1
|
Wadan AHS, Ahmed MA, Moradikor N. Mapping brain neural networks in stress brain connectivity. PROGRESS IN BRAIN RESEARCH 2025; 291:239-251. [PMID: 40222782 DOI: 10.1016/bs.pbr.2025.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Stress can cause severe damage to the CNS and contribute to an increased risk of neurological and psychiatric disorders. Gaining more insight into the neurobiology of stress is essential to treating neurological disorders associated with stress, which account for a high percentage of the world's disease burden. However, because of complicated variations in stressor types, stress perception, and preceding exposure to stressors, studying the impacts of stress is challenging. Gender, age, and timing are other crucial variables that can influence the stress response. Behavioral, physiological, genetic, and cellular/molecular neuroscience methodologies have all been widely applied in various research contexts to examine the neurobiological impacts of stress. Furthermore, because these approaches are invasive and hence undesirable or impractical for use in humans, they are frequently challenging to adapt to a therapeutic context. As an alternative to invasive procedures, functional neuroimaging approaches are starting to be developed. We discuss in this chapter brain neural networks under stress brain connection.
Collapse
Affiliation(s)
- Al-Hassan Soliman Wadan
- Oral Biology Department, Faculty of Dentistry, Galala University, Galala Plateau, Attaka, Suez Governorate, Egypt.
| | | | - Nasrollah Moradikor
- International Center for Neuroscience Research, Institute for Intelligent Research, Tbilisi, Georgia
| |
Collapse
|
2
|
Kerekes N, Söderström A, Holmberg C, Hedman Ahlström B. Yoga for children and adolescents: A decade-long integrative review on feasibility and efficacy in school-based and psychiatric care interventions. J Psychiatr Res 2024; 180:489-499. [PMID: 39547048 DOI: 10.1016/j.jpsychires.2024.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 09/18/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND There has been a concerning rise in mental illness among children and adolescents. Attention deficit and hyperactivity disorder, autism spectrum disorder, anxiety, and depression are the most prevalent diagnoses in this field. Research suggests that yoga as a complementary treatment offers relief from mental symptoms and has already been successfully applied in adult healthcare settings. OBJECTIVE The objective of this review is to provide an integrative summary of the existing research on the feasibility and effectiveness of yoga as a school-based intervention and complementary intervention in psychiatric care for children and adolescents. METHODS An integrative literature review was conducted, employing a combined quantitative and qualitative approach. The review was based on 16 selected articles, which presented data from more than 1000 children and adolescents aged 5-19 years and encompassed a variety of study designs. Literature searches were carried out systematically and unsystematically in February 2023, across three chosen databases. RESULTS Yoga interventions consistently yielded positive outcomes in multiple domains. In this review, the findings are categorized into five themes: alleviated symptoms of psychiatric conditions; strengthened self-control and behavioral changes; improved cognitive functioning; refined relaxation; enhanced well-being. By improving psychiatric symptoms, enhancing self-control, promoting relaxation, and fostering overall well-being, yoga offers a multifaceted approach toward improving mental and physical health in children and adolescents. CONCLUSION This comprehensive review presents compelling evidence of the positive benefits of yoga as a complementary intervention for a wide range of psychological symptoms and cognitive functions in children and adolescents. In order to further validate and consolidate these findings, there is a pressing need for future studies to provide more robust evidence and a deeper understanding of the effectiveness of yoga as a complementary intervention in this context.
Collapse
Affiliation(s)
- Nóra Kerekes
- Department of Health Sciences, University West, Trollhättan, 461 86, Sweden; Centre for Holistic Psychiatry Research (ChoPy), Mölndal, 431 60, Sweden.
| | - Alexandra Söderström
- Department of Child and Adolescent Psychiatry NU Hospital Group, Trollhättan, 461 73, Sweden.
| | - Christine Holmberg
- Department of Child and Adolescent Psychiatry NU Hospital Group, Trollhättan, 461 73, Sweden.
| | - Britt Hedman Ahlström
- Department of Health Sciences, University West, Trollhättan, 461 86, Sweden; Centre for Holistic Psychiatry Research (ChoPy), Mölndal, 431 60, Sweden.
| |
Collapse
|
3
|
Zhang H, Liu Y, Jiang M, Shen F, Zhu T, Xia D, Li J, Fang S, Li Y, Sun J, Song X, Zhou H, Fan X. Immune-related visual dysfunction in thyroid eye disease: a combined orbital and brain neuroimaging study. Eur Radiol 2024; 34:4516-4526. [PMID: 38112763 DOI: 10.1007/s00330-023-10309-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/10/2023] [Accepted: 09/07/2023] [Indexed: 12/21/2023]
Abstract
OBJECTIVES To investigate the pathological interplay between immunity and the visual processing system (VPS) in thyroid eye disease (TED). METHODS A total of 24 active patients (AP), 26 inactive patients (IP) of TED, and 27 healthy controls (HCs) were enrolled. Orbital magnetic resonance imaging (MRI) and resting-state functional MRI (rs-fMRI) were conducted for each participant. Multiple MRI parameters of the intraorbital optic nerve (ON) were assessed. The amplitude of low-frequency fluctuations (ALFF) and regional homogeneity (ReHo) were calculated. Correlation analyses were carried out on the above parameters and clinical characteristics. RESULTS Visual functioning scores differentiated between the AP and IP groups. The ON subarachnoid space and ON sheath diameter were significantly higher in AP than in IP. Six vision-related brain regions were identified in TED patients compared with HCs, including right calcarine (CAL.R), right cuneus (CUN.R), left postcentral gyrus (PoCG.L), right middle temporal gyrus (MTG.R), left superior frontal gyrus (SFG.L), and left caudate (CAU.L). The brain activity of MTG.R, SFG.L, and CAU.L differentiated between the AP and IP groups. The correlation analysis revealed a close association among the vision-related brain regions, MRI parameters of ON, and clinical characteristics in AP and IP, respectively. CONCLUSIONS Combined orbital and brain neuroimaging revealed abnormalities of the VPS in TED, which had a close correlation with immune statuses. Vision-related brain regions in TED might be possibly altered by peripheral immunity via a direct or indirect approach. CLINICAL RELEVANCE STATEMENT The discovery of this study explained the disparity of visual dysfunction in TED patients with different immune statuses. With the uncovered neuroimaging markers, early detection and intervention of visual dysfunction could be achieved and potentially benefit TED patients. KEY POINTS • Patients with different immune statuses of thyroid eye disease varied in the presentation of visual dysfunction. • The combined orbital and brain neuroimaging study identified six altered vision-related brain regions, which had a significant correlation with the MRI parameters of the intraorbital optic nerve and immunological characteristics. • Peripheral immunity might possibly give rise to alterations in the central nervous system part of the visual processing system via a direct or indirect approach.
Collapse
Affiliation(s)
- Haiyang Zhang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yuting Liu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Mengda Jiang
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feiyang Shen
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Tianyi Zhu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Duojin Xia
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Jipeng Li
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Sijie Fang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yinwei Li
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Jing Sun
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Xuefei Song
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Huifang Zhou
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| |
Collapse
|
4
|
Mendoza-Halliday D, Xu H, Azevedo FAC, Desimone R. Dissociable neuronal substrates of visual feature attention and working memory. Neuron 2024; 112:850-863.e6. [PMID: 38228138 PMCID: PMC10939754 DOI: 10.1016/j.neuron.2023.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/10/2023] [Accepted: 12/12/2023] [Indexed: 01/18/2024]
Abstract
Attention and working memory (WM) are distinct cognitive functions, yet given their close interactions, it is often assumed that they share the same neuronal mechanisms. We show that in macaques performing a WM-guided feature attention task, the activity of most neurons in areas middle temporal (MT), medial superior temporal (MST), lateral intraparietal (LIP), and posterior lateral prefrontal cortex (LPFC-p) displays attentional modulation or WM coding and not both. One area thought to play a role in both functions is LPFC-p. To test this, we optogenetically inactivated LPFC-p bilaterally during different task periods. Attention period inactivation reduced attentional modulation in LPFC-p, MST, and LIP neurons and impaired task performance. In contrast, WM period inactivation did not affect attentional modulation or performance and minimally affected WM coding. Our results suggest that feature attention and WM have dissociable neuronal substrates and that LPFC-p plays a critical role in feature attention, but not in WM.
Collapse
Affiliation(s)
- Diego Mendoza-Halliday
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Haoran Xu
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Frederico A C Azevedo
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Robert Desimone
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
5
|
Kang K, Xiao Y, Yu H, Diaz MT, Zhang H. Multilingual Language Diversity Protects Native Language Production under Different Control Demands. Brain Sci 2023; 13:1587. [PMID: 38002547 PMCID: PMC10670415 DOI: 10.3390/brainsci13111587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
The use of multiple languages has been found to influence individuals' cognitive abilities. Although some studies have also investigated the effect of multilingualism on non-native language proficiency, fewer studies have focused on how multilingual experience affects native language production. This study investigated the effect of multilingualism on native language production, specifically examining control demands through a semantic Go/No-Go picture naming task. The multilingual experience was quantified using language entropy, which measures the uncertainty and diversity of language use. Control demands were achieved by manipulating the proportion of Go (i.e., naming) trials in different conditions. Results showed that as control demands increased, multilingual individuals exhibited poorer behavioral performance and greater brain activation throughout the brain. Moreover, more diverse language use was associated with higher accuracy in naming and more interconnected brain networks with greater involvement of domain-general neural resources and less domain-specific neural resources. Notably, the varied and balanced use of multiple languages enabled multilingual individuals to respond more efficiently to increased task demands during native language production.
Collapse
Affiliation(s)
- Keyi Kang
- Centre for Cognitive and Brain Sciences, University of Macau, Taipa, Macau SAR, China
- Department of Psychology, University of Macau, Taipa, Macau SAR, China
| | - Yumeng Xiao
- Centre for Cognitive and Brain Sciences, University of Macau, Taipa, Macau SAR, China
| | - Hanxiang Yu
- Centre for Cognitive and Brain Sciences, University of Macau, Taipa, Macau SAR, China
| | - Michele T. Diaz
- Department of Psychology, The Pennsylvania State University, State College, PA 16801, USA
| | - Haoyun Zhang
- Centre for Cognitive and Brain Sciences, University of Macau, Taipa, Macau SAR, China
- Department of Psychology, University of Macau, Taipa, Macau SAR, China
| |
Collapse
|
6
|
Kurtin DL, Araña‐Oiarbide G, Lorenz R, Violante IR, Hampshire A. Planning ahead: Predictable switching recruits task-active and resting-state networks. Hum Brain Mapp 2023; 44:5030-5046. [PMID: 37471699 PMCID: PMC10502652 DOI: 10.1002/hbm.26430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 06/08/2023] [Accepted: 07/05/2023] [Indexed: 07/22/2023] Open
Abstract
Switching is a difficult cognitive process characterised by costs in task performance; specifically, slowed responses and reduced accuracy. It is associated with the recruitment of a large coalition of task-positive regions including those referred to as the multiple demand cortex (MDC). The neural correlates of switching not only include the MDC, but occasionally the default mode network (DMN), a characteristically task-negative network. To unpick the role of the DMN during switching we collected fMRI data from 24 participants playing a switching paradigm that perturbed predictability (i.e., cognitive load) across three switch dimensions-sequential, perceptual, and spatial predictability. We computed the activity maps unique to switch vs. stay trials and all switch dimensions, then evaluated functional connectivity under these switch conditions by computing the pairwise mutual information functional connectivity (miFC) between regional timeseries. Switch trials exhibited an expected cost in reaction time while sequential predictability produced a significant benefit to task accuracy. Our results showed that switch trials recruited a broader activity map than stay trials, including regions of the DMN, the MDC, and task-positive networks such as visual, somatomotor, dorsal, salience/ventral attention networks. More sequentially predictable trials recruited increased activity in the somatomotor and salience/ventral attention networks. Notably, changes in sequential and perceptual predictability, but not spatial predictability, had significant effects on miFC. Increases in perceptual predictability related to decreased miFC between control, visual, somatomotor, and DMN regions, whereas increases in sequential predictability increased miFC between regions in the same networks, as well as regions within ventral attention/ salience, dorsal attention, limbic, and temporal parietal networks. These results provide novel clues as to how DMN may contribute to executive task performance. Specifically, the improved task performance, unique activity, and increased miFC associated with increased sequential predictability suggest that the DMN may coordinate more strongly with the MDC to generate a temporal schema of upcoming task events, which may attenuate switching costs.
Collapse
Affiliation(s)
- Danielle L. Kurtin
- NeuroModulation Lab, Department of Psychology, Faculty of Health and Medical SciencesUniversity of SurreyGuildfordUK
- Department of Brain Sciences, Faculty of MedicineImperial College LondonLondonUK
| | | | - Romy Lorenz
- MRC Cognition and Brain Sciences UnitUniversity of CambridgeCambridgeUK
- The Poldrack LabStanford UniversityStanfordCaliforniaUSA
- Department of NeurophysicsMax‐Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Ines R. Violante
- NeuroModulation Lab, Department of Psychology, Faculty of Health and Medical SciencesUniversity of SurreyGuildfordUK
| | - Adam Hampshire
- Department of Brain Sciences, Faculty of MedicineImperial College LondonLondonUK
| |
Collapse
|
7
|
Cai W, Mizuno Y, Tomoda A, Menon V. Bayesian dynamical system analysis of the effects of methylphenidate in children with attention-deficit/hyperactivity disorder: a randomized trial. Neuropsychopharmacology 2023; 48:1690-1698. [PMID: 37491674 PMCID: PMC10516959 DOI: 10.1038/s41386-023-01668-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/24/2023] [Accepted: 07/11/2023] [Indexed: 07/27/2023]
Abstract
Methylphenidate is a widely used and effective treatment for attention-deficit/hyperactivity disorder (ADHD), yet the underlying neural mechanisms and their relationship to changes in behavior are not fully understood. Specifically, it remains unclear how methylphenidate affects brain and behavioral dynamics, and the interplay between these dynamics, in individuals with ADHD. To address this gap, we used a novel Bayesian dynamical system model to investigate the effects of methylphenidate on latent brain states in 27 children with ADHD and 49 typically developing children using a double-blind, placebo-controlled crossover design. Methylphenidate remediated greater behavioral variability on a continuous performance task in children with ADHD. Children with ADHD exhibited aberrant latent brain state dynamics compared to typically developing children, with a single latent state showing particularly abnormal dynamics, which was remediated by methylphenidate. Additionally, children with ADHD showed brain state-dependent hyper-connectivity in the default mode network, which was also remediated by methylphenidate. Finally, we found that methylphenidate-induced changes in latent brain state dynamics, as well as brain state-related functional connectivity between salience and default mode networks, were correlated with improvements in behavioral variability. Taken together, our findings reveal a novel latent brain state dynamical process and circuit mechanism underlying the therapeutic effects of methylphenidate in childhood ADHD. We suggest that Bayesian dynamical system models may be particularly useful for capturing complex nonlinear changes in neural activity and behavioral variability associated with ADHD. Our approach may be of value to clinicians and researchers investigating the neural mechanisms underlying pharmacological treatment of psychiatric disorders.
Collapse
Affiliation(s)
- Weidong Cai
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, USA.
- Wu Tsai Neuroscience Institute, Stanford University, Stanford, USA.
| | - Yoshifumi Mizuno
- Research Center for Child Mental Development, University of Fukui, Fukui, 910-1193, Japan
- Division of Developmental Higher Brain Functions, United Graduate School of Child Development, University of Fukui, Fukui, 910-1193, Japan
- Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Fukui, 910-1193, Japan
| | - Akemi Tomoda
- Research Center for Child Mental Development, University of Fukui, Fukui, 910-1193, Japan
- Division of Developmental Higher Brain Functions, United Graduate School of Child Development, University of Fukui, Fukui, 910-1193, Japan
- Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Fukui, 910-1193, Japan
| | - Vinod Menon
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, USA.
- Wu Tsai Neuroscience Institute, Stanford University, Stanford, USA.
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, USA.
| |
Collapse
|
8
|
Ren Y, Brown T. Visual Sequence Encoding is Enhanced by Predictable Music Pairing via Modulating Medial Temporal Lobe and Its Connectivity with Frontostriatal Loops. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.01.551506. [PMID: 37577605 PMCID: PMC10418274 DOI: 10.1101/2023.08.01.551506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Listening to music during cognitive activities, such as reading and studying, is very common in human daily life. Therefore, it is important to understand how music interacts with concurrent cognitive functions, particularly memory. Current literature has presented mixed results for whether music can benefit learning in other modalities. Evidence is needed for what neural mechanisms music can tap into to enhance concurrent memory processing. This fMRI study aimed to begin filling this gap by investigating how music of varying predictability levels influences parallel visual sequence encoding performance. Behavioral results suggest that overall, predictable music enhances visual sequential encoding, and this effect increases with the structural regularity and familiarity of music. fMRI results indicate that during visual sequence encoding, music activates traditional music-processing and motor-related areas, but decreases parahippocampal and striatal engagement. This deactivation may indicate a more efficient encoding of visual information when music is present. By comparing music conditions of different structural predictability and familiarity, we probed how this occurs. We demonstrate improved encoding with increased syntactical regularity, which was associated with decreased activity in default mode network and increased activity in inferior temporal gyrus. Furthermore, the temporal schema provided by music familiarity may influence encoding through altered functional connectivity between the prefrontal cortex, medial temporal lobe and striatum. Overall, we propose that pairing music with learning might facilitate memory by reducing neural demands for visual encoding and simultaneously strengthening the connectivity between the medial temporal lobe and frontostriatal loops important for sequencing information. Significance Statement There is considerable interest in what mechanisms can be tapped to improve human memory. Music provides a potential modulator, but few studies have investigated music effects on encoding episodic memory. This study used a novel design to examine how music can influence concurrent visual item sequence encoding. We provided neural data to better understand mechanisms behind potential benefits of music for learning. Our results demonstrated predictable music may help guide parallel learning of sequences in another modality. We found that music might facilitate processing in neural systems associated with visual declarative long-term and working memory, and familiar music might modulate reward circuits and provide a temporal schema which facilitates better encoding of the temporal structure of new non-music information.
Collapse
|
9
|
Mendoza-Halliday D, Xu H, Azevedo FAC, Desimone R. Dissociable neuronal substrates of visual feature attention and working memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.01.530719. [PMID: 36909606 PMCID: PMC10002769 DOI: 10.1101/2023.03.01.530719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Attention and working memory (WM) are distinct cognitive functions, yet given their close interactions, it has been proposed that they share the same neuronal mechanisms. Here we show that in macaques performing a WM-guided feature attention task, the activity of most neurons in areas middle temporal (MT), medial superior temporal (MST), lateral intraparietal (LIP), and posterior lateral prefrontal cortex (LPFC-p) displays either WM coding or attentional modulation, but not both. One area thought to play a role in both functions is LPFC-p. To test this, we optogenetically inactivated LPFC-p bilaterally during the attention or WM periods of the task. Attention period inactivation reduced attentional modulation in LPFC-p, MST, and LIP neurons, and impaired task performance. WM period inactivation did not affect attentional modulation nor performance, and minimally reduced WM coding. Our results suggest that feature attention and WM have dissociable neuronal substrates, and that LPFC-p plays a critical role in attention but not WM.
Collapse
|
10
|
Jung J, Lambon Ralph MA. Distinct but cooperating brain networks supporting semantic cognition. Cereb Cortex 2023; 33:2021-2036. [PMID: 35595542 PMCID: PMC9977382 DOI: 10.1093/cercor/bhac190] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 04/25/2022] [Accepted: 04/07/2022] [Indexed: 02/02/2023] Open
Abstract
Semantic cognition is a complex multifaceted brain function involving multiple processes including sensory, semantic, and domain-general cognitive systems. However, it remains unclear how these systems cooperate with each other to achieve effective semantic cognition. Here, we used independent component analysis (ICA) to investigate the functional brain networks that support semantic cognition. We used a semantic judgment task and a pattern-matching control task, each with 2 levels of difficulty, to disentangle task-specific networks from domain-general networks. ICA revealed 2 task-specific networks (the left-lateralized semantic network [SN] and a bilateral, extended semantic network [ESN]) and domain-general networks including the frontoparietal network (FPN) and default mode network (DMN). SN was coupled with the ESN and FPN but decoupled from the DMN, whereas the ESN was synchronized with the FPN alone and did not show a decoupling with the DMN. The degree of decoupling between the SN and DMN was associated with semantic task performance, with the strongest decoupling for the poorest performing participants. Our findings suggest that human higher cognition is achieved by the multiple brain networks, serving distinct and shared cognitive functions depending on task demands, and that the neural dynamics between these networks may be crucial for efficient semantic cognition.
Collapse
Affiliation(s)
- JeYoung Jung
- School of Psychology, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Matthew A Lambon Ralph
- MRC Cognition and Brain Science Unit (CBU), University of Cambridge, Cambridge, CB2 7EF United Kingdom
| |
Collapse
|
11
|
Seghier ML. Multiple functions of the angular gyrus at high temporal resolution. Brain Struct Funct 2023; 228:7-46. [PMID: 35674917 DOI: 10.1007/s00429-022-02512-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/22/2022] [Indexed: 02/07/2023]
Abstract
Here, the functions of the angular gyrus (AG) are evaluated in the light of current evidence from transcranial magnetic/electric stimulation (TMS/TES) and EEG/MEG studies. 65 TMS/TES and 52 EEG/MEG studies were examined in this review. TMS/TES literature points to a causal role in semantic processing, word and number processing, attention and visual search, self-guided movement, memory, and self-processing. EEG/MEG studies reported AG effects at latencies varying between 32 and 800 ms in a wide range of domains, with a high probability to detect an effect at 300-350 ms post-stimulus onset. A three-phase unifying model revolving around the process of sensemaking is then suggested: (1) early AG involvement in defining the current context, within the first 200 ms, with a bias toward the right hemisphere; (2) attention re-orientation and retrieval of relevant information within 200-500 ms; and (3) cross-modal integration at late latencies with a bias toward the left hemisphere. This sensemaking process can favour accuracy (e.g. for word and number processing) or plausibility (e.g. for comprehension and social cognition). Such functions of the AG depend on the status of other connected regions. The much-debated semantic role is also discussed as follows: (1) there is a strong TMS/TES evidence for a causal semantic role, (2) current EEG/MEG evidence is however weak, but (3) the existing arguments against a semantic role for the AG are not strong. Some outstanding questions for future research are proposed. This review recognizes that cracking the role(s) of the AG in cognition is possible only when its exact contributions within the default mode network are teased apart.
Collapse
Affiliation(s)
- Mohamed L Seghier
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, UAE. .,Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, Abu Dhabi, UAE.
| |
Collapse
|
12
|
Yang P, Wang M, Luo C, Ni X, Li L. Dissociable causal roles of the frontal and parietal cortices in the effect of object location on object identity detection: a TMS study. Exp Brain Res 2022; 240:1445-1457. [PMID: 35301574 DOI: 10.1007/s00221-022-06344-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 03/03/2022] [Indexed: 11/04/2022]
Abstract
According to the spatial congruency advantage, individuals exhibit higher accuracy and shorter reaction times during the visual working memory (VWM) task when VWM test stimuli appear in spatially congruent locations, relative to spatially incongruent locations, during the encoding phase. Functional magnetic resonance imaging studies have revealed changes in right inferior frontal gyrus (rIFG) and right supra-marginal gyrus (rSMG) activity as a function of object location stability. Nevertheless, it remains unclear whether these regions play a role in active object location repositioning or passive early perception of object location stability, and demonstrations of causality are lacking. In this study, we adopted an object identity change-detection task, involving a short train of 10-Hz online repetitive transcranial magnetic stimulations (rTMS) applied at the rIFG or rSMG concurrently with the onset of VWM test stimuli. In two experimental cohorts, we observed an improved accuracy in spatially incongruent high VWM load conditions when the 10 Hz-rTMS was applied at the rIFG compared with that in TMS control conditions, whereas these modulatory effects were not observed for the rSMG. Our results suggest that the rIFG and rSMG play dissociable roles in the spatial congruency effect, whereby the rIFG is engaged in active object location repositioning, while the rSMG is engaged in passive early perception of object location stability.
Collapse
Affiliation(s)
- Ping Yang
- Key Laboratory of Basic Psychological and Cognitive Neuroscience, School of Psychology, Guizhou Normal University, Guiyang, 550025, China.,Department of Radiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Min Wang
- Bioinformatics and BioMedical Bigdata Mining Laboratory, School of Big Health, Guizhou Medical University, Guiyang, 550004, China
| | - Cimei Luo
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Xuejin Ni
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Ling Li
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| |
Collapse
|
13
|
Cai X, Li G, Liu Q, Xiao F, Zhang Y, Wang Y. The Neural Mechanisms of Cognitive Control in the Category Induction Task. Front Psychol 2022; 13:743178. [PMID: 35242072 PMCID: PMC8887600 DOI: 10.3389/fpsyg.2022.743178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 01/20/2022] [Indexed: 11/15/2022] Open
Abstract
According to the conflict monitoring hypothesis, conflict monitoring and inhibitory control in cognitive control mainly cause activity in the anterior cingulate cortex (ACC) and control-related prefrontal cortex (PFC) in many cognitive tasks. However, the role of brain regions in the default mode network (DMN) in cognitive control during category induction tasks is unclear. To test the role of the ACC, PFC, and subregions of the DMN elicited by cognitive control during category induction, a modified category induction task was performed using simultaneous fMRI scanning. The results showed that the left middle frontal gyrus (BA9) and bilateral dorsal ACC/medial frontal gyrus (BA8/32) were sensitive to whether conflict information (with/without) appears, but not to the level of conflict. In addition, the bilateral ventral ACC (BA32), especially the right vACC, a part of the DMN, showed significant deactivation with an increase in cognitive effort depending on working memory. These findings not only offer further evidence for the important role of the dorsolateral PFC and dorsal ACC in cognitive control during categorization but also support the functional distinction of the dorsal/ventral ACC in the category induction task.
Collapse
Affiliation(s)
- Xueli Cai
- Psychological Research and Counseling Center, Southwest Jiaotong University, Chengdu, China
| | - Guo Li
- Psychological Research and Counseling Center, Southwest Jiaotong University, Chengdu, China
| | - Qinxia Liu
- Psychological Research and Counseling Center, Southwest Jiaotong University, Chengdu, China
| | - Feng Xiao
- Department of Education Science, Innovation Center for Fundamental Education Quality Enhancement of Shanxi Province, Shanxi Normal University, Linfen, China
| | - Youxue Zhang
- School of Education and Psychology, Chengdu Normal University, Chengdu, China
| | - Yifeng Wang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| |
Collapse
|
14
|
Sadeghi S, Takeuchi H, Shalani B, Taki Y, Nouchi R, Yokoyama R, Kotozaki Y, Nakagawa S, Sekiguchi A, Iizuka K, Hanawa S, Araki T, Miyauchi CM, Sakaki K, Nozawa T, Ikeda S, Yokota S, Magistro D, Sassa Y, Kawashima R. Brain structures and activity during a working memory task associated with internet addiction tendency in young adults: A large sample study. PLoS One 2021; 16:e0259259. [PMID: 34780490 PMCID: PMC8592411 DOI: 10.1371/journal.pone.0259259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 10/15/2021] [Indexed: 11/19/2022] Open
Abstract
The structural and functional brain characteristics associated with the excessive use of the internet have attracted substantial research attention in the past decade. In current study, we used voxel-based morphometry (VBM) and multiple regression analysis to assess the relationship between internet addiction tendency (IAT) score and regional gray and white matter volumes (rGMVs and rWMVs) and brain activity during a WM task in a large sample of healthy young adults (n = 1,154, mean age, 20.71 ± 1.78 years). We found a significant positive correlation between IAT score and gray matter volume (GMV) of right supramarginal gyrus (rSMG) and significant negative correlations with white matter volume (WMV) of right temporal lobe (sub-gyral and superior temporal gyrus), right sublobar area (extra-nuclear and lentiform nucleus), right cerebellar anterior lobe, cerebellar tonsil, right frontal lobe (inferior frontal gyrus and sub-gyral areas), and the pons. Also, IAT was significantly and positively correlated with brain activity in the default-mode network (DMN), medial frontal gyrus, medial part of the superior frontal gyrus, and anterior cingulate cortex during a 2-back working memory (WM) task. Moreover, whole-brain analyses of rGMV showed significant effects of interaction between sex and the IAT scores in the area spreading around the left anterior insula and left lentiform. This interaction was moderated by positive correlation in women. These results indicate that IAT is associated with (a) increased GMV in rSMG, which is involved in phonological processing, (b) decreased WMV in areas of frontal, sublobar, and temporal lobes, which are involved in response inhibition, and (c) reduced task-induced deactivation of the DMN, indicative of altered attentional allocation.
Collapse
Affiliation(s)
- Saeid Sadeghi
- Institute for Cognitive and Brain Sciences (ICBS), Shahid Beheshti University, Tehran, Iran
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Center of Excellence in Cognitive Neuropsychology, Shahid Beheshti University, Tehran, Iran
| | - Hikaru Takeuchi
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Bita Shalani
- Department of Psychology, Faculty of Humanities, Tarbiat Modares University, Tehran, Iran
| | - Yasuyuki Taki
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Division of Medical Neuroimaging Analysis, Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Department of Radiology and Nuclear Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Rui Nouchi
- Creative Interdisciplinary Research Division, Frontier Research Institute for Interdisciplinary Science, Tohoku University, Sendai, Japan
- Human and Social Response Research Division, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
- Department of Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | | | - Yuka Kotozaki
- Division of Clinical research, Medical-Industry Translational Research Center, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Seishu Nakagawa
- Department of Human Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Department of Psychiatry, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Atsushi Sekiguchi
- Division of Medical Neuroimaging Analysis, Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Department of Human Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Kunio Iizuka
- Department of Psychiatry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Sugiko Hanawa
- Department of Human Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | | | - Carlos Makoto Miyauchi
- Department of Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Kohei Sakaki
- Department of Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Takayuki Nozawa
- Research Center for the Earth Inclusive Sensing Empathizing with Silent Voices, Tokyo Institute of Technology, Tokyo, Japan
- Graduate School of Arts and Sciences, Department of General Systems Studies, The University of Tokyo, Tokyo, Japan
| | - Shigeyuki Ikeda
- Department of Ubiquitous Sensing, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Susumu Yokota
- Division for Experimental Natural Science, Faculty of Arts and Science, Kyushu University, Fukuoka, Japan
| | - Daniele Magistro
- Department of Sport Science, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Yuko Sassa
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Ryuta Kawashima
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Department of Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Department of Human Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|
15
|
Li X, Lipschutz R, Hernandez SM, Biekman B, Shen S, Montgomery DA, Perlman SB, Pollonini L, Bick J. Links between socioeconomic disadvantage, neural function, and working memory in early childhood. Dev Psychobiol 2021; 63:e22181. [PMID: 34423434 DOI: 10.1002/dev.22181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 11/10/2022]
Abstract
Children reared in socioeconomically disadvantaged environments are at risk for academic, cognitive, and behavioral problems. Mounting evidence suggests that childhood adversities, encountered at disproportionate rates in contexts of socioeconomic risk, shape the developing brain in ways that explain disparities. Circuitries that subserve neurocognitive functions related to memory, attention, and cognitive control are especially affected. However, most work showing altered neural function has focused on middle childhood and adolescence. Understanding alterations in brain development during foundational points in early childhood is a key next step. To address this gap, we examined functional near-infrared-spectroscopy-based neural activation during a working memory (WM) task in young children aged 4-7 years (N = 30) who varied in socioeconomic risk exposure. Children who experienced greater disadvantage (lower income to needs ratio and lower Hollingshead index) exhibited lower activation in the lateral prefrontal cortex than children who experienced less to no disadvantage. Variability in prefrontal cortex activation, but not behavioral performance on the WM task, was associated with worse executive functioning in children as reported by parents. These findings add to existing evidence that exposure to early adversity, such as socioeconomic risk, may lead to foundational changes in the developing brain, which increases risk for disparities in functioning across multiple cognitive and social domains.
Collapse
Affiliation(s)
- Xinge Li
- Department of Psychology, University of Houston, Houston, Texas, USA
| | - Rebecca Lipschutz
- Department of Psychology, University of Houston, Houston, Texas, USA
| | | | - Brian Biekman
- Department of Psychology, University of Houston, Houston, Texas, USA
| | - Shutian Shen
- Department of Psychology, University of Houston, Houston, Texas, USA
| | | | - Susan B Perlman
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Luca Pollonini
- Department of Engineering Technology, University of Houston, Houston, Texas, USA
| | - Johanna Bick
- Department of Psychology, University of Houston, Houston, Texas, USA
| |
Collapse
|
16
|
Cai W, Ryali S, Pasumarthy R, Talasila V, Menon V. Dynamic causal brain circuits during working memory and their functional controllability. Nat Commun 2021; 12:3314. [PMID: 34188024 PMCID: PMC8241851 DOI: 10.1038/s41467-021-23509-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 04/30/2021] [Indexed: 02/04/2023] Open
Abstract
Control processes associated with working memory play a central role in human cognition, but their underlying dynamic brain circuit mechanisms are poorly understood. Here we use system identification, network science, stability analysis, and control theory to probe functional circuit dynamics during working memory task performance. Our results show that dynamic signaling between distributed brain areas encompassing the salience (SN), fronto-parietal (FPN), and default mode networks can distinguish between working memory load and predict performance. Network analysis of directed causal influences suggests the anterior insula node of the SN and dorsolateral prefrontal cortex node of the FPN are causal outflow and inflow hubs, respectively. Network controllability decreases with working memory load and SN nodes show the highest functional controllability. Our findings reveal dissociable roles of the SN and FPN in systems control and provide novel insights into dynamic circuit mechanisms by which cognitive control circuits operate asymmetrically during cognition.
Collapse
Affiliation(s)
- Weidong Cai
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA.
| | - Srikanth Ryali
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Ramkrishna Pasumarthy
- Department of Electrical Engineering, Robert Bosch Center of Data Sciences and Artificial Intelligence, Indian Institute of Technology Madras, Chennai, India
| | - Viswanath Talasila
- Department of Electronics and Telecommunication Engineering, Center for Imaging Technologies, M.S. Ramaiah Institute of Technology, Bengaluru, India
| | - Vinod Menon
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
17
|
Mikos A, Malagurski B, Liem F, Mérillat S, Jäncke L. Object-Location Memory Training in Older Adults Leads to Greater Deactivation of the Dorsal Default Mode Network. Front Hum Neurosci 2021; 15:623766. [PMID: 33716693 PMCID: PMC7952529 DOI: 10.3389/fnhum.2021.623766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/20/2021] [Indexed: 12/02/2022] Open
Abstract
Substantial evidence indicates that cognitive training can be efficacious for older adults, but findings regarding training-related brain plasticity have been mixed and vary depending on the imaging modality. Recent years have seen a growth in recognition of the importance of large-scale brain networks on cognition. In particular, task-induced deactivation within the default mode network (DMN) is thought to facilitate externally directed cognition, while aging-related decrements in this neural process are related to reduced cognitive performance. It is not yet clear whether task-induced deactivation within the DMN can be enhanced by cognitive training in the elderly. We previously reported durable cognitive improvements in a sample of healthy older adults (age range = 60-75) who completed 6 weeks of process-based object-location memory training (N = 36) compared to an active control training group (N = 31). The primary aim of the current study is to evaluate whether these cognitive gains are accompanied by training-related changes in task-related DMN deactivation. Given the evidence for heterogeneity of the DMN, we examine task-related activation/deactivation within two separate DMN branches, a ventral branch related to episodic memory and a dorsal branch more closely resembling the canonical DMN. Participants underwent functional magnetic resonance imaging (fMRI) while performing an untrained object-location memory task at four time points before, during, and after the training period. Task-induced (de)activation values were extracted for the ventral and dorsal DMN branches at each time point. Relative to visual fixation baseline: (i) the dorsal DMN was deactivated during the scanner task, while the ventral DMN was activated; (ii) the object-location memory training group exhibited an increase in dorsal DMN deactivation relative to the active control group over the course of training and follow-up; (iii) changes in dorsal DMN deactivation did not correlate with task improvement. These results indicate a training-related enhancement of task-induced deactivation of the dorsal DMN, although the specificity of this improvement to the cognitive task performed in the scanner is not clear.
Collapse
Affiliation(s)
- Ania Mikos
- University Research Priority Program “Dynamics of Healthy Aging”, University of Zurich, Zurich, Switzerland
| | - Brigitta Malagurski
- University Research Priority Program “Dynamics of Healthy Aging”, University of Zurich, Zurich, Switzerland
| | - Franziskus Liem
- University Research Priority Program “Dynamics of Healthy Aging”, University of Zurich, Zurich, Switzerland
| | - Susan Mérillat
- University Research Priority Program “Dynamics of Healthy Aging”, University of Zurich, Zurich, Switzerland
| | - Lutz Jäncke
- University Research Priority Program “Dynamics of Healthy Aging”, University of Zurich, Zurich, Switzerland
- Division of Neuropsychology, Institute of Psychology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
18
|
Weigard A, Wilson SJ, Shapiro Z, Galloway-Long H, Huang-Pollock C. Neural correlates of working memory's suppression of aversive olfactory distraction effects. Brain Imaging Behav 2021; 15:2254-2268. [PMID: 33405095 DOI: 10.1007/s11682-020-00419-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2020] [Indexed: 10/22/2022]
Abstract
Human cognitive performance is often disrupted by distractions related to aversive stimuli and affective states, but, paradoxically, there is also evidence to suggest that high working memory demands reduce the impact of aversive distraction. Previous empirical work suggests this latter effect occurs because working memory demands reduce attention to off-task processes, but the brain regions that mediate this effect remain uncertain. The current study utilizes a novel distraction manipulation involving unpleasant odorants to identify neural structures that buffer performance from aversive distraction under high working memory demands, and to clarify their connectivity in this context. Twenty-one healthy young adults (12 women) completed a verbal n-back task under two levels of load and were concurrently exposed to either room air or aversive odorants. Three brain regions displayed increases in neural responses to olfactory distractors under high load only; the left dorsolateral prefrontal cortex, the left ventrolateral prefrontal cortex and right cerebellar Crus I. Of these regions, only the ventrolateral prefrontal cortex also displayed context-specific connectivity with a region thought to be involved in off-task processes: the dorsomedial prefrontal cortex. Overall, results suggest that, under high working memory demands, areas of the prefrontal cortex and cerebellum shield cognition from aversive distraction, potentially through interactions with brain structures involved in off-task processes.
Collapse
Affiliation(s)
- Alexander Weigard
- Department of Psychiatry, University of Michigan, Rachel Upjohn Building, Ann Arbor, MI, 48109, USA.
| | - Stephen J Wilson
- Department of Psychology, Pennsylvania State University, Moore Building, State College, PA, USA
| | - Zvi Shapiro
- Department of Psychology, Pennsylvania State University, Moore Building, State College, PA, USA
| | - Hilary Galloway-Long
- Department of Psychology, Pennsylvania State University, Moore Building, State College, PA, USA
| | - Cynthia Huang-Pollock
- Department of Psychology, Pennsylvania State University, Moore Building, State College, PA, USA
| |
Collapse
|
19
|
Murayama K, Tomiyama H, Tsuruta S, Ohono A, Kang M, Hasuzawa S, Mizobe T, Kato K, Togao O, Hiwatashi A, Nakao T. Aberrant Resting-State Cerebellar-Cerebral Functional Connectivity in Unmedicated Patients With Obsessive-Compulsive Disorder. Front Psychiatry 2021; 12:659616. [PMID: 33967861 PMCID: PMC8102723 DOI: 10.3389/fpsyt.2021.659616] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/29/2021] [Indexed: 01/05/2023] Open
Abstract
Background: Although abnormality of cerebellar-cerebral functional connectivity at rest in obsessive-compulsive disorder (OCD) has been hypothesized, only a few studies have investigated the neural mechanism. To verify the findings of previous studies, a large sample of patients with OCD was studied because OCD shows possible heterogeneity. Methods: Forty-seven medication-free patients with OCD and 62 healthy controls (HCs) underwent resting-state functional magnetic imaging scans. Seed-based connectivity was examined to investigate differences in cerebellar-cerebral functional connectivity in OCD patients compared with HCs. Correlations between functional connectivity and the severity of obsessive-compulsive symptoms were analyzed. Results: In OCD, we found significantly increased functional connectivity between the right lobule VI and the left precuneus, which is a component of the default mode network (DMN), compared to HCs. However, there was no correlation between the connectivity of the right lobule VI-left precuneus and obsessive-compulsive severity. Conclusions: These findings suggest that altered functional connectivity between the cerebellum and DMN might cause changes in intrinsic large-scale brain networks related to the traits of OCD.
Collapse
Affiliation(s)
- Keitaro Murayama
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hirofumi Tomiyama
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Sae Tsuruta
- Graduate School of Human-Environment Studies, Kyushu University, Fukuoka, Japan.,Karatsu Red Cross Hospital, Karatsu, Japan
| | - Aikana Ohono
- Graduate School of Human-Environment Studies, Kyushu University, Fukuoka, Japan
| | - Mingi Kang
- Graduate School of Human-Environment Studies, Kyushu University, Fukuoka, Japan
| | - Suguru Hasuzawa
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Taro Mizobe
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenta Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Osamu Togao
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akio Hiwatashi
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomohiro Nakao
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
20
|
Boasen J, Giroux F, Duchesneau MO, Sénécal S, Léger PM, Ménard JF. High-fidelity vibrokinetic stimulation induces sustained changes in intercortical coherence during a cinematic experience. J Neural Eng 2020; 17:046046. [PMID: 32756020 DOI: 10.1088/1741-2552/abaca2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE High-fidelity vibrokinetic (HFVK) technology is widely used to enhance the immersiveness of audiovisual (AV) entertainment experiences. However, despite evidence that HFVK technology does subjectively enhance AV immersion, the underlying mechanism has not been clarified. Neurophysiological studies could provide important evidence to illuminate this mechanism, thereby benefiting HFVK stimulus design, and facilitating expansion of HFVK technology. APPROACH We conducted a between-subjects (VK, N = 11; Control, N = 9) exploratory study to measure the effect of HFVK stimulation through an HFVK seat on electroencephalographic cortical activity during an AV cinematic experience. Subjective appreciation of the experience was assessed and incorporated into statistical models exploring the effects of HFVK stimulation across cortical brain areas. We separately analyzed alpha-band (8-12 Hz) and theta-band (5-7 Hz) activities as indices of engagement and sensory processing, respectively. We also performed theta-band (5-7 Hz) coherence analyses using cortical seed areas identified from the theta activity analysis. MAIN RESULTS The right fusiform gyrus, inferiotemporal gyrus, and supramarginal gyrus, known for emotion, AV-spatial, and vestibular processing, were identified as seeds from theta analyses. Coherence from these areas was uniformly enhanced in HFVK subjects in right motor areas, albeit predominantly in those who were appreciative. Meanwhile, compared to control subjects, HFVK subjects exhibited uniform interhemispheric decoherence with the left insula, which is important for self-processing. SIGNIFICANCE The results collectively point to sustained decoherence between sensory and self-processing as a possible mechanism for how HFVK increases immersion, and that coordination of emotional, spatial, and vestibular processing hubs with the motor system may be required for appreciation of the HFVK-enhanced experience. Overall, this study offers the first ever demonstration that HFVK stimulation has a real and sustained effect on brain activity during a cinematic experience.
Collapse
Affiliation(s)
- J Boasen
- Tech3Lab, HEC Montréal, Montréal, Canada. Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Peeters LM, van den Berg M, Hinz R, Majumdar G, Pintelon I, Keliris GA. Cholinergic Modulation of the Default Mode Like Network in Rats. iScience 2020; 23:101455. [PMID: 32846343 PMCID: PMC7452182 DOI: 10.1016/j.isci.2020.101455] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/14/2020] [Accepted: 08/10/2020] [Indexed: 12/21/2022] Open
Abstract
The discovery of the default mode network (DMN), a large-scale brain network that is suppressed during attention-demanding tasks, had major impact in neuroscience. This network exhibits an antagonistic relationship with attention-related networks. A better understanding of the processes underlying modulation of DMN is imperative, as this network is compromised in several neurological diseases. Cholinergic neuromodulation is one of the major regulatory networks for attention, and studies suggest a role in regulation of the DMN. In this study, we unilaterally activated the right basal forebrain cholinergic neurons and observed decreased right intra-hemispheric and interhemispheric FC in the default mode like network (DMLN). Our findings provide critical insights into the interplay between cholinergic neuromodulation and DMLN, demonstrate that differential effects can be exerted between the two hemispheres by unilateral stimulation, and open windows for further studies involving directed modulations of DMN in treatments for diseases demonstrating compromised DMN activity.
Collapse
Affiliation(s)
- Lore M. Peeters
- Bio-Imaging Lab, University of Antwerp, Campus Drie Eiken – Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Monica van den Berg
- Bio-Imaging Lab, University of Antwerp, Campus Drie Eiken – Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Rukun Hinz
- Bio-Imaging Lab, University of Antwerp, Campus Drie Eiken – Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Gaurav Majumdar
- Bio-Imaging Lab, University of Antwerp, Campus Drie Eiken – Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Isabel Pintelon
- Laboratory of Cell Biology and Histology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Georgios A. Keliris
- Bio-Imaging Lab, University of Antwerp, Campus Drie Eiken – Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
22
|
Iordan AD, Cooke KA, Moored KD, Katz B, Buschkuehl M, Jaeggi SM, Polk TA, Peltier SJ, Jonides J, Reuter-Lorenz PA. Neural correlates of working memory training: Evidence for plasticity in older adults. Neuroimage 2020; 217:116887. [PMID: 32376302 PMCID: PMC7755422 DOI: 10.1016/j.neuroimage.2020.116887] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/26/2020] [Accepted: 04/26/2020] [Indexed: 10/24/2022] Open
Abstract
Brain activity typically increases with increasing working memory (WM) load, regardless of age, before reaching an apparent ceiling. However, older adults exhibit greater brain activity and reach ceiling at lower loads than younger adults, possibly reflecting compensation at lower loads and dysfunction at higher loads. We hypothesized that WM training would bolster neural efficiency, such that the activation peak would shift towards higher memory loads after training. Pre-training, older adults showed greater recruitment of the WM network than younger adults across all loads, with decline at the highest load. Ten days of adaptive training on a verbal WM task improved performance and led to greater brain responsiveness at higher loads for both groups. For older adults the activation peak shifted rightward towards higher loads. Finally, training increased task-related functional connectivity in older adults, both within the WM network and between this task-positive network and the task-negative/default-mode network. These results provide new evidence for functional plasticity with training in older adults and identify a potential signature of improvement at the neural level.
Collapse
Affiliation(s)
- Alexandru D Iordan
- Department of Psychology, University of Michigan, 530 Church St, Ann Arbor, MI, 48109, United States.
| | - Katherine A Cooke
- Department of Psychology, University of Michigan, 530 Church St, Ann Arbor, MI, 48109, United States
| | - Kyle D Moored
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, 615 N Wolfe St, Baltimore, MD, 21205, United States
| | - Benjamin Katz
- Department of Human Development and Family Science, Virginia Tech, 295 W Campus Dr, Blacksburg, VA, 24061, United States
| | - Martin Buschkuehl
- MIND Research Institute, 5281 California Ave., Suite 300, Irvine, CA, 92617, United States
| | - Susanne M Jaeggi
- School of Education, University of California, Irvine, 3200 Education Bldg, Irvine, CA, 92697, United States
| | - Thad A Polk
- Department of Psychology, University of Michigan, 530 Church St, Ann Arbor, MI, 48109, United States
| | - Scott J Peltier
- Functional MRI Laboratory, Department of Biomedical Engineering, University of Michigan, 2360 Bonisteel Blvd, Ann Arbor, MI, 48109, United States
| | - John Jonides
- Department of Psychology, University of Michigan, 530 Church St, Ann Arbor, MI, 48109, United States
| | - Patricia A Reuter-Lorenz
- Department of Psychology, University of Michigan, 530 Church St, Ann Arbor, MI, 48109, United States.
| |
Collapse
|
23
|
Wu T, Chen C, Spagna A, Wu X, Mackie M, Russell‐Giller S, Xu P, Luo Y, Liu X, Hof PR, Fan J. The functional anatomy of cognitive control: A domain‐general brain network for uncertainty processing. J Comp Neurol 2020; 528:1265-1292. [DOI: 10.1002/cne.24804] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/12/2019] [Accepted: 10/22/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Tingting Wu
- Department of Psychology, Queens CollegeThe City University of New York Queens New York
| | - Caiqi Chen
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of PsychologySouth China Normal University Guangzhou China
| | - Alfredo Spagna
- Department of PsychologyColumbia University in the City of New York New York New York
| | - Xia Wu
- Faculty of PsychologyTianjin Normal University Tianjin China
| | - Melissa‐Ann Mackie
- Department of Psychiatry and Behavioral SciencesNorthwestern University Feinberg School of Medicine Chicago Illinois
| | - Shira Russell‐Giller
- Department of Psychology, Queens CollegeThe City University of New York Queens New York
| | - Pengfei Xu
- Shenzhen Key Laboratory of Affective and Social Neuroscience, Center for Brain Disorders and Cognitive NeuroscienceShenzhen University Shenzhen China
| | - Yue‐jia Luo
- Shenzhen Key Laboratory of Affective and Social Neuroscience, Center for Brain Disorders and Cognitive NeuroscienceShenzhen University Shenzhen China
| | - Xun Liu
- CAS Key Laboratory of Behavioral Science, Institute of PsychologyUniversity of Chinese Academy of Sciences Beijing China
- Department of PsychologyUniversity of Chinese Academy of Sciences Beijing China
| | - Patrick R. Hof
- Nash Family Department of Neuroscience and Friedman Brain InstituteIcahn School of Medicine at Mount Sinai New York New York
| | - Jin Fan
- Department of Psychology, Queens CollegeThe City University of New York Queens New York
| |
Collapse
|
24
|
EEG microstates associated with intra- and inter-subject alpha variability. Sci Rep 2020; 10:2469. [PMID: 32051420 PMCID: PMC7015936 DOI: 10.1038/s41598-020-58787-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/16/2020] [Indexed: 11/08/2022] Open
Abstract
Variation of the magnitude of posterior alpha rhythm (8-12 Hz) has functional and behavioural effects in sensory processing and cognitive performances. Electrical brain activity, as revealed by electroencephalography (EEG), can be represented by a sequence of microstates of about 40-120 ms duration, in which distributed neural pools are synchronously active and generate stable spatial potential topographies on the scalp. Microstate dynamics may reflect transitions between global states characterized by selective inhibition of specific intra-cortical regions, mediated by alpha activity. We investigated the intra-subject and inter-subject relationship between microstate features and alpha band. High-density EEG signals were acquired in 29 healthy subjects during ten minutes of eyes closed rest. Individual EEG signal epochs were classified into four groups depending on the amount of occipital alpha power, and microstate metrics (duration, coverage and frequency of occurrence) were calculated and compared across groups. Correlations between alpha power and microstate metrics between individuals were also performed. To assess if microstate parameter variations are specific for the alpha band, the same analysis was also performed for theta and beta bands, as well as for global field power. We observed an increase in the metrics of microstate, previously associated to the visual system, with the level of intra-subject amplitude alpha oscillations, together with lower coverage of microstate associated with executive attention network and a higher frequency of microstate associated with task negative network. Other modulation effects of broad-band EEG power level on microstate metrics were observed. These effects are not specific for the alpha band, since they can equally be attributed to fluctuations in other frequency bands. We can interpret our results as a regulation mechanism mediated by posterior alpha level, dynamically interacting with other frequency bands, responsible for the switching between active areas.
Collapse
|
25
|
Koçak OM, Rezakı HÖ, Türkel Y, İnal M, Visal Buturak Ş. Does Generalized Linear Model Support Functional Default Mode Network Studies. ACTA ACUST UNITED AC 2020; 56:277-282. [PMID: 31903037 DOI: 10.29399/npa.23422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 06/10/2019] [Indexed: 11/07/2022]
Abstract
Introduction A growing body of research has emerged on the resting state and the default mode of the brain. Functional connectivity studies, which lately dominate this research area, have confirmed that regions such as the cortical mid-line structures, as well as parietal-temporal regions are tightly interconnected within the default mode network (DMN). However, little is known about the activity patterns of resting state related brain regions detected in fMRI studies using the generalized linear model (GLM) in a whole brain analysis. The aim of the current study was to investigate the activity changes among brain regions identified through GLM during the transition from task to rest and the prolongation of rest. Methods A picture imagination task, as a controlled thought content task, was used in order to minimize confounding factors such as a visual stimulus or a motor response. Results The present study revealed a consistent fluctuating activation pattern of the dorsal anterior cingulate cortex (dACC), the posterior cingulate cortex (PCC), thalamus, primer motor area (PMA), insula, brain stem and bilateral putamen during the transition from task to the early phase of the resting state and the prolongation of the resting state. All regions showed increased activation during the detachment from task. However, this increased activation was not sustained during the extension of rest, replaced with a decreased activation at the late phase of rest. The increased activation of resting state regions might help with the detachment from the current task. Among these regions dACC, insula and putamen were correlated in all conditions. Conclusion These findings underline the importance of the activation increase of the cortical mid-line regions and insula in the transition from task to the resting state.
Collapse
Affiliation(s)
- Orhan Murat Koçak
- Department of Psychiatry, University of Kırıkkale School of Medicine, Kırıkkale, Turkey
| | - Hatice Özdemır Rezakı
- Department of Psychiatry, University of Kırıkkale School of Medicine, Kırıkkale, Turkey
| | - Yakup Türkel
- Department of Neurology, University of Kırıkkale School of Medicine, Kırıkkale, Turkey
| | - Mikail İnal
- Department of Radiology, University of Kırıkkale School of Medicine, Kırıkkale, Turkey
| | - Şadiye Visal Buturak
- Department of Psychiatry, University of Kırıkkale School of Medicine, Kırıkkale, Turkey
| |
Collapse
|
26
|
Jang S, Choi J, Oh J, Yeom J, Hong N, Lee N, Kwon JH, Hong J, Kim JJ, Kim E. Use of Virtual Reality Working Memory Task and Functional Near-Infrared Spectroscopy to Assess Brain Hemodynamic Responses to Methylphenidate in ADHD Children. Front Psychiatry 2020; 11:564618. [PMID: 33551860 PMCID: PMC7859615 DOI: 10.3389/fpsyt.2020.564618] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 12/23/2020] [Indexed: 11/13/2022] Open
Abstract
Virtual reality (VR) neuropsychological tests have emerged as a method to explore drug effects in real-life contexts in attention deficit hyperactivity disorder (ADHD) children. Functional near-infrared spectroscopy (fNIRS) is a useful tool to measure brain activity during VR tasks in ADHD children with motor restlessness. The present study aimed to explore the acute effects of methylphenidate (MPH) on behavioral performance and brain activity during a VR-based working memory task simulating real-life classroom settings in ADHD children. In total, 23 children with ADHD performed a VR n-back task before and 2 h after MPH administration concurrent with measurements of oxygenated hemoglobin signal changes with fNIRS. Altogether, 12 healthy control (HC) subjects participated in the same task but did not receive MPH treatment. Reaction time (RT) was shortened after MPH treatment in the 1-back condition, but changes in brain activation were not observed. In the 2-back condition, activation of the left dorsolateral prefrontal cortex (DLPFC) and bilateral medial prefrontal cortex (mPFC) was decreased alongside behavioral changes such as shorter RT, lower RT variability, and higher accuracy after MPH administration. Bilateral mPFC activation in the 2-back condition inversely correlated with task accuracy in the pre-MPH condition; this inverse correlation was not observed after MPH administration. In ADHD children, deactivation of the default mode network mediated by mPFC reduced during high working memory load, which was restored through MPH treatment. Our results suggest that the combination of VR classroom tasks and fNIRS examination makes it easy to assess drug effects on brain activity in ADHD children in settings simulating real-life.
Collapse
Affiliation(s)
- Sooah Jang
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | | | - Jooyoung Oh
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, South Korea.,Department of Psychiatry, Yonsei University Gangman Severance Hospital, Seoul, South Korea
| | - Jungyeon Yeom
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Narae Hong
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Narae Lee
- College of Medicine, Hallym University, Chuncheon, South Korea
| | - Joon Hee Kwon
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Jieun Hong
- Department of Psychiatry, National Health Insurance Service Ilsan Hospital, Goyang, South Korea
| | - Jae-Jin Kim
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, South Korea.,Department of Psychiatry, Yonsei University Gangman Severance Hospital, Seoul, South Korea
| | - Eunjoo Kim
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, South Korea.,Department of Psychiatry, Yonsei University Gangman Severance Hospital, Seoul, South Korea
| |
Collapse
|
27
|
Eijsker N, Schröder A, Smit DJA, van Wingen G, Denys D. Neural Basis of Response Bias on the Stop Signal Task in Misophonia. Front Psychiatry 2019; 10:765. [PMID: 31708818 PMCID: PMC6819955 DOI: 10.3389/fpsyt.2019.00765] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 09/23/2019] [Indexed: 12/25/2022] Open
Abstract
Objective: Misophonia is a newly described condition in which specific ordinary sounds provoke disproportionately strong negative affect. Since evidence for psychobiological dysfunction underlying misophonia is scarce, we tested whether misophonia patients, like many patients with impulse control or obsessive-compulsive spectrum disorders, show impaired ability to inhibit an ongoing motor response. Methods: We collected functional magnetic resonance imaging data during a stop signal task in 22 misophonia patients and 21 matched healthy controls. Results: Compared to controls, patients tended to show longer stop signal delays, which is the time between stimuli signaling response initiation and inhibition. Additionally, patients tended to activate left dorsolateral prefrontal cortex more during responding rather than successful inhibition, as was seen in controls. Furthermore, patients lacked inhibition success-related activity in posterior cingulate cortices and activated the superior medial frontal gyri less during inhibition success compared to failure, a feature correlated with stop signal delays over the sample. Conclusions: Misophonia patients did not show impaired response inhibition. However, they tended to show a response bias on the stop signal task, favoring accuracy over speed. This implies perfectionism and compulsive, rather than impulsive, behavior. Moreover, brain activations were in line with patients, compared to controls, engaging more cognitive control for slowing responses, while employing more attentional resources for successful inhibition.
Collapse
Affiliation(s)
- Nadine Eijsker
- Department of Psychiatry, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, Netherlands
| | - Arjan Schröder
- Department of Psychiatry, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, Netherlands
| | - Dirk J. A. Smit
- Department of Psychiatry, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, Netherlands
| | - Guido van Wingen
- Department of Psychiatry, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, Netherlands
| | - Damiaan Denys
- Department of Psychiatry, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
28
|
Ngo GH, Eickhoff SB, Nguyen M, Sevinc G, Fox PT, Spreng RN, Yeo BTT. Beyond consensus: Embracing heterogeneity in curated neuroimaging meta-analysis. Neuroimage 2019; 200:142-158. [PMID: 31229658 PMCID: PMC6703957 DOI: 10.1016/j.neuroimage.2019.06.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 05/17/2019] [Accepted: 06/17/2019] [Indexed: 01/08/2023] Open
Abstract
Coordinate-based meta-analysis can provide important insights into mind-brain relationships. A popular approach for curated small-scale meta-analysis is activation likelihood estimation (ALE), which identifies brain regions consistently activated across a selected set of experiments, such as within a functional domain or mental disorder. ALE can also be utilized in meta-analytic co-activation modeling (MACM) to identify brain regions consistently co-activated with a seed region. Therefore, ALE aims to find consensus across experiments, treating heterogeneity across experiments as noise. However, heterogeneity within an ALE analysis of a functional domain might indicate the presence of functional sub-domains. Similarly, heterogeneity within a MACM analysis might indicate the involvement of a seed region in multiple co-activation patterns that are dependent on task contexts. Here, we demonstrate the use of the author-topic model to automatically determine if heterogeneities within ALE-type meta-analyses can be robustly explained by a small number of latent patterns. In the first application, the author-topic modeling of experiments involving self-generated thought (N = 179) revealed cognitive components fractionating the default network. In the second application, the author-topic model revealed that the left inferior frontal junction (IFJ) participated in multiple task-dependent co-activation patterns (N = 323). Furthermore, the author-topic model estimates compared favorably with spatial independent component analysis in both simulation and real data. Overall, the results suggest that the author-topic model is a flexible tool for exploring heterogeneity in ALE-type meta-analyses that might arise from functional sub-domains, mental disorder subtypes or task-dependent co-activation patterns. Code for this study is publicly available (https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/meta-analysis/Ngo2019_AuthorTopic).
Collapse
Affiliation(s)
- Gia H Ngo
- Department of Electrical and Computer Engineering, Clinical Imaging Research Centre, N.1 Institute for Health and Memory Networks Program, National University of Singapore, Singapore; School of Electrical and Computer Engineering, Cornell University, Ithaca, NY, USA
| | - Simon B Eickhoff
- Institute for Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Minh Nguyen
- Department of Electrical and Computer Engineering, Clinical Imaging Research Centre, N.1 Institute for Health and Memory Networks Program, National University of Singapore, Singapore
| | - Gunes Sevinc
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Peter T Fox
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; South Texas Veterans Health Care System, San Antonio, TX, USA
| | - R Nathan Spreng
- Laboratory of Brain and Cognition, Montreal Neurological Institute, McGill University, Montreal, QC, Canada; Departments of Psychiatry and Psychology, McGill University, Montreal, QC, Canada
| | - B T Thomas Yeo
- Department of Electrical and Computer Engineering, Clinical Imaging Research Centre, N.1 Institute for Health and Memory Networks Program, National University of Singapore, Singapore; Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Centre for Cognitive Neuroscience, Duke-NUS Medical School, Singapore; NUS Graduate School for Integrated Sciences and Engineering, National University of Singapore, Singapore.
| |
Collapse
|
29
|
Morita T, Asada M, Naito E. Developmental Changes in Task-Induced Brain Deactivation in Humans Revealed by a Motor Task. Dev Neurobiol 2019; 79:536-558. [PMID: 31136084 PMCID: PMC6771882 DOI: 10.1002/dneu.22701] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/09/2019] [Accepted: 05/23/2019] [Indexed: 12/19/2022]
Abstract
Performing tasks activates relevant brain regions in adults while deactivating task-irrelevant regions. Here, using a well-controlled motor task, we explored how deactivation is shaped during typical human development and whether deactivation is related to task performance. Healthy right-handed children (8-11 years), adolescents (12-15 years), and young adults (20-24 years; 20 per group) underwent functional magnetic resonance imaging with their eyes closed while performing a repetitive button-press task with their right index finger in synchronization with a 1-Hz sound. Deactivation in the ipsilateral sensorimotor cortex (SM1), bilateral visual and auditory (cross-modal) areas, and bilateral default mode network (DMN) progressed with development. Specifically, ipsilateral SM1 and lateral occipital deactivation progressed prominently between childhood and adolescence, while medial occipital (including primary visual) and DMN deactivation progressed from adolescence to adulthood. In adults, greater cross-modal deactivation in the bilateral primary visual cortices was associated with higher button-press timing accuracy relative to the sound. The region-specific deactivation progression in a developmental period may underlie the gradual promotion of sensorimotor function segregation required in the task. Task-induced deactivation might have physiological significance regarding suppressed activity in task-irrelevant regions. Furthermore, cross-modal deactivation develops to benefit some aspects of task performance in adults.
Collapse
Affiliation(s)
- Tomoyo Morita
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), 2A6 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Minoru Asada
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), 2A6 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Eiichi Naito
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), 2A6 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Graduate School of Frontier Biosciences, Osaka University, 1-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
30
|
Skouras S, Scharnowski F. The effects of psychiatric history and age on self-regulation of the default mode network. Neuroimage 2019; 198:150-159. [PMID: 31103786 DOI: 10.1016/j.neuroimage.2019.05.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 04/22/2019] [Accepted: 05/03/2019] [Indexed: 12/16/2022] Open
Abstract
Real-time neurofeedback enables human subjects to learn to regulate their brain activity, effecting behavioral changes and improvements of psychiatric symptomatology. Neurofeedback up-regulation and down-regulation have been assumed to share common neural correlates. Neuropsychiatric pathology and aging incur suboptimal functioning of the default mode network. Despite the exponential increase in real-time neuroimaging studies, the effects of aging, pathology and the direction of regulation on neurofeedback performance remain largely unknown. Using real-time fMRI data shared through the Rockland Sample Real-Time Neurofeedback project (N = 136) and open-access analyses, we first modeled neurofeedback performance and learning in a group of subjects with psychiatric history (na = 74) and a healthy control group (nb = 62). Subsequently, we examined the relationship between up-regulation and down-regulation learning, the relationship between age and neurofeedback performance in each group and differences in neurofeedback performance between the two groups. For interpretative purposes, we also investigated functional connectomics prior to neurofeedback. Results show that in an initial session of default mode network neurofeedback with real-time fMRI, up-regulation and down-regulation learning scores are negatively correlated. This finding is related to resting state differences in the eigenvector centrality of the posterior cingulate cortex. Moreover, age correlates negatively with default mode network neurofeedback performance, only in absence of psychiatric history. Finally, adults with psychiatric history outperform healthy controls in default mode network up-regulation. Interestingly, the performance difference is related to no up-regulation learning in controls. This finding is supported by marginally higher default mode network centrality during resting state, in the presence of psychiatric history.
Collapse
Affiliation(s)
- Stavros Skouras
- Neuroimaging Unit, Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, 08005, Spain; Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, 08005, Spain.
| | - Frank Scharnowski
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zürich, Zürich, 8032, Switzerland; Neuroscience Center Zürich, University of Zürich and Swiss Federal Institute of Technology, Zürich, 8057, Switzerland; Zürich Center for Integrative Human Physiology (ZIHP), University of Zürich, Winterthurerstr. 190, Zürich, 8057, Switzerland; Department of Basic Psychological Research and Research Methods, Faculty of Psychology, University of Vienna, Liebiggasse 5, 1010 Vienna, Austria
| |
Collapse
|
31
|
Zuo N, Salami A, Yang Y, Yang Z, Sui J, Jiang T. Activation-based association profiles differentiate network roles across cognitive loads. Hum Brain Mapp 2019; 40:2800-2812. [PMID: 30854745 DOI: 10.1002/hbm.24561] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 01/03/2023] Open
Abstract
Working memory (WM) is a complex and pivotal cognitive system underlying the performance of many cognitive behaviors. Although individual differences in WM performance have previously been linked to the blood oxygenation level-dependent (BOLD) response across several large-scale brain networks, the unique and shared contributions of each large-scale brain network to efficient WM processes across different cognitive loads remain elusive. Using a WM paradigm and functional magnetic resonance imaging (fMRI) from the Human Connectome Project, we proposed a framework to assess the association and shared-association strength between imaging biomarkers and behavioral scales. Association strength is the capability of individual brain regions to modulate WM performance and shared-association strength measures how different regions share the capability of modulating performance. Under higher cognitive load (2-back), the frontoparietal executive control network (FPN), dorsal attention network (DAN), and salience network showed significant positive activation and positive associations, whereas the default mode network (DMN) showed the opposite pattern, namely, significant deactivation and negative associations. Comparing the different cognitive loads, the DMN and FPN showed predominant associations and globally shared-associations. When investigating the differences in association from lower to higher cognitive loads, the DAN demonstrated enhanced association strength and globally shared-associations, which were significantly greater than those of the other networks. This study characterized how brain regions individually and collaboratively support different cognitive loads.
Collapse
Affiliation(s)
- Nianming Zuo
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Chinese Institute for Brain Research, Beijing, China
| | - Alireza Salami
- Aging Research Center, Karolinska Institute and Stockholm University, Stockholm, Sweden.,Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden.,Department of Integrative Medical Biology, Wallenberg Center for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Yihong Yang
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland
| | - Zhengyi Yang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Jing Sui
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,Key Laboratory for NeuroInformation of the Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.,Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
32
|
Rayhan RU, Washington SD, Garner R, Zajur K, Martinez Addiego F, VanMeter JW, Baraniuk JN. Exercise challenge alters Default Mode Network dynamics in Gulf War Illness. BMC Neurosci 2019; 20:7. [PMID: 30791869 PMCID: PMC6385399 DOI: 10.1186/s12868-019-0488-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 02/12/2019] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Gulf War Illness (GWI) affects 30% of veterans from the 1991 Gulf War and has no known cause. Everyday symptoms include pain, fatigue, migraines, and dyscognition. A striking syndromic feature is post-exertional malaise (PEM). This is recognized as an exacerbation of everyday symptoms following a physically stressful or cognitively demanding activity. The underlying mechanism of PEM is unknown. We previously reported a novel paradigm that possibly captured evidence of PEM by utilizing fMRI scans taken before and after sub-maximal exercises. We hypothesized that A) exercise would be a sufficient physically stressful activity to induce PEM and B) Comparison of brain activity before and after exercise would provide evidence of PEM's effect on cognition. We reported two-exercise induced GWI phenotypes with distinct changes in brain activation patterns during the completion of a 2-back working memory task (also known as two-back > zero-back). RESULTS Here we report unanticipated findings from the reverse contrast (zero-back > two-back), which allowed for the identification of task-related deactivation patterns. Following exercise, patients developed a significant increase in deactivation patterns within the Default Mode Network (DMN) that was not seen in controls. The DMN is comprised of regions that are consistently down regulated during external goal-directed activities and is often altered within many neurological disease states. CONCLUSIONS Exercise-induced alterations within the DMN provides novel evidence of GWI pathophysiology. More broadly, results suggest that task-related deactivation patterns may have biomarker potential in Gulf War Illness.
Collapse
Affiliation(s)
- Rakib U Rayhan
- Department of Physiology and Biophysics, Howard University College of Medicine, Adams Building Rm 2420, 520 W Street NW, Washington, DC, 20059, USA. .,Chronic Pain and Fatigue Research Center, Georgetown University Medical Center, Pre-Clinical Science Building, Rm LD3, 3800 Reservoir Road NW, Washington, DC, 20007, USA.
| | - Stuart D Washington
- Chronic Pain and Fatigue Research Center, Georgetown University Medical Center, Pre-Clinical Science Building, Rm LD3, 3800 Reservoir Road NW, Washington, DC, 20007, USA
| | - Richard Garner
- Chronic Pain and Fatigue Research Center, Georgetown University Medical Center, Pre-Clinical Science Building, Rm LD3, 3800 Reservoir Road NW, Washington, DC, 20007, USA
| | - Kristina Zajur
- Chronic Pain and Fatigue Research Center, Georgetown University Medical Center, Pre-Clinical Science Building, Rm LD3, 3800 Reservoir Road NW, Washington, DC, 20007, USA
| | - Florencia Martinez Addiego
- Chronic Pain and Fatigue Research Center, Georgetown University Medical Center, Pre-Clinical Science Building, Rm LD3, 3800 Reservoir Road NW, Washington, DC, 20007, USA
| | - John W VanMeter
- Center for Functional and Molecular Imaging, Georgetown University Medical Center, 3900 Reservoir Road Suite LM14, Washington, DC, 20007, USA
| | - James N Baraniuk
- Chronic Pain and Fatigue Research Center, Georgetown University Medical Center, Pre-Clinical Science Building, Rm LD3, 3800 Reservoir Road NW, Washington, DC, 20007, USA
| |
Collapse
|
33
|
Abstract
The default network (DN) is a brain network with correlated activities spanning frontal, parietal, and temporal cortical lobes. The DN activates for high-level cognition tasks and deactivates when subjects are actively engaged in perceptual tasks. Despite numerous observations, the role of DN deactivation remains unclear. Using computational neuroimaging applied to a large dataset of the Human Connectome Project (HCP) and to two individual subjects scanned over many repeated runs, we demonstrate that the DN selectively deactivates as a function of the position of a visual stimulus. That is, we show that spatial vision is encoded within the DN by means of deactivation relative to baseline. Our results suggest that the DN functions as a set of high-level visual regions, opening up the possibility of using vision-science tools to understand its putative function in cognition and perception.
Collapse
Affiliation(s)
- Martin Szinte
- Department of Cognitive Psychology, Vrije Universiteit Amsterdam, Amsterdam 1081BT, Netherlands.,Spinoza Centre for Neuroimaging, Royal Dutch Academy of Sciences, Amsterdam 1105BK, Netherlands
| | - Tomas Knapen
- Department of Cognitive Psychology, Vrije Universiteit Amsterdam, Amsterdam 1081BT, Netherlands.,Spinoza Centre for Neuroimaging, Royal Dutch Academy of Sciences, Amsterdam 1105BK, Netherlands
| |
Collapse
|
34
|
Fan J, Gan J, Liu W, Zhong M, Liao H, Zhang H, Yi J, Chan RCK, Tan C, Zhu X. Resting-State Default Mode Network Related Functional Connectivity Is Associated With Sustained Attention Deficits in Schizophrenia and Obsessive-Compulsive Disorder. Front Behav Neurosci 2018; 12:319. [PMID: 30618669 PMCID: PMC6305719 DOI: 10.3389/fnbeh.2018.00319] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 12/05/2018] [Indexed: 11/25/2022] Open
Abstract
Background: Previous studies have indicated the resting-state default mode network (DMN) related connectivity serving as predictor of sustained attention performance in healthy people. Interestingly, sustained attention deficits as well as DMN-involved functional connectivity (FC) alterations are common in both patients with schizophrenia (SCZ) and with obsessive-compulsive disorder (OCD). Thus, the present study was designed to investigate whether the DMN related resting-state connectivity alterations in these two psychiatric disorders were neural correlates of their sustained attention impairments. Methods: The study included 17 SCZ patients, 35 OCD patients and 36 healthy controls (HCs). Sustained attention to response task was adopted to assess the sustained attention. Resting-state scan was administrated and seed-based whole-brain FC analyses were performed with seeds located in classical DMN regions including bilateral medial prefrontal cortex (mPFC) and posterior cingulate cortex (PCC). Results: Both SCZ and OCD patients had poorer sustained attention than HCs. Sustained attention deficits in OCD was negatively correlated with their impaired FC of right mPFC-left superior frontal gyrus (SFG) within DMN, and that in SCZ was significantly correlated with their altered FC of left mPFC-bilateral anterior cingulate cortex (ACC) which indicated interaction between DMN and salience network. In addition, the FC between left mPFC and right parietal lobe indicating the interaction between DMN and frontal-parietal network was correlated with sustained attention in both SCZ and OCD. Conclusion: These findings suggest the importance of DMN-involved connectivity, both within and between networks in underlying sustained attention deficits in OCD and SCZ. Results further support the potential of resting-state FC in complementing information for cognitive deficits in psychiatric disorders.
Collapse
Affiliation(s)
- Jie Fan
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China.,Medical Psychological Institute of Central South University, Changsha, China
| | - Jun Gan
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wanting Liu
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Mingtian Zhong
- Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China
| | - Haiyan Liao
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hongchun Zhang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jinyao Yi
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Raymond C K Chan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Changlian Tan
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiongzhao Zhu
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China.,Medical Psychological Institute of Central South University, Changsha, China
| |
Collapse
|
35
|
Subspecialization within default mode nodes characterized in 10,000 UK Biobank participants. Proc Natl Acad Sci U S A 2018; 115:12295-12300. [PMID: 30420501 PMCID: PMC6275484 DOI: 10.1073/pnas.1804876115] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The human default mode network (DMN) is implicated in several unique mental capacities. In this study, we tested whether brain-wide interregional communication in the DMN can be derived from population variability in intrinsic activity fluctuations, gray-matter morphology, and fiber tract anatomy. In a sample of 10,000 UK Biobank participants, pattern-learning algorithms revealed functional coupling states in the DMN that are linked to connectivity profiles between other macroscopical brain networks. In addition, DMN gray matter volume was covaried with white matter microstructure of the fornix. Collectively, functional and structural patterns unmasked a possible division of labor within major DMN nodes: Subregions most critical for cortical network interplay were adjacent to subregions most predictive of fornix fibers from the hippocampus that processes memories and places.
Collapse
|
36
|
Lin J, Cui X, Dai X, Mo L. Regional Homogeneity Predicts Creative Insight: A Resting-State fMRI Study. Front Hum Neurosci 2018; 12:210. [PMID: 29875645 PMCID: PMC5974035 DOI: 10.3389/fnhum.2018.00210] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 05/04/2018] [Indexed: 11/17/2022] Open
Abstract
Creative insight plays an important role in our daily life. Previous studies have investigated the neural correlates of creative insight by functional magnetic resonance imaging (fMRI), however, the intrinsic resting-state brain activity associated with creative insight is still unclear. In the present study, we used regional homogeneity (ReHo) as an index in resting-state fMRI (rs-fMRI) to identify brain regions involved in individual differences in creative insight, which was compued by the response time (RT) of creative Chinese character chunk decomposition. The findings indicated that ReHo in the anterior cingulate cortex (ACC)/caudate nucleus (CN) and angular gyrus (AG)/superior temporal gyrus (STG)/inferior parietal lobe (IPL) negatively predicted creative insight. Furthermore, these findings suggested that spontaneous brain activity in multiple regions related to breaking and establishing mental sets, goal-directed solutions exploring, shifting attention, forming new associations and emotion experience contributes to creative insight. In conclusion, the present study provides new evidence to further understand the cognitive processing and neural correlates of creative insight.
Collapse
Affiliation(s)
- Jiabao Lin
- Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, School of Psychology, South China Normal University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Xuan Cui
- Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, School of Psychology, South China Normal University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Xiaoying Dai
- Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, School of Psychology, South China Normal University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Lei Mo
- Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, School of Psychology, South China Normal University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| |
Collapse
|
37
|
Training-induced brain activation and functional connectivity differentiate multi-talker and single-talker speech training. Neurobiol Learn Mem 2018. [PMID: 29535043 DOI: 10.1016/j.nlm.2018.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In second language acquisition studies, the high talker variability training approach has been frequently used to train participants to learn new speech patterns. However, the neuroplasticity induced by training is poorly understood. In the present study, native English speakers were trained on non-native pitch patterns (linguistic tones from Mandarin Chinese) in multi-talker (N = 16) or single-talker (N = 16) training conditions. We focused on two aspects of multi-talker training, voice processing and lexical phonology accessing, and used functional magnetic resonance imaging (fMRI) to measure the brain activation and functional connectivity (FC) of two regions of interest in a tone identification task conducted before and after training, namely the anterior part of the right superior temporal gyrus (aRSTG) and the posterior left superior temporal gyrus (pLSTG). The results showed distinct patterns of associations between neural signals and learning success for multi-talker training. Specifically, post-training brain activation in the aRSTG and FC strength between the aRSTG and pLSTG were correlated with learning success in the multi-talker training group but not in the single-talker group. These results suggest that talker variability in the training procedure may enhance neural efficiency in these brain areas and strengthen the cooperation between them. Our findings highlight the brain processing of newly learned speech patterns is influenced by the given training approach.
Collapse
|
38
|
Jorge J, Figueiredo P, Gruetter R, van der Zwaag W. Mapping and characterization of positive and negative BOLD responses to visual stimulation in multiple brain regions at 7T. Hum Brain Mapp 2018; 39:2426-2441. [PMID: 29464809 DOI: 10.1002/hbm.24012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 02/05/2018] [Accepted: 02/10/2018] [Indexed: 11/06/2022] Open
Abstract
External stimuli and tasks often elicit negative BOLD responses in various brain regions, and growing experimental evidence supports that these phenomena are functionally meaningful. In this work, the high sensitivity available at 7T was explored to map and characterize both positive (PBRs) and negative BOLD responses (NBRs) to visual checkerboard stimulation, occurring in various brain regions within and beyond the visual cortex. Recently-proposed accelerated fMRI techniques were employed for data acquisition, and procedures for exclusion of large draining vein contributions, together with ICA-assisted denoising, were included in the analysis to improve response estimation. Besides the visual cortex, significant PBRs were found in the lateral geniculate nucleus and superior colliculus, as well as the pre-central sulcus; in these regions, response durations increased monotonically with stimulus duration, in tight covariation with the visual PBR duration. Significant NBRs were found in the visual cortex, auditory cortex, default-mode network (DMN) and superior parietal lobule; NBR durations also tended to increase with stimulus duration, but were significantly less sustained than the visual PBR, especially for the DMN and superior parietal lobule. Responses in visual and auditory cortex were further studied for checkerboard contrast dependence, and their amplitudes were found to increase monotonically with contrast, linearly correlated with the visual PBR amplitude. Overall, these findings suggest the presence of dynamic neuronal interactions across multiple brain regions, sensitive to stimulus intensity and duration, and demonstrate the richness of information obtainable when jointly mapping positive and negative BOLD responses at a whole-brain scale, with ultra-high field fMRI.
Collapse
Affiliation(s)
- João Jorge
- Institute for Systems and Robotics and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Patrícia Figueiredo
- Institute for Systems and Robotics and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Rolf Gruetter
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Department of Radiology, University of Lausanne, Lausanne, Switzerland.,Department of Radiology, University of Geneva, Geneva, Switzerland
| | - Wietske van der Zwaag
- Biomedical Imaging Research Center, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Spinoza Institute for Neuroimaging, Royal Netherlands Academy for Arts and Sciences, Amsterdam, The Netherlands
| |
Collapse
|
39
|
Krajcovicova L, Barton M, Elfmarkova-Nemcova N, Mikl M, Marecek R, Rektorova I. Changes in connectivity of the posterior default network node during visual processing in mild cognitive impairment: staged decline between normal aging and Alzheimer’s disease. J Neural Transm (Vienna) 2017; 124:1607-1619. [DOI: 10.1007/s00702-017-1789-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 08/31/2017] [Indexed: 02/13/2023]
|
40
|
Moriguchi Y, Noda T, Nakayashiki K, Takata Y, Setoyama S, Kawasaki S, Kunisato Y, Mishima K, Nakagome K, Hanakawa T. Validation of brain-derived signals in near-infrared spectroscopy through multivoxel analysis of concurrent functional magnetic resonance imaging. Hum Brain Mapp 2017; 38:5274-5291. [PMID: 28722337 DOI: 10.1002/hbm.23734] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 07/07/2017] [Accepted: 07/11/2017] [Indexed: 01/06/2023] Open
Abstract
Near-infrared spectroscopy (NIRS) is a convenient and safe brain-mapping tool. However, its inevitable confounding with hemodynamic responses outside the brain, especially in the frontotemporal head, has questioned its validity. Some researchers attempted to validate NIRS signals through concurrent measurements with functional magnetic resonance imaging (fMRI), but, counterintuitively, NIRS signals rarely correlate with local fMRI signals in NIRS channels, although both mapping techniques should measure the same hemoglobin concentration. Here, we tested a novel hypothesis that different voxels within the scalp and the brain tissues might have substantially different hemoglobin absorption rates of near-infrared light, which might differentially contribute to NIRS signals across channels. Therefore, we newly applied a multivariate approach, a partial least squares regression, to explain NIRS signals with multivoxel information from fMRI within the brain and soft tissues in the head. We concurrently obtained fMRI and NIRS signals in 9 healthy human subjects engaging in an n-back task. The multivariate fMRI model was quite successfully able to predict the NIRS signals by cross-validation (interclass correlation coefficient = ∼0.85). This result confirmed that fMRI and NIRS surely measure the same hemoglobin concentration. Additional application of Monte-Carlo permutation tests confirmed that the model surely reflects temporal and spatial hemodynamic information, not random noise. After this thorough validation, we calculated the ratios of the contributions of the brain and soft-tissue hemodynamics to the NIRS signals, and found that the contribution ratios were quite different across different NIRS channels in reality, presumably because of the structural complexity of the frontotemporal regions. Hum Brain Mapp 38:5274-5291, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yoshiya Moriguchi
- Department of Psychophysiology, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1, Ogawahigashi, Kodaira, Tokyo, 187-8551, Japan.,Lundbeck Japan, Minato, Tokyo, 105-0001, Japan
| | - Takamasa Noda
- Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, 4-1-1, Ogawahigashi, Kodaira, Tokyo, 187-8551, Japan.,Clinical Optic Imaging Section, Department of Clinical Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, 4-1-1, Ogawahigashi, Kodaira, Tokyo, 187-8551, Japan
| | - Kosei Nakayashiki
- Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, 4-1-1, Ogawahigashi, Kodaira, Tokyo, 187-8551, Japan
| | - Yohei Takata
- Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, 4-1-1, Ogawahigashi, Kodaira, Tokyo, 187-8551, Japan
| | - Shiori Setoyama
- Department of Psychiatry, National Center Hospital, National Center of Neurology and Psychiatry, 4-1-1, Ogawahigashi, Kodaira, Tokyo, 187-8551, Japan
| | - Shingo Kawasaki
- Technical Support Group, Optical Topography Business Department, Business Promotion Division, Hitachi Medical Corporation, 2-1, Shintoyofuta, Kashiwa, Chiba, 277-0804, Japan
| | - Yoshihiko Kunisato
- Department of Psychology, School of Human Sciences, Senshu University, 2-1-1, Higashi-Mita, Tama, Kawasaki, Kanagawa, 214-8580, Japan
| | - Kazuo Mishima
- Department of Psychophysiology, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1, Ogawahigashi, Kodaira, Tokyo, 187-8551, Japan
| | - Kazuyuki Nakagome
- Department of Psychiatry, National Center Hospital, National Center of Neurology and Psychiatry, 4-1-1, Ogawahigashi, Kodaira, Tokyo, 187-8551, Japan.,National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1, Ogawahigashi, Kodaira, Tokyo, 187-8551, Japan
| | - Takashi Hanakawa
- Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, 4-1-1, Ogawahigashi, Kodaira, Tokyo, 187-8551, Japan.,PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, 332-0012, Japan
| |
Collapse
|
41
|
Dall’Acqua P, Johannes S, Mica L, Simmen HP, Glaab R, Fandino J, Schwendinger M, Meier C, Ulbrich EJ, Müller A, Baetschmann H, Jäncke L, Hänggi J. Functional and Structural Network Recovery after Mild Traumatic Brain Injury: A 1-Year Longitudinal Study. Front Hum Neurosci 2017; 11:280. [PMID: 28611614 PMCID: PMC5447750 DOI: 10.3389/fnhum.2017.00280] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 05/15/2017] [Indexed: 01/17/2023] Open
Abstract
Brain connectivity after mild traumatic brain injury (mTBI) has not been investigated longitudinally with respect to both functional and structural networks together within the same patients, crucial to capture the multifaceted neuropathology of the injury and to comprehensively monitor the course of recovery and compensatory reorganizations at macro-level. We performed a prospective study with 49 mTBI patients at an average of 5 days and 1 year post-injury and 49 healthy controls. Neuropsychological assessments as well as resting-state functional and diffusion-weighted magnetic resonance imaging were obtained. Functional and structural connectome analyses were performed using network-based statistics. They included a cross-sectional group comparison and a longitudinal analysis with the factors group and time. The latter tracked the subnetworks altered at the early phase and, in addition, included a whole-brain group × time interaction analysis. Finally, we explored associations between the evolution of connectivity and changes in cognitive performance. The early phase of mTBI was characterized by a functional hypoconnectivity in a subnetwork with a large overlap of regions involved within the classical default mode network. In addition, structural hyperconnectivity in a subnetwork including central hub areas such as the cingulate cortex was found. The impaired functional and structural subnetworks were strongly correlated and revealed a large anatomical overlap. One year after trauma and compared to healthy controls we observed a partial normalization of both subnetworks along with a considerable compensation of functional and structural connectivity subsequent to the acute phase. Connectivity changes over time were correlated with improvements in working memory, divided attention, and verbal recall. Neuroplasticity-induced recovery or compensatory processes following mTBI differ between brain regions with respect to their time course and are not fully completed 1 year after trauma.
Collapse
Affiliation(s)
- Patrizia Dall’Acqua
- Bellikon Rehabilitation ClinicBellikon, Switzerland
- Division Neuropsychology, Department of Psychology, University of ZurichZurich, Switzerland
| | | | - Ladislav Mica
- Division of Trauma Surgery, University Hospital ZurichZurich, Switzerland
| | - Hans-Peter Simmen
- Division of Trauma Surgery, University Hospital ZurichZurich, Switzerland
| | - Richard Glaab
- Department of Surgery, Division of Traumatology, Kantonsspital AarauAarau, Switzerland
| | - Javier Fandino
- Department of Neurosurgery, Kantonsspital AarauAarau, Switzerland
| | - Markus Schwendinger
- Interdisciplinary Emergency Centre, Baden Cantonal HospitalBaden, Switzerland
| | - Christoph Meier
- Department of Surgery, Waid Hospital ZurichZurich, Switzerland
| | - Erika J. Ulbrich
- Institute of Diagnostic and Interventional Radiology, University Hospital ZurichZurich, Switzerland
| | | | - Hansruedi Baetschmann
- Division Neuropsychology, Department of Psychology, University of ZurichZurich, Switzerland
| | - Lutz Jäncke
- Division Neuropsychology, Department of Psychology, University of ZurichZurich, Switzerland
- International Normal Aging and Plasticity Imaging Center, University of ZurichZurich, Switzerland
- University Research Priority Program, Dynamic of Healthy Aging, University of ZurichZurich, Switzerland
| | - Jürgen Hänggi
- Division Neuropsychology, Department of Psychology, University of ZurichZurich, Switzerland
| |
Collapse
|
42
|
Finc K, Bonna K, Lewandowska M, Wolak T, Nikadon J, Dreszer J, Duch W, Kühn S. Transition of the functional brain network related to increasing cognitive demands. Hum Brain Mapp 2017; 38:3659-3674. [PMID: 28432773 DOI: 10.1002/hbm.23621] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/24/2017] [Accepted: 04/10/2017] [Indexed: 01/01/2023] Open
Abstract
Network neuroscience provides tools that can easily be used to verify main assumptions of the global workspace theory (GWT), such as the existence of highly segregated information processing during effortless tasks performance, engagement of multiple distributed networks during effortful tasks and the critical role of long-range connections in workspace formation. A number of studies support the assumptions of GWT by showing the reorganization of the whole-brain functional network during cognitive task performance; however, the involvement of specific large scale networks in the formation of workspace is still not well-understood. The aims of our study were: (1) to examine changes in the whole-brain functional network under increased cognitive demands of working memory during an n-back task, and their relationship with behavioral outcomes; and (2) to provide a comprehensive description of local changes that may be involved in the formation of the global workspace, using hub detection and network-based statistic. Our results show that network modularity decreased with increasing cognitive demands, and this change allowed us to predict behavioral performance. The number of connector hubs increased, whereas the number of provincial hubs decreased when the task became more demanding. We also found that the default mode network (DMN) increased its connectivity to other networks while decreasing connectivity between its own regions. These results, apart from replicating previous findings, provide a valuable insight into the mechanisms of the formation of the global workspace, highlighting the role of the DMN in the processes of network integration. Hum Brain Mapp 38:3659-3674, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Karolina Finc
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland
| | - Kamil Bonna
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland.,Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Toruń, Poland
| | - Monika Lewandowska
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland
| | - Tomasz Wolak
- Bioimaging Research Center, World Hearing Center of Institute of Physiology and Pathology of Hearing, Warsaw/Kajetany, Poland
| | - Jan Nikadon
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland.,Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Toruń, Poland.,Faculty of Humanities, Nicolaus Copernicus University, Toruń, Poland
| | - Joanna Dreszer
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland.,Faculty of Humanities, Nicolaus Copernicus University, Toruń, Poland
| | - Włodzisław Duch
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland.,Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Toruń, Poland
| | - Simone Kühn
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany.,Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
43
|
Patterns of Default Mode Network Deactivation in Obsessive Compulsive Disorder. Sci Rep 2017; 7:44468. [PMID: 28287615 PMCID: PMC5347382 DOI: 10.1038/srep44468] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 02/09/2017] [Indexed: 11/08/2022] Open
Abstract
The objective of the present study was to research the patterns of Default Mode Network (DMN) deactivation in Obsessive Compulsive Disorder (OCD) in the transition between a resting and a non-rest emotional condition. Twenty-seven participants, 15 diagnosed with OCD and 12 healthy controls (HC), underwent a functional neuroimaging paradigm in which DMN brain activation in a resting condition was contrasted with activity during a non-rest condition consisting in the presentation of emotionally pleasant and unpleasant images. Results showed that HC, when compared with OCD, had a significant deactivation in two anterior nodes of the DMN (medial frontal and superior frontal) in the non-rest pleasant stimuli condition. Additional analysis for the whole brain, contrasting the resting condition with all the non-rest conditions grouped together, showed that, compared with OCD, HC had a significantly deactivation of a widespread brain network (superior frontal, insula, middle and superior temporal, putamen, lingual, cuneus, and cerebellum). Concluding, the present study found that OCD patients had difficulties with the deactivation of DMN even when the non-rest condition includes the presentation of emotional provoking stimuli, particularly evident for images with pleasant content.
Collapse
|
44
|
Archer JA, Lee A, Qiu A, Annabel Chen SH. Functional connectivity of resting-state, working memory and inhibition networks in perceived stress. Neurobiol Stress 2017; 8:186-201. [PMID: 29888313 PMCID: PMC5991324 DOI: 10.1016/j.ynstr.2017.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 09/26/2016] [Accepted: 01/25/2017] [Indexed: 12/21/2022] Open
Abstract
Experimental imaging studies on the effects of acute stress have revealed functional changes in the amygdalae, hippocampi and medial frontal cortices. However, much less is known about the association between perceived stress and neurological function which may have implications for the development of stress related disorders. Participants completed a working-memory task and an inhibition task whilst undergoing a functional magnetic resonance imaging (fMRI) scan. Task related and resting-state fMRI data from 22 women and 24 men were analysed to investigate changes in task activations and functional connectivity associated with perceived stress over the past month. Analyses were stratified by gender due to gender differences in the stress response. Stress was associated with faster working memory response time in women, but not men. Stress was not associated with any differences in task activations in either gender. There were many significant associations between stress and connectivity: findings in women were consistent with increased emotional regulation; men exhibited decreases in connectivity between affective processing areas during the tasks and showed no relation between perceived stress and resting-state connectivity; very few of the within gender differences were significantly different between gender. Dysregulated connectivity between areas involved in the neural stress response and self-referential thoughts (e.g. the default mode network) suggests that perceived stress may have a subtle impact on cognitive processing and neural correlates.
Collapse
Affiliation(s)
- Jo A Archer
- Division of Psychology, Nanyang Technological University, Singapore, Singapore
| | - Annie Lee
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Anqi Qiu
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore.,Clinical Imaging Research Centre, National University of Singapore, Singapore, Singapore.,Singapore Institute for Clinical Sciences, The Agency for Science, Technology and Research, Singapore, Singapore
| | - Shen-Hsing Annabel Chen
- Division of Psychology, Nanyang Technological University, Singapore, Singapore.,Centre for Research and Development in Learning, Nanyang Technological University, Singapore, Singapore.,Lee Kong Chian School of Medicine (LKCMedicine), Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
45
|
Jiang C, Yi L, Su S, Shi C, Long X, Xie G, Zhang L. Diurnal Variations in Neural Activity of Healthy Human Brain Decoded with Resting-State Blood Oxygen Level Dependent fMRI. Front Hum Neurosci 2016; 10:634. [PMID: 28066207 PMCID: PMC5169030 DOI: 10.3389/fnhum.2016.00634] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 11/29/2016] [Indexed: 12/31/2022] Open
Abstract
It remains an ongoing investigation about how the neural activity alters with the diurnal rhythms in human brain. Resting-state functional magnetic resonance imaging (RS-fMRI) reflects spontaneous activities and/or the endogenous neurophysiological process of the human brain. In the present study, we applied the ReHo (regional homogeneity) and ALFF (amplitude of low frequency fluctuation) based on RS-fMRI to explore the regional differences in the spontaneous cerebral activities throughout the entire brain between the morning and evening sessions within a 24-h time cycle. Wide spread brain areas were found to exhibit diurnal variations, which may be attributed to the internal molecular systems regulated by clock genes, and the environmental factors including light-dark cycle, daily activities and homeostatic sleep drive. Notably, the diurnal variation of default mode network (DMN) suggests that there is an adaptation or compensation response within the subregions of DMN, implying a balance or a decoupling of regulation between these regions.
Collapse
Affiliation(s)
- Chunxiang Jiang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences Shenzhen, China
| | - Li Yi
- Department of Neurology, Peking University Shenzhen Hospital Shenzhen, China
| | - Shi Su
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences Shenzhen, China
| | - Caiyun Shi
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences Shenzhen, China
| | - Xiaojing Long
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences Shenzhen, China
| | - Guoxi Xie
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences Shenzhen, China
| | - Lijuan Zhang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences Shenzhen, China
| |
Collapse
|
46
|
Griffis JC, Elkhetali AS, Burge WK, Chen RH, Bowman AD, Szaflarski JP, Visscher KM. Retinotopic patterns of functional connectivity between V1 and large-scale brain networks during resting fixation. Neuroimage 2016; 146:1071-1083. [PMID: 27554527 DOI: 10.1016/j.neuroimage.2016.08.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 08/18/2016] [Indexed: 11/16/2022] Open
Abstract
Psychophysical and neurobiological evidence suggests that central and peripheral vision are specialized for different functions. This specialization of function might be expected to lead to differences in the large-scale functional interactions of early cortical areas that represent central and peripheral visual space. Here, we characterize differences in whole-brain functional connectivity among sectors in primary visual cortex (V1) corresponding to central, near-peripheral, and far-peripheral vision during resting fixation. Importantly, our analyses reveal that eccentricity sectors in V1 have different functional connectivity with non-visual areas associated with large-scale brain networks. Regions associated with the fronto-parietal control network are most strongly connected with central sectors of V1, regions associated with the cingulo-opercular control network are most strongly connected with near-peripheral sectors of V1, and regions associated with the default mode and auditory networks are most strongly connected with far-peripheral sectors of V1. Additional analyses suggest that similar patterns are present during eyes-closed rest. These results suggest that different types of visual information may be prioritized by large-scale brain networks with distinct functional profiles, and provide insights into how the small-scale functional specialization within early visual regions such as V1 relates to the large-scale organization of functionally distinct whole-brain networks.
Collapse
Affiliation(s)
- Joseph C Griffis
- Department of Psychology, University of Alabama at Birmingham, United States
| | | | - Wesley K Burge
- Department of Psychology, University of Alabama at Birmingham, United States
| | - Richard H Chen
- Department of Neurobiology, University of Alabama at Birmingham, United States
| | - Anthony D Bowman
- Department of Biomedical Engineering, University of Alabama at Birmingham, United States
| | - Jerzy P Szaflarski
- Department of Neurology, University of Alabama at Birmingham, United States
| | - Kristina M Visscher
- Department of Neurobiology, University of Alabama at Birmingham, United States.
| |
Collapse
|
47
|
Qian H, Wang X, Wang Z, Wang Z, Liu P. Altered Vision-Related Resting-State Activity in Pituitary Adenoma Patients with Visual Damage. PLoS One 2016; 11:e0160119. [PMID: 27512990 PMCID: PMC4981336 DOI: 10.1371/journal.pone.0160119] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 07/12/2016] [Indexed: 01/01/2023] Open
Abstract
Objective To investigate changes of vision-related resting-state activity in pituitary adenoma (PA) patients with visual damage through comparison to healthy controls (HCs). Methods 25 PA patients with visual damage and 25 age- and sex-matched corrected-to-normal-vision HCs underwent a complete neuro-ophthalmologic evaluation, including automated perimetry, fundus examinations, and a magnetic resonance imaging (MRI) protocol, including structural and resting-state fMRI (RS-fMRI) sequences. The regional homogeneity (ReHo) of the vision-related cortex and the functional connectivity (FC) of 6 seeds within the visual cortex (the primary visual cortex (V1), the secondary visual cortex (V2), and the middle temporal visual cortex (MT+)) were evaluated. Two-sample t-tests were conducted to identify the differences between the two groups. Results Compared with the HCs, the PA group exhibited reduced ReHo in the bilateral V1, V2, V3, fusiform, MT+, BA37, thalamus, postcentral gyrus and left precentral gyrus and increased ReHo in the precuneus, prefrontal cortex, posterior cingulate cortex (PCC), anterior cingulate cortex (ACC), insula, supramarginal gyrus (SMG), and putamen. Compared with the HCs, V1, V2, and MT+ in the PAs exhibited decreased FC with the V1, V2, MT+, fusiform, BA37, and increased FC primarily in the bilateral temporal lobe (especially BA20,21,22), prefrontal cortex, PCC, insular, angular gyrus, ACC, pre-SMA, SMG, hippocampal formation, caudate and putamen. It is worth mentioning that compared with HCs, V1 in PAs exhibited decreased or similar FC with the thalamus, whereas V2 and MT+ exhibited increased FCs with the thalamus, especially pulvinar. Conclusions In our study, we identified significant neural reorganization in the vision-related cortex of PA patients with visual damage compared with HCs. Most subareas within the visual cortex exhibited remarkable neural dysfunction. Some subareas, including the MT+ and V2, exhibited enhanced FC with the thalamic pulvinar, which indicates an important role in the compensatory mechanism following visual impairment. In addition, neural dysfunction within the visual cortex was associated with neural activity alternation in the higher-order cognitive cortex, especially subareas in default mode network (DMN) and salience network (SN).
Collapse
Affiliation(s)
- Haiyan Qian
- Department of Neurosurgery, Beijing Tiantan Hospital affiliated to Capital Medical University, Beijing, China
- Beijing Neurosurgery Institute, Capital Medical University affiliated to Capital Medical University, Beijing, China
| | - Xingchao Wang
- Department of Neurosurgery, Beijing Tiantan Hospital affiliated to Capital Medical University, Beijing, China
| | - Zhongyan Wang
- Department of Radiology, Beijing Tiantan Hospital affiliated to Capital Medical University, Beijing, China
| | - Zhenmin Wang
- Department of Neurosurgery, Beijing Tiantan Hospital affiliated to Capital Medical University, Beijing, China
| | - Pinan Liu
- Department of Neurosurgery, Beijing Tiantan Hospital affiliated to Capital Medical University, Beijing, China
- Beijing Neurosurgery Institute, Capital Medical University affiliated to Capital Medical University, Beijing, China
- * E-mail:
| |
Collapse
|
48
|
Tanaka S, Kirino E. Functional Connectivity of the Precuneus in Female University Students with Long-Term Musical Training. Front Hum Neurosci 2016; 10:328. [PMID: 27445765 PMCID: PMC4925677 DOI: 10.3389/fnhum.2016.00328] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 06/13/2016] [Indexed: 12/15/2022] Open
Abstract
Conceiving concrete mental imagery is critical for skillful musical expression and performance. The precuneus, a core component of the default mode network (DMN), is a hub of mental image processing that participates in functions such as episodic memory retrieval and imagining future events. The precuneus connects with many brain regions in the frontal, parietal, temporal, and occipital cortices. The aim of this study was to examine the effects of long-term musical training on the resting-state functional connectivity of the precuneus. Our hypothesis was that the functional connectivity of the precuneus is altered in musicians. We analyzed the functional connectivity of the precuneus using resting-state functional magnetic resonance imaging (fMRI) data recorded in female university students majoring in music and nonmusic disciplines. The results show that the music students had higher functional connectivity of the precuneus with opercular/insular regions, which are associated with interoceptive and emotional processing; Heschl’s gyrus (HG) and the planum temporale (PT), which process complex tonal information; and the lateral occipital cortex (LOC), which processes visual information. Connectivity of the precuneus within the DMN did not differ between the two groups. Our finding suggests that functional connections between the precuneus and the regions outside of the DMN play an important role in musical performance. We propose that a neural network linking the precuneus with these regions contributes to translate mental imagery into information relevant to musical performance.
Collapse
Affiliation(s)
- Shoji Tanaka
- Department of Information and Communication Sciences, Sophia University Tokyo, Japan
| | - Eiji Kirino
- Department of Psychiatry, Juntendo University School of MedicineTokyo, Japan; Juntendo Shizuoka HospitalShizuoka, Japan
| |
Collapse
|
49
|
King TZ, Smith KM, Burns TG, Sun B, Shin J, Jones RA, Drossner D, Mahle WT. fMRI investigation of working memory in adolescents with surgically treated congenital heart disease. APPLIED NEUROPSYCHOLOGY-CHILD 2016; 6:7-21. [DOI: 10.1080/21622965.2015.1065185] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
50
|
Sousa N. The dynamics of the stress neuromatrix. Mol Psychiatry 2016; 21:302-12. [PMID: 26754952 PMCID: PMC4759204 DOI: 10.1038/mp.2015.196] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 10/04/2015] [Accepted: 10/21/2015] [Indexed: 01/08/2023]
Abstract
Stressful stimuli in healthy subjects trigger activation of a consistent and reproducible set of brain regions; yet, the notion that there is a single and constant stress neuromatrix is not sustainable. Indeed, after chronic stress exposure there is activation of many brain regions outside that network. This suggests that there is a distinction between the acute and the chronic stress neuromatrix. Herein, a new working model is proposed to understand the shift between these networks. The understanding of the factors that modulate these networks and their interplay will allow for a more comprehensive and holistic perspective of how the brain shifts 'back and forth' from a healthy to a stressed pattern and, ultimately, how the latter can be a trigger for several neurological and psychiatric conditions.
Collapse
Affiliation(s)
- N Sousa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus Gualtar, Braga, Portugal,ICVS/3B's–PT Government Associate Laboratory, Braga/Guimarães, Portugal,Clinical Academic Center–Braga, Braga, Portugal,Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal. E-mail:
| |
Collapse
|