1
|
Yang KC, Yang BH, Liu MN, Liou YJ, Chou YH. Cognitive impairment in schizophrenia is associated with prefrontal-striatal functional hypoconnectivity and striatal dopaminergic abnormalities. J Psychopharmacol 2024; 38:515-525. [PMID: 38853592 DOI: 10.1177/02698811241257877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
BACKGROUND A better understanding of the mechanisms underlying cognitive impairment in schizophrenia is imperative, as it causes poor functional outcomes and a lack of effective treatments. AIMS This study aimed to investigate the relationships of two proposed main pathophysiology of schizophrenia, altered prefrontal-striatal connectivity and the dopamine system, with cognitive impairment and their interactions. METHODS Thirty-three patients with schizophrenia and 27 healthy controls (HCs) who are right-handed and matched for age and sex were recruited. We evaluated their cognition, functional connectivity (FC) between the dorsolateral prefrontal cortex (DLPFC)/middle frontal gyrus (MiFG) and striatum, and the availability of striatal dopamine transporter (DAT) using a cognitive battery investigating attention, memory, and executive function, resting-state functional magnetic resonance imaging with group independent component analysis and single-photon emission computed tomography with 99mTc-TRODAT. RESULTS Patients with schizophrenia exhibited poorer cognitive performance, reduced FC between DLPFC/MiFG and the caudate nucleus (CN) or putamen, decreased DAT availability in the left CN, and decreased right-left DAT asymmetry in the CN compared to HCs. In patients with schizophrenia, altered imaging markers are associated with cognitive impairments, especially the relationship between DLPFC/MiFG-putamen FC and attention and between DAT asymmetry in the CN and executive function. CONCLUSIONS This study is the first to demonstrate how prefrontal-striatal hypoconnectivity and altered striatal DAT markers are associated with different domains of cognitive impairment in schizophrenia. More research is needed to evaluate their complex relationships and potential therapeutic implications.
Collapse
Affiliation(s)
- Kai-Chun Yang
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Bang-Hung Yang
- Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Mu-N Liu
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ying-Jay Liou
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yuan-Hwa Chou
- Department of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Psychiatry, Taichung Veterans General Hospital, Taichung, Taiwan
- The Human Brain Research Center, Taichung Veterans General Hospital, Taichung, Taiwan
| |
Collapse
|
2
|
Sung C, Oh SJ, Kim JS. Imaging Procedure and Clinical Studies of [ 18F]FP-CIT PET. Nucl Med Mol Imaging 2024; 58:185-202. [PMID: 38932763 PMCID: PMC11196481 DOI: 10.1007/s13139-024-00840-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/15/2023] [Accepted: 01/05/2024] [Indexed: 06/28/2024] Open
Abstract
N-3-[18F]fluoropropyl-2β-carbomethoxy-3β-4-iodophenyl nortropane ([18F]FP-CIT) is a radiopharmaceutical for dopamine transporter (DAT) imaging using positron emission tomography (PET) to detect dopaminergic neuronal degeneration in patients with parkinsonian syndrome. [18F]FP-CIT was granted approval by the Ministry of Food and Drug Safety in 2008 as the inaugural radiopharmaceutical for PET imaging, and it has found extensive utilization across numerous institutions in Korea. This review article presents an imaging procedure for [18F]FP-CIT PET to aid nuclear medicine physicians in clinical practice and systematically reviews the clinical studies associated with [18F]FP-CIT PET.
Collapse
Affiliation(s)
- Changhwan Sung
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505 Republic of Korea
| | - Seung Jun Oh
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505 Republic of Korea
| | - Jae Seung Kim
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505 Republic of Korea
| |
Collapse
|
3
|
Functional connectivity of the cortico-subcortical sensorimotor loop is modulated by the severity of nigrostriatal dopaminergic denervation in Parkinson’s Disease. NPJ Parkinsons Dis 2022; 8:122. [PMID: 36171211 PMCID: PMC9519637 DOI: 10.1038/s41531-022-00385-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
To assess if the severity of nigrostriatal innervation loss affects the functional connectivity (FC) of the sensorimotor cortico-striato-thalamic-cortical loop (CSTCL) in Parkinson’s Disease (PD), Resting-State functional MRI and 18F-DOPA PET data, simultaneously acquired on a hybrid PET/MRI scanner, were retrospectively analyzed in 39 PD and 16 essential tremor patients. Correlations between posterior Putamen DOPA Uptake (pPDU) and the FC of the main CSTCL hubs were assessed separately in the two groups, analyzing the differences between the two groups by a group-by-pPDU interaction analysis of the resulting clusters’ FC. Unlike in essential tremor, in PD patients pPDU correlated inversely with the FC of the thalamus with the sensorimotor cortices, and of the postcentral gyrus with the dorsal cerebellum, and directly with the FC of pre- and post-central gyri with both the superior and middle temporal gyri and the paracentral lobule, and of the caudate with the superior parietal cortex. The interaction analysis confirmed the significance of the difference between the two groups in these correlations. In PD patients, the post-central cortex FC, in the clusters correlating directly with pPDU, negatively correlated with both UPDRS motor examination score and Hoehn and Yahr stage, independent of the pPDU, suggesting that these FC changes contribute to motor impairment. In PD, nigrostriatal innervation loss correlates with a decrease in the FC within the sensorimotor network and between the sensorimotor network and the superior temporal cortices, possibly contributing to motor impairment, and with a strengthening of the thalamo-cortical FC, that may represent ineffective compensatory phenomena.
Collapse
|
4
|
Kim JS, Son HJ, Oh M, Lee DY, Kim HW, Oh J. 60 Years of Achievements by KSNM in Neuroimaging Research. Nucl Med Mol Imaging 2022; 56:3-16. [PMID: 35186156 PMCID: PMC8828843 DOI: 10.1007/s13139-021-00727-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/01/2021] [Accepted: 12/07/2021] [Indexed: 02/03/2023] Open
Abstract
Nuclear medicine neuroimaging is able to show functional and molecular biologic abnormalities in various neuropsychiatric diseases. Therefore, it has played important roles in the clinical diagnosis and in research on the normal and pathological states of the brain. More than 400 outstanding studies have been conducted by Korean researchers over the past 60 years. In the 1990s, when multiheaded single-photon emission computed tomography (SPECT) scanners were first introduced in South Korea, stroke research using brain perfusion SPECT was conducted. With the spread of positron emission tomography (PET) scanners in the 2000s, research on the clinical usefulness of PET and the evaluation of pathophysiology in various diseases such as epilepsy, brain tumors, degenerative brain diseases, and other neuropsychiatric diseases were actively conducted using [18F]FDG and various neuroreceptor tracers. In the 2010s, with the clinical application of new radiopharmaceuticals for amyloid and tau imaging, research demonstrating the clinical usefulness of PET imaging and the pathophysiology of dementia has increased rapidly. It is expected that the role of nuclear medicine will expand with the development of new radiopharmaceuticals and analysis technologies, along with the application of artificial intelligence for early and differential diagnosis, and the development of therapeutic agents for degenerative brain diseases.
Collapse
Affiliation(s)
- Jae Seung Kim
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hye Joo Son
- Department of Nuclear Medicine, Dankook University College of Medicine, Cheonan, Republic of Korea
| | - Minyoung Oh
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Dong Yun Lee
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hae Won Kim
- Department of Nuclear Medicine, Keimyung University Dongsan Hospital, Daegu, Republic of Korea
| | - Jungsu Oh
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
5
|
Aracil-Bolaños I, Sampedro F, Pujol J, Soriano-Mas C, Gónzalez-de-Echávarri JM, Kulisevsky J, Pagonabarraga J. The impact of dopaminergic treatment over cognitive networks in Parkinson's disease: Stemming the tide? Hum Brain Mapp 2021; 42:5736-5746. [PMID: 34510640 PMCID: PMC8559512 DOI: 10.1002/hbm.25650] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/30/2021] [Accepted: 08/23/2021] [Indexed: 01/01/2023] Open
Abstract
Dopamine‐replacing therapies are an effective treatment for the motor aspects of Parkinson's disease. However, its precise effect over the cognitive resting‐state networks is not clear; whether dopaminergic treatment normalizes their functional connectivity‐as in other networks‐ and the links with cognitive decline are presently unknown. We recruited 35 nondemented PD patients and 16 age‐matched controls. Clinical and neuropsychological assessments were performed at baseline, and conversion to dementia was assessed in a 10 year follow‐up. Structural and functional brain imaging were acquired in both the ON and practical OFF conditions. We assessed functional connectivity in both medication states compared to healthy controls, connectivity differences within participants related to the ON/OFF condition, and baseline connectivity of PD participants that converted to dementia compared to those who did not convert. PD participants showed and increased frontoparietal connectivity compared to controls: a pattern of higher connectivity between salience (SN) and default‐mode (DMN) networks both in the ON and OFF states. Within PD patients, this higher SN‐DMN connectivity characterized the participants in the ON state, while within‐DMN connectivity prevailed in the OFF state. Interestingly, participants who converted to dementia also showed higher SN‐DMN connectivity in their baseline ON scans compared to nonconverters. To conclude, PD patients showed higher frontoparietal connectivity in cognitive networks compared to healthy controls, irrespective of medication status, but dopaminergic treatment specifically promoted SN‐DM hyperconnectivity.
Collapse
Affiliation(s)
- Ignacio Aracil-Bolaños
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain.,Departament de Medicina, Universitat Autònoma de Barcelona (U.A.B.), Barcelona, Spain.,Institut d'Investigacions Biomèdiques- Sant Pau (IIB-Sant Pau), Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Frederic Sampedro
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain.,Departament de Medicina, Universitat Autònoma de Barcelona (U.A.B.), Barcelona, Spain.,Institut d'Investigacions Biomèdiques- Sant Pau (IIB-Sant Pau), Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Jesus Pujol
- MRI Research Unit, Department of Radiology, Hospital del Mar, Barcelona, Spain.,Centro Investigación Biomédica en Red de Salud Mental, CIBERSAM, Barcelona, Spain
| | - Carles Soriano-Mas
- Centro Investigación Biomédica en Red de Salud Mental, CIBERSAM, Barcelona, Spain.,Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.,Department of Psychobiology and Methodology in Health Sciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - José María Gónzalez-de-Echávarri
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation and IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Jaime Kulisevsky
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain.,Departament de Medicina, Universitat Autònoma de Barcelona (U.A.B.), Barcelona, Spain.,Institut d'Investigacions Biomèdiques- Sant Pau (IIB-Sant Pau), Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Javier Pagonabarraga
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain.,Departament de Medicina, Universitat Autònoma de Barcelona (U.A.B.), Barcelona, Spain.,Institut d'Investigacions Biomèdiques- Sant Pau (IIB-Sant Pau), Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| |
Collapse
|
6
|
Su W, Li K, Li CM, Ma XX, Zhao H, Chen M, Li SH, Wang R, Lou BH, Chen HB, Yan CZ. Motor Symptom Lateralization Influences Cortico-Striatal Functional Connectivity in Parkinson's Disease. Front Neurol 2021; 12:619631. [PMID: 34054684 PMCID: PMC8160303 DOI: 10.3389/fneur.2021.619631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 04/08/2021] [Indexed: 12/05/2022] Open
Abstract
Objective: The striatum is unevenly impaired bilaterally in Parkinson's disease (PD). Because the striatum plays a key role in cortico-striatal circuits, we assume that lateralization affects cortico-striatal functional connectivity in PD. The present study sought to evaluate the effect of lateralization on various cortico-striatal circuits through resting-state functional magnetic resonance imaging (fMRI). Methods: Thirty left-onset Parkinson's disease (LPD) patients, 27 right-onset Parkinson's disease (RPD) patients, and 32 normal controls with satisfactory data were recruited. Their demographic, clinical, and neuropsychological information was collected. Resting-state fMRI was performed, and functional connectivity changes of seven subdivisions of the striatum were explored in the two PD groups. In addition, the associations between altered functional connectivity and various clinical and neuropsychological characteristics were analyzed by Pearson's or Spearman's correlation. Results: Directly comparing the LPD and RPD patients demonstrated that the LPD patients had lower FC between the left dorsal rostral putamen and the left orbitofrontal cortex than the RPD patients. In addition, the LPD patients showed aberrant functional connectivity involving several striatal subdivisions in the right hemisphere. The right dorsal caudate, ventral rostral putamen, and superior ventral striatum had decreased functional connectivity with the cerebellum and parietal and occipital lobes relative to the normal control group. The comparison between RPD patients and the controls did not obtain significant difference in functional connectivity. The functional connectivity between the left dorsal rostral putamen and the left orbitofrontal cortex was associated with contralateral motor symptom severity in PD patients. Conclusions: Our findings provide new insights into the distinct characteristics of cortico-striatal circuits in LPD and RPD patients. Lateralization of motor symptoms is associated with lateralized striatal functional connectivity.
Collapse
Affiliation(s)
- Wen Su
- Department of Neurology, Research Institute of Neuromuscular and Neurodegenerative Disease, Qilu Hospital of Shandong University, Jinan, China
- Department of Neurology, National Center of Gerontology, Beijing Hospital, Beijing, China
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Kai Li
- Department of Neurology, National Center of Gerontology, Beijing Hospital, Beijing, China
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Chun-Mei Li
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Department of Radiology, National Center of Gerontology, Beijing Hospital, Beijing, China
| | - Xin-Xin Ma
- Department of Neurology, National Center of Gerontology, Beijing Hospital, Beijing, China
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Hong Zhao
- Department of Neurology, National Center of Gerontology, Beijing Hospital, Beijing, China
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Min Chen
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Department of Radiology, National Center of Gerontology, Beijing Hospital, Beijing, China
| | - Shu-Hua Li
- Department of Neurology, National Center of Gerontology, Beijing Hospital, Beijing, China
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Rui Wang
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Department of Radiology, National Center of Gerontology, Beijing Hospital, Beijing, China
| | - Bao-Hui Lou
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Department of Radiology, National Center of Gerontology, Beijing Hospital, Beijing, China
| | - Hai-Bo Chen
- Department of Neurology, National Center of Gerontology, Beijing Hospital, Beijing, China
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Chuan-Zhu Yan
- Department of Neurology, Research Institute of Neuromuscular and Neurodegenerative Disease, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
7
|
Li W, Lao-Kaim NP, Roussakis AA, Martín-Bastida A, Valle-Guzman N, Paul G, Soreq E, Daws RE, Foltynie T, Barker RA, Hampshire A, Piccini P. Longitudinal functional connectivity changes related to dopaminergic decline in Parkinson's disease. Neuroimage Clin 2020; 28:102409. [PMID: 32916466 PMCID: PMC7490914 DOI: 10.1016/j.nicl.2020.102409] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/24/2020] [Accepted: 08/30/2020] [Indexed: 01/02/2023]
Abstract
BACKGROUND Resting-state functional magnetic resonance imaging (fMRI) studies have demonstrated that basal ganglia functional connectivity is altered in Parkinson's disease (PD) as compared to healthy controls. However, such functional connectivity alterations have not been related to the dopaminergic deficits that occurs in PD over time. OBJECTIVES To examine whether functional connectivity impairments are correlated with dopaminergic deficits across basal ganglia subdivisions in patients with PD both cross-sectionally and longitudinally. METHODS We assessed resting-state functional connectivity of basal ganglia subdivisions and dopamine transporter density using 11C-PE2I PET in thirty-four PD patients at baseline. Of these, twenty PD patients were rescanned after 19.9 ± 3.8 months. A seed-based approach was used to analyze resting-state fMRI data. 11C-PE2I binding potential (BPND) was calculated for each participant. PD patients were assessed for disease severity. RESULTS At baseline, PD patients with greater dopaminergic deficits, as measured with 11C-PE2I PET, showed larger decreases in posterior putamen functional connectivity with the midbrain and pallidum. Reduced functional connectivity of the posterior putamen with the thalamus, midbrain, supplementary motor area and sensorimotor cortex over time were significantly associated with changes in DAT density over the same period. Furthermore, increased motor disability was associated with lower intraregional functional connectivity of the posterior putamen. CONCLUSIONS Our findings suggest that basal ganglia functional connectivity is related to integrity of dopaminergic system in patients with PD. Application of resting-state fMRI in a large cohort and longitudinal scanning may be a powerful tool for assessing underlying PD pathology and its progression.
Collapse
Affiliation(s)
- Weihua Li
- Centre for Neurodegeneration and Neuroinflammation, Division of Brain Sciences, Imperial College London, London W12 0NN, United Kingdom; Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| | - Nick P Lao-Kaim
- Centre for Neurodegeneration and Neuroinflammation, Division of Brain Sciences, Imperial College London, London W12 0NN, United Kingdom
| | - Andreas-Antonios Roussakis
- Centre for Neurodegeneration and Neuroinflammation, Division of Brain Sciences, Imperial College London, London W12 0NN, United Kingdom
| | - Antonio Martín-Bastida
- Centre for Neurodegeneration and Neuroinflammation, Division of Brain Sciences, Imperial College London, London W12 0NN, United Kingdom; Department of Neurology and Neurosciences, Clínica universidad de Navarra, Pamplona-Madrid, Spain
| | - Natalie Valle-Guzman
- John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge CB2 0PY, United Kingdom
| | - Gesine Paul
- Translational Neurology Group, Department of Clinical Sciences, Wallenberg Neuroscience Centre, Lund University, Lund 221 84, Sweden; Division of Neurology, Department of Clinical Sciences, Lund University, Skåne University Hospital, Lund 22185, Sweden
| | - Eyal Soreq
- Imperial College London, Division of Brain Sciences, Computational Cognitive & Clinical Neuroimaging Lab (C(3)NL), London W12 0NN, United Kingdom
| | - Richard E Daws
- Imperial College London, Division of Brain Sciences, Computational Cognitive & Clinical Neuroimaging Lab (C(3)NL), London W12 0NN, United Kingdom
| | - Tom Foltynie
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, London WC1N 3BG, United Kingdom
| | - Roger A Barker
- John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge CB2 0PY, United Kingdom
| | - Adam Hampshire
- Imperial College London, Division of Brain Sciences, Computational Cognitive & Clinical Neuroimaging Lab (C(3)NL), London W12 0NN, United Kingdom
| | - Paola Piccini
- Centre for Neurodegeneration and Neuroinflammation, Division of Brain Sciences, Imperial College London, London W12 0NN, United Kingdom
| |
Collapse
|
8
|
Sun HH, Pan PL, Hu JB, Chen J, Wang XY, Liu CF. Alterations of regional homogeneity in Parkinson's disease with "pure" apathy: A resting-state fMRI study. J Affect Disord 2020; 274:792-798. [PMID: 32664016 DOI: 10.1016/j.jad.2020.05.145] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/19/2020] [Accepted: 05/27/2020] [Indexed: 01/22/2023]
Abstract
BACKGROUND Apathy is a prevalent and debilitating neuropsychiatric syndrome in Parkinson's disease (PD). However, its neural mechanisms are still unclear. METHODS Forty-six de novo, drug-naïve, non-demented PD patients without depressive or anxious symptoms, of whom 26 were apathetic (PD-A) and 20 were not (PD-NA) according to the Apathy Scale (AS), and 23 matched healthy control (HC) subjects were enrolled in this study. The regional homogeneity (ReHo) approach based on resting-state functional MRI on a 3-T MR system was used to investigate apathy related local brain activity. RESULTS Compared with both patients with PD-NA and HC subjects, patients with PD-A showed significantly lower ReHo values in the dorsal anterior cingulate cortex (ACC) and right caudate. Both the PD-A and PD-NA groups also demonstrated lower ReHo values in the right putamen compared to the HC group. Further correlation analyses revealed that AS scores were negatively correlated with the ReHo values in the dorsal ACC and right caudate in the pooled patients with PD. LIMITATIONS The present results are preliminary due to the small sample size in the study. CONCLUSIONS This study used ReHo for the first time to characterize "pure" apathy related regional spontaneous brain function within the frontostriatal circuits in PD. Our findings suggest that abnormal brain activity in the dorsal ACC and caudate may involve the pathological mechanisms of apathy in PD.
Collapse
Affiliation(s)
- Hai-Hua Sun
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China; Department of Neurology, Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, China
| | - Ping-Lei Pan
- Department of Neurology, Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, China
| | - Jian-Bin Hu
- Department of Radiology, Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, China
| | - Jing Chen
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xue-Yang Wang
- Department of Radiology, Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, China
| | - Chun-Feng Liu
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China; Institute of Neuroscience, Soochow University, Suzhou, China.
| |
Collapse
|
9
|
Sun HH, Hu JB, Chen J, Wang XY, Wang XL, Pan PL, Liu CF. Abnormal Spontaneous Neural Activity in Parkinson's Disease With "pure" Apathy. Front Neurosci 2020; 14:830. [PMID: 32848582 PMCID: PMC7417661 DOI: 10.3389/fnins.2020.00830] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 07/16/2020] [Indexed: 12/13/2022] Open
Abstract
Background Apathy is one of the most common non-motor symptoms of Parkinson’s disease (PD). However, its pathophysiology remains unclear. Methods We analyzed resting-state functional magnetic resonance imaging (MRI) data acquired at a 3.0T MRI scanner using the amplitude of low-frequency fluctuation (ALFF) metric in 20 de novo, drug-naïve, non-demented PD patients with apathy (PD-A), 26 PD patients without apathy (PD-NA) without comorbidity of depressive or anxious symptoms, and 23 matched healthy control (HC) subjects. Results We found that the ALFF decreased significantly in the bilateral nucleus accumbens, dorsal anterior cingulate cortex (ACC), and left dorsolateral prefrontal cortex in patients with PD-A compared to patients with PD-NA and HC subjects. Furthermore, apathy severity was negatively correlated with the ALFF in the bilateral nucleus accumbens and dorsal ACC in the pooled patients with PD. Conclusion The present study characterized the functional pattern of changes in spontaneous neural activity in patients with PD-A. With the aim to better elucidate the pathophysiological mechanisms responsible for these changes, this study controlled for the potentially confounding effects of dopaminergic medication, depression, anxiety, and global cognitive impairment. The findings of the current study add to the literature by highlighting potential abnormalities in mesocorticolimbic pathways involved in the development of apathy in PD.
Collapse
Affiliation(s)
- Hai-Hua Sun
- Department of Neurology, Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, China
| | - Jian-Bin Hu
- Department of Radiology, Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, China
| | - Jing Chen
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xue-Yang Wang
- Department of Radiology, Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, China
| | - Xiao-Li Wang
- Department of Emergency, Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, China
| | - Ping-Lei Pan
- Department of Radiology, Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, China
| | - Chun-Feng Liu
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Neuroscience, Soochow University, Suzhou, China
| |
Collapse
|
10
|
Xing Y, Tench C, Wongwandee M, Schwarz ST, Bajaj N, Auer DP. Coordinate based meta-analysis of motor functional imaging in Parkinson's: disease-specific patterns and modulation by dopamine replacement and deep brain stimulation. Brain Imaging Behav 2020; 14:1263-1280. [PMID: 30809759 PMCID: PMC7381438 DOI: 10.1007/s11682-019-00061-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To investigate factors affecting the pattern of motor brain activation reported in people with Parkinson's (PwP), aiming to differentiate disease-specific features from treatment effects. METHODS A co-ordinate-based-meta-analysis (CBMA) of functional motor neuroimaging studies involving patients with Parkinson's (PwP), and healthy controls (HC) identified 126 suitable articles. The experiments were grouped based on subject feature, medication status (onMed/offMed), deep brain stimulation (DBS) status (DBSon/DBSoff) and type of motor initiation. RESULTS HC and PwP shared similar neural networks during upper extremity motor tasks but with differences of reported frequency in mainly bilateral putamen, insula and ipsilateral inferior parietal and precentral gyri. The activation height was significantly reduced in the bilateral putamen, left SMA, left subthalamus nucleus, right thalamus and right midial global pallidum in PwPoffMed (vs. HC), and pre-SMA hypoactivation correlated with disease severity. These changes were not found in patients on dopamine replacement therapy (PwPonMed vs. HC) in line with a restorative function. By contrast, left SMA and primary motor cortex showed hyperactivation in the medicated state (vs. HC) suggesting dopaminergic overcompensation. Deep-brain stimulation (PwP during the high frequency subthalamus nucleus (STN) DBS vs. no stimulation) induced a decrease in left SMA activity and the expected increase in the left subthalamic/thalamic region regardless of hand movement. We further demonstrated a disease related effect of motor intention with only PwPoffMed showing increased activation in the medial frontal lobe in self-initiated studies. CONCLUSION We describe a consistent disease-specific pattern of putaminal hypoactivation during motor tasks that appears reversed by dopamine replacement. Inconsistent reports of altered SMA/pre-SMA activation can be explained by task- and medication-specific variation in intention. Moreover, SMA activity was reduced during STN-DBS, while dopamine-induced hyperactivation of SMA which might underpin hyperdynamic L-dopa related overcompensation.
Collapse
Affiliation(s)
- Yue Xing
- Radiological Sciences, Division of Clinical Neuroscience, University of Nottingham, Nottingham, NG7 2UH, UK.
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, NG7 2UH, UK.
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, NG7 2UH, UK.
- Radiological Sciences, Sir Peter Mansfield Imaging Centre, NIHR Nottingham BRC, University of Nottingham, Nottingham, NG7 2UH, UK.
| | - Christopher Tench
- Division of Clinical Neurology, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Monton Wongwandee
- Department of Medicine, Srinakharinwirot University, Nakhon Nayok, Thailand
| | - Stefan T Schwarz
- Radiological Sciences, Division of Clinical Neuroscience, University of Nottingham, Nottingham, NG7 2UH, UK
- Department of Radiology, Cardiff and Vale University Health Board, Cardiff, Wales
| | - Nin Bajaj
- Department of Neurology, Nottingham University Hospitals, Nottingham, NG7 2UH, UK
| | - Dorothee P Auer
- Radiological Sciences, Division of Clinical Neuroscience, University of Nottingham, Nottingham, NG7 2UH, UK.
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, NG7 2UH, UK.
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, NG7 2UH, UK.
- Radiological Sciences, Sir Peter Mansfield Imaging Centre, NIHR Nottingham BRC, University of Nottingham, Nottingham, NG7 2UH, UK.
| |
Collapse
|
11
|
White RL, Campbell MC, Yang D, Shannon W, Snyder AZ, Perlmutter JS. Little Change in Functional Brain Networks Following Acute Levodopa in Drug-Naïve Parkinson's Disease. Mov Disord 2020; 35:499-503. [PMID: 31854465 PMCID: PMC7138409 DOI: 10.1002/mds.27942] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/01/2019] [Accepted: 11/06/2019] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE The objective of this study was to investigate the effects of levodopa on functional brain networks in Parkinson's disease. METHODS We acquired resting state functional magnetic resonance imaging in 30 drug-naïve participants with Parkinson's disease and 20 age-matched healthy controls. Each participant was studied following administration of a single oral dose of either levodopa or placebo in a randomized, double-blind, crossover design. RESULTS The greatest observed differences in functional connectivity were between Parkinson's disease versus control participants, independent of pharmacologic intervention. By contrast, the effects of levodopa were much smaller and detectable only in the Parkinson's disease group. Moreover, although levodopa administration in the Parkinson's disease group measurably improved motor performance, it did not increase the similarity of functional connectivity in Parkinson's disease to the control group. CONCLUSIONS We found that a single, small dose of levodopa did not normalize functional connectivity in drug-naïve Parkinson's disease. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Robert L. White
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
- John Cochrane VA Medical Center, Neurology Section, Saint Louis, MO, USA
| | - Meghan C. Campbell
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO, USA
| | | | | | - Abraham Z. Snyder
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Joel S. Perlmutter
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, Saint Louis, MO, USA
- Program in Occupational Therapy, Washington University School of Medicine, Saint Louis, MO, USA
- Program in Physical Therapy, Washington University School of Medicine, Saint Louis, MO, USA
| |
Collapse
|
12
|
Schneider L, Seeger V, Timmermann L, Florin E. Electrophysiological resting state networks of predominantly akinetic-rigid Parkinson patients: Effects of dopamine therapy. NEUROIMAGE-CLINICAL 2020; 25:102147. [PMID: 31954989 PMCID: PMC6965744 DOI: 10.1016/j.nicl.2019.102147] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/21/2019] [Accepted: 12/21/2019] [Indexed: 11/25/2022]
Abstract
Analysis of whole-brain frequency-specific resting state networks with EEG. Comparison of dopamine medication ON and OFF state in Parkinson patients. Parkinson patients show distinct frequency-specific network alterations. Motor network at beta frequencies is re-instated after dopamine medication.
Parkinson's disease (PD) causes both motor and non-motor symptoms, which can partially be reversed by dopamine therapy. These symptoms as well as the effect of dopamine may be explained by distinct alterations in whole-brain architecture. We used functional connectivity (FC) and in particular resting state network (RSN) analysis to identify such whole-brain alterations in a frequency-specific manner. In addition, we hypothesized that standard dopaminergic medication would have a normalizing effect on these whole brain alterations. We recorded resting-state EEGs of 19 PD patients in the medical OFF and ON states, and of 12 healthy age-matched controls. The PD patients were either of akinetic-rigid or mixed subtype. We extracted RSNs with independent component analysis in the source space for five frequency bands. Within the sensorimotor network (SMN) the supplementary motor area (SMA) showed decreased FC in the OFF state compared to healthy controls. This finding was reversed after dopamine administration. Furthermore, in the OFF state no stable SMN beta component could be identified. The default mode network showed alterations due to PD independent of the medication state. The visual network was altered in the OFF state, and reinstated to a pattern similar to healthy controls by medication. In conclusion, PD causes distinct RSN alterations, which are partly reversed after levodopa administration. The changes within the SMN are of particular interest, because they broaden the pathophysiological understanding of PD. Our results identify the SMA as a central network hub affected in PD and a crucial effector of dopamine therapy.
Collapse
Affiliation(s)
- Lukas Schneider
- Department of Neurology, University Hospital Cologne, Kerpener Strasse 62, 50937 Köln, Germany
| | - Valentin Seeger
- Department of Neurology, University Hospital Cologne, Kerpener Strasse 62, 50937 Köln, Germany
| | - Lars Timmermann
- Department of Neurology, University Hospital Cologne, Kerpener Strasse 62, 50937 Köln, Germany; Department of Neurology, University Hospital Marburg, Baldingerstrasse, 35043 Marburg, Germany
| | - Esther Florin
- Department of Neurology, University Hospital Cologne, Kerpener Strasse 62, 50937 Köln, Germany; Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
13
|
Hanssen H, Steinhardt J, Münchau A, Al-Zubaidi A, Tzvi E, Heldmann M, Schramm P, Neumann A, Rasche D, Saryyeva A, Voges J, Galazky I, Büntjen L, Heinze HJ, Krauss JK, Tronnier V, Münte TF, Brüggemann N. Cerebello-striatal interaction mediates effects of subthalamic nucleus deep brain stimulation in Parkinson's disease. Parkinsonism Relat Disord 2019; 67:99-104. [PMID: 31494048 DOI: 10.1016/j.parkreldis.2019.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 08/30/2019] [Accepted: 09/02/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND In Parkinson's disease (PD), dopamine replacement therapy (DRT) enhances the effective connectivity of the prefrontal cortex (PFC) and supplementary motor area (SMA). The clinical effects of deep brain stimulation (DBS) of the subthalamic nucleus (STN) go beyond DRT effects including highly beneficial tremor suppression. OBJECTIVES Here, we aimed to determine DBS-related changes of a motor network using resting state fMRI in PD patients with chronic STN DBS. METHODS In a repeated-measurement design, 26 medicated PD patients (60.9 years (SD 8.9)) were investigated using resting state fMRI while bipolar STN stimulation was (i) active or (ii) switched off, and dynamic causal modelling was subsequently performed. RESULTS DBS improved the MDS-UPDRS-III score by 26.4% (DBS ON/Med ON vs. DBS OFF/Med ON). Active stimulation resulted in an increased effective connectivity from cerebellum to putamen (p = 0.00118). In addition, there was a stronger coupling from PFC to cerebellum (p = 0.021), as well as from cerebellum to SMA (p = 0.043) on an uncorrected level. Coupling strength from PFC to cerebellum correlated with the DBS-related change of the resting tremor subscore (r = 0.54, p = 0.031). Self-connections increased as a function of DBS in the right PFC, PMC, SMA, M1, thalamus and left cerebellum. CONCLUSIONS DBS-related improvement of Parkinsonian signs appears to be driven by an interaction between the cerebellum and the putamen. Resting tremor suppression may be related to an enhanced prefronto-cerebellar network. Activation of the mesial premotor loop (PFC-SMA) as seen in DRT may thus be secondary due to the primary modulation of cerebellar networks.
Collapse
Affiliation(s)
- Henrike Hanssen
- Department of Neurology, University of Lübeck, Lübeck, Germany; Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Julia Steinhardt
- Department of Neurology, University of Lübeck, Lübeck, Germany; Department of Internal Medicine, University of Lübeck, Lübeck, Germany
| | - Alexander Münchau
- Department of Internal Medicine, University of Lübeck, Lübeck, Germany
| | | | - Elinor Tzvi
- Department of Neurology, University of Leipzig, Leipzig, Germany
| | - Marcus Heldmann
- Department of Neurology, University of Lübeck, Lübeck, Germany; Institute of Psychology II, University of Lübeck, Lübeck, Germany
| | - Peter Schramm
- Institute of Neuroradiology, University of Lübeck, Lübeck, Germany
| | | | - Dirk Rasche
- Department of Neurosurgery, University of Lübeck, Lübeck, Germany
| | - Assel Saryyeva
- Department of Neurosurgery, Medical School Hanover, MHH, Hanover, Germany
| | - Jürgen Voges
- Department of Stereotactic Neurosurgery, University Hospital Magdeburg, Magdeburg, Germany; Leibniz Institute of Neurobiology, Magdeburg, Germany
| | - Imke Galazky
- Department of Neurology, University Hospital Magdeburg, Magdeburg, Germany
| | - Lars Büntjen
- Department of Stereotactic Neurosurgery, University Hospital Magdeburg, Magdeburg, Germany
| | - Hans-Jochen Heinze
- Department of Neurology, University Hospital Magdeburg, Magdeburg, Germany
| | - Joachim K Krauss
- Department of Neurosurgery, Medical School Hanover, MHH, Hanover, Germany
| | - Volker Tronnier
- Department of Neurosurgery, University of Lübeck, Lübeck, Germany
| | - Thomas F Münte
- Department of Neurology, University of Lübeck, Lübeck, Germany; Institute of Psychology II, University of Lübeck, Lübeck, Germany
| | - Norbert Brüggemann
- Department of Neurology, University of Lübeck, Lübeck, Germany; Department of Internal Medicine, University of Lübeck, Lübeck, Germany.
| |
Collapse
|
14
|
Chung SJ, Yoo HS, Lee YH, Lee HS, Ye BS, Sohn YH, Kwon H, Lee PH. Frontal atrophy as a marker for dementia conversion in Parkinson's disease with mild cognitive impairment. Hum Brain Mapp 2019; 40:3784-3794. [PMID: 31090134 DOI: 10.1002/hbm.24631] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/03/2019] [Accepted: 05/04/2019] [Indexed: 12/11/2022] Open
Abstract
This study aimed to investigate the cortical neural correlates of dementia conversion in Parkinson's disease with mild cognitive impairment (PD-MCI). We classified 112 patients with drug-naïve early stage PD meeting criteria for PD-MCI into either PD with dementia (PDD) converters (n = 34) or nonconverters (n = 78), depending on whether they developed dementia within 4 years of PD diagnosis. Cortical thickness analyses were performed in 34 PDD converters and 34 matched nonconverters. Additionally, a linear discriminant analysis was performed to distinguish PDD converters from nonconverters using cortical thickness of the regions that differed between the two groups. The PDD converters had higher frequencies of multiple domain MCI and amnestic MCI with storage failure, and poorer cognitive performances on frontal/executive, memory, and language function domains than did the nonconverters. Cortical thinning extending from the posterior cortical area into the frontal region was observed in PDD converters relative to nonconverters. The discriminant analysis showed that the prediction model with two cortical thickness variables in the right medial superior frontal and left olfactory cortices optimally distinguished PDD converters from nonconverters. Our data suggest that cortical thinning in the frontal areas including the olfactory cortex is a marker for early dementia conversion in PD-MCI.
Collapse
Affiliation(s)
- Seok Jong Chung
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea.,Department of Neurology, National Health Insurance Service Ilsan Hospital, Goyang, South Korea
| | - Han Soo Yoo
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Yang Hyun Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Hye Sun Lee
- Department of Biostatistics, Yonsei University College of Medicine, Seoul, South Korea
| | - Byoung Seok Ye
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Young H Sohn
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Hunki Kwon
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
15
|
Lee Y, Park YH, Lee JJ, Sohn YH, Lee JM, Lee PH. Gender-specific effect of uric acid on resting-state functional networks in de novo Parkinson's disease. Parkinsonism Relat Disord 2018; 52:49-54. [DOI: 10.1016/j.parkreldis.2018.03.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 02/20/2018] [Accepted: 03/25/2018] [Indexed: 11/16/2022]
|
16
|
Lucas‐Jiménez O, Ojeda N, Peña J, Cabrera‐Zubizarreta A, Díez‐Cirarda M, Gómez‐Esteban JC, Gómez‐Beldarrain MÁ, Ibarretxe‐Bilbao N. Apathy and brain alterations in Parkinson's disease: a multimodal imaging study. Ann Clin Transl Neurol 2018; 5:803-814. [PMID: 30009198 PMCID: PMC6043767 DOI: 10.1002/acn3.578] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 03/27/2018] [Accepted: 04/13/2018] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE Apathy is a common nonmotor symptom in Parkinson's disease (PD) affecting 40% of patients. The aim of the study was to investigate brain changes and correlates of frontal, striatal, and limbic pathways related to subclinical symptoms of apathy in PD patients. METHODS Thirty-two PD patients divided into low-subclinical symptoms of apathy (LSA) (n = 18) and high-subclinical symptoms of apathy (HSA) (n = 14) and 25 healthy controls (HC) underwent a T1-weighted, diffusion-weighted, and resting-state functional MRI. Apathy was evaluated with the Lille Apathy Rating Scale. Voxel-based morphometry, tract-based spatial statistics, and resting-state functional connectivity (FC) analyses were performed with a region-of-interest approach. RESULTS HSA-PD showed increased white matter axial and mean diffusivity compared with HC and increased white matter axial diffusivity compared with LSA-PD. HSA-PD showed decreased fronto-striatal and fronto-limbic FC compared with HC and decreased fronto-striatal FC compared with LSA-PD. LSA-PD showed decreased fronto-limbic but increased fronto-striatal FC (hyperconnectivity) compared with HC. No significant differences in grey matter were found. Fronto-striatal FC and white matter axial and mean diffusivity were associated with symptoms of apathy in HSA-PD. The fronto-striatal hyperconnectivity was associated with lower symptoms of apathy in LSA-PD. INTERPRETATION Findings suggest distinct brain alterations in PD groups with subclinical symptoms of apathy. The increased pattern of activation in LSA-PD, accompanied with lower apathetic symptomatology, might be the initial manifestation of compensatory mechanisms for dysfunctional limbic pathway. The same pattern of hyperconnectivity has been found in other pathologies and the implication of these abnormalities as a cross-disease model for initial apathy symptomatology is further discussed.
Collapse
Affiliation(s)
- Olaia Lucas‐Jiménez
- Department of Methods and Experimental PsychologyFaculty of Psychology and EducationUniversity of DeustoBilbaoSpain
| | - Natalia Ojeda
- Department of Methods and Experimental PsychologyFaculty of Psychology and EducationUniversity of DeustoBilbaoSpain
| | - Javier Peña
- Department of Methods and Experimental PsychologyFaculty of Psychology and EducationUniversity of DeustoBilbaoSpain
| | | | - María Díez‐Cirarda
- Department of Methods and Experimental PsychologyFaculty of Psychology and EducationUniversity of DeustoBilbaoSpain
| | - Juan Carlos Gómez‐Esteban
- Neurodegenerative Diseases GroupBiocruces Health Research InstituteUniversity of Basque CountryBarakaldoSpain
| | | | - Naroa Ibarretxe‐Bilbao
- Department of Methods and Experimental PsychologyFaculty of Psychology and EducationUniversity of DeustoBilbaoSpain
| |
Collapse
|
17
|
The cholinergic contribution to the resting-state functional network in non-demented Parkinson's disease. Sci Rep 2018; 8:7683. [PMID: 29769626 PMCID: PMC5955917 DOI: 10.1038/s41598-018-26075-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 04/30/2018] [Indexed: 12/24/2022] Open
Abstract
The cholinergic system arising from the basal forebrain plays an important role in cognitive performance in Parkinson's disease (PD). Here, we analyzed cholinergic status-dependent cortical and subcortical resting-state functional connectivity in PD. A total of 61 drug-naïve PD patients were divided into tertiles based on normalized substantia innominata (SI) volumes. We compared the resting-state network from seed region of interest in the caudate, posterior cingulate cortex (PCC), and SI between the lowest (PD-L) and highest tertile (PD-H) groups. Correlation analysis of the functional networks was also performed in all subjects. The functional network analysis showed that PD-L subjects displayed decreased striato-cortical functional connectivity compared with PD-H subjects. Selecting the PCC as a seed, the PD-L patients displayed decreased functional connectivity compared to PD-H patients. Meanwhile, PD-L subjects had significantly increased cortical functional connectivity with the SI compared with PD-H subjects. Correlation analysis revealed that SI volume had a positive correlation with functional connectivity from the right caudate and PCC. The present study demonstrated that PD patients exhibited unique functional connectivity from the caudate and the PCC that may be closely associated with cholinergic status, suggesting an important role for the cholinergic system in PD-associated cognition.
Collapse
|
18
|
Hohenfeld C, Werner CJ, Reetz K. Resting-state connectivity in neurodegenerative disorders: Is there potential for an imaging biomarker? Neuroimage Clin 2018; 18:849-870. [PMID: 29876270 PMCID: PMC5988031 DOI: 10.1016/j.nicl.2018.03.013] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/06/2018] [Accepted: 03/14/2018] [Indexed: 12/14/2022]
Abstract
Biomarkers in whichever modality are tremendously important in diagnosing of disease, tracking disease progression and clinical trials. This applies in particular for disorders with a long disease course including pre-symptomatic stages, in which only subtle signs of clinical progression can be observed. Magnetic resonance imaging (MRI) biomarkers hold particular promise due to their relative ease of use, cost-effectiveness and non-invasivity. Studies measuring resting-state functional MR connectivity have become increasingly common during recent years and are well established in neuroscience and related fields. Its increasing application does of course also include clinical settings and therein neurodegenerative diseases. In the present review, we critically summarise the state of the literature on resting-state functional connectivity as measured with functional MRI in neurodegenerative disorders. In addition to an overview of the results, we briefly outline the methods applied to the concept of resting-state functional connectivity. While there are many different neurodegenerative disorders cumulatively affecting a substantial number of patients, for most of them studies on resting-state fMRI are lacking. Plentiful amounts of papers are available for Alzheimer's disease (AD) and Parkinson's disease (PD), but only few works being available for the less common neurodegenerative diseases. This allows some conclusions on the potential of resting-state fMRI acting as a biomarker for the aforementioned two diseases, but only tentative statements for the others. For AD, the literature contains a relatively strong consensus regarding an impairment of the connectivity of the default mode network compared to healthy individuals. However, for AD there is no considerable documentation on how that alteration develops longitudinally with the progression of the disease. For PD, the available research points towards alterations of connectivity mainly in limbic and motor related regions and networks, but drawing conclusions for PD has to be done with caution due to a relative heterogeneity of the disease. For rare neurodegenerative diseases, no clear conclusions can be drawn due to the few published results. Nevertheless, summarising available data points towards characteristic connectivity alterations in Huntington's disease, frontotemporal dementia, dementia with Lewy bodies, multiple systems atrophy and the spinocerebellar ataxias. Overall at this point in time, the data on AD are most promising towards the eventual use of resting-state fMRI as an imaging biomarker, although there remain issues such as reproducibility of results and a lack of data demonstrating longitudinal changes. Improved methods providing more precise classifications as well as resting-state network changes that are sensitive to disease progression or therapeutic intervention are highly desirable, before routine clinical use could eventually become a reality.
Collapse
Affiliation(s)
- Christian Hohenfeld
- RWTH Aachen University, Department of Neurology, Aachen, Germany; JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Cornelius J Werner
- RWTH Aachen University, Department of Neurology, Aachen, Germany; RWTH Aachen University, Section Interdisciplinary Geriatrics, Aachen, Germany
| | - Kathrin Reetz
- RWTH Aachen University, Department of Neurology, Aachen, Germany; JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
19
|
Chung SJ, Choi YH, Kwon H, Park YH, Yun HJ, Yoo HS, Moon SH, Ye BS, Sohn YH, Lee JM, Lee PH. Sleep Disturbance May Alter White Matter and Resting State Functional Connectivities in Parkinson's Disease. Sleep 2017; 40:2962411. [PMID: 28364425 DOI: 10.1093/sleep/zsx009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Study Objectives To clarify whether sleep disturbance would alter the patterns of structural and functional networks underlying cognitive dysfunction in patients with Parkinson's disease (PD). Methods Among the 180 patients with nondemented PD in our cohort, 45 patients were classified as the group with sleep disturbance according to the 5-item scales for outcomes in Parkinson's disease nighttime scale. Based on propensity scores, another 45 PD patients without sleep disturbance were matched to this group. We performed a comparative analysis of cortical thickness, diffusion tensor imaging-based white matter integrity, resting-state functional connectivity, and cognitive performance between PD patients with and without sleep disturbance. Results PD patients with sleep disturbance showed poorer performance in attention and working memory and a tendency toward a lower score in frontal executive function relative to those without sleep disturbance. The PD with sleep disturbance group exhibited widespread white matter disintegration compared to the PD without sleep disturbance group, although there were no significant differences in cortical thickness between the PD subgroups. On functional network analysis, PD patients with sleep disturbance exhibited less severely decreased cortical functional connectivity within the default mode network, central executive network, and dorsal attention network when compared to those without sleep disturbance. Conclusions The present study suggests that sleep disturbance in PD patients could be associated with white matter and functional network alterations in conjunction with cognitive impairment.
Collapse
Affiliation(s)
- Seok Jong Chung
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea.,Jangseong Public Health Center, Jangseong, South Korea
| | - Yong-Ho Choi
- Department of Biomedical Engineering, Hanyang University, Seoul, South Korea
| | - Hunki Kwon
- Department of Biomedical Engineering, Hanyang University, Seoul, South Korea
| | - Yeong-Hun Park
- Department of Biomedical Engineering, Hanyang University, Seoul, South Korea
| | - Hyuk Jin Yun
- Department of Biomedical Engineering, Hanyang University, Seoul, South Korea
| | - Han Soo Yoo
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | | | - Byoung Seok Ye
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Young H Sohn
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong-Min Lee
- Department of Biomedical Engineering, Hanyang University, Seoul, South Korea
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
20
|
Cocozza S, Pisani A, Olivo G, Saccà F, Ugga L, Riccio E, Migliaccio S, Brescia Morra V, Brunetti A, Quarantelli M, Tedeschi E. Alterations of functional connectivity of the motor cortex in Fabry disease. Neurology 2017; 88:1822-1829. [DOI: 10.1212/wnl.0000000000003913] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 01/20/2017] [Indexed: 11/15/2022] Open
Abstract
Objective:To evaluate the presence of functional connectivity (FC) alterations of the motor circuits in patients with Fabry disease (FD) and their possible correlation with clinical variables with a resting-state (RS) fMRI analysis.Methods:In our cross-sectional study, 32 patients with FD with genetically confirmed classic diagnosis of FD (12 men, mean age 43.3 ± 12.2 years) were enrolled along with 35 healthy controls (HCs) of comparable age and sex (14 men, mean age 42.1 ± 14.5 years). RS-fMRI data were analyzed with a seed-based approach, with 2 different seeds for right and left motor cortex. Patients with FD underwent a clinical examination for the assessment of different motor functions. Correlations with clinical variables were probed with the Spearman correlation coefficient.Results:A reduction of FC was found in patients with FD compared to HCs between both motor cortices and 2 clusters encompassing, for each side, the caudate and lenticular nucleus (p < 5 × 10−4 and p < 10−8 for right and left motor cortex, respectively) and between the left motor cortex and dentate nuclei (p = 0.01) and Crus 1 in the right cerebellar hemisphere (p = 0.001). No significant results emerged in tests for possible correlations of FC with clinical scores.Conclusions:An alteration of the corticostriatal pathway is present in FD, in line with the recently suggested subclinical involvement of motor circuits in this disease. These results shed new light on the pattern of cerebral involvement in FD.
Collapse
|
21
|
Ciarmiello A, Giovacchini G, Giovannini E, Lazzeri P, Borsò E, Mannironi A, Mansi L. Molecular Imaging of Huntington's Disease. J Cell Physiol 2017; 232:1988-1993. [PMID: 27791273 DOI: 10.1002/jcp.25666] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 10/26/2016] [Indexed: 11/07/2022]
Abstract
The onset and the clinical progression of Huntington Disease (HD) is influenced by several events prompted by a genetic mutation that affects several organs tissues including different regions of the brain. In the last decades years, Positron Emission Tomography (PET) and Magnetic Resonance Imaging (MRI) helped to deepen the knowledge of neurodegenerative mechanisms that guide to clinical symptoms. Brain imaging with PET represents a tool to investigate the physiopathology occurring in the brain and it has been used to predict the age of onset of the disease and to evaluate the therapeutic efficacy of new drugs. This article reviews the contribution of PET and MRI in the research field on Huntington's disease, focusing in particular on some most relevant achievements that have helped recognize the molecular changes, the clinical symptoms and evolution of the disease. J. Cell. Physiol. 232: 1988-1993, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Andrea Ciarmiello
- Department of Nuclear Medicine, S. Andrea Hospital, La Spezia, Italy
| | - Giampiero Giovacchini
- Department of Neurology, S. Andrea Hospital, La Spezia, Italy.,Institute of Radiology and Nuclear Medicine, Stadtspital Triemli, Zurich, Switzerland
| | | | - Patrizia Lazzeri
- Department of Nuclear Medicine, S. Andrea Hospital, La Spezia, Italy
| | - Elisa Borsò
- Department of Nuclear Medicine, S. Andrea Hospital, La Spezia, Italy
| | - Antonio Mannironi
- Institute of Radiology and Nuclear Medicine, Stadtspital Triemli, Zurich, Switzerland
| | - Luigi Mansi
- Department of Internal and Experimental Medicine Magrassi - Lanzara, Second University of Naples Napoli, Naples, Italy
| |
Collapse
|
22
|
Tinaz S, Lauro PM, Ghosh P, Lungu C, Horovitz SG. Changes in functional organization and white matter integrity in the connectome in Parkinson's disease. NEUROIMAGE-CLINICAL 2016; 13:395-404. [PMID: 28116232 PMCID: PMC5226806 DOI: 10.1016/j.nicl.2016.12.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/08/2016] [Accepted: 12/16/2016] [Indexed: 11/27/2022]
Abstract
Parkinson's disease (PD) leads to dysfunction in multiple cortico-striatal circuits. The neurodegeneration has also been associated with impaired white matter integrity. This structural and functional “disconnection” in PD needs further characterization. We investigated the structural and functional organization of the PD whole brain connectome consisting of 200 nodes using diffusion tensor imaging and resting-state functional MRI, respectively. Data from 20 non-demented PD patients on dopaminergic medication and 20 matched controls were analyzed using graph theory-based methods. We focused on node strength, clustering coefficient, and local efficiency as measures of local network properties; and network modularity as a measure of information flow. PD patients showed reduced white matter connectivity in frontoparietal-striatal nodes compared to controls, but no change in modular organization of the white matter tracts. PD group also showed reduction in functional local network metrics in many nodes distributed across the connectome. There was also decreased functional modularity in the core cognitive networks including the default mode and dorsal attention networks, and sensorimotor network, as well as a lack of modular distinction in the orbitofrontal and basal ganglia nodes in the PD group compared to controls. Our results suggest that despite subtle white matter connectivity changes, the overall structural organization of the PD connectome remains robust at relatively early disease stages. However, there is a breakdown in the functional modular organization of the PD connectome. DTI and rs-fMRI investigation of the connectome in Parkinson's disease (PD) Local network properties and modularity were examined using graph theory. White matter connectivity was decreased in frontoparietal-striatal nodes in PD. Functional modularity of cognitive and motor networks was reduced in PD.
Collapse
Affiliation(s)
- Sule Tinaz
- Division of Movement Disorders, Department of Neurology, Yale School of Medicine, New Haven, CT, USA; Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Peter M Lauro
- Office of the Clinical Director, National Institute of Neurologic Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Pritha Ghosh
- Office of the Clinical Director, National Institute of Neurologic Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA; Parkinson's Disease and Movement Disorders Program, Department of Neurology, George Washington University, Washington, DC, USA
| | - Codrin Lungu
- Office of the Clinical Director, National Institute of Neurologic Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Silvina G Horovitz
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
23
|
Disrupted brain metabolic connectivity in a 6-OHDA-induced mouse model of Parkinson's disease examined using persistent homology-based analysis. Sci Rep 2016; 6:33875. [PMID: 27650055 PMCID: PMC5030651 DOI: 10.1038/srep33875] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 09/05/2016] [Indexed: 11/26/2022] Open
Abstract
Movement impairments in Parkinson’s disease (PD) are caused by the degeneration of dopaminergic neurons and the consequent disruption of connectivity in the cortico-striatal-thalamic loop. This study evaluated brain metabolic connectivity in a 6-Hydroxydopamine (6-OHDA)-induced mouse model of PD using 18F-fluorodeoxy glucose positron emission tomography (FDG PET). Fourteen PD-model mice and ten control mice were used for the analysis. Voxel-wise t-tests on FDG PET results yielded no significant regional metabolic differences between the PD and control groups. However, the PD group showed lower correlations between the right caudoputamen and the left caudoputamen and right visual cortex. Further network analyses based on the threshold-free persistent homology framework revealed that brain networks were globally disrupted in the PD group, especially between the right auditory cortex and bilateral cortical structures and the left caudoputamen. In conclusion, regional glucose metabolism of PD was preserved, but the metabolic connectivity of the cortico-striatal-thalamic loop was globally impaired in PD.
Collapse
|
24
|
Berman BD, Smucny J, Wylie KP, Shelton E, Kronberg E, Leehey M, Tregellas JR. Levodopa modulates small-world architecture of functional brain networks in Parkinson's disease. Mov Disord 2016; 31:1676-1684. [PMID: 27461405 DOI: 10.1002/mds.26713] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 05/23/2016] [Accepted: 05/30/2016] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND PD is associated with disrupted connectivity to a large number of distributed brain regions. How the disease alters the functional topological organization of the brain, however, remains poorly understood. Furthermore, how levodopa modulates network topology in PD is largely unknown. The objective of this study was to use resting-state functional MRI and graph theory to determine how small-world architecture is altered in PD and affected by levodopa administration. METHODS Twenty-one PD patients and 20 controls underwent functional MRI scanning. PD patients were scanned off medication and 1 hour after 200 mg levodopa. Imaging data were analyzed using 226 nodes comprising 10 intrinsic brain networks. Correlation matrices were generated for each subject and converted into cost-thresholded, binarized adjacency matrices. Cost-integrated whole-brain global and local efficiencies were compared across groups and tested for relationships with disease duration and severity. RESULTS Data from 2 patients and 4 controls were excluded because of excess motion. Patients off medication showed no significant changes in global efficiency and overall local efficiency, but in a subnetwork analysis did show increased local efficiency in executive (P = 0.006) and salience (P = 0.018) networks. Levodopa significantly decreased local efficiency (P = 0.039) in patients except within the subcortical network, in which it significantly increased local efficiency (P = 0.007). CONCLUSIONS Levodopa modulates global and local efficiency measures of small-world topology in PD, suggesting that degeneration of nigrostriatal neurons in PD may be associated with a large-scale network reorganization and that levodopa tends to normalize the disrupted network topology in PD. © 2016 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Brian D Berman
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,Neurology Section, Denver VA Medical Center, Denver, Colorado, USA
| | - Jason Smucny
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Korey P Wylie
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Erika Shelton
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Eugene Kronberg
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Maureen Leehey
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jason R Tregellas
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,Research Service, Denver VA Medical Center, Denver, Colorado, USA
| |
Collapse
|
25
|
A systematic review on the applications of resting-state fMRI in Parkinson's disease: Does dopamine replacement therapy play a role? Cortex 2015; 73:80-105. [DOI: 10.1016/j.cortex.2015.08.005] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 06/08/2015] [Accepted: 08/05/2015] [Indexed: 01/16/2023]
|
26
|
Weingarten CP, Sundman MH, Hickey P, Chen NK. Neuroimaging of Parkinson's disease: Expanding views. Neurosci Biobehav Rev 2015; 59:16-52. [PMID: 26409344 PMCID: PMC4763948 DOI: 10.1016/j.neubiorev.2015.09.007] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 09/07/2015] [Accepted: 09/15/2015] [Indexed: 12/14/2022]
Abstract
Advances in molecular and structural and functional neuroimaging are rapidly expanding the complexity of neurobiological understanding of Parkinson's disease (PD). This review article begins with an introduction to PD neurobiology as a foundation for interpreting neuroimaging findings that may further lead to more integrated and comprehensive understanding of PD. Diverse areas of PD neuroimaging are then reviewed and summarized, including positron emission tomography, single photon emission computed tomography, magnetic resonance spectroscopy and imaging, transcranial sonography, magnetoencephalography, and multimodal imaging, with focus on human studies published over the last five years. These included studies on differential diagnosis, co-morbidity, genetic and prodromal PD, and treatments from L-DOPA to brain stimulation approaches, transplantation and gene therapies. Overall, neuroimaging has shown that PD is a neurodegenerative disorder involving many neurotransmitters, brain regions, structural and functional connections, and neurocognitive systems. A broad neurobiological understanding of PD will be essential for translational efforts to develop better treatments and preventive strategies. Many questions remain and we conclude with some suggestions for future directions of neuroimaging of PD.
Collapse
Affiliation(s)
- Carol P Weingarten
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, United States.
| | - Mark H Sundman
- Brain Imaging and Analysis Center, Duke University Medical Center, United States
| | - Patrick Hickey
- Department of Neurology, Duke University School of Medicine, United States
| | - Nan-kuei Chen
- Brain Imaging and Analysis Center, Duke University Medical Center, United States; Department of Radiology, Duke University School of Medicine, United States
| |
Collapse
|
27
|
Ham JH, Cha J, Lee JJ, Baek GM, Sunwoo MK, Hong JY, Shin NY, Sohn YH, Lee JM, Lee PH. Nigrostriatal dopamine-independent resting-state functional networks in Parkinson's disease. Neuroimage 2015; 119:296-304. [PMID: 26143204 DOI: 10.1016/j.neuroimage.2015.06.077] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 05/26/2015] [Accepted: 06/26/2015] [Indexed: 10/23/2022] Open
Abstract
As an indicator of synchronous neural activity, resting-state functional networks are influenced by neuropathological and neurochemical changes in degenerative diseases. To further advance understanding about neurochemical and neuropathological basis for resting-state functional maps, we performed a comparative analysis of resting-state functional connectivity in patients with Parkinson's disease (PD) and drug induced parkinsonism (DIP). Resting-state neuroimaging data were analyzed with a seed-based approach to investigate striatocortical functional connectivity and cortical functional connectivity within the default mode network, executive control network, and the dorsal attention network. The striatal subregions were divided into the more or less affected sides in terms of dopamine transporter uptake. Compared with DIP, PD exhibited an increased cerebellar connectivity from the more affected side of the caudate and the less affected sides of the anterior and the posterior putamen. Additionally, PD showed increased functional connectivity in the anterior prefrontal areas from the more affected side of the anterior putamen and from the less affected side of the posterior putamen. However, PD exhibited decreased cortical functional connectivity from the posterior cingulate cortex in the left temporal area. Finally, DIP patients showed decreased cortical functional connectivity from the dorsolateral prefrontal cortex in frontal and parietal areas compared with PD patients. In summary, the present study demonstrates that PD patients exhibited a unique resting state functional connectivity that may be associated with PD-related pathological changes beyond the dopaminergic system, whereas DIP patients showed altered functional connectivity within executive control network.
Collapse
Affiliation(s)
- Jee Hyun Ham
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Jungho Cha
- Department of Biomedical Engineering, Hanyang University, Seoul, South Korea
| | - Jae Jung Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Gwang-Min Baek
- Department of Biomedical Engineering, Hanyang University, Seoul, South Korea
| | - Mun Kyung Sunwoo
- Department of Neurology, Bundang Jesaeng General Hospital, Seongnam, South Korea
| | - Jin Yong Hong
- Department of Neurology, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Na-Young Shin
- Department of Radiology, Ewha Womans University, Seoul, South Korea
| | - Young Ho Sohn
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong-Min Lee
- Department of Biomedical Engineering, Hanyang University, Seoul, South Korea
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea; Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
28
|
Rieckmann A, Gomperts S, Johnson K, Growdon J, Van Dijk K. Putamen-midbrain functional connectivity is related to striatal dopamine transporter availability in patients with Lewy body diseases. Neuroimage Clin 2015; 8:554-9. [PMID: 26137443 PMCID: PMC4484547 DOI: 10.1016/j.nicl.2015.06.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 06/01/2015] [Accepted: 06/02/2015] [Indexed: 01/22/2023]
Abstract
Prior work has shown that functional connectivity between the midbrain and putamen is altered in patients with impairments in the dopamine system. This study examines whether individual differences in midbrain-striatal connectivity are proportional to the integrity of the dopamine system in patients with nigrostriatal dopamine loss (Parkinson's disease and dementia with Lewy bodies). We assessed functional connectivity of the putamen during resting state fMRI and dopamine transporter (DAT) availability in the striatum using 11C-Altropane PET in twenty patients. In line with the hypothesis that functional connectivity between the midbrain and the putamen reflects the integrity of the dopaminergic neurotransmitter system, putamen-midbrain functional connectivity was significantly correlated with striatal DAT availability even after stringent control for effects of head motion. DAT availability did not relate to functional connectivity between the caudate and thalamus/prefrontal areas. As such, resting state functional connectivity in the midbrain-striatal pathway may provide a useful indicator of underlying pathology in patients with nigrostriatal dopamine loss.
Collapse
Affiliation(s)
- A. Rieckmann
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Department of Radiation Sciences, Diagnostic Radiology, Umeå University, Umeå, Sweden
| | - S.N. Gomperts
- MassGeneral Institute for Neurodegenerative Disease, Boston MA 02129, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - K.A. Johnson
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, MA 02114, USA
| | - J.H. Growdon
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - K.R.A. Van Dijk
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Harvard University, Department of Psychology, Center for Brain Science, Cambridge, MA 02138, USA
| |
Collapse
|
29
|
Tessitore A, Giordano A, De Micco R, Russo A, Tedeschi G. Sensorimotor connectivity in Parkinson's disease: the role of functional neuroimaging. Front Neurol 2014; 5:180. [PMID: 25309505 PMCID: PMC4173645 DOI: 10.3389/fneur.2014.00180] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/04/2014] [Indexed: 01/07/2023] Open
Abstract
The diagnosis of Parkinson’s disease (PD) remains still clinical; nevertheless, in the last decades, the rapid evolution of advanced MRI techniques has made it possible to detect structural and, increasingly, functional brain changes in patients with PD. Indeed, functional MRI (fMRI) techniques have offered the opportunity to directly measure the brain’s activity and connectivity in patients with PD both in early and complicated stage of the disease. The aims of the following review are (1) to present an overview of recent fMRI reports investigating the activity and connectivity of sensorimotor areas in patients with PD using both task-related and “resting-state” fMRI analysis (2) to elucidate potential pathophysiological mechanisms underlying dyskinetic motor complications in the advanced stage of PD.
Collapse
Affiliation(s)
- Alessandro Tessitore
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, Second University of Naples , Naples , Italy ; MRI Research Center SUN-FISM, Second University of Naples , Naples , Italy
| | - Alfonso Giordano
- MRI Research Center SUN-FISM, Second University of Naples , Naples , Italy ; Institute for Diagnosis and Care "Hermitage Capodimonte" , Naples , Italy
| | - Rosa De Micco
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, Second University of Naples , Naples , Italy ; MRI Research Center SUN-FISM, Second University of Naples , Naples , Italy
| | - Antonio Russo
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, Second University of Naples , Naples , Italy ; MRI Research Center SUN-FISM, Second University of Naples , Naples , Italy
| | - Gioacchino Tedeschi
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, Second University of Naples , Naples , Italy ; MRI Research Center SUN-FISM, Second University of Naples , Naples , Italy
| |
Collapse
|
30
|
Associations of regional GABA and glutamate with intrinsic and extrinsic neural activity in humans—a review of multimodal imaging studies. Neurosci Biobehav Rev 2014; 47:36-52. [PMID: 25066091 DOI: 10.1016/j.neubiorev.2014.07.016] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 06/30/2014] [Accepted: 07/17/2014] [Indexed: 01/04/2023]
Abstract
The integration of multiple imaging modalities is becoming an increasingly well used research strategy for studying the human brain. The neurotransmitters glutamate and GABA particularly lend themselves towards such studies. This is because these transmitters are ubiquitous throughout the cortex, where they are the key constituents of the inhibition/excitation balance, and because they can be easily measured in vivo through magnetic resonance spectroscopy, as well as with select positron emission tomography approaches. How these transmitters underly functional responses measured with techniques such as fMRI and EEG remains unclear though, and was the target of this review. Consistently shown in the literature was a negative correlation between GABA concentrations and stimulus-induced activity within the measured region. Also consistently found was a positive correlation between glutamate concentrations and inter-regional activity relationships, both during tasks and rest. These findings are outlined along with results from populations with mental disorders to give an overview of what brain imaging has suggested to date about the biochemical underpinnings of functional activity in health and disease. We conclude that the combination of functional and biochemical imaging in humans is an increasingly informative approach that does however require a number of key methodological and interpretive issues be addressed before can meet its potential.
Collapse
|