MRI sequences is gaining momentum in brain maturation studies, and this study aimed to establish normative developmental curves for FLAIR texture biomarkers in the paediatric brain. Methods: A retrospective, single-centre dataset of 465/512 healthy paediatric FLAIR volumes was used, with one pathological volume for proof-of-concept. Participants were included if the MRI was unremarkable as determined by a neuroradiologist. An automated intensity normalization algorithm was used to standardize FLAIR signal intensity across MRI scanners and individuals. FLAIR texture biomarkers were extracted from grey matter (GM), white matter (WM), deep GM, and cortical GM regions. Sex-specific percentile curves were reported and modelled for each tissue type. Correlations between texture and established biomarkers including intensity volume were examined. Biomarkers from the pathological volume were extracted to demonstrate clinical utility of normative curves. Results: This study analyzed 465 FLAIR sequences in children and adolescents (mean age 10.65 ± 4.22 years, range 2-19 years, 220 males, 245 females). In the WM, texture increased to a maximum at around 8 to 10 years, with different trends between females and males in adolescence. In the GM, texture increased over the age range while demonstrating a local maximum at 8 to 10 years. Texture had an inverse relationship with intensity in the WM across all ages. WM and edema in a pathological brain exhibited abnormal texture values outside of the normative growth curves. Conclusion: Normative curves for texture biomarkers in FLAIR sequences may be used to assess brain maturation and microstructural changes over the paediatric age range.
Collapse
Affiliation(s)
- Karissa Chan
- Electrical, Computer and Biomedical Engineering Department, Toronto Metropolitan University, Toronto, ON, Canada
- Institute for Biomedical Engineering, Science Tech (iBEST), a Partnership between St. Michael's Hospital and Toronto Metropolitan University, Toronto, ON, Canada
| | - Dania Rabba
- Electrical, Computer and Biomedical Engineering Department, Toronto Metropolitan University, Toronto, ON, Canada
- Institute for Biomedical Engineering, Science Tech (iBEST), a Partnership between St. Michael's Hospital and Toronto Metropolitan University, Toronto, ON, Canada
| | - Logi Vidarsson
- Department of Diagnostic Imaging, Division of Neuroradiology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Matthias W Wagner
- Department of Diagnostic Imaging, Division of Neuroradiology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
- Department of Neuroradiology, University Hospital Augsburg, Augsburg, Germany
| | - Birgit B Ertl-Wagner
- Department of Diagnostic Imaging, Division of Neuroradiology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - April Khademi
- Electrical, Computer and Biomedical Engineering Department, Toronto Metropolitan University, Toronto, ON, Canada
- Institute for Biomedical Engineering, Science Tech (iBEST), a Partnership between St. Michael's Hospital and Toronto Metropolitan University, Toronto, ON, Canada
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
- Keenan Research Center for Biomedical Science, St. Michael's Hospital, Unity Health Network, Toronto, ON, Canada
- Vector Institute for Artificial Intelligence, Toronto, ON, Canada
| |
Collapse
|
5
|
Naghizadeh Kashani S, Vel I, Sadeghi Adl Z, Shahrampour S, Middleton D, Alizadeh M, Krisa L, Faro S, Tounekti S, Cohen‐Adad J, Mohamed FB. Magnetization Transfer Ratio in the Typically Developing Pediatric Spinal Cord: Normative Data and Age Correlation. J Neuroimaging 2025; 35:e70019. [PMID: 39923194 PMCID: PMC11807365 DOI: 10.1111/jon.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/06/2025] [Accepted: 01/24/2025] [Indexed: 02/10/2025] Open
Abstract
BACKGROUND AND PURPOSE This study presents automated atlas-based magnetization transfer (MT) measurements of the typically developing pediatric cervical spinal cord (SC). We report normative MT ratio (MTR) values from the whole cervical cord white matter (WM) and WM tracts, examining variations with age, sex, height, and weight. METHODS MT scans of 33 healthy females (mean age = 12.8) and 22 males (mean age = 13.09) were acquired from the cervical SC (C2-C7) using a 3.0 T MRI. Data were processed using the SC Toolbox, segmented, and registered to the PAM50 template. Affine and non-rigid transformations co-registered the PAM50 WM atlas to subject-specific space. MTRs were measured for the specific WM tracts (left and right dorsal fasciculus gracilis, dorsal fasciculus cuneatus, and lateral corticospinal tracts [LCST]) and the whole WM. Descriptive statistics, correlation analysis, and unpaired t-tests (p < 0.05) assessed relationships with age, height, weight, and sex. RESULTS Normative MTR measurements were obtained from all regions. The coefficients of variation were low to moderate. No significant differences (p > 0.05) were found across all the cervical levels. However, significant sex differences were observed in whole WM (p = 0.04) and LCST (p = 0.03). MTR values correlated positively with age, with significant correlations at C5 (r = 0.3, p false discovery rate = 0.04). A decreasing trend in MTR values across levels was found for whole WM (r = -0.2, p < 0.001). CONCLUSIONS This study provides an understanding of MTR values in pediatric cervical SC and their variations by sex, age, height, and weight, providing a baseline for comparisons in pediatric SC diseases.
Collapse
Affiliation(s)
- Sara Naghizadeh Kashani
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging CenterThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Iswarya Vel
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging CenterThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Zahra Sadeghi Adl
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging CenterThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Shiva Shahrampour
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging CenterThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Devon Middleton
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging CenterThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Mahdi Alizadeh
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging CenterThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
- Department of NeurosurgeryJefferson Integrated Magnetic Resonance Imaging CenterPhiladelphiaPennsylvaniaUSA
- Department of RadiologyThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Laura Krisa
- Department of Physical Therapy, Jefferson College of Rehabilitation SciencesThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Scott Faro
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging CenterThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Slimane Tounekti
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging CenterThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Julien Cohen‐Adad
- NeuroPoly Lab, Institute of Biomedical EngineeringPolytechnique MontrealMontrealQuebecCanada
| | - Feroze B. Mohamed
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging CenterThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
6
|
Torgerson C, Bottenhorn K, Ahmadi H, Choupan J, Herting MM. More similarity than difference: comparison of within- and between-sex variance in early adolescent brain structure. RESEARCH SQUARE 2024:rs.3.rs-4947186. [PMID: 39483919 PMCID: PMC11527358 DOI: 10.21203/rs.3.rs-4947186/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Background Adolescent neuroimaging studies of sex differences in the human brain predominantly examine mean differences between males and females. This focus on between-groups differences without probing relative distributions and similarities may contribute to both conflation and overestimation of sex differences and sexual dimorphism in the developing human brain. Methods We aimed to characterize the variance in brain macro- and micro-structure in early adolescence as it pertains to sex at birth using a large sample of 9-11 year-olds from the Adolescent Brain Cognitive Development (ABCD) Study (N=7,723). Specifically, for global and regional estimates of gray and white matter volume, cortical thickness, and white matter microstructure (i.e., fractional anisotropy and mean diffusivity), we examined: within- and between-sex variance, overlap between male and female distributions, inhomogeneity of variance via the Fligner-Killeen test, and an analysis of similarities (ANOSIM). For completeness, we examined these sex differences using both uncorrected (raw) brain estimates and residualized brain estimates after using mixed-effects modeling to account for age, pubertal development, socioeconomic status, race, ethnicity, MRI scanner manufacturer, and total brain volume, where applicable. Results The overlap between male and female distributions was universally greater than the difference (overlap coefficient range: 0.585 - 0.985) and the ratio of within-sex and between-sex differences was similar (ANOSIM R range: -0.001 - 0.117). All cortical and subcortical volumes showed significant inhomogeneity of variance, whereas a minority of brain regions showed significant sex differences in variance for cortical thickness, white matter volume, fractional anisotropy, and mean diffusivity. Inhomogeneity of variance was reduced after accounting for other sources of variance. Overlap coefficients were larger and ANOSIM R values were smaller for residualized outcomes, indicating greater within- and smaller between-sex differences once accounting for other covariates. Conclusions Reported sex differences in early adolescent human brain structure may be driven by disparities in variance, rather than binary, sex-based phenotypes. Contrary to the popular view of the brain as sexually dimorphic, we found more similarity than difference between sexes in all global and regional measurements of brain structure examined. This study builds upon previous findings illustrating the importance of considering variance when examining sex differences in brain structure.
Collapse
|
7
|
Cui AX, Kraeutner SN, Kepinska O, Motamed Yeganeh N, Hermiston N, Werker JF, Boyd LA. Musical Sophistication and Multilingualism: Effects on Arcuate Fasciculus Characteristics. Hum Brain Mapp 2024; 45:e70035. [PMID: 39360580 PMCID: PMC11447524 DOI: 10.1002/hbm.70035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 09/05/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
The processing of auditory stimuli which are structured in time is thought to involve the arcuate fasciculus, the white matter tract which connects the temporal cortex and the inferior frontal gyrus. Research has indicated effects of both musical and language experience on the structural characteristics of the arcuate fasciculus. Here, we investigated in a sample of n = 84 young adults whether continuous conceptualizations of musical and multilingual experience related to structural characteristics of the arcuate fasciculus, measured using diffusion tensor imaging. Probabilistic tractography was used to identify the dorsal and ventral parts of the white matter tract. Linear regressions indicated that different aspects of musical sophistication related to the arcuate fasciculus' volume (emotional engagement with music), volumetric asymmetry (musical training and music perceptual abilities), and fractional anisotropy (music perceptual abilities). Our conceptualization of multilingual experience, accounting for participants' proficiency in reading, writing, understanding, and speaking different languages, was not related to the structural characteristics of the arcuate fasciculus. We discuss our results in the context of other research on hemispheric specializations and a dual-stream model of auditory processing.
Collapse
Affiliation(s)
- Anja-Xiaoxing Cui
- Department of Musicology, University of Vienna, Vienna, Austria
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
- Vienna Cognitive Science Hub, University of Vienna, Vienna, Austria
| | - Sarah N Kraeutner
- Department of Psychology, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Olga Kepinska
- Vienna Cognitive Science Hub, University of Vienna, Vienna, Austria
- Department of Behavioral and Cognitive Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Negin Motamed Yeganeh
- Brain Behaviour Lab, Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nancy Hermiston
- School of Music, University of British Columbia, Vancouver, British Columbia, Canada
| | - Janet F Werker
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lara A Boyd
- Brain Behaviour Lab, Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
8
|
Kirby ED, Andrushko JW, Boyd LA, Koschutnig K, D'Arcy RCN. Sex differences in patterns of white matter neuroplasticity after balance training in young adults. Front Hum Neurosci 2024; 18:1432830. [PMID: 39257696 PMCID: PMC11383771 DOI: 10.3389/fnhum.2024.1432830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/08/2024] [Indexed: 09/12/2024] Open
Abstract
Introduction In past work we demonstrated different patterns of white matter (WM) plasticity in females versus males associated with learning a lab-based unilateral motor skill. However, this work was completed in neurologically intact older adults. The current manuscript sought to replicate and expand upon these WM findings in two ways: (1) we investigated biological sex differences in neurologically intact young adults, and (2) participants learned a dynamic full-body balance task. Methods 24 participants (14 female, 10 male) participated in the balance training intervention, and 28 were matched controls (16 female, 12 male). Correlational tractography was used to analyze changes in WM from pre- to post-training. Results Both females and males demonstrated skill acquisition, yet there were significant differences in measures of WM between females and males. These data support a growing body of evidence suggesting that females exhibit increased WM neuroplasticity changes relative to males despite comparable changes in motor behavior (e.g., balance). Discussion The biological sex differences reported here may represent an important factor to consider in both basic research (e.g., collapsing across females and males) as well as future clinical studies of neuroplasticity associated with motor function (e.g., tailored rehabilitation approaches).
Collapse
Affiliation(s)
- Eric D Kirby
- BrainNet, Health and Technology District, Surrey, BC, Canada
- Faculty of Individualized Interdisciplinary Studies, Simon Fraser University, Burnaby, BC, Canada
- Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
| | - Justin W Andrushko
- Djavad Mowafaghian Center for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, Tyne and Wear, United Kingdom
- Brain Behavior Laboratory, Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Lara A Boyd
- Djavad Mowafaghian Center for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Brain Behavior Laboratory, Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Karl Koschutnig
- Institute of Psychology, BioTechMed Graz, University of Graz, Graz, Austria
| | - Ryan C N D'Arcy
- BrainNet, Health and Technology District, Surrey, BC, Canada
- Djavad Mowafaghian Center for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Faculty of Applied Sciences, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
9
|
Zhou Y, Long Y. Sex differences in human brain networks in normal and psychiatric populations from the perspective of small-world properties. Front Psychiatry 2024; 15:1456714. [PMID: 39238939 PMCID: PMC11376280 DOI: 10.3389/fpsyt.2024.1456714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024] Open
Abstract
Females and males are known to be different in the prevalences of multiple psychiatric disorders, while the underlying neural mechanisms are unclear. Based on non-invasive neuroimaging techniques and graph theory, many researchers have tried to use a small-world network model to elucidate sex differences in the brain. This manuscript aims to compile the related research findings from the past few years and summarize the sex differences in human brain networks in both normal and psychiatric populations from the perspective of small-world properties. We reviewed published reports examining altered small-world properties in both the functional and structural brain networks between males and females. Based on four patterns of altered small-world properties proposed: randomization, regularization, stronger small-worldization, and weaker small-worldization, we found that current results point to a significant trend toward more regularization in normal females and more randomization in normal males in functional brain networks. On the other hand, there seems to be no consensus to date on the sex differences in small-world properties of the structural brain networks in normal populations. Nevertheless, we noticed that the sample sizes in many published studies are small, and future studies with larger samples are warranted to obtain more reliable results. Moreover, the number of related studies conducted in psychiatric populations is still limited and more investigations might be needed. We anticipate that these conclusions will contribute to a deeper understanding of the sex differences in the brain, which may be also valuable for developing new methods in the treatment of psychiatric disorders.
Collapse
Affiliation(s)
- Yingying Zhou
- School of Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yicheng Long
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
10
|
Nishikawa Y, Watanabe K, Holobar A, Kitamura R, Maeda N, Hyngstrom AS. Sex differences in laterality of motor unit firing behavior of the first dorsal interosseous muscle in strength-matched healthy young males and females. Eur J Appl Physiol 2024; 124:1979-1990. [PMID: 38366213 PMCID: PMC11199256 DOI: 10.1007/s00421-024-05420-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 01/11/2024] [Indexed: 02/18/2024]
Abstract
PURPOSE The purpose of this study was to compare laterality in motor unit firing behavior between females and males. METHODS Twenty-seven subjects (14 females) were recruited for this study. The participants performed ramp up and hold isometric index finger abduction at 10, 30, and 60% of their maximum voluntary contraction (MVC). High-density surface electromyography (HD-sEMG) signals were recorded in the first dorsal interosseous (FDI) muscle and decomposed into individual motor unit (MU) firing behavior using a convolution blind source separation method. RESULTS In total, 769 MUs were detected (females, n = 318 and males, n = 451). Females had a significantly higher discharge rate than males at each relative torque level (10%: male dominant hand, 13.4 ± 2.7 pps vs. female dominant hand, 16.3 ± 3.4 pps; 30%: male dominant hand, 16.1 ± 3.9 pps vs. female dominant hand, 20.0 ± 5.0 pps; and 60%: male dominant hand, 19.3 ± 3.8 vs. female dominant hand, 25.3 ± 4.8 pps; p < 0.0001). The recruitment threshold was also significantly higher in females than in males at 30 and 60% MVC. Furthermore, males exhibited asymmetrical discharge rates at 30 and 60% MVC and recruitment thresholds at 30 and 60% MVC, whereas no asymmetry was observed in females. CONCLUSION In the FDI muscle, compared to males, females exhibited different neuromuscular strategies with higher discharge rates and recruitment thresholds and no asymmetrical MU firing behavior. Notably, the findings that sex differences in neuromuscular activity also occur in healthy individuals provide important information for understanding the pathogenesis of various diseases.
Collapse
Affiliation(s)
- Yuichi Nishikawa
- Faculty of Frontier Engineering, Institute of Science & Engineering, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan.
| | - Kohei Watanabe
- Laboratory of Neuromuscular Biomechanics, School of Health and Sport Sciences, Chukyo University, Nagoya, Japan
| | - Aleš Holobar
- Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia
| | - Ryoka Kitamura
- Graduate School of Frontier Engineering, Kanazawa University, Kanazawa, Japan
| | - Noriaki Maeda
- Division of Sports Rehabilitation, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | | |
Collapse
|
11
|
Saker Z, Rizk M, Merie D, Nabha RH, Pariseau NJ, Nabha SM, Makki MI. Insight into brain sex differences of typically developed infants and brain pathologies: A systematic review. Eur J Neurosci 2024; 60:3491-3504. [PMID: 38693604 DOI: 10.1111/ejn.16364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/12/2024] [Accepted: 04/02/2024] [Indexed: 05/03/2024]
Abstract
The continually advancing landscape of neuroscientific and imaging research has broadened our comprehension of sex differences encoded in the human brain, expanding from the hypothalamus and sexual behaviour to encompass the entire brain, including its diverse lobes, structures, and functions. However, less is known about sex differences in the brains of neonates and infants, despite their relevance to various sex-linked diseases that develop early in life. In this review, we provide a synopsis of the literature evidence on sex differences in the brains of neonates and infants at the morphological, structural and network levels. We also briefly overview the present evidence on the sex bias in some brain disorders affecting infants and neonates.
Collapse
Affiliation(s)
- Zahraa Saker
- Research Department, Al-Rassoul Al-Aazam Hospital, Beirut, Lebanon
| | - Mahdi Rizk
- School of Health Sciences, Modern University for Business and Science, Beirut, Lebanon
| | - Diana Merie
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | | | - Nicole J Pariseau
- Department of Pediatrics-Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Sanaa M Nabha
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Malek I Makki
- Laboratory of Functional Neurosciences and Pathologies, University of Picardy Jules Verne, Amiens, France
| |
Collapse
|
12
|
Shobeiri P, Hosseini Shabanan S, Haghshomar M, Khanmohammadi S, Fazeli S, Sotoudeh H, Kamali A. Cerebellar Microstructural Abnormalities in Obsessive-Compulsive Disorder (OCD): a Systematic Review of Diffusion Tensor Imaging Studies. CEREBELLUM (LONDON, ENGLAND) 2024; 23:778-801. [PMID: 37291229 DOI: 10.1007/s12311-023-01573-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/22/2023] [Indexed: 06/10/2023]
Abstract
Previous neuroimaging studies have suggested that obsessive-compulsive disorder (OCD) is associated with altered resting-state functional connectivity of the cerebellum. In this study, we aimed to describe the most significant and reproducible microstructural abnormalities and cerebellar changes associated with obsessive-compulsive disorder (OCD) using diffusion tensor imaging (DTI) investigations. PubMed and EMBASE were searched for relevant studies using the PRISMA 2020 protocol. A total of 17 publications were chosen for data synthesis after screening titles and abstracts, full-text examination, and executing the inclusion criteria. The patterns of cerebellar white matter (WM) integrity loss, determined by fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD) metrics, varied across studies and symptoms. Changes in fractional anisotropy (FA) values were described in six publications, which were decreased in four and increased in two studies. An increase in diffusivity parameters of the cerebellum (i.e., MD, RD, and AD) in OCD patients was reported in four studies. Alterations of the cerebellar connectivity with other brain areas were also detected in three studies. Heterogenous results were found in studies that investigated cerebellar microstructural abnormalities in correlation with symptom dimension or severity. OCD's complex phenomenology may be characterized by changes in cerebellar WM connectivity across wide networks, as shown by DTI studies on OCD patients in both children and adults. Classification features in machine learning and clinical tools for diagnosing OCD and determining the prognosis of the disorder might both benefit from using cerebellar DTI data.
Collapse
Affiliation(s)
- Parnian Shobeiri
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | | | - Maryam Haghshomar
- NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Radiology, Northwestern University, Chicago, IL, USA
| | - Shaghayegh Khanmohammadi
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Soudabeh Fazeli
- Department of Radiology, University of California San Diego, San Diego, CA, USA
| | - Houman Sotoudeh
- Department of Radiology and Neurology, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Arash Kamali
- Department of Diagnostic and Interventional Radiology, University of Texas McGovern Medical School, Houston, TX, USA
| |
Collapse
|
13
|
Kirby ED, Andrushko JW, Rinat S, D'Arcy RCN, Boyd LA. Investigating female versus male differences in white matter neuroplasticity associated with complex visuo-motor learning. Sci Rep 2024; 14:5951. [PMID: 38467763 PMCID: PMC10928090 DOI: 10.1038/s41598-024-56453-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 03/06/2024] [Indexed: 03/13/2024] Open
Abstract
Magnetic resonance imaging (MRI) has increasingly been used to characterize structure-function relationships during white matter neuroplasticity. Biological sex differences may be an important factor that affects patterns of neuroplasticity, and therefore impacts learning and rehabilitation. The current study examined a participant cohort before and after visuo-motor training to characterize sex differences in microstructural measures. The participants (N = 27) completed a 10-session (4 week) complex visuo-motor training task with their non-dominant hand. All participants significantly improved movement speed and their movement speed variability over the training period. White matter neuroplasticity in females and males was examined using fractional anisotropy (FA) and myelin water fraction (MWF) along the cortico-spinal tract (CST) and the corpus callosum (CC). FA values showed significant differences in the middle portion of the CST tract (nodes 38-51) across the training period. MWF showed a similar cluster in the inferior portion of the tract (nodes 18-29) but did not reach significance. Additionally, at baseline, males showed significantly higher levels of MWF measures in the middle body of the CC. Combining data from females and males would have resulted in reduced sensitivity, making it harder to detect differences in neuroplasticity. These findings offer initial insights into possible female versus male differences in white matter neuroplasticity during motor learning. This warrants investigations into specific patterns of white matter neuroplasticity for females versus males across the lifespan. Understanding biological sex-specific differences in white matter neuroplasticity may have significant implications for the interpretation of change associated with learning or rehabilitation.
Collapse
Affiliation(s)
- Eric D Kirby
- BrainNet, Health and Technology District, Vancouver, BC, Canada
- Faculty of Individualized Interdisciplinary Studies, Simon Fraser University, Burnaby, BC, Canada
- Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
| | - Justin W Andrushko
- DM Centre for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, Canada
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, UK
- Brain Behaviour Laboratory, Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Shie Rinat
- Brain Behaviour Laboratory, Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Ryan C N D'Arcy
- BrainNet, Health and Technology District, Vancouver, BC, Canada.
- DM Centre for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, Canada.
- Faculty of Applied Sciences, Simon Fraser University, Burnaby, BC, Canada.
| | - Lara A Boyd
- DM Centre for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, Canada.
- Brain Behaviour Laboratory, Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
14
|
Nada MG, Libda YI, Gohary MM, Dessouky R. Pediatric posterior reversible encephalopathy syndrome: Can MR imaging features predict outcomes in non-oncologic patients? Eur J Radiol 2024; 170:111214. [PMID: 38007856 DOI: 10.1016/j.ejrad.2023.111214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/09/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023]
Abstract
PURPOSE Identify MR features predictive of poor outcomes in non-oncologic pediatric PRES. METHOD A six-year search of all non-oncologic pediatric patients with clinical and MR features of PRES was performed. Modified Rankin scores were used to classify clinical outcomes into good versus poor, then clinical and MR features were compared among groups. Univariate and multivariate analysis was performed to identify MR predictors of poor outcomes for various imaging features, and p-values < 0.05 were considered statistically significant. RESULTS One hundred and forty-one patients (mean age 10.1 ± 3.0 years, male to female ratio 1:1.1) were included. Clinically, nephrotic syndrome (p = 0.03), focal deficits (p = 0.04), longer hospitalization (p < 0.001), and mechanical ventilation (p < 0.001) were significantly associated with poor outcomes. Univariate analysis revealed that deep grey matter nuclei (OR = 5.29, 95 % CI: 1.6-18.0) and cerebellar edema patterns (OR = 3.49, 95 % CI: 1.3-9.5), cytotoxic edema (OR = 63.6, 95 % CI:16.5-244.2), hemorrhage (OR = 16.58, 95 % CI: 4.3-64.2), and severe PRES patterns (OR = 11.0, 95 % CI: 3.5-34.7) on MR were all significantly associated with poor outcomes (p-values = 0.008 and 0.014, <0.001, <0.001, and < 0.001, respectively). This remained true for cytotoxic edema (OR = 84.26, 95 % CI: 17.3-410.9, p-value < 0.001) and hemorrhage (OR = 44.56, 95 % CI: 6.9-289.7, p-value < 0.001) on multivariate analysis. CONCLUSION Diffusion restriction and hemorrhage on initial MR scans were the two independent predictors of poor outcomes in non-oncologic pediatric patients.
Collapse
Affiliation(s)
- Mohamad Gamal Nada
- Radiology Department, Faculty of Human Medicine, Zagazig University, Zagazig, Egypt
| | - Yasmin Ibrahim Libda
- Radiology Department, Faculty of Human Medicine, Zagazig University, Zagazig, Egypt
| | - Mahmoud M Gohary
- Pediatric Department, Faculty of Human Medicine, Zagazig University, Zagazig, Egypt
| | - Riham Dessouky
- Radiology Department, Faculty of Human Medicine, Zagazig University, Zagazig, Egypt.
| |
Collapse
|
15
|
Ortelli OA, Pitcairn SR, Dyson CH, Weiner JL. Sexually dimorphic effects of a modified adolescent social isolation paradigm on behavioral risk factors of alcohol use disorder in Long Evans Rats. ADDICTION NEUROSCIENCE 2023; 9:100134. [PMID: 38188062 PMCID: PMC10768969 DOI: 10.1016/j.addicn.2023.100134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Early life stress (ELS) is a major risk factor for alcohol use disorder (AUD) and comorbid neuropsychiatric conditions. We previously demonstrated that an adolescent social isolation (aSI) model of ELS significantly increased behavioral risk factors for these disorders (e.g. anxiety-like behaviors, alcohol drinking) in male, but not female rats. Since many neurodevelopmental milestones are accelerated in females, we investigated whether an earlier/shorter isolation window (PND 21-38) would yield comparable phenotypes in both sexes. In two experiments, Long Evans rats were socially isolated (SI) or group-housed (GH) on postnatal day (PND) 21 and locomotion was assessed in the open field test (OFT; PND 30). Experiment 1 also assessed behavior on the elevated plus-maze (EPM) (PND 32). In Experiment 2, all rats were single housed on PND 38 to assess home cage alcohol drinking. Experiment 1 revealed that SI females had increased locomotor activity in the OFT but did not differ from GH subjects on the EPM. The OFT results were replicated in both sexes in Experiment 2 and both male and female SI rats had significantly greater ethanol consumption during an eight day continuous access paradigm. In contrast, during subsequent intermittent two-bottle choice drinking, only SI females displayed greater ethanol intake and preference and increased consumption of a quinine-adulterated alcohol solution. These findings demonstrate that early life social isolation can promote AUD vulnerability-related phenotypes in female rats but that there are profound sex differences in the vulnerability window to this early life stressor. Uncovering the neural mechanisms responsible for these sexually dimorphic differences in sensitivity to ELS may shed light on the biological substrates associated with vulnerability to AUD and comorbid disorders of negative emotion in men and women.
Collapse
Affiliation(s)
- Olivia A. Ortelli
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Stacy R. Pitcairn
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Christina H. Dyson
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Jeffrey L. Weiner
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
16
|
Lee JY, Lee HJ, Jang YH, Kim H, Im K, Yang S, Hoh JK, Ahn JH. Maternal pre-pregnancy obesity affects the uncinate fasciculus white matter tract in preterm infants. Front Pediatr 2023; 11:1225960. [PMID: 38034827 PMCID: PMC10684693 DOI: 10.3389/fped.2023.1225960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 10/23/2023] [Indexed: 12/02/2023] Open
Abstract
Background A growing body of evidence suggests an association between a higher maternal pre-pregnancy body mass index (BMI) and adverse long-term neurodevelopmental outcomes for their offspring. Despite recent attention to the effects of maternal obesity on fetal and neonatal brain development, changes in the brain microstructure of preterm infants born to mothers with pre-pregnancy obesity are still not well understood. This study aimed to detect the changes in the brain microstructure of obese mothers in pre-pregnancy and their offspring born as preterm infants using diffusion tensor imaging (DTI). Methods A total of 32 preterm infants (born to 16 mothers with normal BMI and 16 mothers with a high BMI) at <32 weeks of gestation without brain injury underwent brain magnetic resonance imaging at term-equivalent age (TEA). The BMI of all pregnant women was measured within approximately 12 weeks before pregnancy or the first 2 weeks of gestation. We analyzed the brain volume using a morphologically adaptive neonatal tissue segmentation toolbox and calculated the major white matter (WM) tracts using probabilistic maps of the Johns Hopkins University neonatal atlas. We investigated the differences in brain volume and WM microstructure between preterm infants of mothers with normal and high BMI. The DTI parameters were compared among groups using analysis of covariance adjusted for postmenstrual age at scan and multiple comparisons. Results Preterm infants born to mothers with a high BMI showed significantly increased cortical gray matter volume (p = 0.001) and decreased WM volume (p = 0.003) after controlling for postmenstrual age and multiple comparisons. We found a significantly lower axial diffusivity in the uncinate fasciculus (UNC) in mothers with high BMI than that in mothers with normal BMI (1.690 ± 0.066 vs. 1.762 ± 0.101, respectively; p = 0.005). Conclusion Our study is the first to demonstrate that maternal obesity impacts perinatal brain development patterns in preterm infants at TEA, even in the absence of apparent brain injury. These findings provide evidence for the detrimental effects of maternal obesity on brain developmental trajectories in offspring and suggest potential neurodevelopmental outcomes based on an altered UNC WM microstructure, which is known to be critical for language and social-emotional functions.
Collapse
Affiliation(s)
- Joo Young Lee
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul, Republic of Korea
| | - Hyun Ju Lee
- Department of Pediatrics, Hanyang University College of Medicine, Seoul, Republic of Korea
- Division of Neonatology and Development Medicine, Hanyang University Hospital, Seoul, Republic of Korea
| | - Yong Hun Jang
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul, Republic of Korea
| | - Hyuna Kim
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul, Republic of Korea
| | - Kiho Im
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
- Division of Newborn Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
| | - Seung Yang
- Department of Pediatrics, Hanyang University College of Medicine, Seoul, Republic of Korea
- Department of Pediatrics, Hanyang University Hospital, Seoul, Republic of Korea
| | - Jeong-Kyu Hoh
- Department of Obstetrics and Gynecology, Hanyang University College of Medicine, Seoul, Republic of Korea
- Department of Obstetrics and Gynecology, Hanyang University Hospital, Seoul, Republic of Korea
| | - Ja-Hye Ahn
- Department of Pediatrics, Hanyang University College of Medicine, Seoul, Republic of Korea
- Division of Neonatology and Development Medicine, Hanyang University Hospital, Seoul, Republic of Korea
| |
Collapse
|
17
|
Piekarski DJ, Zahr NM, Zhao Q, Ferizi U, Pohl KM, Sullivan EV, Pfefferbaum A. White matter microstructural integrity continues to develop from adolescence to young adulthood in mice and humans: Same phenotype, different mechanism. NEUROIMAGE. REPORTS 2023; 3:100179. [PMID: 37916059 PMCID: PMC10619509 DOI: 10.1016/j.ynirp.2023.100179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
As direct evaluation of a mouse model of human neurodevelopment, adolescent and young adult mice and humans underwent MR diffusion tensor imaging to quantify age-related differences in microstructural integrity of brain white matter fibers. Fractional anisotropy (FA) was greater in older than younger mice and humans. Despite the cross-species commonality, the underlying developmental mechanism differed: whereas evidence for greater axonal extension contributed to higher FA in older mice, evidence for continuing myelination contributed to higher FA in human adolescent development. These differences occurred in the context of species distinctions in overall brain growth: whereas the continued growth of the brain and skull in the murine model can accommodate volume expansion into adulthood, human white matter volume and myelination continue growth into adulthood within a fixed intracranial volume. Appreciation of the similarities and differences in developmental mechanism can enhance the utility of animal models of brain white matter structure, function, and response to exogenous manipulation.
Collapse
Affiliation(s)
- David J. Piekarski
- Center for Health Science, SRI International, 333 Ravenswood Ave., Menlo Park, CA, 94015, USA
| | - Natalie M. Zahr
- Center for Health Science, SRI International, 333 Ravenswood Ave., Menlo Park, CA, 94015, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University School of, Medicine, 401 Quarry Rd., Stanford, CA, 94305, USA
| | - Qingyu Zhao
- Department of Psychiatry and Behavioral Sciences, Stanford University School of, Medicine, 401 Quarry Rd., Stanford, CA, 94305, USA
| | - Uran Ferizi
- Center for Health Science, SRI International, 333 Ravenswood Ave., Menlo Park, CA, 94015, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University School of, Medicine, 401 Quarry Rd., Stanford, CA, 94305, USA
| | - Kilian M. Pohl
- Department of Psychiatry and Behavioral Sciences, Stanford University School of, Medicine, 401 Quarry Rd., Stanford, CA, 94305, USA
| | - Edith V. Sullivan
- Department of Psychiatry and Behavioral Sciences, Stanford University School of, Medicine, 401 Quarry Rd., Stanford, CA, 94305, USA
| | - Adolf Pfefferbaum
- Center for Health Science, SRI International, 333 Ravenswood Ave., Menlo Park, CA, 94015, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University School of, Medicine, 401 Quarry Rd., Stanford, CA, 94305, USA
| |
Collapse
|
18
|
Haghshomar M, Mirghaderi SP, Shobeiri P, James A, Zarei M. White matter abnormalities in paediatric obsessive-compulsive disorder: a systematic review of diffusion tensor imaging studies. Brain Imaging Behav 2023; 17:343-366. [PMID: 36935464 PMCID: PMC10195745 DOI: 10.1007/s11682-023-00761-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2023] [Indexed: 03/21/2023]
Abstract
Microstructural alterations in white matter are evident in obsessive-compulsive disorder (OCD) both in adult and paediatric populations. Paediatric patients go through the process of maturation and thus may undergo different pathophysiology than adult OCD. Findings from studies in paediatric obsessive-compulsive disorder have been inconsistent, possibly due to their small sample size or heterogeneous populations. The aim of this review is to provide a comprehensive overview of white matter structures in paediatric obsessive-compulsive disorder and their correlation with clinical features. Based on PRISMA guidelines, we performed a systematic search on diffusion tensor imaging studies that reported fractional anisotropy, mean diffusivity, radial diffusivity, or axial diffusivity alterations between paediatric patients with obsessive-compulsive disorder and healthy controls using voxel-based analysis, or tract-based spatial statistics. We identified fifteen relevant studies. Most studies reported changes predominantly in the corpus callosum, cingulum, arcuate fasciculus, uncinate fasciculus, inferior longitudinal fasciculus, superior longitudinal fasciculus, inferior fronto-occipital fasciculus, corticospinal tract, forceps minor and major, and the cerebellum in paediatric obsessive-compulsive disorder. These alterations included increased and decreased fractional anisotropy and radial diffusivity, and increased mean and axial diffusivity in different white matter tracts. These changes were associated with obsessive-compulsive disorder symptoms. Moreover, specific genetic polymorphisms were linked with cerebellar white matter changes in paediatric obsessive-compulsive disorder. White matter changes are widespread in paediatric OCD patients. These changes are often associated with symptoms however there are controversies in the direction of changes in some tracts.
Collapse
Affiliation(s)
- Maryam Haghshomar
- The Medical School, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Parnian Shobeiri
- The Medical School, Tehran University of Medical Sciences, Tehran, Iran
| | - Anthony James
- Highfield Family and Adolescent Unit, Warneford Hospital, Department of Psychiatry, University of Oxford, Oxford, UK
| | - Mojtaba Zarei
- Institute of Medical Science and Technology, Shahid Beheshti University, Tehran, Iran.
- Departments of Neurology, Odense University Hospital, Odense, Denmark.
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
19
|
van Heesewijk J, Steenwijk MD, Kreukels BPC, Veltman DJ, Bakker J, Burke SM. Alterations in the inferior fronto-occipital fasciculus - a specific neural correlate of gender incongruence? Psychol Med 2023; 53:3461-3470. [PMID: 35301969 PMCID: PMC10277722 DOI: 10.1017/s0033291721005547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 11/06/2021] [Accepted: 12/28/2021] [Indexed: 11/05/2022]
Abstract
BACKGROUND Increasing numbers of adolescents seek help for gender-identity questions. Consequently, requests for medical treatments, such as puberty suppression, are growing. However, studies investigating the neurobiological substrate of gender incongruence (when birth-assigned sex and gender identity do not align) are scarce, and knowledge about the effects of puberty suppression on the developing brain of transgender youth is limited. METHODS Here we cross-sectionally investigated sex and gender differences in regional fractional anisotropy (FA) as measured by diffusion MR imaging, and the impact of puberty on alterations in the white-matter organization of 35 treatment-naive prepubertal children and 41 adolescents with gender incongruence, receiving puberty suppression. The transgender groups were compared with 79 age-matched, treatment-naive cisgender (when sex and gender align) peers. RESULTS We found that transgender adolescents had lower FA in the bilateral inferior fronto-occipital fasciculus (IFOF), forceps major and corpus callosum than cisgender peers. In addition, average FA values of the right IFOF correlated negatively with adolescents' cumulative dosage of puberty suppressants received. Of note, prepubertal children also showed significant FA group differences in, again, the right IFOF and left cortico-spinal tract, but with the reverse pattern (transgender > cisgender) than was seen in adolescents. CONCLUSIONS Importantly, our results of lower FA (indexing less longitudinal organization, fiber coherence, and myelination) in the IFOF of gender-incongruent adolescents replicate prior findings in transgender adults, suggesting a salient neural correlate of gender incongruence. Findings highlight the complexity with which (pubertal) sex hormones impact white-matter development and add important insight into the neurobiological substrate associated with gender incongruence.
Collapse
Affiliation(s)
- Jason van Heesewijk
- Center of Expertise on Gender Dysphoria, Amsterdam University Medical Centers, location VUmc, De Boelelaan 1131, Amsterdam, Noord-Holland, Netherlands
| | - Martijn D. Steenwijk
- Center of Expertise on Gender Dysphoria, Amsterdam University Medical Centers, location VUmc, De Boelelaan 1131, Amsterdam, Noord-Holland, Netherlands
| | - Baudewijntje P. C. Kreukels
- Center of Expertise on Gender Dysphoria, Amsterdam University Medical Centers, location VUmc, De Boelelaan 1131, Amsterdam, Noord-Holland, Netherlands
| | - Dick J. Veltman
- Center of Expertise on Gender Dysphoria, Amsterdam University Medical Centers, location VUmc, De Boelelaan 1131, Amsterdam, Noord-Holland, Netherlands
| | - Julie Bakker
- Center of Expertise on Gender Dysphoria, Amsterdam University Medical Centers, location VUmc, De Boelelaan 1131, Amsterdam, Noord-Holland, Netherlands
| | - Sarah M. Burke
- Center of Expertise on Gender Dysphoria, Amsterdam University Medical Centers, location VUmc, De Boelelaan 1131, Amsterdam, Noord-Holland, Netherlands
| |
Collapse
|
20
|
Brown O, Healey K, Fang Z, Zemek R, Smith A, Ledoux AA. Associations between psychological resilience and metrics of white matter microstructure in pediatric concussion. Hum Brain Mapp 2023. [PMID: 37126608 DOI: 10.1002/hbm.26321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023] Open
Abstract
This study investigated associations between psychological resilience and characteristics of white matter microstructure in pediatric concussion. This is a case control study and a planned substudy of a larger randomized controlled trial. Children with an acute concussion or orthopedic injury were recruited from the emergency department. Participants completed both the Connor-Davidson Resilience Scale 10 and an MRI at 72 h and 4-weeks post-injury. The association between resiliency and fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) at both timepoints were examined. We examined whether these associations were moderated by group. The association between resiliency captured at 72 h and diffusion tensor imaging metrics at 4 weeks was also investigated. Clusters were extracted using a significance threshold of threshold-free cluster enhancement corrected p < .05. A total of 66 children with concussion (median (IQR) age = 12.88 (IQR: 11.80-14.36); 47% female) and 29 children with orthopedic-injury (median (IQR) age = 12.49 (IQR: 11.18-14.01); 41% female) were included. A negative correlation was identified in the concussion group between 72 h resilience and 72 h FA. Meanwhile, positive correlations were identified in the concussion group with concussion between 72 h resilience and both 72 h MD and 72 h RD. These findings suggest that 72 h resilience is associated with white matter microstructure of the forceps minor, superior longitudinal fasciculus, and anterior thalamic radiation at 72 h post-concussion. Resilience seems to be associated with neural integrity only in the acute phase of concussion and thus may be considered when researching concussion recovery.
Collapse
Affiliation(s)
- Olivier Brown
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
- School of Psychology, University of Ottawa, Ottawa, Ontario, Canada
| | - Katherine Healey
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Zhuo Fang
- School of Psychology, University of Ottawa, Ottawa, Ontario, Canada
| | - Roger Zemek
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
- Department of Pediatrics and Emergency Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Andra Smith
- School of Psychology, University of Ottawa, Ottawa, Ontario, Canada
| | - Andrée-Anne Ledoux
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
- School of Psychology, University of Ottawa, Ottawa, Ontario, Canada
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
- Department of Cellular Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
21
|
DiPiero M, Rodrigues PG, Gromala A, Dean DC. Applications of advanced diffusion MRI in early brain development: a comprehensive review. Brain Struct Funct 2023; 228:367-392. [PMID: 36585970 PMCID: PMC9974794 DOI: 10.1007/s00429-022-02605-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/21/2022] [Indexed: 01/01/2023]
Abstract
Brain development follows a protracted developmental timeline with foundational processes of neurodevelopment occurring from the third trimester of gestation into the first decade of life. Defining structural maturational patterns of early brain development is a critical step in detecting divergent developmental trajectories associated with neurodevelopmental and psychiatric disorders that arise later in life. While considerable advancements have already been made in diffusion magnetic resonance imaging (dMRI) for pediatric research over the past three decades, the field of neurodevelopment is still in its infancy with remarkable scientific and clinical potential. This comprehensive review evaluates the application, findings, and limitations of advanced dMRI methods beyond diffusion tensor imaging, including diffusion kurtosis imaging (DKI), constrained spherical deconvolution (CSD), neurite orientation dispersion and density imaging (NODDI) and composite hindered and restricted model of diffusion (CHARMED) to quantify the rapid and dynamic changes supporting the underlying microstructural architectural foundations of the brain in early life.
Collapse
Affiliation(s)
- Marissa DiPiero
- Department of Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | | | - Alyssa Gromala
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Douglas C Dean
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|
22
|
Craig BT, Geeraert B, Kinney-Lang E, Hilderley AJ, Yeates KO, Kirton A, Noel M, MacMaster FP, Bray S, Barlow KM, Brooks BL, Lebel C, Carlson HL. Structural brain network lateralization across childhood and adolescence. Hum Brain Mapp 2023; 44:1711-1724. [PMID: 36478489 PMCID: PMC9921220 DOI: 10.1002/hbm.26169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Developmental lateralization of brain function is imperative for behavioral specialization, yet few studies have investigated differences between hemispheres in structural connectivity patterns, especially over the course of development. The present study compares the lateralization of structural connectivity patterns, or topology, across children, adolescents, and young adults. We applied a graph theory approach to quantify key topological metrics in each hemisphere including efficiency of information transfer between regions (global efficiency), clustering of connections between regions (clustering coefficient [CC]), presence of hub-nodes (betweenness centrality [BC]), and connectivity between nodes of high and low complexity (hierarchical complexity [HC]) and investigated changes in these metrics during development. Further, we investigated BC and CC in seven functionally defined networks. Our cross-sectional study consisted of 211 participants between the ages of 6 and 21 years with 93% being right-handed and 51% female. Global efficiency, HC, and CC demonstrated a leftward lateralization, compared to a rightward lateralization of BC. The sensorimotor, default mode, salience, and language networks showed a leftward asymmetry of CC. BC was only lateralized in the salience (right lateralized) and dorsal attention (left lateralized) networks. Only a small number of metrics were associated with age, suggesting that topological organization may stay relatively constant throughout school-age development, despite known underlying changes in white matter properties. Unlike many other imaging biomarkers of brain development, our study suggests topological lateralization is consistent across age, highlighting potential nonlinear mechanisms underlying developmental specialization.
Collapse
Affiliation(s)
- Brandon T Craig
- University of Calgary, Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,University of Calgary, Hotchkiss Brain Institute, Calgary, Alberta, Canada.,Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
| | - Bryce Geeraert
- University of Calgary, Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,University of Calgary, Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Eli Kinney-Lang
- University of Calgary, Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,University of Calgary, Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Alicia J Hilderley
- University of Calgary, Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,University of Calgary, Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Keith O Yeates
- University of Calgary, Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,University of Calgary, Hotchkiss Brain Institute, Calgary, Alberta, Canada.,Department of Psychology, University of Calgary, Calgary, Alberta, Canada
| | - Adam Kirton
- University of Calgary, Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,University of Calgary, Hotchkiss Brain Institute, Calgary, Alberta, Canada.,Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.,Department of Radiology, University of Calgary, Calgary, Alberta, Canada
| | - Melanie Noel
- University of Calgary, Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,University of Calgary, Hotchkiss Brain Institute, Calgary, Alberta, Canada.,Department of Psychology, University of Calgary, Calgary, Alberta, Canada
| | - Frank P MacMaster
- University of Calgary, Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,University of Calgary, Hotchkiss Brain Institute, Calgary, Alberta, Canada.,Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada.,Child and Adolescent Imaging Research (CAIR) Program, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Strategic Clinical Network for Addictions and Mental Health, Alberta Health Services, Calgary, Alberta, Canada
| | - Signe Bray
- University of Calgary, Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,University of Calgary, Hotchkiss Brain Institute, Calgary, Alberta, Canada.,Department of Radiology, University of Calgary, Calgary, Alberta, Canada.,Child and Adolescent Imaging Research (CAIR) Program, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Karen M Barlow
- University of Calgary, Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,University of Calgary, Hotchkiss Brain Institute, Calgary, Alberta, Canada.,Child and Adolescent Imaging Research (CAIR) Program, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Child Health Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Brian L Brooks
- University of Calgary, Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,University of Calgary, Hotchkiss Brain Institute, Calgary, Alberta, Canada.,Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada.,Department of Psychology, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Catherine Lebel
- University of Calgary, Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,University of Calgary, Hotchkiss Brain Institute, Calgary, Alberta, Canada.,Department of Radiology, University of Calgary, Calgary, Alberta, Canada.,Child and Adolescent Imaging Research (CAIR) Program, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Helen L Carlson
- University of Calgary, Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,University of Calgary, Hotchkiss Brain Institute, Calgary, Alberta, Canada.,Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
23
|
Dégeilh F, Leblanc É, Daneault V, Beauchamp MH, Bernier A. Longitudinal associations between mother-child attachment security in toddlerhood and white matter microstructure in late childhood: a preliminary investigation. Attach Hum Dev 2023; 25:291-310. [PMID: 36794390 DOI: 10.1080/14616734.2023.2172437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Early childhood experiences are considered to influence the strength and effectiveness of neural connections and thus the development of brain connectivity. As one of the most pervasive and potent early relational experiences, parent-child attachment is a prime candidate to account for experience-driven differences in brain development. Yet, knowledge of the effects of parent-child attachment on brain structure in typically developing children is scarce and largely limited to grey matter, whereas caregiving influences on white matter (i.e. neural connections) have seldom been explored. This study examined whether normative variation in mother-child attachment security predicts white matter microstructure in late childhood and explored associations with cognitive-inhibition. Mother-child attachment security was assessed using home observations when children (N = 32, 20 girls) were 15 and 26 months old. White matter microstructure was assessed using diffusion magnetic resonance imaging when children were 10 years old. Child cognitive-inhibition was tested when children were 11 years old. Results revealed a negative association between mother-toddler attachment security and child white matter microstructure organization, which in turn related to better child cognitive-inhibition. While preliminary given the sample size, these findings add to the growing literature that suggests that rich and positive experiences are likely to decelerate brain development.
Collapse
Affiliation(s)
- Fanny Dégeilh
- Department of Psychology, University of Montreal, Quebec, Canada.,Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Élizabel Leblanc
- Department of Psychology, University of Montreal, Quebec, Canada
| | - Véronique Daneault
- Department of Psychology, University of Montreal, Quebec, Canada.,Functional Neuroimaging Unit, Montreal Geriatric University Institute, Quebec, Canada.,Center for Advanced Research in Sleep Medicine, Montreal Sacré-Coeur Hospital, Quebec, Canada
| | - Miriam H Beauchamp
- Department of Psychology, University of Montreal, Quebec, Canada.,Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Annie Bernier
- Department of Psychology, University of Montreal, Quebec, Canada
| |
Collapse
|
24
|
Piekarski DJ, Colich NL, Ho TC. The effects of puberty and sex on adolescent white matter development: A systematic review. Dev Cogn Neurosci 2023; 60:101214. [PMID: 36913887 PMCID: PMC10010971 DOI: 10.1016/j.dcn.2023.101214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 12/20/2022] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Adolescence, the transition between childhood and adulthood, is characterized by rapid brain development in white matter (WM) that is attributed in part to rising levels in adrenal and gonadal hormones. The extent to which pubertal hormones and related neuroendocrine processes explain sex differences in WM during this period is unclear. In this systematic review, we sought to examine whether there are consistent associations between hormonal changes and morphological and microstructural properties of WM across species and whether these effects are sex-specific. We identified 90 (75 human, 15 non-human) studies that met inclusion criteria for our analyses. While studies in human adolescents show notable heterogeneity, results broadly demonstrate that increases in gonadal hormones across pubertal development are associated with macro- and microstructural changes in WM tracts that are consistent with the sex differences found in non-human animals, particularly in the corpus callosum. We discuss limitations of the current state of the science and recommend important future directions for investigators in the field to consider in order to advance our understanding of the neuroscience of puberty and to promote forward and backward translation across model organisms.
Collapse
Affiliation(s)
| | | | - Tiffany C Ho
- Department of Psychology, University of California, Los Angeles, United States.
| |
Collapse
|
25
|
Lawrence KE, Abaryan Z, Laltoo E, Hernandez LM, Gandal MJ, McCracken JT, Thompson PM. White matter microstructure shows sex differences in late childhood: Evidence from 6797 children. Hum Brain Mapp 2023; 44:535-548. [PMID: 36177528 PMCID: PMC9842921 DOI: 10.1002/hbm.26079] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/29/2022] [Accepted: 08/19/2022] [Indexed: 02/01/2023] Open
Abstract
Sex differences in white matter microstructure have been robustly demonstrated in the adult brain using both conventional and advanced diffusion-weighted magnetic resonance imaging approaches. However, sex differences in white matter microstructure prior to adulthood remain poorly understood; previous developmental work focused on conventional microstructure metrics and yielded mixed results. Here, we rigorously characterized sex differences in white matter microstructure among over 6000 children from the Adolescent Brain Cognitive Development study who were between 9 and 10 years old. Microstructure was quantified using both the conventional model-diffusion tensor imaging (DTI)-and an advanced model, restriction spectrum imaging (RSI). DTI metrics included fractional anisotropy (FA) and mean, axial, and radial diffusivity (MD, AD, RD). RSI metrics included normalized isotropic, directional, and total intracellular diffusion (N0, ND, NT). We found significant and replicable sex differences in DTI or RSI microstructure metrics in every white matter region examined across the brain. Sex differences in FA were regionally specific. Across white matter regions, boys exhibited greater MD, AD, and RD than girls, on average. Girls displayed increased N0, ND, and NT compared to boys, on average, suggesting greater cell and neurite density in girls. Together, these robust and replicable findings provide an important foundation for understanding sex differences in health and disease.
Collapse
Affiliation(s)
- Katherine E. Lawrence
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics InstituteUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Zvart Abaryan
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics InstituteUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Emily Laltoo
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics InstituteUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Leanna M. Hernandez
- Department of Psychiatry and Biobehavioral SciencesUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Michael J. Gandal
- Department of Psychiatry and Biobehavioral SciencesUniversity of California Los AngelesLos AngelesCaliforniaUSA
- Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of MedicineUniversity of California Los AngelesLos AngelesCaliforniaUSA
- Department of Human Genetics, David Geffen School of MedicineUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - James T. McCracken
- Department of Psychiatry and Biobehavioral SciencesUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Paul M. Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics InstituteUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
26
|
Abstract
There is now a significant body of literature concerning sex/gender differences in the human brain. This chapter will critically review and synthesise key findings from several studies that have investigated sex/gender differences in structural and functional lateralisation and connectivity. We argue that while small, relative sex/gender differences reliably exist in lateralisation and connectivity, there is considerable overlap between the sexes. Some inconsistencies exist, however, and this is likely due to considerable variability in the methodologies, tasks, measures, and sample compositions between studies. Moreover, research to date is limited in its consideration of sex/gender-related factors, such as sex hormones and gender roles, that can explain inter-and inter-individual differences in brain and behaviour better than sex/gender alone. We conclude that conceptualising the brain as 'sexually dimorphic' is incorrect, and the terms 'male brain' and 'female brain' should be avoided in the neuroscientific literature. However, this does not necessarily mean that sex/gender differences in the brain are trivial. Future research involving sex/gender should adopt a biopsychosocial approach whenever possible, to ensure that non-binary psychological, biological, and environmental/social factors related to sex/gender, and their interactions, are routinely accounted for.
Collapse
Affiliation(s)
- Sophie Hodgetts
- School of Psychology, University of Sunderland, Sunderland, UK
| | | |
Collapse
|
27
|
Iyamu J, Hodgson JC, Sharpe R. A narrative review of the late effects of paediatric cancer treatment within an educational setting: Existing evidence and where do we go from here? Chronic Illn 2022; 18:458-468. [PMID: 34569307 PMCID: PMC9397389 DOI: 10.1177/17423953211043113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVES The late effects of paediatric cancer treatment within an educational context are an area that is relatively under researched within the United Kingdom. METHODS To support this narrative review, systematic searches were conducted in key scientific databases between May and December 2020. RESULTS Upon reviewing literature within this field, there are key considerations that should be addressed to provide clear and concise findings. These key considerations include clarification on whether the research undertaken focuses on the late or long term effects of paediatric cancer treatment, taking a consistent approach to data analysis with the aim to improve the validity of the study findings, utilising a mixed methodology to gain further depth to the findings as well as increasing the number of studies that focus on a specific tumour type rather than numerous types to allow a detailed study to be undertaken into the potential late effects a treatment for a specific tumour may elicit. DISCUSSION If these key considerations are taken into account when conducting further research within this field, it would enable consistent findings to be utilised in providing the optimum educational provision for survivors of paediatric cancer who remain within the education system.
Collapse
|
28
|
Yokota S, Takeuchi H, Asano K, Asano M, Sassa Y, Taki Y, Kawashima R. Sex interaction of white matter microstructure and verbal IQ in corpus callosum in typically developing children and adolescents. Brain Dev 2022; 44:531-539. [PMID: 35489976 DOI: 10.1016/j.braindev.2022.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/24/2022] [Accepted: 04/10/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Childhood is an extremely important time for neural development that has a critical role in human intelligence. Efficient information processing is crucial for higher intelligence, so the intra- or inter-hemispheric interaction is vital. However, the relationship between neuroanatomical connections and intelligence in typically developing children, as well as sex differences in this relationship, remains unknown. METHODS Participants were 253 typically developing children (121 boys and 132 girls) aged 5-18. We acquired diffusion tensor imaging data and intelligence using an age-appropriate version of the IQ test; Wechsler Intelligence Scale for Children (WISC) or Wechsler Adult Intelligence Scale (WAIS). We conducted whole-brain multiple regression analysis to investigate the association between fractional anisotropy (FA), which reflects white matter microstructural properties, and each composite score of IQ test (full-scale IQ, performance IQ, and verbal IQ). RESULTS FA was positively correlated with full-scale IQ in bilateral inferior occipitofrontal fasciculus, genu, and splenium of corpus callosum (CC). FA in the right superior longitudinal fasciculus, bilateral inferior longitudinal fasciculus, and splenium of CC were also positively correlated with performance IQ. Furthermore, we found significant sex interaction between FA in the CC and verbal IQ. FA was positively correlated in boys, and negatively correlated in girls. CONCLUSION Results suggest that efficient anatomical connectivity between parietal and frontal regions is crucial for children's intelligence. Moreover, inter-hemispheric connections play a critical role in verbal abilities in boys.
Collapse
Affiliation(s)
- Susumu Yokota
- Faculty of Arts and Science, Kyushu University, Fukuoka, Japan.
| | - Hikaru Takeuchi
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Kohei Asano
- Kokoro Research Center, Kyoto University, Kyoto, Japan
| | - Michiko Asano
- Department of Child and Adolescent Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yuko Sassa
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Yasuyuki Taki
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan; Division of Medical Neuroimaging Analysis, Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan; Department of Nuclear Medicine & Radiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Ryuta Kawashima
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan; Smart Ageing International Research Centre, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|
29
|
Kumpulainen V, Merisaari H, Copeland A, Silver E, Pulli EP, Lewis JD, Saukko E, Saunavaara J, Karlsson L, Karlsson H, Tuulari JJ. Effect of number of diffusion-encoding directions in diffusion metrics of 5-year-olds using tract-based spatial statistical analysis. Eur J Neurosci 2022; 56:4843-4868. [PMID: 35904522 PMCID: PMC9545012 DOI: 10.1111/ejn.15785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 06/21/2022] [Accepted: 07/26/2022] [Indexed: 11/29/2022]
Abstract
Methodological aspects and effects of different imaging parameters on DTI (diffusion tensor imaging) results and their reproducibility have been recently studied comprehensively in adult populations. Although MR imaging of children's brains has become common, less interest has been focussed on researching whether adult-based optimised parameters and pre-processing protocols can be reliably applied to paediatric populations. Furthermore, DTI scalar values of preschool aged children are rarely reported. We gathered a DTI dataset from 5-year-old children (N = 49) to study the effect of the number of diffusion-encoding directions on the reliability of resultant scalar values with TBSS (tract-based spatial statistics) method. Additionally, the potential effect of within-scan head motion on DTI scalars was evaluated. Reducing the number of diffusion-encoding directions deteriorated both the accuracy and the precision of all DTI scalar values. To obtain reliable scalar values, a minimum of 18 directions for TBSS was required. For TBSS fractional anisotropy values, the intraclass correlation coefficient with two-way random-effects model (ICC[2,1]) for the subsets of 6 to 66 directions ranged between 0.136 [95%CI 0.0767;0.227] and 0.639 [0.542;0.740], whereas the corresponding values for subsets of 18 to 66 directions were 0.868 [0.815;0.913] and 0.995 [0.993;0.997]. Following the exclusion of motion-corrupted volumes, minor residual motion did not associate with the scalar values. A minimum of 18 diffusion directions is recommended to result in reliable DTI scalar results with TBSS. We suggest gathering extra directions in paediatric DTI to enable exclusion of volumes with motion artefacts and simultaneously preserve the overall data quality.
Collapse
Affiliation(s)
- Venla Kumpulainen
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical MedicineUniversity of TurkuTurkuFinland
| | - Harri Merisaari
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical MedicineUniversity of TurkuTurkuFinland
- Department of RadiologyTurku University HospitalTurkuFinland
| | - Anni Copeland
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical MedicineUniversity of TurkuTurkuFinland
| | - Eero Silver
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical MedicineUniversity of TurkuTurkuFinland
| | - Elmo P. Pulli
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical MedicineUniversity of TurkuTurkuFinland
| | - John D. Lewis
- Montreal Neurological InstituteMcGill UniversityMontrealQuebecCanada
| | | | - Jani Saunavaara
- Department of Medical PhysicsTurku University Hospital and University of TurkuTurkuFinland
| | - Linnea Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical MedicineUniversity of TurkuTurkuFinland
- Department of Paediatrics and Adolescent MedicineTurku University Hospital and University of TurkuTurkuFinland
- Department of PsychiatryTurku University Hospital and University of TurkuTurkuFinland
- Centre for Population Health ResearchTurku University Hospital and University of TurkuTurkuFinland
| | - Hasse Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical MedicineUniversity of TurkuTurkuFinland
- Department of PsychiatryTurku University Hospital and University of TurkuTurkuFinland
- Centre for Population Health ResearchTurku University Hospital and University of TurkuTurkuFinland
| | - Jetro J. Tuulari
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical MedicineUniversity of TurkuTurkuFinland
- Department of PsychiatryTurku University Hospital and University of TurkuTurkuFinland
- Turku Collegium for Science and MedicineUniversity of TurkuTurkuFinland
| |
Collapse
|
30
|
Thompson DK, Yang JYM, Chen J, Kelly CE, Adamson CL, Alexander B, Gilchrist C, Matthews LG, Lee KJ, Hunt RW, Cheong JLY, Spencer-Smith M, Neil JJ, Seal ML, Inder TE, Doyle LW, Anderson PJ. Brain White Matter Development Over the First 13 Years in Very Preterm and Typically Developing Children Based on the T 1-w/ T 2-w Ratio. Neurology 2022; 98:e924-e937. [PMID: 34937788 PMCID: PMC8901175 DOI: 10.1212/wnl.0000000000013250] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 12/13/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES To investigate brain regional white matter development in full-term (FT) and very preterm (VP) children at term equivalent and 7 and 13 years of age based on the ratio of T 1- and T 2-weighted MRI (T 1-w/T 2-w), including (1) whether longitudinal changes differ between birth groups or sexes, (2) associations with perinatal risk factors in VP children, and (3) relationships with neurodevelopmental outcomes at 13 years. METHODS Prospective longitudinal cohort study of VP (born <30 weeks' gestation or <1,250 g) and FT infants born between 2001 and 2004 and followed up at term equivalent and 7 and 13 years of age, including MRI studies and neurodevelopmental assessments. T 1-w/T 2-w images were parcellated into 48 white matter regions of interest. RESULTS Of 224 VP participants and 76 FT participants, 197 VP and 55 FT participants had useable T 1-w/T 2-w data from at least one timepoint. T 1-w/T 2-w values increased between term equivalent and 13 years of age, with little evidence that longitudinal changes varied between birth groups or sexes. VP birth, neonatal brain abnormalities, being small for gestational age, and postnatal infection were associated with reduced regional T 1-w/T 2-w values in childhood and adolescence. Increased T 1-w/T 2-w values across the white matter at 13 years were associated with better motor and working memory function for all children. Within the FT group only, larger increases in T 1-w/T 2-w values from term equivalent to 7 years were associated with poorer attention and executive function, and higher T 1-w/T 2-w values at 7 years were associated with poorer mathematics performance. DISCUSSION VP birth and multiple known perinatal risk factors are associated with long-term reductions in the T 1-w/T 2-w ratio in white matter regions in childhood and adolescence, which may relate to alterations in microstructure and myelin content. Increased T 1-w/T 2-w ratio at 13 years appeared to be associated with better motor and working memory function and there appeared to be developmental differences between VP and FT children in the associations for attention, executive functioning, and mathematics performance.
Collapse
Affiliation(s)
- Deanne K Thompson
- From the Victorian Infant Brain Study (VIBeS) (D.T., C.K.), Developmental Imaging (J. Chen, C.L.A., M.S.), and Clinical Epidemiology and Biostatistics Unit (K.J.L.), Murdoch Children's Research Institute; Department of Neurosurgery (J.Y.-M.Y., B.A.) and Neonatal Medicine (R.H.), The Royal Children's Hospital, Parkville; Neurodevelopment in Health and Disease Program (C.G.), School of Health and Biomedical Sciences, RMIT University, Bundoora; Turner Institute for Brain and Mental Health (L.M., M.S.-S., P.A.), Monash University, Clayton; Neonatal Services (J. Cheong), The Royal Women's Hospital, Parkville, Melbourne, Australia; Department of Pediatric Neurology (J.N.), Washington University School of Medicine, St. Louis, MO; Department of Pediatric Newborn Medicine (T.I.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Department of Obstetrics and Gynaecology (L.D.), The University of Melbourne, Parkville, Australia.
| | - Joseph Y M Yang
- From the Victorian Infant Brain Study (VIBeS) (D.T., C.K.), Developmental Imaging (J. Chen, C.L.A., M.S.), and Clinical Epidemiology and Biostatistics Unit (K.J.L.), Murdoch Children's Research Institute; Department of Neurosurgery (J.Y.-M.Y., B.A.) and Neonatal Medicine (R.H.), The Royal Children's Hospital, Parkville; Neurodevelopment in Health and Disease Program (C.G.), School of Health and Biomedical Sciences, RMIT University, Bundoora; Turner Institute for Brain and Mental Health (L.M., M.S.-S., P.A.), Monash University, Clayton; Neonatal Services (J. Cheong), The Royal Women's Hospital, Parkville, Melbourne, Australia; Department of Pediatric Neurology (J.N.), Washington University School of Medicine, St. Louis, MO; Department of Pediatric Newborn Medicine (T.I.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Department of Obstetrics and Gynaecology (L.D.), The University of Melbourne, Parkville, Australia
| | - Jian Chen
- From the Victorian Infant Brain Study (VIBeS) (D.T., C.K.), Developmental Imaging (J. Chen, C.L.A., M.S.), and Clinical Epidemiology and Biostatistics Unit (K.J.L.), Murdoch Children's Research Institute; Department of Neurosurgery (J.Y.-M.Y., B.A.) and Neonatal Medicine (R.H.), The Royal Children's Hospital, Parkville; Neurodevelopment in Health and Disease Program (C.G.), School of Health and Biomedical Sciences, RMIT University, Bundoora; Turner Institute for Brain and Mental Health (L.M., M.S.-S., P.A.), Monash University, Clayton; Neonatal Services (J. Cheong), The Royal Women's Hospital, Parkville, Melbourne, Australia; Department of Pediatric Neurology (J.N.), Washington University School of Medicine, St. Louis, MO; Department of Pediatric Newborn Medicine (T.I.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Department of Obstetrics and Gynaecology (L.D.), The University of Melbourne, Parkville, Australia
| | - Claire E Kelly
- From the Victorian Infant Brain Study (VIBeS) (D.T., C.K.), Developmental Imaging (J. Chen, C.L.A., M.S.), and Clinical Epidemiology and Biostatistics Unit (K.J.L.), Murdoch Children's Research Institute; Department of Neurosurgery (J.Y.-M.Y., B.A.) and Neonatal Medicine (R.H.), The Royal Children's Hospital, Parkville; Neurodevelopment in Health and Disease Program (C.G.), School of Health and Biomedical Sciences, RMIT University, Bundoora; Turner Institute for Brain and Mental Health (L.M., M.S.-S., P.A.), Monash University, Clayton; Neonatal Services (J. Cheong), The Royal Women's Hospital, Parkville, Melbourne, Australia; Department of Pediatric Neurology (J.N.), Washington University School of Medicine, St. Louis, MO; Department of Pediatric Newborn Medicine (T.I.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Department of Obstetrics and Gynaecology (L.D.), The University of Melbourne, Parkville, Australia
| | - Christopher L Adamson
- From the Victorian Infant Brain Study (VIBeS) (D.T., C.K.), Developmental Imaging (J. Chen, C.L.A., M.S.), and Clinical Epidemiology and Biostatistics Unit (K.J.L.), Murdoch Children's Research Institute; Department of Neurosurgery (J.Y.-M.Y., B.A.) and Neonatal Medicine (R.H.), The Royal Children's Hospital, Parkville; Neurodevelopment in Health and Disease Program (C.G.), School of Health and Biomedical Sciences, RMIT University, Bundoora; Turner Institute for Brain and Mental Health (L.M., M.S.-S., P.A.), Monash University, Clayton; Neonatal Services (J. Cheong), The Royal Women's Hospital, Parkville, Melbourne, Australia; Department of Pediatric Neurology (J.N.), Washington University School of Medicine, St. Louis, MO; Department of Pediatric Newborn Medicine (T.I.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Department of Obstetrics and Gynaecology (L.D.), The University of Melbourne, Parkville, Australia
| | - Bonnie Alexander
- From the Victorian Infant Brain Study (VIBeS) (D.T., C.K.), Developmental Imaging (J. Chen, C.L.A., M.S.), and Clinical Epidemiology and Biostatistics Unit (K.J.L.), Murdoch Children's Research Institute; Department of Neurosurgery (J.Y.-M.Y., B.A.) and Neonatal Medicine (R.H.), The Royal Children's Hospital, Parkville; Neurodevelopment in Health and Disease Program (C.G.), School of Health and Biomedical Sciences, RMIT University, Bundoora; Turner Institute for Brain and Mental Health (L.M., M.S.-S., P.A.), Monash University, Clayton; Neonatal Services (J. Cheong), The Royal Women's Hospital, Parkville, Melbourne, Australia; Department of Pediatric Neurology (J.N.), Washington University School of Medicine, St. Louis, MO; Department of Pediatric Newborn Medicine (T.I.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Department of Obstetrics and Gynaecology (L.D.), The University of Melbourne, Parkville, Australia
| | - Courtney Gilchrist
- From the Victorian Infant Brain Study (VIBeS) (D.T., C.K.), Developmental Imaging (J. Chen, C.L.A., M.S.), and Clinical Epidemiology and Biostatistics Unit (K.J.L.), Murdoch Children's Research Institute; Department of Neurosurgery (J.Y.-M.Y., B.A.) and Neonatal Medicine (R.H.), The Royal Children's Hospital, Parkville; Neurodevelopment in Health and Disease Program (C.G.), School of Health and Biomedical Sciences, RMIT University, Bundoora; Turner Institute for Brain and Mental Health (L.M., M.S.-S., P.A.), Monash University, Clayton; Neonatal Services (J. Cheong), The Royal Women's Hospital, Parkville, Melbourne, Australia; Department of Pediatric Neurology (J.N.), Washington University School of Medicine, St. Louis, MO; Department of Pediatric Newborn Medicine (T.I.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Department of Obstetrics and Gynaecology (L.D.), The University of Melbourne, Parkville, Australia
| | - Lillian G Matthews
- From the Victorian Infant Brain Study (VIBeS) (D.T., C.K.), Developmental Imaging (J. Chen, C.L.A., M.S.), and Clinical Epidemiology and Biostatistics Unit (K.J.L.), Murdoch Children's Research Institute; Department of Neurosurgery (J.Y.-M.Y., B.A.) and Neonatal Medicine (R.H.), The Royal Children's Hospital, Parkville; Neurodevelopment in Health and Disease Program (C.G.), School of Health and Biomedical Sciences, RMIT University, Bundoora; Turner Institute for Brain and Mental Health (L.M., M.S.-S., P.A.), Monash University, Clayton; Neonatal Services (J. Cheong), The Royal Women's Hospital, Parkville, Melbourne, Australia; Department of Pediatric Neurology (J.N.), Washington University School of Medicine, St. Louis, MO; Department of Pediatric Newborn Medicine (T.I.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Department of Obstetrics and Gynaecology (L.D.), The University of Melbourne, Parkville, Australia
| | - Katherine J Lee
- From the Victorian Infant Brain Study (VIBeS) (D.T., C.K.), Developmental Imaging (J. Chen, C.L.A., M.S.), and Clinical Epidemiology and Biostatistics Unit (K.J.L.), Murdoch Children's Research Institute; Department of Neurosurgery (J.Y.-M.Y., B.A.) and Neonatal Medicine (R.H.), The Royal Children's Hospital, Parkville; Neurodevelopment in Health and Disease Program (C.G.), School of Health and Biomedical Sciences, RMIT University, Bundoora; Turner Institute for Brain and Mental Health (L.M., M.S.-S., P.A.), Monash University, Clayton; Neonatal Services (J. Cheong), The Royal Women's Hospital, Parkville, Melbourne, Australia; Department of Pediatric Neurology (J.N.), Washington University School of Medicine, St. Louis, MO; Department of Pediatric Newborn Medicine (T.I.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Department of Obstetrics and Gynaecology (L.D.), The University of Melbourne, Parkville, Australia
| | - Rodney W Hunt
- From the Victorian Infant Brain Study (VIBeS) (D.T., C.K.), Developmental Imaging (J. Chen, C.L.A., M.S.), and Clinical Epidemiology and Biostatistics Unit (K.J.L.), Murdoch Children's Research Institute; Department of Neurosurgery (J.Y.-M.Y., B.A.) and Neonatal Medicine (R.H.), The Royal Children's Hospital, Parkville; Neurodevelopment in Health and Disease Program (C.G.), School of Health and Biomedical Sciences, RMIT University, Bundoora; Turner Institute for Brain and Mental Health (L.M., M.S.-S., P.A.), Monash University, Clayton; Neonatal Services (J. Cheong), The Royal Women's Hospital, Parkville, Melbourne, Australia; Department of Pediatric Neurology (J.N.), Washington University School of Medicine, St. Louis, MO; Department of Pediatric Newborn Medicine (T.I.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Department of Obstetrics and Gynaecology (L.D.), The University of Melbourne, Parkville, Australia
| | - Jeanie L Y Cheong
- From the Victorian Infant Brain Study (VIBeS) (D.T., C.K.), Developmental Imaging (J. Chen, C.L.A., M.S.), and Clinical Epidemiology and Biostatistics Unit (K.J.L.), Murdoch Children's Research Institute; Department of Neurosurgery (J.Y.-M.Y., B.A.) and Neonatal Medicine (R.H.), The Royal Children's Hospital, Parkville; Neurodevelopment in Health and Disease Program (C.G.), School of Health and Biomedical Sciences, RMIT University, Bundoora; Turner Institute for Brain and Mental Health (L.M., M.S.-S., P.A.), Monash University, Clayton; Neonatal Services (J. Cheong), The Royal Women's Hospital, Parkville, Melbourne, Australia; Department of Pediatric Neurology (J.N.), Washington University School of Medicine, St. Louis, MO; Department of Pediatric Newborn Medicine (T.I.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Department of Obstetrics and Gynaecology (L.D.), The University of Melbourne, Parkville, Australia
| | - Megan Spencer-Smith
- From the Victorian Infant Brain Study (VIBeS) (D.T., C.K.), Developmental Imaging (J. Chen, C.L.A., M.S.), and Clinical Epidemiology and Biostatistics Unit (K.J.L.), Murdoch Children's Research Institute; Department of Neurosurgery (J.Y.-M.Y., B.A.) and Neonatal Medicine (R.H.), The Royal Children's Hospital, Parkville; Neurodevelopment in Health and Disease Program (C.G.), School of Health and Biomedical Sciences, RMIT University, Bundoora; Turner Institute for Brain and Mental Health (L.M., M.S.-S., P.A.), Monash University, Clayton; Neonatal Services (J. Cheong), The Royal Women's Hospital, Parkville, Melbourne, Australia; Department of Pediatric Neurology (J.N.), Washington University School of Medicine, St. Louis, MO; Department of Pediatric Newborn Medicine (T.I.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Department of Obstetrics and Gynaecology (L.D.), The University of Melbourne, Parkville, Australia
| | - Jeffrey J Neil
- From the Victorian Infant Brain Study (VIBeS) (D.T., C.K.), Developmental Imaging (J. Chen, C.L.A., M.S.), and Clinical Epidemiology and Biostatistics Unit (K.J.L.), Murdoch Children's Research Institute; Department of Neurosurgery (J.Y.-M.Y., B.A.) and Neonatal Medicine (R.H.), The Royal Children's Hospital, Parkville; Neurodevelopment in Health and Disease Program (C.G.), School of Health and Biomedical Sciences, RMIT University, Bundoora; Turner Institute for Brain and Mental Health (L.M., M.S.-S., P.A.), Monash University, Clayton; Neonatal Services (J. Cheong), The Royal Women's Hospital, Parkville, Melbourne, Australia; Department of Pediatric Neurology (J.N.), Washington University School of Medicine, St. Louis, MO; Department of Pediatric Newborn Medicine (T.I.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Department of Obstetrics and Gynaecology (L.D.), The University of Melbourne, Parkville, Australia
| | - Marc L Seal
- From the Victorian Infant Brain Study (VIBeS) (D.T., C.K.), Developmental Imaging (J. Chen, C.L.A., M.S.), and Clinical Epidemiology and Biostatistics Unit (K.J.L.), Murdoch Children's Research Institute; Department of Neurosurgery (J.Y.-M.Y., B.A.) and Neonatal Medicine (R.H.), The Royal Children's Hospital, Parkville; Neurodevelopment in Health and Disease Program (C.G.), School of Health and Biomedical Sciences, RMIT University, Bundoora; Turner Institute for Brain and Mental Health (L.M., M.S.-S., P.A.), Monash University, Clayton; Neonatal Services (J. Cheong), The Royal Women's Hospital, Parkville, Melbourne, Australia; Department of Pediatric Neurology (J.N.), Washington University School of Medicine, St. Louis, MO; Department of Pediatric Newborn Medicine (T.I.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Department of Obstetrics and Gynaecology (L.D.), The University of Melbourne, Parkville, Australia
| | - Terrie E Inder
- From the Victorian Infant Brain Study (VIBeS) (D.T., C.K.), Developmental Imaging (J. Chen, C.L.A., M.S.), and Clinical Epidemiology and Biostatistics Unit (K.J.L.), Murdoch Children's Research Institute; Department of Neurosurgery (J.Y.-M.Y., B.A.) and Neonatal Medicine (R.H.), The Royal Children's Hospital, Parkville; Neurodevelopment in Health and Disease Program (C.G.), School of Health and Biomedical Sciences, RMIT University, Bundoora; Turner Institute for Brain and Mental Health (L.M., M.S.-S., P.A.), Monash University, Clayton; Neonatal Services (J. Cheong), The Royal Women's Hospital, Parkville, Melbourne, Australia; Department of Pediatric Neurology (J.N.), Washington University School of Medicine, St. Louis, MO; Department of Pediatric Newborn Medicine (T.I.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Department of Obstetrics and Gynaecology (L.D.), The University of Melbourne, Parkville, Australia
| | - Lex W Doyle
- From the Victorian Infant Brain Study (VIBeS) (D.T., C.K.), Developmental Imaging (J. Chen, C.L.A., M.S.), and Clinical Epidemiology and Biostatistics Unit (K.J.L.), Murdoch Children's Research Institute; Department of Neurosurgery (J.Y.-M.Y., B.A.) and Neonatal Medicine (R.H.), The Royal Children's Hospital, Parkville; Neurodevelopment in Health and Disease Program (C.G.), School of Health and Biomedical Sciences, RMIT University, Bundoora; Turner Institute for Brain and Mental Health (L.M., M.S.-S., P.A.), Monash University, Clayton; Neonatal Services (J. Cheong), The Royal Women's Hospital, Parkville, Melbourne, Australia; Department of Pediatric Neurology (J.N.), Washington University School of Medicine, St. Louis, MO; Department of Pediatric Newborn Medicine (T.I.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Department of Obstetrics and Gynaecology (L.D.), The University of Melbourne, Parkville, Australia
| | - Peter J Anderson
- From the Victorian Infant Brain Study (VIBeS) (D.T., C.K.), Developmental Imaging (J. Chen, C.L.A., M.S.), and Clinical Epidemiology and Biostatistics Unit (K.J.L.), Murdoch Children's Research Institute; Department of Neurosurgery (J.Y.-M.Y., B.A.) and Neonatal Medicine (R.H.), The Royal Children's Hospital, Parkville; Neurodevelopment in Health and Disease Program (C.G.), School of Health and Biomedical Sciences, RMIT University, Bundoora; Turner Institute for Brain and Mental Health (L.M., M.S.-S., P.A.), Monash University, Clayton; Neonatal Services (J. Cheong), The Royal Women's Hospital, Parkville, Melbourne, Australia; Department of Pediatric Neurology (J.N.), Washington University School of Medicine, St. Louis, MO; Department of Pediatric Newborn Medicine (T.I.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Department of Obstetrics and Gynaecology (L.D.), The University of Melbourne, Parkville, Australia
| |
Collapse
|
31
|
Laczkovics C, Nenning KH, Wittek T, Schmidbauer V, Schwarzenberg J, Maurer ES, Wagner G, Seidel S, Philipp J, Prayer D, Kasprian G, Karwautz A. White matter integrity is disrupted in adolescents with acute anorexia nervosa: A diffusion tensor imaging study. Psychiatry Res Neuroimaging 2022; 320:111427. [PMID: 34952446 DOI: 10.1016/j.pscychresns.2021.111427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 11/30/2022]
Abstract
Anorexia nervosa (AN) is a highly debilitating mental illness with multifactorial etiology. It oftentimes begins in adolescence, therefore understanding the pathophysiology in this period is important. Few studies investigated the possible impact of the acute state of illness on white matter (WM) tissue properties in the developing adolescent brain. The present study expands our understanding of the implications of AN and starvation on WM integrity. 67 acutely ill adolescent patients suffering from AN restricting type were compared with 32 healthy controls using diffusion tensor imaging assessing fractional anisotropy (FA) and mean diffusivity (MD). We found widespread alterations in the vast majority of the WM regions with significantly decreased FA and increased MD in the AN group. In this highly selective sample in the acute stage of AN, the alterations are likely to be the consequence of starvation. Still, we cannot rule out that some of the affected regions might play a key role in AN-specific psychopathology.
Collapse
Affiliation(s)
- Clarissa Laczkovics
- Eating Disorders Unit, Department of Child and Adolescent Psychiatry, Medical University of Vienna, Austria.
| | - Karl-Heinz Nenning
- Computational Imaging Research Lab, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Austria
| | - Tanja Wittek
- Eating Disorders Unit, Department of Child and Adolescent Psychiatry, Medical University of Vienna, Austria
| | - Victor Schmidbauer
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Austria
| | - Julia Schwarzenberg
- Eating Disorders Unit, Department of Child and Adolescent Psychiatry, Medical University of Vienna, Austria
| | - Elisabeth Sophie Maurer
- Eating Disorders Unit, Department of Child and Adolescent Psychiatry, Medical University of Vienna, Austria
| | - Gudrun Wagner
- Eating Disorders Unit, Department of Child and Adolescent Psychiatry, Medical University of Vienna, Austria
| | - Stefan Seidel
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Austria
| | - Julia Philipp
- Eating Disorders Unit, Department of Child and Adolescent Psychiatry, Medical University of Vienna, Austria
| | - Daniela Prayer
- Department of Neurology, Medical University of Vienna, Austria
| | - Gregor Kasprian
- Department of Neurology, Medical University of Vienna, Austria
| | - Andreas Karwautz
- Eating Disorders Unit, Department of Child and Adolescent Psychiatry, Medical University of Vienna, Austria
| |
Collapse
|
32
|
Sex-specific intra- and inter-hemispheric structural connectivity related to divergent thinking. Neurosci Lett 2022; 774:136513. [PMID: 35149199 DOI: 10.1016/j.neulet.2022.136513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/18/2022] [Accepted: 02/05/2022] [Indexed: 11/21/2022]
Abstract
Gender differences in creativity partly underscore the diversity between males and females in society. Divergent thinking forms the core of creativity and enables humans to innovate and solve problems. Sex differences in functional activation associated with divergent thinking may reflect the use of distinct strategies in males and females when faced with tasks involving creativity. Although female-specific white matter associated to creativity has been found, fractional anisotropy measuring structural connectivity which can better reflect the degree of brain regions interplay should be adapted to corroborate sex-specific WM connectivity related to divergent thinking. Using fractional anisotropy indexes derived from diffusion tensor imaging in 425 participants (118 males), we observed that divergent thinking was positively associated with fractional anisotropy in the corpus callosum and right superior longitudinal fasciculus in females and was positively associated with fractional anisotropy in the right tapetum in males. Our findings provide insight into sex-specific intra- and inter-hemispheric structural connectivity bases underlying divergent thinking.
Collapse
|
33
|
Raja R, Na X, Badger TM, Ou X. Neural correlates of sleep quality in children: Sex-specific associations shown by brain diffusion tractography. J Neuroimaging 2022; 32:530-543. [PMID: 35041231 PMCID: PMC9173651 DOI: 10.1111/jon.12964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/08/2021] [Accepted: 12/25/2021] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND AND PURPOSE Sleep quality is important for healthy growth and development of children. We aimed to identify associations between sleep disturbances in healthy children without clinical diagnosis of sleep disorders and brain white matter (WM) microstructure using an advanced diffusion-weighted magnetic resonance imaging (DW-MRI) based tractography analysis, and to explore whether there are sex differences in these associations. METHODS Brain DW-MRI data were collected from sixty-two 8-year-old children (28 boys, 34 girls) whose parents also completed Children's Sleep Habits Questionnaire (CSHQ). Track-weighted imaging (TWI) measures were computed from the DW-MRI data for 37 WM tracts in each subject. Sex-specific partial correlation analyses were performed to evaluate correlations between TWI measures and a set of sleep disturbance scores derived from the CSHQ. RESULTS Significant correlations (P < .05, FDR-corrected; r: .48-.67) were identified in 13 WM tracts between TWI and sleep disturbance scores. Sexually dimorphic differences in correlations between sleep disturbance scores and WM microstructure measurements were observed. Specifically, in boys, daytime sleepiness positively correlated with track-weighted mean or radial diffusivity in 10 WM tracts (bilateral arcuate fasciculus, left cingulum, right middle longitudinal fasciculus, and three bilateral segments of superior longitudinal fasciculus). In girls, total CSHQ score, night walking, or sleep onset delay negatively correlated with track-weighted fractional anisotropy or axial diffusivity in 4 WM tracts (bilateral inferior longitudinal fasciculus and uncinate fasciculus). CONCLUSIONS The findings suggest that sleep disturbances without clinical diagnosis of sleep disorders are associated with lower WM microstructural integrity in children. Additionally, the associations possess unique patterns in boys and girls.
Collapse
Affiliation(s)
- Rajikha Raja
- Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Xiaoxu Na
- Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Thomas M Badger
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.,Arkansas Children's Nutrition Center, Little Rock, Arkansas, USA
| | - Xiawei Ou
- Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.,Arkansas Children's Nutrition Center, Little Rock, Arkansas, USA.,Arkansas Children's Research Institute, Little Rock, Arkansas, USA
| |
Collapse
|
34
|
Abstract Action Language Processing in Eleven-Year-Old Children: Influence of Upper Limb Movement on Sentence Comprehension. Behav Sci (Basel) 2021; 11:bs11120162. [PMID: 34940097 PMCID: PMC8698763 DOI: 10.3390/bs11120162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 11/18/2022] Open
Abstract
Regarding the embodiment of language processing in adults, there is evidence of a close connection between sensorimotor brain areas and brain areas relevant to the processing of action verbs. This thesis is hotly debated and has therefore been thoroughly studied in adults. However, there are still questions concerning its development in children. The present study deals with the processing of action verbs in concrete and abstract sentences in 60 eleven-year-olds using a decision time paradigm. Sixty-five children mirrored arm movements or sat still and rated the semantic plausibility of sentences. The data of the current study suggest that eleven-year-olds are likely to misunderstand the meaning of action verbs in abstract contexts. Their decision times were faster and their error rates for action verbs in concrete sentences were lower. However, the gender of the children had a significant influence on the decision time and the number of errors, especially when processing abstract sentences. Females were more likely to benefit from an arm movement before the decision, while males were better if they sat still beforehand. Overall, children made quite a few errors when assessing the plausibility of sentences, but the female participants more often gave plausibility assessments that deviated from our expectations, especially when processing abstract sentences. It can be assumed that the embodiment of language processing plays some role in 11-year-old children, but is not yet as mature as it is in adults. Especially with regard to the processing of abstract language, the embodied system still has to change and mature in the course of child development.
Collapse
|
35
|
Tamana SK, Tun HM, Konya T, Chari RS, Field CJ, Guttman DS, Becker AB, Moraes TJ, Turvey SE, Subbarao P, Sears MR, Pei J, Scott JA, Mandhane PJ, Kozyrskyj AL. Bacteroides-dominant gut microbiome of late infancy is associated with enhanced neurodevelopment. Gut Microbes 2021; 13:1-17. [PMID: 34132157 PMCID: PMC8210878 DOI: 10.1080/19490976.2021.1930875] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Dysbiosis of gut microbiota has been retrospectively linked to autism spectrum disorders but the temporal association between gut microbiota and early neurodevelopment in healthy infants is largely unknown. We undertook this study to determine associations between gut microbiota at two critical periods during infancy and neurodevelopment in a general population birth cohort.Here, we analyzed data from 405 infants (199 females) from the CHILD (Canadian Healthy Infant Longitudinal Development) Cohort Study. Neurodevelopmental outcomes were objectively assessed using the Bayley Scale of Infant Development (BSID-III) at 1 and 2 years of age. Microbiota profiling with 16S rRNA gene sequencing was conducted on fecal samples obtained at a mean age of 4 and 12 months.Using clustering methods, we identified three groups of infants based on relative abundance of gut microbiota at 12 months: Proteobacteria-dominant cluster (22.4% higher abundance at 12 months), Firmicutes-dominant cluster (46.0% higher abundance at 12 months) and Bacteroidetes-dominant cluster (31.6% higher abundance at 12 months). Relative to the Proteobacteria-dominant cluster, the Bacteroidetes-dominant cluster was associated with higher scores for cognitive (4.8 points; FDRp = .02), language (4.2 points; FDRp≤0.001), and motor (3.1 points; FDRp = .03) development at age 2 in models adjusted for covariates. When stratified by sex, only male infants with a Bacteroidetes-dominant microbiota had more favorable cognitive (5.9 points, FDRp = .06) and language (7.9 points; FDRp≤0.001) development. Genus Bacteroides abundance in gut microbiota was positively correlated with cognitive and language scores at age 2. Fully adjusted linear mixed model analysis revealed a positive association between Bacteroidetes-dominant cluster and change in cognitive and language performance from 1 to 2 years, predominantly among males. No associations were evident between 4-month microbiota clusters and BSID-II scores. Noteworthy is that enhanced sphingolipid synthesis and metabolism, and antagonism or competition between Bacteroides and Streptococcus were characteristic of a Bacteroidetes-dominant gut microbiota.This study found strong evidence of positive associations between Bacteroidetes gut microbiota in late infancy and subsequent neurodevelopment, most prominently among males but not females.
Collapse
Affiliation(s)
| | - Hein M. Tun
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada,HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Theodore Konya
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Radha S. Chari
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB, Canada
| | - Catherine J. Field
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - David S. Guttman
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, Canada
| | - Allan B. Becker
- Department of Pediatrics & Child Health, Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
| | - Theo J. Moraes
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Stuart E. Turvey
- Department of Pediatrics, Child & Family Research Institute, BC Children’s Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Padmaja Subbarao
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Malcolm R. Sears
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Jacqueline Pei
- Department of Educational Psychology, University of Alberta, Edmonton, AB, Canada
| | - James A. Scott
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Piush J. Mandhane
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Anita L. Kozyrskyj
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada,CONTACT Anita L. Kozyrskyj Department of Pediatrics, University of Alberta, 3-527 Edmonton Clinic Health Academy, 11405-87th Ave, Edmonton, ABT6G 1C9, Canada
| |
Collapse
|
36
|
Yu Q, Peng Y, Kang H, Peng Q, Ouyang M, Slinger M, Hu D, Shou H, Fang F, Huang H. Differential White Matter Maturation from Birth to 8 Years of Age. Cereb Cortex 2021; 30:2673-2689. [PMID: 31819951 PMCID: PMC7175013 DOI: 10.1093/cercor/bhz268] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/23/2019] [Accepted: 09/17/2019] [Indexed: 12/14/2022] Open
Abstract
Comprehensive delineation of white matter (WM) microstructural maturation from birth to childhood is critical for understanding spatiotemporally differential circuit formation. Without a relatively large sample of datasets and coverage of critical developmental periods of both infancy and early childhood, differential maturational charts across WM tracts cannot be delineated. With diffusion tensor imaging (DTI) of 118 typically developing (TD) children aged 0–8 years and 31 children with autistic spectrum disorder (ASD) aged 2–7 years, the microstructure of every major WM tract and tract group was measured with DTI metrics to delineate differential WM maturation. The exponential model of microstructural maturation of all WM was identified. The WM developmental curves were separated into fast, intermediate, and slow phases in 0–8 years with distinctive time period of each phase across the tracts. Shorter periods of the fast and intermediate phases in certain tracts, such as the commissural tracts, indicated faster earlier development. With TD WM maturational curves as the reference, higher residual variance of WM microstructure was found in children with ASD. The presented comprehensive and differential charts of TD WM microstructural maturation of all major tracts and tract groups in 0–8 years provide reference standards for biomarker detection of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Qinlin Yu
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yun Peng
- Department of Radiology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Huiying Kang
- Department of Radiology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Qinmu Peng
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Minhui Ouyang
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Michelle Slinger
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Di Hu
- Department of Radiology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Haochang Shou
- Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, PA, USA
| | - Fang Fang
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing 100871, China.,Key Laboratory of Machine Perception, Peking University, Beijing 100871, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.,PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Hao Huang
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
37
|
Buyanova IS, Arsalidou M. Cerebral White Matter Myelination and Relations to Age, Gender, and Cognition: A Selective Review. Front Hum Neurosci 2021; 15:662031. [PMID: 34295229 PMCID: PMC8290169 DOI: 10.3389/fnhum.2021.662031] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/02/2021] [Indexed: 12/22/2022] Open
Abstract
White matter makes up about fifty percent of the human brain. Maturation of white matter accompanies biological development and undergoes the most dramatic changes during childhood and adolescence. Despite the advances in neuroimaging techniques, controversy concerning spatial, and temporal patterns of myelination, as well as the degree to which the microstructural characteristics of white matter can vary in a healthy brain as a function of age, gender and cognitive abilities still exists. In a selective review we describe methods of assessing myelination and evaluate effects of age and gender in nine major fiber tracts, highlighting their role in higher-order cognitive functions. Our findings suggests that myelination indices vary by age, fiber tract, and hemisphere. Effects of gender were also identified, although some attribute differences to methodological factors or social and learning opportunities. Findings point to further directions of research that will improve our understanding of the complex myelination-behavior relation across development that may have implications for educational and clinical practice.
Collapse
Affiliation(s)
- Irina S. Buyanova
- Neuropsy Lab, HSE University, Moscow, Russia
- Center for Language and Brain, HSE University, Moscow, Russia
| | - Marie Arsalidou
- Neuropsy Lab, HSE University, Moscow, Russia
- Cognitive Centre, Sirius University of Science and Technology, Sochi, Russia
- Department of Psychology, York University, Toronto, ON, Canada
| |
Collapse
|
38
|
Dean DC, Madrid A, Planalp EM, Moody JF, Papale LA, Knobel KM, Wood EK, McAdams RM, Coe CL, Hill Goldsmith H, Davidson RJ, Alisch RS, Kling PJ. Cord blood DNA methylation modifications in infants are associated with white matter microstructure in the context of prenatal maternal depression and anxiety. Sci Rep 2021; 11:12181. [PMID: 34108589 PMCID: PMC8190282 DOI: 10.1038/s41598-021-91642-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
Maternal and environmental factors influence brain networks and architecture via both physiological pathways and epigenetic modifications. In particular, prenatal maternal depression and anxiety symptoms appear to impact infant white matter (WM) microstructure, leading us to investigate whether epigenetic modifications (i.e., DNA methylation) contribute to these WM differences. To determine if infants of women with depression and anxiety symptoms exhibit epigenetic modifications linked to neurodevelopmental changes, 52 umbilical cord bloods (CBs) were profiled. We observed 219 differentially methylated genomic positions (DMPs; FDR p < 0.05) in CB that were associated with magnetic resonance imaging measures of WM microstructure at 1 month of age and in regions previously described to be related to maternal depression and anxiety symptoms. Genomic characterization of these associated DMPs revealed 143 unique genes with significant relationships to processes involved in neurodevelopment, GTPase activity, or the canonical Wnt signaling pathway. Separate regression models for female (n = 24) and male (n = 28) infants found 142 associated DMPs in females and 116 associated DMPs in males (nominal p value < 0.001, R > 0.5), which were annotated to 98 and 81 genes, respectively. Together, these findings suggest that umbilical CB DNA methylation levels at birth are associated with 1-month WM microstructure.
Collapse
Affiliation(s)
- Douglas C Dean
- Department of Pediatrics, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, USA.,Department of Medical Physics, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, WI, USA.,Waisman Center, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Andy Madrid
- Department of Neurosurgery, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Elizabeth M Planalp
- Waisman Center, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, WI, USA.,Department of Psychology, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Jason F Moody
- Department of Medical Physics, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Ligia A Papale
- Department of Neurosurgery, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Karla M Knobel
- Waisman Center, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Elizabeth K Wood
- Harlow Center for Biological Psychology, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Ryan M McAdams
- Department of Pediatrics, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, USA
| | - Christopher L Coe
- Waisman Center, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, WI, USA.,Department of Psychology, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, WI, USA.,Harlow Center for Biological Psychology, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - H Hill Goldsmith
- Waisman Center, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, WI, USA.,Department of Psychology, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Richard J Davidson
- Waisman Center, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, WI, USA.,Department of Psychology, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, WI, USA.,Center for Healthy Minds, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, WI, USA.,Department of Psychiatry, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Reid S Alisch
- Department of Neurosurgery, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, WI, USA.
| | - Pamela J Kling
- Department of Pediatrics, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, USA
| |
Collapse
|
39
|
Campbell KSJ, Williams LJ, Bjornson BH, Weik E, Brain U, Grunau RE, Miller SP, Oberlander TF. Prenatal antidepressant exposure and sex differences in neonatal corpus callosum microstructure. Dev Psychobiol 2021; 63:e22125. [PMID: 33942888 DOI: 10.1002/dev.22125] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 11/09/2022]
Abstract
Prenatal exposure to selective serotonin reuptake inhibitor (SSRI) antidepressants may influence white matter (WM) development, as previous studies report widespread microstructural alterations and reduced interhemispheric connectivity in SSRI-exposed infants. In rodents, perinatal SSRIs had sex-specific disruptions in corpus callosum (CC) axon architecture and connectivity; yet it is unknown whether SSRI-related brain outcomes in humans are sex specific. In this study, the neonate CC was selected as a region-of-interest to investigate whether prenatal SSRI exposure has sex-specific effects on early WM microstructure. On postnatal day 7, diffusion tensor imaging was used to assess WM microstructure in SSRI-exposed (n = 24; 12 male) and nonexposed (n = 48; 28 male) term-born neonates. Fractional anisotropy was extracted from CC voxels and a multivariate discriminant analysis was used to identify latent patterns differing between neonates grouped by SSRI-exposure and sex. Analysis revealed localized variations in CC fractional anisotropy that significantly discriminated neonate groups and correctly predicted group membership with an 82% accuracy. Such effects were identified across three dimensions, representing sex differences in SSRI-exposed neonates (genu, splenium), SSRI-related effects independent of sex (genu-to-rostral body), and sex differences in nonexposed neonates (isthmus-splenium, posterior midbody). Our findings suggest that CC microstructure may have a sex-specific, localized, developmental sensitivity to prenatal SSRI exposure.
Collapse
Affiliation(s)
- Kayleigh S J Campbell
- BC Children's Hospital Research Institute, Vancouver, Canada.,Department of Obstetrics & Gynaecology, University of British Columbia, Vancouver, Canada
| | | | - Bruce H Bjornson
- BC Children's Hospital Research Institute, Vancouver, Canada.,Department of Pediatrics, University of British Columbia, Vancouver, Canada
| | - Ella Weik
- BC Children's Hospital Research Institute, Vancouver, Canada
| | - Ursula Brain
- BC Children's Hospital Research Institute, Vancouver, Canada.,Department of Pediatrics, University of British Columbia, Vancouver, Canada
| | - Ruth E Grunau
- BC Children's Hospital Research Institute, Vancouver, Canada.,Department of Pediatrics, University of British Columbia, Vancouver, Canada
| | - Steven P Miller
- Department of Pediatrics, The Hospital for Sick Children and the University of Toronto, Toronto, Canada
| | - Tim F Oberlander
- BC Children's Hospital Research Institute, Vancouver, Canada.,Department of Pediatrics, University of British Columbia, Vancouver, Canada
| |
Collapse
|
40
|
Alvarez-Alonso MJ, de-la-Peña C, Ortega Z, Scott R. Boys-Specific Text-Comprehension Enhancement With Dual Visual-Auditory Text Presentation Among 12-14 Years-Old Students. Front Psychol 2021; 12:574685. [PMID: 33897513 PMCID: PMC8062718 DOI: 10.3389/fpsyg.2021.574685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 03/12/2021] [Indexed: 11/13/2022] Open
Abstract
Quality of language comprehension determines performance in all kinds of activities including academics. Processing of words initially develops as auditory, and gradually extends to visual as children learn to read. School failure is highly related to listening and reading comprehension problems. In this study we analyzed sex-differences in comprehension of texts in Spanish (standardized reading test PROLEC-R) in three modalities (visual, auditory, and both simultaneously: dual-modality) presented to 12-14-years old students, native in Spanish. We controlled relevant cognitive variables such as attention (d2), phonological and semantic fluency (FAS) and speed of processing (WISC subtest Coding). Girls' comprehension was similar in the three modalities of presentation, however boys were importantly benefited by dual-modality as compared to boys exposed only to visual or auditory text presentation. With respect to the relation of text comprehension and school performance, students with low grades in Spanish showed low auditory comprehension. Interestingly, visual and dual modalities preserved comprehension levels in these low skilled students. Our results suggest that the use of visual-text support during auditory language presentation could be beneficial for low school performance students, especially boys, and encourage future research to evaluate the implementation in classes of the rapidly developing technology of simultaneous speech transcription, that could be, in addition, beneficial to non-native students, especially those recently incorporated into school or newly arrived in a country from abroad.
Collapse
Affiliation(s)
- Maria Jose Alvarez-Alonso
- Departamento de Psicología Evolutiva y Psicobiología, Universidad Internacional de la Rioja, Logroño, Spain
| | - Cristina de-la-Peña
- Departamento de Psicología Evolutiva y Psicobiología, Universidad Internacional de la Rioja, Logroño, Spain
| | - Zaira Ortega
- Departamento de Psicología Evolutiva y Psicobiología, Universidad Internacional de la Rioja, Logroño, Spain
| | - Ricardo Scott
- Departamento de Psicología Evolutiva y Psicobiología, Universidad Internacional de la Rioja, Logroño, Spain.,Departamento de Psicología Evolutiva y Didáctica, Universidad de Alicante, Alicante, Spain
| |
Collapse
|
41
|
Alshami A, Al-Bayati A, Douedi S, Hossain MA, Patel S, Asif A. Clinical characteristics and outcomes of patients admitted to hospitals for posterior reversible encephalopathy syndrome: a retrospective cohort study. BMC Neurol 2021; 21:107. [PMID: 33750332 PMCID: PMC7941613 DOI: 10.1186/s12883-021-02143-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/26/2021] [Indexed: 11/25/2022] Open
Abstract
Background Posterior reversible encephalopathy syndrome (PRES) is usually a benign, yet underdiagnosed clinical condition associated with subacute to acute neurological manifestations primarily affecting white matter. PRES is reversible when recognized promptly and treated early by removal of the insulting factor; however, can lead to irreversible and life-threatening complications such as cerebral hemorrhage, cerebellar herniation, and refractory status epilepticus. Methods We utilized the National Inpatient Sample database provided by the Healthcare Cost and Utilization Project (HCUP-NIS) 2017 to investigate the demographic variables (age, sex, and race) for patients with PRES, concomitant comorbidities and conditions, inpatient complications, inpatient mortality, length of stay (LOS), and disposition. Results A total of 635 admissions for patients aged 18 years or older with PRES were identified. The mean age was 57.2 ± 0.6 years old with most encounters for female patients (71.7%, n = 455) and white as the most prevalent race. Half the patients in our study presented with seizures (50.1%, n = 318), sixty-three patients (9.9%) presented with vision loss, and sixty-four patients (10.1%) had speech difficulty. In addition, 45.5% of patients had hypertensive crisis (n = 289). 2.2% of hospitalizations had death as the outcome (n = 14). The mean LOS was 8.2 (±0.3) days, and the mean total charges were $92,503 (±$5758). Inpatient mortality differed between males and females (1.7% vs. 2.4%) and by race (3.6% in black vs. 1.8% in white) but was ultimately determined to be not statistically significant. Most patients who present with vision disturbance have a high risk of intracranial hemorrhage. Furthermore, end-stage renal disease, atrial fibrillation, and malignancy seemed to be linked with a very high risk of mortality. Conclusion PRES, formerly known as reversible posterior leukoencephalopathy, is a neurological disorder with variable presenting symptoms. Although it is generally a reversible condition, some patients suffer significant morbidity and even mortality. To the best of our knowledge, this is the largest retrospective cohort of PRES admissions that raises clinician awareness of clinical characteristics and outcomes of this syndrome.
Collapse
Affiliation(s)
- Abbas Alshami
- Department of Medicine, Jersey Shore University Medical Center, Neptune, NJ, 07753, USA
| | - Asseel Al-Bayati
- Department of Medicine, Jersey Shore University Medical Center, Neptune, NJ, 07753, USA
| | - Steven Douedi
- Department of Medicine, Jersey Shore University Medical Center, Neptune, NJ, 07753, USA.
| | - Mohammad A Hossain
- Department of Medicine, Jersey Shore University Medical Center, Neptune, NJ, 07753, USA
| | - Swapnil Patel
- Department of Medicine, Jersey Shore University Medical Center, Neptune, NJ, 07753, USA
| | - Arif Asif
- Department of Medicine, Jersey Shore University Medical Center, Neptune, NJ, 07753, USA
| |
Collapse
|
42
|
Corrigan NM, Yarnykh VL, Hippe DS, Owen JP, Huber E, Zhao TC, Kuhl PK. Myelin development in cerebral gray and white matter during adolescence and late childhood. Neuroimage 2020; 227:117678. [PMID: 33359342 PMCID: PMC8214999 DOI: 10.1016/j.neuroimage.2020.117678] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 01/07/2023] Open
Abstract
Myelin development during adolescence is becoming an area of growing interest in view of its potential relationship to cognition, behavior, and learning. While recent investigations suggest that both white matter (WM) and gray matter (GM) undergo protracted myelination during adolescence, quantitative relations between myelin development in WM and GM have not been previously studied. We quantitatively characterized the dependence of cortical GM, WM, and subcortical myelin density across the brain on age, gender, and puberty status during adolescence with the use of a novel macromolecular proton fraction (MPF) mapping method. Whole-brain MPF maps from a cross-sectional sample of 146 adolescents (age range 9–17 years) were collected. Myelin density was calculated from MPF values in GM and WM of all brain lobes, as well as in subcortical structures. In general, myelination of cortical GM was widespread and more significantly correlated with age than that of WM. Myelination of GM in the parietal lobe was found to have a significantly stronger age dependence than that of GM in the frontal, occipital, temporal and insular lobes. Myelination of WM in the temporal lobe had the strongest association with age as compared to WM in other lobes. Myelin density was found to be higher in males as compared to females when averaged across all cortical lobes, as well as in a bilateral subcortical region. Puberty stage was significantly correlated with myelin density in several cortical areas and in the subcortical GM. These findings point to significant differences in the trajectories of myelination of GM and WM across brain regions and suggest that cortical GM myelination plays a dominant role during adolescent development.
Collapse
Affiliation(s)
- Neva M Corrigan
- Institute for Learning & Brain Sciences, University of Washington, Box 357988, Portage Bay Building, Seattle WA 98195, United States.
| | - Vasily L Yarnykh
- Department of Radiology, University of Washington, Seattle WA 98195, United States
| | - Daniel S Hippe
- Department of Radiology, University of Washington, Seattle WA 98195, United States
| | - Julia P Owen
- Department of Radiology, University of Washington, Seattle WA 98195, United States
| | - Elizabeth Huber
- Institute for Learning & Brain Sciences, University of Washington, Box 357988, Portage Bay Building, Seattle WA 98195, United States
| | - T Christina Zhao
- Institute for Learning & Brain Sciences, University of Washington, Box 357988, Portage Bay Building, Seattle WA 98195, United States
| | - Patricia K Kuhl
- Institute for Learning & Brain Sciences, University of Washington, Box 357988, Portage Bay Building, Seattle WA 98195, United States
| |
Collapse
|
43
|
Genc S, Malpas CB, Gulenc A, Sciberras E, Efron D, Silk TJ, Seal ML. Longitudinal patterns of white matter fibre density and morphology in children are associated with age and pubertal stage. Dev Cogn Neurosci 2020; 45:100853. [PMID: 32932204 PMCID: PMC7498759 DOI: 10.1016/j.dcn.2020.100853] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/31/2020] [Accepted: 08/24/2020] [Indexed: 12/13/2022] Open
Abstract
The pubertal period involves dynamic white matter development. This period also corresponds with rapid gains in higher cognitive functions including attention, as well as increased risk of developing mental health difficulties. This longitudinal study comprised children aged 9-13 years (n = 130). Diffusion magnetic resonance imaging (dMRI) data were acquired (b = 2800s/mm2, 60 directions) at two time-points. We derived measures of fibre density and morphology using the fixel-based analysis framework and performed a tract-based mixed-effects modelling analysis to understand patterns of white matter development with respect to age, sex, pubertal stage, and the change in pubertal stage. We observed significant increases in apparent fibre density across a large number of white matter pathways, including major association and commissural pathways. We observed a linear relationship between pubertal stage and fibre density and morphology in the right superior longitudinal fasciculus, and fibre morphology in the right inferior longitudinal fasciculus. Finally, we report a significant interaction between the change in pubertal stage and age in the development of fibre density, for left-lateralised association tracts. Overall, white matter development across ages 9-13 years involves the expansion of major white matter fibre pathways, with key association pathways linked with pubertal stage.
Collapse
Affiliation(s)
- Sila Genc
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK; Developmental Imaging, Murdoch Children's Research Institute, Parkville, Australia; Department of Paediatrics, University of Melbourne, Parkville, Australia.
| | - Charles B Malpas
- Developmental Imaging, Murdoch Children's Research Institute, Parkville, Australia; Clinical Outcomes Research Unit (CORe), Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Australia
| | - Alisha Gulenc
- Population Health, Murdoch Children's Research Institute, Parkville, Australia
| | - Emma Sciberras
- Department of Paediatrics, University of Melbourne, Parkville, Australia; Population Health, Murdoch Children's Research Institute, Parkville, Australia; School of Psychology, Deakin University, Geelong, Australia
| | - Daryl Efron
- Population Health, Murdoch Children's Research Institute, Parkville, Australia; The Royal Children's Hospital, Parkville, Australia
| | - Timothy J Silk
- Developmental Imaging, Murdoch Children's Research Institute, Parkville, Australia; School of Psychology, Deakin University, Geelong, Australia
| | - Marc L Seal
- Developmental Imaging, Murdoch Children's Research Institute, Parkville, Australia; Department of Paediatrics, University of Melbourne, Parkville, Australia
| |
Collapse
|
44
|
Hatton SN, Huynh KH, Bonilha L, Abela E, Alhusaini S, Altmann A, Alvim MKM, Balachandra AR, Bartolini E, Bender B, Bernasconi N, Bernasconi A, Bernhardt B, Bargallo N, Caldairou B, Caligiuri ME, Carr SJA, Cavalleri GL, Cendes F, Concha L, Davoodi-bojd E, Desmond PM, Devinsky O, Doherty CP, Domin M, Duncan JS, Focke NK, Foley SF, Gambardella A, Gleichgerrcht E, Guerrini R, Hamandi K, Ishikawa A, Keller SS, Kochunov PV, Kotikalapudi R, Kreilkamp BAK, Kwan P, Labate A, Langner S, Lenge M, Liu M, Lui E, Martin P, Mascalchi M, Moreira JCV, Morita-Sherman ME, O’Brien TJ, Pardoe HR, Pariente JC, Ribeiro LF, Richardson MP, Rocha CS, Rodríguez-Cruces R, Rosenow F, Severino M, Sinclair B, Soltanian-Zadeh H, Striano P, Taylor PN, Thomas RH, Tortora D, Velakoulis D, Vezzani A, Vivash L, von Podewils F, Vos SB, Weber B, Winston GP, Yasuda CL, Zhu AH, Thompson PM, Whelan CD, Jahanshad N, Sisodiya SM, McDonald CR. White matter abnormalities across different epilepsy syndromes in adults: an ENIGMA-Epilepsy study. Brain 2020; 143:2454-2473. [PMID: 32814957 PMCID: PMC7567169 DOI: 10.1093/brain/awaa200] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/07/2020] [Accepted: 04/30/2020] [Indexed: 12/22/2022] Open
Abstract
The epilepsies are commonly accompanied by widespread abnormalities in cerebral white matter. ENIGMA-Epilepsy is a large quantitative brain imaging consortium, aggregating data to investigate patterns of neuroimaging abnormalities in common epilepsy syndromes, including temporal lobe epilepsy, extratemporal epilepsy, and genetic generalized epilepsy. Our goal was to rank the most robust white matter microstructural differences across and within syndromes in a multicentre sample of adult epilepsy patients. Diffusion-weighted MRI data were analysed from 1069 healthy controls and 1249 patients: temporal lobe epilepsy with hippocampal sclerosis (n = 599), temporal lobe epilepsy with normal MRI (n = 275), genetic generalized epilepsy (n = 182) and non-lesional extratemporal epilepsy (n = 193). A harmonized protocol using tract-based spatial statistics was used to derive skeletonized maps of fractional anisotropy and mean diffusivity for each participant, and fibre tracts were segmented using a diffusion MRI atlas. Data were harmonized to correct for scanner-specific variations in diffusion measures using a batch-effect correction tool (ComBat). Analyses of covariance, adjusting for age and sex, examined differences between each epilepsy syndrome and controls for each white matter tract (Bonferroni corrected at P < 0.001). Across 'all epilepsies' lower fractional anisotropy was observed in most fibre tracts with small to medium effect sizes, especially in the corpus callosum, cingulum and external capsule. There were also less robust increases in mean diffusivity. Syndrome-specific fractional anisotropy and mean diffusivity differences were most pronounced in patients with hippocampal sclerosis in the ipsilateral parahippocampal cingulum and external capsule, with smaller effects across most other tracts. Individuals with temporal lobe epilepsy and normal MRI showed a similar pattern of greater ipsilateral than contralateral abnormalities, but less marked than those in patients with hippocampal sclerosis. Patients with generalized and extratemporal epilepsies had pronounced reductions in fractional anisotropy in the corpus callosum, corona radiata and external capsule, and increased mean diffusivity of the anterior corona radiata. Earlier age of seizure onset and longer disease duration were associated with a greater extent of diffusion abnormalities in patients with hippocampal sclerosis. We demonstrate microstructural abnormalities across major association, commissural, and projection fibres in a large multicentre study of epilepsy. Overall, patients with epilepsy showed white matter abnormalities in the corpus callosum, cingulum and external capsule, with differing severity across epilepsy syndromes. These data further define the spectrum of white matter abnormalities in common epilepsy syndromes, yielding more detailed insights into pathological substrates that may explain cognitive and psychiatric co-morbidities and be used to guide biomarker studies of treatment outcomes and/or genetic research.
Collapse
Affiliation(s)
- Sean N Hatton
- Department of Neurosciences, Center for Multimodal Imaging and Genetics,
University of California San Diego, La Jolla 92093 CA, USA
| | - Khoa H Huynh
- Center for Multimodal Imaging and Genetics, University of California San
Diego, La Jolla 92093 CA, USA
| | - Leonardo Bonilha
- Department of Neurology, Medical University of South Carolina,
Charleston 29425 SC, USA
| | - Eugenio Abela
- Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry,
Psychology and Neuroscience, Kings College London, London SE5 9NU UK
| | - Saud Alhusaini
- Neurology Department, Yale School of Medicine, New Haven 6510 CT,
USA
- Molecular and Cellular Therapeutics, The Royal College of Surgeons in
Ireland, Dublin, Ireland
| | - Andre Altmann
- Centre of Medical Image Computing, Department of Medical Physics and Biomedical
Engineering, University College London, London WC1V 6LJ, UK
| | - Marina K M Alvim
- Department of Neurology, University of Campinas - UNICAMP, Campinas 13083-888
São Paulo, Brazil
| | - Akshara R Balachandra
- Center for Multimodal Imaging and Genetics, UCSD School of
Medicine, La Jolla 92037 CA, USA
- Boston University School of Medicine, Boston 2118 MA, USA
| | - Emanuele Bartolini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories,
Children’s Hospital A. Meyer-University of Florence, Florence, Italy
- USL Centro Toscana, Neurology Unit, Nuovo Ospedale Santo Stefano,
Prato, Italy
| | - Benjamin Bender
- Department of Diagnostic and Interventional Neuroradiology, University Hospital
Tübingen, Tübingen 72076, Germany
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory, Montreal Neurological Institute, McGill
University, Montreal H3A 2B4 QC, Canada
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, Montreal Neurological Institute, McGill
University, Montreal H3A 2B4 QC, Canada
| | - Boris Bernhardt
- Montreal Neurological Institute, McGill University, Montreal
H3A2B4 QC, Canada
| | - Núria Bargallo
- Magnetic Resonance Image Core Facility, Institut d’Investigacions Biomèdiques
August Pi i Sunyer (IDIBAPS), Barcelona 8036 Barcelona, Spain
| | - Benoit Caldairou
- Neuroimaging of Epilepsy Laboratory, Montreal Neurological Institute, McGill
University, Montreal H3A 2B4 QC, Canada
| | - Maria E Caligiuri
- Neuroscience Research Center, University Magna Graecia, viale Europa,
Germaneto, 88100, Catanzaro, Italy
| | - Sarah J A Carr
- Neuroscience, Institute of Psychiatry, Psychology and
Neuroscience, De Crespigny Park, London SE5 8AF, UK
| | - Gianpiero L Cavalleri
- Royal College of Surgeons in Ireland, School of Pharmacy and Biomolecular
Sciences, Dublin D02 YN77 Ireland
- FutureNeuro Research Centre, Science Foundation Ireland, Dublin
D02 YN77, Ireland
| | - Fernando Cendes
- Department of Neurology, University of Campinas - UNICAMP, Campinas 13083-888
São Paulo, Brazil
| | - Luis Concha
- Institute of Neurobiology, Universidad Nacional Autonoma de
Mexico, Queretaro 76230, Mexico
| | - Esmaeil Davoodi-bojd
- Radiology and Research Administration, Henry Ford Hospital, 1
Detroit 48202 MI, USA
| | - Patricia M Desmond
- Department of Radiology, Royal Melbourne Hospital, University of
Melbourne, Melbourne 3050 Victoria, Australia
| | | | - Colin P Doherty
- Division of Neurology, Trinity College Dublin, TBSI, Pearce
Street, Dublin D02 R590, Ireland
- FutureNeuro SFI Centre for Neurological Disease, RCSI, St Stephen’s
Green, Dublin D02 H903, Ireland
| | - Martin Domin
- Functional Imaging Unit, University Medicine Greifswald,
Greifswald 17475 M/V, Germany
| | - John S Duncan
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of
Neurology, Queen Square, London WC1N 3BG, UK
- MRI Unit, Chalfont Centre for Epilepsy, Chalfont-St-Peter,
Buckinghamshire SL9 0RJ, UK
| | - Niels K Focke
- Clinical Neurophysiology, University Medicine Göttingen, 37099
Göttingen, Germany
- Department of Epileptology, University of Tübingen, 72076
Tübingen, Germany
| | | | - Antonio Gambardella
- Royal College of Surgeons in Ireland, School of Pharmacy and Biomolecular
Sciences, Dublin D02 YN77 Ireland
- Institute of Neurology, University Magna Graecia, 88100,
Catanzaro, Italy
| | | | - Renzo Guerrini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories,
Children’s Hospital A. Meyer-University of Florence, Florence, Italy
| | - Khalid Hamandi
- The Wales Epilepsy Unit, Cardiff and Vale University Health
Board, Cardiff CF144XW, UK
- Brain Research Imaging Centre, Cardiff University, Cardiff CF24
4HQ, UK
| | - Akari Ishikawa
- Department of Neurology, University of Campinas - UNICAMP, Campinas 13083-888
São Paulo, Brazil
| | - Simon S Keller
- Institute of Translational Medicine, University of Liverpool,
Liverpool L69 3BX, UK
- Walton Centre NHS Foundation Trust, Liverpool L9 7LJ, UK
| | - Peter V Kochunov
- Maryland Psychiatric Research Center, 55 Wade Ave, Baltimore
21228, MD, USA
| | - Raviteja Kotikalapudi
- Department of Neurology and Epileptology, University Hospital
Tübingen, Tübingen 72076 BW, Germany
- Department of Diagnostic and Interventional Neuroradiology, University Hospital
Tübingen, Tübingen 72076 BW, Germany
| | - Barbara A K Kreilkamp
- Institute of Translational Medicine, University of Liverpool,
Liverpool L69 3BX, UK
- Walton Centre NHS Foundation Trust, Liverpool L9 7LJ, UK
| | - Patrick Kwan
- Department of Neuroscience, Central Clinical School, Monash
University, Melbourne 3004 Victoria, Australia
- Department of Medicine, University of Melbourne, Royal Melbourne
Hospital, Parkville 3050 Victoria, Australia
| | - Angelo Labate
- Neuroscience Research Center, University Magna Graecia, viale Europa,
Germaneto, 88100, Catanzaro, Italy
- Institute of Neurology, University Magna Graecia, 88100,
Catanzaro, Italy
| | - Soenke Langner
- Institute for Diagnostic Radiology and Neuroradiology, Ernst Moritz Arndt
University Greifswald Faculty of Medicine, Greifswald 17475, Germany
- Institute for Diagnostic and Interventional Radiology, Pediatric and
Neuroradiology, Rostock University Medical Centre, Rostock 18057, Germany
| | - Matteo Lenge
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories,
Children’s Hospital A. Meyer-University of Florence, Florence, Italy
- Functional and Epilepsy Neurosurgery Unit, Children’s Hospital A.
Meyer-University of Florence, Florence 50139, Italy
| | - Min Liu
- Department of Neurology, Montreal Neurological Institute,
Montreal H3A 2B4 QC, Canada
| | - Elaine Lui
- Department of Radiology, Royal Melbourne Hospital, University of
Melbourne, Melbourne 3050 Victoria, Australia
- Department of Medicine and Radiology, University of Melbourne,
3Parkville 3050 Victoria, Australia
| | - Pascal Martin
- Department of Epileptology, University of Tübingen, 72076
Tübingen, Germany
| | - Mario Mascalchi
- Meyer Children Hospital University of Florence, Florence 50130
Tuscany, Italy
| | - José C V Moreira
- Department of Neurology, University of Campinas - UNICAMP, Campinas 13083-888
São Paulo, Brazil
| | - Marcia E Morita-Sherman
- Department of Neurology, University of Campinas - UNICAMP, Campinas 13083-888
São Paulo, Brazil
- Cleveland Clinic, Cleveland 44195 OH, USA
| | - Terence J O’Brien
- Department of Neuroscience, Central Clinical School, Monash
University, Melbourne 3004 Victoria, Australia
- Department of Medicine, University of Melbourne, Royal Melbourne
Hospital, Parkville 3050 Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne 3004 Victoria,
Australia
| | - Heath R Pardoe
- Department of Neurology, New York University School of Medicine,
New York City 10016 NY, USA
| | - José C Pariente
- Magnetic Resonance Image Core Facility, Institut d’Investigacions Biomèdiques
August Pi i Sunyer (IDIBAPS), Barcelona 8036 Barcelona, Spain
| | - Letícia F Ribeiro
- Department of Neurology, University of Campinas - UNICAMP, Campinas 13083-888
São Paulo, Brazil
| | - Mark P Richardson
- Division of Neuroscience, King’s College London, Institute of
Psychiatry, London SE5 8AB, UK
| | - Cristiane S Rocha
- Department of Neurology, University of Campinas - UNICAMP, Campinas 13083-888
São Paulo, Brazil
| | - Raúl Rodríguez-Cruces
- Montreal Neurological Institute, McGill University, Montreal
H3A2B4 QC, Canada
- Institute of Neurobiology, Universidad Nacional Autonoma de
Mexico, Queretaro 76230, Mexico
| | - Felix Rosenow
- Epilepsy Center Frankfurt Rhine-Main, University Hospital Frankfurt,
Germany, Frankfurt 60528 Hesse, Germany
- Center for Personalized Translational Epilepsy Research (CePTER),
Goethe-University Frankfurt, Frankfurt a. M. 60528, Germany
| | - Mariasavina Severino
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Genoa 16147
Liguria, Italy
| | - Benjamin Sinclair
- Department of Medicine, University of Melbourne, Royal Melbourne
Hospital, Parkville 3050 Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne 3004 Victoria,
Australia
| | - Hamid Soltanian-Zadeh
- Radiology and Research Administration, Henry Ford Health System,
Detroit 48202-2692 MI, USA
- School of Electrical and Computer Engineering, University of
Tehran, Tehran 14399-57131, Iran
| | - Pasquale Striano
- IRCCS Istituto Giannina Gaslini, Genoa 16147 Liguria, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal
and Child Health, University of Genova, Genova, Italy
| | - Peter N Taylor
- School of Computing, Newcastle University, Urban Sciences Building, Science
Square, Newcastle upon Tyne NE4 5TG, UK
| | - Rhys H Thomas
- Translational and Clinical Research Institute, Newcastle
University, Newcastle upon Tyne NE2 4HH, UK
- Royal Victoria Infirmary, Newcastle upon Tyne NE1 4LP, UK
| | - Domenico Tortora
- Radiology and Research Administration, Henry Ford Health System,
Detroit 48202-2692 MI, USA
| | - Dennis Velakoulis
- Royal Melbourne Hospital, Melbourne 3050 Victoria, Australia
- University of Melbourne, Parkville, Melbourne 3050 Victoria,
Australia
| | - Annamaria Vezzani
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano
20156 Italy
| | - Lucy Vivash
- Department of Neuroscience, Central Clinical School, Monash
University, Melbourne 3004 Victoria, Australia
- Department of Medicine, University of Melbourne, Royal Melbourne
Hospital, Parkville 3050 Victoria, Australia
| | - Felix von Podewils
- Epilepsy Center, University Medicine Greifswald, Greifswald 17489
Mecklenburg-Vorpommern, Germany
| | - Sjoerd B Vos
- Centre for Medical Image Computing, University College London,
London, WC1V 6LJ, UK
- Epilepsy Society, MRI Unit, Chalfont St Peter, Buckinghamshire,
SL9 0RJ, UK
| | - Bernd Weber
- Institute of Experimental Epileptology and Cognition Research, University of
Bonn, Venusberg Campus 1, Bonn 53127 NRW, Germany
| | - Gavin P Winston
- Epilepsy Society, MRI Unit, Chalfont St Peter, Buckinghamshire,
SL9 0RJ, UK
- Department of Medicine, Division of Neurology, Queen's
University, Kingston K7L 3N6 ON, Canada
- MRI Unit, Chalfont Centre for Epilepsy, Chalfont-St-Peter,
Buckinghamshire, SL9 0RJ UK
| | - Clarissa L Yasuda
- Department of Neurology, University of Campinas - UNICAMP, Campinas 13083-888
São Paulo, Brazil
| | - Alyssa H Zhu
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and
Informatics, USC Keck School of Medicine, Los Angeles 90232 CA, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and
Informatics, USC Keck School of Medicine, Los Angeles 90232 CA, USA
| | - Christopher D Whelan
- Molecular and Cellular Therapeutics, The Royal College of Surgeons in
Ireland, Dublin, Ireland
- Research and Early Development (RED), Biogen Inc., Cambridge, MA
02139, USA
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and
Informatics, USC Keck School of Medicine, Los Angeles 90232 CA, USA
| | - Sanjay M Sisodiya
- MRI Unit, Chalfont Centre for Epilepsy, Chalfont-St-Peter,
Buckinghamshire, SL9 0RJ UK
- Chalfont Centre for Epilepsy, Chalfont-St-Peter, SL9 0RJ Bucks,
UK
| | - Carrie R McDonald
- Department of Psychiatry, Center for Multimodal Imaging and Genetics,
University of California San Diego, La Jolla 92093 CA, USA
| |
Collapse
|
45
|
Schmied A, Soda T, Gerig G, Styner M, Swanson MR, Elison JT, Shen MD, McKinstry RC, Pruett JR, Botteron KN, Estes AM, Dager SR, Hazlett HC, Schultz RT, Piven J, Wolff JJ. Sex differences associated with corpus callosum development in human infants: A longitudinal multimodal imaging study. Neuroimage 2020; 215:116821. [PMID: 32276067 PMCID: PMC7292750 DOI: 10.1016/j.neuroimage.2020.116821] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/21/2020] [Accepted: 03/27/2020] [Indexed: 02/02/2023] Open
Abstract
The corpus callosum (CC) is the largest connective pathway in the human brain, linking cerebral hemispheres. There is longstanding debate in the scientific literature whether sex differences are evident in this structure, with many studies indicating the structure is larger in females. However, there are few data pertaining to this issue in infancy, during which time the most rapid developmental changes to the CC occur. In this study, we examined longitudinal brain imaging data collected from 104 infants at ages 6, 12, and 24 months. We identified sex differences in brain-size adjusted CC area and thickness characterized by a steeper rate of growth in males versus females from ages 6-24 months. In contrast to studies of older children and adults, CC size was larger for male compared to female infants. Based on diffusion tensor imaging data, we found that CC thickness is significantly associated with underlying microstructural organization. However, we observed no sex differences in the association between microstructure and thickness, suggesting that the role of factors such as axon density and/or myelination in determining CC size is generally equivalent between sexes. Finally, we found that CC length was negatively associated with nonverbal ability among females.
Collapse
Affiliation(s)
- Astrid Schmied
- Department of Educational Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Takahiro Soda
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Guido Gerig
- Department of Computer Science & Engineering, New York University, New York City, NY, USA
| | - Martin Styner
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Meghan R Swanson
- School of Behavioral & Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Jed T Elison
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA
| | - Mark D Shen
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Robert C McKinstry
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - John R Pruett
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Kelly N Botteron
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Annette M Estes
- Department of Speech and Hearing Sciences, University of Washington, Seattle, WA, USA
| | - Stephen R Dager
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Heather C Hazlett
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Robert T Schultz
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph Piven
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Jason J Wolff
- Department of Educational Psychology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
46
|
Mondello S, Guedes VA, Lai C, Jeromin A, Bazarian JJ, Gill JM. Sex Differences in Circulating T-Tau Trajectories After Sports-Concussion and Correlation With Outcome. Front Neurol 2020; 11:651. [PMID: 32733367 PMCID: PMC7358531 DOI: 10.3389/fneur.2020.00651] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/02/2020] [Indexed: 12/24/2022] Open
Abstract
Sex differences in molecular biomarkers after sports-related concussion (SRC) could steadily advance our understanding of injury heterogeneity and complexity, and help capture phenotypic characteristics, by unveiling sex-dependent pathobiological processes and disease mechanisms. Such knowledge will help improve diagnosis, clinical management, and prognosis. Total-tau (t-tau) has recently emerged as a promising blood marker showing sex-associated differences in neurodegenerative diseases. Nonetheless, to date, little is known about the potential influence of sex on its injury-related concentration and dynamics after SRC. We hypothesized that measurements of circulating levels of t-tau over time would reflect a differential vulnerability signature, providing insights into the sex-related phenotypes and their relationship with clinical outcomes. To test this hypothesis, plasma levels of t-tau were measured using an ultrasensitive immunoassay up to 7 days after injury, in 46 concussed athletes (20 males, 26 females). We used trajectory analysis to generate two distinct temporal profiles of t-tau, which were then compared with gender and return to play (RTP). The majority of subjects (~63%) started with low t-tau concentrations that further declined within the first 48 h; while the remaining (“maximal decliners”) started with concentrations comparable to the baseline levels that also fell over time, but persisting markedly higher compared with the first profile. The maximal decliner group was primarily composed of female subjects (p = 0.007) and was significantly associated with poor outcome (RTP ≥ 10 days after concussion) (p = 0.011). Taken together, our data provide evidence for the existence of sex-related biosignatures following sports-related concussions, possibly indicating a differential effect as a result of distinct brain vulnerability and inherent injury response. Future studies will be required to further elucidate underlying sex-based biological and pathophysiological mechanisms, and determine the value of t-tau signatures for management and therapeutic decision-making in sports-related concussions.
Collapse
Affiliation(s)
- Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Vivian A Guedes
- National Institutes of Health, National Institute of Nursing Research, Bethesda, MD, United States
| | - Chen Lai
- National Institutes of Health, National Institute of Nursing Research, Bethesda, MD, United States
| | | | - Jeffrey J Bazarian
- University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Jessica M Gill
- Cohen Veterans Biosciences, Cambridge, MA, United States
| |
Collapse
|
47
|
Gorham LS, Barch DM. White Matter Tract Integrity, Involvement in Sports, and Depressive Symptoms in Children. Child Psychiatry Hum Dev 2020; 51:490-501. [PMID: 31983035 PMCID: PMC7448287 DOI: 10.1007/s10578-020-00960-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/15/2019] [Accepted: 01/18/2020] [Indexed: 12/15/2022]
Abstract
White matter tract integrity, measured via fractional anisotropy (FA), may serve as a mediating variable between exercise and depression. To study this, we examined data from 3973 children participating in the ABCD study. Parents of children completed the Sports and Activities questionnaire and the Child Behavior Checklist, and children completed a diffusion MRI scan, providing information about the FA of the parahippocampal cingulum and fornix. Results showed that involvement in sports was associated with reduced depression in boys. The number of activities and sports that a child was involved in was negatively related to FA of the left fornix but was unrelated to FA of other tracts. FA of these white matter tracts was also unrelated to depressive symptoms. This suggests that while white matter tract integrity is associated with exercise, it may not be part of a pathway linking exercise to depression levels in preadolescent boys.
Collapse
Affiliation(s)
- Lisa S Gorham
- Departments of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MI, USA.
- National Institute of Mental Health, BG 10 RM B1D43, 10 Center Drive, Bethesda, MD, 20814, USA.
| | - Deanna M Barch
- Departments of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MI, USA
- Departments of Psychiatry, Washington University in St. Louis, St. Louis, MI, USA
- Departments of Radiology, Washington University in St. Louis, St. Louis, MI, USA
| |
Collapse
|
48
|
Kangiser MM, Thomas AM, Kaiver CM, Lisdahl KM. Nicotine Effects on White Matter Microstructure in Young Adults. Arch Clin Neuropsychol 2020; 35:10-21. [PMID: 31009035 DOI: 10.1093/arclin/acy101] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 03/11/2018] [Accepted: 12/06/2018] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE Nicotine use is widely prevalent among youth, and is associated with white matter microstructural changes as measured by diffusion tensor imaging (DTI). In adults, nicotine use is generally associated with lower fractional anisotropy (FA), but in adolescents/young adults (≤30 years), microstructure appears healthier, indicated by higher FA. This cross-sectional study examined associations between nicotine use and white matter microstructure using fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) in young adults. METHODS Fifty-three participants (18 nicotine users [10 female]/35 controls [17 female]) ages 18-25 underwent MRI scan, neuropsychological battery, toxicology screening, and drug use interview. Nicotine group associations with FA and MD were examined in various white matter tracts. In significant tracts, AD and RD were measured. Exploratory correlations were conducted between significant tracts and verbal memory and sustained attention/working memory performance. RESULTS Nicotine users exhibited significantly lower FA than controls in the left anterior thalamic radiation, left inferior longitudinal fasciculus, left superior longitudinal fasciculus-temporal, and left uncinate fasciculus. In these tracts, AD and RD did not differ, nor did MD differ in any tract. White matter quality was positively correlated with sustained attention/working memory performance. CONCLUSIONS Cigarette smoking may disrupt white matter microstructure. These results are consistent with adult studies, but inconsistent with adolescent/young adult studies, likely due to methodological and sample age differences. Further studies should examine longitudinal effects of nicotine use on white matter microstructure in a larger sample.
Collapse
Affiliation(s)
- Megan M Kangiser
- University of Wisconsin-Milwaukee, Department of Psychology, Milwaukee, WI, USA
| | - Alicia M Thomas
- University of Wisconsin-Milwaukee, Department of Psychology, Milwaukee, WI, USA
| | - Christine M Kaiver
- University of Wisconsin-Milwaukee, Department of Psychology, Milwaukee, WI, USA
| | - Krista M Lisdahl
- University of Wisconsin-Milwaukee, Department of Psychology, Milwaukee, WI, USA
| |
Collapse
|
49
|
Ho TC, Colich NL, Sisk LM, Oskirko K, Jo B, Gotlib IH. Sex differences in the effects of gonadal hormones on white matter microstructure development in adolescence. Dev Cogn Neurosci 2020; 42:100773. [PMID: 32452463 PMCID: PMC7058897 DOI: 10.1016/j.dcn.2020.100773] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 01/27/2020] [Accepted: 02/13/2020] [Indexed: 11/17/2022] Open
Abstract
Adolescence is characterized by rapid brain development in white matter (WM) that is attributed in part to surges in gonadal hormones. To date, however, there have been few longitudinal investigations relating changes in gonadal hormones and WM development in adolescents. We acquired diffusion-weighted MRI to estimate mean fractional anisotropy (FA) from 10 WM tracts and salivary testosterone from 51 females and 29 males (ages 9-14 years) who were matched on pubertal stage and followed, on average, for 2 years. We tested whether interactions between sex and changes in testosterone levels significantly explained changes in FA. We found positive associations between changes in testosterone and changes in FA within the corpus callosum, cingulum cingulate, and corticospinal tract in females (all ps<0.05, corrected) and non-significant associations in males. We also collected salivary estradiol from females and found that increases in estradiol were associated with increases in FA in the left uncinate fasciculus (p = 0.04, uncorrected); however, this effect was no longer significant after accounting for changes in testosterone. Our findings indicate there are sex differences in how changes in testosterone relate to changes in WM microstructure of tracts that support impulse control and emotion regulation across the pubertal transition.
Collapse
Affiliation(s)
- Tiffany C Ho
- Stanford University, Department of Psychology, Stanford, CA, United States; Stanford University, Department of Psychiatry and Behavioral Sciences, Stanford, CA, United States; University of California, San Francisco, Department of Psychiatry & Weill Institute for Neurosciences, San Francisco, CA, United States.
| | - Natalie L Colich
- University of Washington, Department of Psychology, Seattle, WA, United States
| | - Lucinda M Sisk
- Stanford University, Department of Psychology, Stanford, CA, United States; Yale University, Department of Psychology, New Haven, CT, United States
| | - Kira Oskirko
- Stanford University, Department of Psychology, Stanford, CA, United States
| | - Booil Jo
- Stanford University, Department of Psychiatry and Behavioral Sciences, Stanford, CA, United States
| | - Ian H Gotlib
- Stanford University, Department of Psychology, Stanford, CA, United States
| |
Collapse
|
50
|
Frere PB, Vetter NC, Artiges E, Filippi I, Miranda R, Vulser H, Paillère-Martinot ML, Ziesch V, Conrod P, Cattrell A, Walter H, Gallinat J, Bromberg U, Jurk S, Menningen E, Frouin V, Papadopoulos Orfanos D, Stringaris A, Penttilä J, van Noort B, Grimmer Y, Schumann G, Smolka MN, Martinot JL, Lemaître H. Sex effects on structural maturation of the limbic system and outcomes on emotional regulation during adolescence. Neuroimage 2020; 210:116441. [DOI: 10.1016/j.neuroimage.2019.116441] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 11/11/2019] [Accepted: 12/03/2019] [Indexed: 10/25/2022] Open
|