1
|
Archer C, Jeong HJ, Reimann GE, Durham EL, Moore TM, Wang S, Ashar DA, Kaczkurkin AN. Concurrent and longitudinal neurostructural correlates of irritability in children. Neuropsychopharmacology 2024; 49:2069-2076. [PMID: 39154134 PMCID: PMC11480493 DOI: 10.1038/s41386-024-01966-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024]
Abstract
Irritability, or an increased proneness to frustration and anger, is common in youth; however, few studies have examined neurostructural correlates of irritability in children. The purpose of the current study was to examine concurrent and longitudinal associations between brain structure and irritability in a large sample of 9-10-year-old children. Participants included 10,647 children from the Adolescent Brain Cognitive Developmentsm Study (ABCD Study®). We related a latent irritability factor to gray matter volume, cortical thickness, and surface area in 68 cortical regions and to gray matter volume in 19 subcortical regions using structural equation modeling. Multiple comparisons were adjusted for using the false discovery rate (FDR). After controlling for age, sex, race/ethnicity, scanner model, parent's highest level of education, medication use, and total intracranial volume, irritability was associated with smaller volumes in primarily temporal and parietal regions at baseline. Longitudinal analyses showed that baseline gray matter volume did not predict irritability symptoms at the 3rd-year follow-up. No significant associations were found for cortical thickness or surface area. The current study demonstrates inverse associations between irritability and volume in regions implicated in emotional processing/social cognition, attention allocation, and movement/perception. We advance prior research by demonstrating that neurostructural differences associated with irritability are already apparent by age 9-10 years, extending this work to children and supporting theories positing socioemotional deficits as a key feature of irritability.
Collapse
Affiliation(s)
- Camille Archer
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | - Hee Jung Jeong
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | | | | | - Tyler M Moore
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shuti Wang
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | - Devisi A Ashar
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | | |
Collapse
|
2
|
Fruehlinger C, Paul K, Wacker J. Can personality traits be predicted from resting-state EEG oscillations? A replication study. Biol Psychol 2024; 193:108955. [PMID: 39581300 DOI: 10.1016/j.biopsycho.2024.108955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
Personality neuroscience seeks to uncover the neurobiological underpinnings of personality. Identifying links between measures of brain activity and personality traits is important in this respect. Using an entirely inductive approach, Jach et al. (2020) attempted to predict personality trait scores from resting-state spectral electroencephalography (EEG) using multivariate pattern analysis (MVPA) and found meaningful results for Agreeableness. The exploratory nature of this work and concerns about replicability in general require a rigorous replication, which was the aim of the current study. We applied the same analytic approach to a large data set (N = 772) to evaluate the robustness of the previous results. Similar to Jach et al. (2020), 8 min of resting-state EEG before and after unrelated tasks with both eyes open and closed were analyzed using support vector regressions (SVR). A 10-fold cross-validation was used to evaluate the prediction accuracy between the spectral power of 59 EEG electrodes within 30 frequency bins ranging from 1 to 30 Hz and Big Five personality trait scores. We were not able to replicate the findings for Agreeableness. We extended the analysis by parameterizing the total EEG signal into its periodic and aperiodic signal components. However, neither component was meaningfully associated with the Big Five personality traits. Our results do not support the initial results and indicate that personality traits may at least not be substantially predictable from resting-state spectral power. Future identification of robust and replicable brain-personality associations will likely require alternative analysis methods and rigorous preregistration of all analysis steps.
Collapse
Affiliation(s)
- Christoph Fruehlinger
- Department of Differential Psychology and Psychological Assessment, Institute of Psychology, University of Hamburg, Von-Melle-Park-5, 20146 Hamburg, Germany.
| | - Katharina Paul
- Department of Differential Psychology and Psychological Assessment, Institute of Psychology, University of Hamburg, Von-Melle-Park-5, 20146 Hamburg, Germany.
| | - Jan Wacker
- Department of Differential Psychology and Psychological Assessment, Institute of Psychology, University of Hamburg, Von-Melle-Park-5, 20146 Hamburg, Germany.
| |
Collapse
|
3
|
Wang M, Mo D, Zhou C, Zhang W, Chen R, Xu J, Zhang N, Yu H. Causal association between Neuroticism and risk of aortic aneurysm: A bidirectional two-sample Mendelian randomization study. J Affect Disord 2024; 363:331-339. [PMID: 39059476 DOI: 10.1016/j.jad.2024.07.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/08/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND The objective of this study was to analyze the causal relationship between Neuroticism and aortic aneurysm using Mendelian randomization (MR). The study aimed to establish a foundation for the development of effective prevention and treatment strategies. METHODS Genetic association data for Neuroticism were obtained from the UK Biobank, which included 393,411 individuals and 11,968,760 single nucleotide polymorphisms (SNPs). Genetic association data for aortic aneurysm were obtained from a genome-wide association study (GWAS), which included 479,194 individuals and 24,191,825 SNPs. Heterogeneity was assessed using the Cochran's Q statistic test. The study also utilized the MR Pleiotropy RESidual Sum and Outlier (Mr-PRESSO) test, as well as the MR-Egger regression method, to examine horizontal pleiotropy and determine the reliability of the findings through the leave-one-out method. RESULTS Forward MR analysis showed that the risk of aortic aneurysm was elevated in individuals with genetically predicted Neuroticism compared to those without Neuroticism (OR = 1.1315, 95 % CI: 1.0269-1.2468; P = 0.0126). The Cochran's Q test showed no heterogeneity (P > 0.05), and the MR-PRESSO test did not identify instrumental variables of horizontal pleiotropy (P > 0.05). The MR analysis remained robust after removing SNPs one by one. Inverse MR analysis did not observe an association between aortic aneurysm and having Neuroticism OR = 1.030, 95 % CI: 0.9459-1.118, P = 0.488). CONCLUSION Our study has established a clear causal relationship between genetically determined Neuroticism and the development of aortic aneurysms. It is therefore important to intensify screening and prevention efforts for aortic aneurysms in neurotic patients. It also opens new avenues for exploring the disease's pathogenesis.
Collapse
Affiliation(s)
- Mengmeng Wang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China.
| | - Degang Mo
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Chi Zhou
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Wenqiang Zhang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Rui Chen
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Jiachao Xu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Ning Zhang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China.
| | - Haichu Yu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China.
| |
Collapse
|
4
|
Kim G, Khan RA, Tai Y, Shahsavarani S, Husain FT. Gray matter volumetric changes in tinnitus: The impact of hearing loss and severity. Brain Res 2024; 1846:149264. [PMID: 39369776 DOI: 10.1016/j.brainres.2024.149264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/12/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Tinnitus is a phantom auditory sensation that commonly co-occurs with hearing loss. Both tinnitus and hearing loss can impact the quality of life, emotional well-being, and cognitive functioning of the affected individuals. While previous studies have highlighted structural alterations in hearing loss and/or tinnitus, the fundamental neural mechanisms underpinning tinnitus severity remain poorly understood. In this study, we conducted a voxel-based morphometry to investigate gray matter (GM) volume differences among groups of participants with varying tinnitus severity and hearing status, and controls within a large sample. We observed reduced GM volume in the left anterior insula and right planum polare in participants with hearing loss, regardless of their tinnitus status, compared to normal hearing controls. We noted decreased GM volume in the bilateral anterior and posterior insula for those with tinnitus and normal hearing compared to a normal hearing control group. Further, the tinnitus with hearing loss group showed decreased GM volume in the left planum polare, left inferior temporal gyrus, bilateral anterior temporal gyri, and right superior frontal gyrus compared to the normal hearing control group, suggesting a combined effect of hearing loss and tinnitus. While tinnitus severity did not show a significant overall effect, there was a significant positive correlation between tinnitus distress and GM volume in bilateral planum polare. Our findings enhance the understanding of structural brain changes related to hearing loss and tinnitus, and advance the overall knowledge of tinnitus pathophysiology, which can contribute to the development of more effective treatments for tinnitus.
Collapse
Affiliation(s)
- Gibbeum Kim
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, IL 61801, United States; Department of Speech and Hearing Science, University of Illinois at Urbana-Champaign, Champaign, IL 61820, United States
| | - Rafay A Khan
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, IL 61801, United States; Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL 61801, United States
| | - Yihsin Tai
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, IL 61801, United States; Department of Speech and Hearing Science, University of Illinois at Urbana-Champaign, Champaign, IL 61820, United States; Department of Speech Pathology and Audiology, Ball State University, Muncie, IN 47306, United States
| | - Somayeh Shahsavarani
- Department of Speech and Hearing Science, University of Illinois at Urbana-Champaign, Champaign, IL 61820, United States; Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL 61801, United States; Department of Audiology, San Jose State University, San Jose, CA 95192, United States
| | - Fatima T Husain
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, IL 61801, United States; Department of Speech and Hearing Science, University of Illinois at Urbana-Champaign, Champaign, IL 61820, United States; Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL 61801, United States.
| |
Collapse
|
5
|
Brouillard A, Davignon LM, Vachon-Presseau É, Roy M, Marin MF. Starting the pill during adolescence: Age of onset and duration of use influence morphology of the hippocampus and ventromedial prefrontal cortex. Eur J Neurosci 2024; 60:5876-5899. [PMID: 39245916 DOI: 10.1111/ejn.16509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 09/10/2024]
Abstract
From adolescence, women become more likely to experience fear dysregulation. Oral contraceptives (OCs) can modulate the brain regions involved in fear processes. OCs are generally used for years and often initiated during adolescence, a sensitive period where certain brain regions involved in the fear circuitry are still undergoing important reorganization. It remains unknown whether OC use during adolescence may induce long-lasting changes in the fear circuitry. This study aimed to examine whether age of onset moderated the relationship between duration of use and fear-related brain structures. We collected structural MRI data in 98 healthy adult women (61 current users, 37 past users) and extracted grey matter volumes (GMV) and cortical thickness (CT) of key regions of the fear circuitry. Non-linear multiple regressions revealed interaction effects between age of onset and quadratic duration of use on GMV of the right hippocampus and right ventromedial prefrontal cortex (vmPFC). Among women who initiated OCs earlier in adolescence, a short duration of use was associated with smaller hippocampal GMV and thicker vmPFC compared to a longer duration of use. For both GMV and CT of the right vmPFC, women with an early OC onset had more grey matter at a short duration of use than those with a later onset. Our results suggest that OC use earlier in adolescence may induce lasting effects on structural correlates of fear learning and its regulation. These findings support further investigation into the timing of OC use to better comprehend how OCs could disrupt normal brain development processes.
Collapse
Affiliation(s)
- Alexandra Brouillard
- Department of Psychology, Université du Québec à Montréal, Montreal, QC, Canada
- Research Center of the Institut universitaire en santé mentale de Montréal, Montreal, QC, Canada
| | - Lisa-Marie Davignon
- Department of Psychology, Université du Québec à Montréal, Montreal, QC, Canada
- Research Center of the Institut universitaire en santé mentale de Montréal, Montreal, QC, Canada
| | - Étienne Vachon-Presseau
- Department of Anesthesia, McGill University, Montreal, QC, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - Mathieu Roy
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
- Department of Psychology, McGill University, Montreal, QC, Canada
| | - Marie-France Marin
- Department of Psychology, Université du Québec à Montréal, Montreal, QC, Canada
- Research Center of the Institut universitaire en santé mentale de Montréal, Montreal, QC, Canada
| |
Collapse
|
6
|
Cheng L, Zhang J, Xi H, Li M, Hu S, Yuan W, Wang P, Chen L, Zhan L, Jia X. Abnormalities of brain structure and function in cervical spondylosis: a multi-modal voxel-based meta-analysis. Front Neurosci 2024; 18:1415411. [PMID: 38948928 PMCID: PMC11211609 DOI: 10.3389/fnins.2024.1415411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/27/2024] [Indexed: 07/02/2024] Open
Abstract
Background Previous neuroimaging studies have revealed structural and functional brain abnormalities in patients with cervical spondylosis (CS). However, the results are divergent and inconsistent. Therefore, the present study conducted a multi-modal meta-analysis to investigate the consistent structural and functional brain alterations in CS patients. Methods A comprehensive literature search was conducted in five databases to retrieve relevant resting-state functional magnetic resonance imaging (rs-fMRI), structural MRI and diffusion tensor imaging (DTI) studies that measured brain functional and structural differences between CS patients and healthy controls (HCs). Separate and multimodal meta-analyses were implemented, respectively, by employing Anisotropic Effect-size Signed Differential Mapping software. Results 13 rs-fMRI studies that used regional homogeneity, amplitude of low-frequency fluctuations (ALFF) and fractional ALFF, seven voxel-based morphometry (VBM) studies and one DTI study were finally included in the present research. However, no studies on surface-based morphometry (SBM) analysis were included in this research. Due to the insufficient number of SBM and DTI studies, only rs-fMRI and VBM meta-analyses were conducted. The results of rs-fMRI meta-analysis showed that compared to HCs, CS patients demonstrated decreased regional spontaneous brain activities in the right lingual gyrus, right middle temporal gyrus (MTG), left inferior parietal gyrus and right postcentral gyrus (PoCG), while increased activities in the right medial superior frontal gyrus, bilateral middle frontal gyrus and right precuneus. VBM meta-analysis detected increased GMV in the right superior temporal gyrus (STG) and right paracentral lobule (PCL), while decreased GMV in the left supplementary motor area and left MTG in CS patients. The multi-modal meta-analysis revealed increased GMV together with decreased regional spontaneous brain activity in the left PoCG, right STG and PCL among CS patients. Conclusion This meta-analysis revealed that compared to HCs, CS patients had significant alterations in GMV and regional spontaneous brain activity. The altered brain regions mainly included the primary visual cortex, the default mode network and the sensorimotor area, which may be associated with CS patients' symptoms of sensory deficits, blurred vision, cognitive impairment and motor dysfunction. The findings may contribute to understanding the underlying pathophysiology of brain dysfunction and provide references for early diagnosis and treatment of CS. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/, CRD42022370967.
Collapse
Affiliation(s)
- Lulu Cheng
- School of Foreign Studies, China University of Petroleum (East China), Qingdao, China
- Shanghai Center for Research in English Language Education, Shanghai International Studies University, Shanghai, China
| | - Jianxin Zhang
- School of Foreign Studies, China University of Petroleum (East China), Qingdao, China
| | - Hongyu Xi
- School of Western Studies, Heilongjiang University, Harbin, China
| | - Mengting Li
- School of Psychology, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Su Hu
- School of Psychology, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Wenting Yuan
- School of Western Studies, Heilongjiang University, Harbin, China
- English Department, Heilongjiang International University, Harbin, China
| | - Peng Wang
- Department of Language, Literature and Communication, Faculty of Humanities, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Department of Psychology, Education, and Child Studies, Erasmus School of Social and Behavioural Sciences, Erasmus University Rotterdam, Rotterdam, Netherlands
| | - Lanfen Chen
- School of Medical Imaging, Shandong Second Medical University, Weifang, Shandong, China
| | - Linlin Zhan
- School of Western Studies, Heilongjiang University, Harbin, China
| | - Xize Jia
- School of Psychology, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
7
|
Rozovsky R, Bertocci M, Iyengar S, Stiffler RS, Bebko G, Skeba AS, Brady T, Aslam H, Phillips ML. Identifying tripartite relationship among cortical thickness, neuroticism, and mood and anxiety disorders. Sci Rep 2024; 14:8449. [PMID: 38600283 PMCID: PMC11006921 DOI: 10.1038/s41598-024-59108-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/08/2024] [Indexed: 04/12/2024] Open
Abstract
The number of young adults seeking help for emotional distress, subsyndromal-syndromal mood/anxiety symptoms, including those associated with neuroticism, is rising and can be an early manifestation of mood/anxiety disorders. Identification of gray matter (GM) thickness alterations and their relationship with neuroticism and mood/anxiety symptoms can aid in earlier diagnosis and prevention of risk for future mood and anxiety disorders. In a transdiagnostic sample of young adults (n = 252;177 females; age 21.7 ± 2), Hypothesis (H) 1:regularized regression followed by multiple regression examined relationships among GM cortical thickness and clinician-rated depression, anxiety, and mania/hypomania; H2:the neuroticism factor and its subfactors as measured by NEO Personality Inventory (NEO-PI-R) were tested as mediators. Analyses revealed positive relationships between left parsopercularis thickness and depression (B = 4.87, p = 0.002), anxiety (B = 4.68, p = 0.002), mania/hypomania (B = 6.08, p ≤ 0.001); negative relationships between left inferior temporal gyrus (ITG) thickness and depression (B = - 5.64, p ≤ 0.001), anxiety (B = - 6.77, p ≤ 0.001), mania/hypomania (B = - 6.47, p ≤ 0.001); and positive relationships between left isthmus cingulate thickness (B = 2.84, p = 0.011), and anxiety. NEO anger/hostility mediated the relationship between left ITG thickness and mania/hypomania; NEO vulnerability mediated the relationship between left ITG thickness and depression. Examining the interrelationships among cortical thickness, neuroticism and mood and anxiety symptoms enriches the potential for identifying markers conferring risk for mood and anxiety disorders and can provide targets for personalized intervention strategies for these disorders.
Collapse
Affiliation(s)
- Renata Rozovsky
- Department of Psychiatry, University of Pittsburgh School of Medicine, University of Pittsburgh, 302 Loeffler Building, 121 Meyran Ave., Pittsburgh, PA, USA.
| | - Michele Bertocci
- Department of Psychiatry, University of Pittsburgh School of Medicine, University of Pittsburgh, 302 Loeffler Building, 121 Meyran Ave., Pittsburgh, PA, USA
| | - Satish Iyengar
- Department of Statistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Richelle S Stiffler
- Department of Psychiatry, University of Pittsburgh School of Medicine, University of Pittsburgh, 302 Loeffler Building, 121 Meyran Ave., Pittsburgh, PA, USA
| | - Genna Bebko
- Department of Psychiatry, University of Pittsburgh School of Medicine, University of Pittsburgh, 302 Loeffler Building, 121 Meyran Ave., Pittsburgh, PA, USA
| | - Alexander S Skeba
- Department of Psychiatry, University of Pittsburgh School of Medicine, University of Pittsburgh, 302 Loeffler Building, 121 Meyran Ave., Pittsburgh, PA, USA
| | - Tyler Brady
- Department of Psychiatry, University of Pittsburgh School of Medicine, University of Pittsburgh, 302 Loeffler Building, 121 Meyran Ave., Pittsburgh, PA, USA
| | - Haris Aslam
- Department of Psychiatry, University of Pittsburgh School of Medicine, University of Pittsburgh, 302 Loeffler Building, 121 Meyran Ave., Pittsburgh, PA, USA
| | - Mary L Phillips
- Department of Psychiatry, University of Pittsburgh School of Medicine, University of Pittsburgh, 302 Loeffler Building, 121 Meyran Ave., Pittsburgh, PA, USA
| |
Collapse
|
8
|
Pan N, Yang C, Suo X, Shekara A, Hu S, Gong Q, Wang S. Sex differences in the relationship between brain gray matter volume and psychological resilience in late adolescence. Eur Child Adolesc Psychiatry 2024; 33:1057-1066. [PMID: 37212908 DOI: 10.1007/s00787-023-02231-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/13/2023] [Indexed: 05/23/2023]
Abstract
Psychological resilience reflects an individual's ability to adapt and cope successfully in adverse environments and situations, making it a crucial trait in resisting stress-linked mental disorders and physical diseases. Although prior literature has consistently shown that males are more resilient than females, the sex-linked neuroanatomical correlates of psychological resilience are largely unknown. This study aims to explore the sex-specific relation between psychological resilience and brain gray matter volume (GMV) in adolescents via structural magnetic resonance imaging (s-MRI). A cohort of 231 healthy adolescents (121/110 females/males), aged 16 to 20 completed brain s-MRI scanning and Connor-Davidson Resilience Scale (CD-RISC) and other controlling behavioral tests. With s-MRI data, an optimized voxel-based morphometry method was used to estimate regional GMV, and a whole-brain condition-by-covariate interaction analysis was performed to identify the brain regions showing sex effects on the relation between psychological resilience and GMV. Male adolescents scored significantly higher than females on the CD-RISC. The association of psychological resilience with GMV differed between the two sex groups in the left ventrolateral prefrontal cortex extending to the adjacent anterior insula, with a positive correlation among males and a negative correlation among females. The sex-specific association between psychological resilience and GMV might be linked to sex differences in the hypothalamic-pituitary-adrenal axis and brain maturation during adolescence. This study may be novel in revealing the sex-linked neuroanatomical basis of psychological resilience, highlighting the need for a more thorough investigation of the role of sex in future studies of psychological resilience and stress-related illness.
Collapse
Affiliation(s)
- Nanfang Pan
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Cheng Yang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Xueling Suo
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Aniruddha Shekara
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Samantha Hu
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Qiyong Gong
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China.
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, China.
| | - Song Wang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China.
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China.
| |
Collapse
|
9
|
Zhang J, Wu X, Si Y, Liu Y, Wang X, Geng Y, Chang Q, Jiang X, Zhang H. Abnormal caudate nucleus activity in patients with depressive disorder: Meta-analysis of task-based functional magnetic resonance imaging studies with behavioral domain. Psychiatry Res Neuroimaging 2024; 338:111769. [PMID: 38141592 DOI: 10.1016/j.pscychresns.2023.111769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 11/17/2023] [Accepted: 11/26/2023] [Indexed: 12/25/2023]
Abstract
During task-based functional magnetic resonance imaging (t-fMRI) patients with depressive disorder (DD) have shown abnormal caudate nucleus activation. There have been no meta-analyses that are conducted on the caudate nucleus using Activation Likelihood Estimation (ALE) in patients with DD, and the relationships between abnormal caudate activity and different behavior domains in patients with DD remain unclear. There were 24 previously published t-fMRI studies included in the study with the caudate nucleus as the region of interest. Meta-analyses were performed using the method of ALE. Included five ALE meta-analyses: (1) the hypoactivated caudate nucleus relative to healthy controls (HCs); (2) the hyper-activated caudate nucleus; (3) the abnormal activation in the caudate nucleus in the emotion domain; (4) the abnormal activation in cognition domain; (5) the abnormal activation in the affective cognition domain. Results revealed that the hypo-/hyper-activity in the caudate subregions is mainly located in the caudate body and head, while the relationships between abnormal caudate subregions and different behavior domains are complex. The hypoactivation of the caudate body and head plays a key role in the emotions which indicates there is a positive relationship between the decreased caudate activity and depressed emotional behaviors in patients with DD.
Collapse
Affiliation(s)
- Jiajia Zhang
- Department of Psychology, Xinxiang Medical University, Henan 453003, PR China; Xinxiang Key Laboratory of Psychopathology and Cognitive Neuroscience, Xinxiang, 453003, PR China; Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, PR China
| | - Xin Wu
- Department of Psychology, Xinxiang Medical University, Henan 453003, PR China; Xinxiang Key Laboratory of Psychopathology and Cognitive Neuroscience, Xinxiang, 453003, PR China
| | - Yajing Si
- Department of Psychology, Xinxiang Medical University, Henan 453003, PR China; Xinxiang Key Laboratory of Psychopathology and Cognitive Neuroscience, Xinxiang, 453003, PR China
| | - Yahui Liu
- Department of Psychology, Xinxiang Medical University, Henan 453003, PR China; Xinxiang Key Laboratory of Psychopathology and Cognitive Neuroscience, Xinxiang, 453003, PR China
| | - Xueke Wang
- Department of Psychology, Xinxiang Medical University, Henan 453003, PR China; Xinxiang Key Laboratory of Psychopathology and Cognitive Neuroscience, Xinxiang, 453003, PR China; Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, PR China
| | - Yibo Geng
- Department of Radiology, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, PR China
| | - Qiaohua Chang
- Department of Nursing, Xinxiang Medical University, Henan 453003, PR China
| | - Xiaoxiao Jiang
- Department of Nursing, Xinxiang Medical University, Henan 453003, PR China
| | - Hongxing Zhang
- Department of Psychology, Xinxiang Medical University, Henan 453003, PR China; Xinxiang Key Laboratory of Psychopathology and Cognitive Neuroscience, Xinxiang, 453003, PR China; Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, PR China.
| |
Collapse
|
10
|
Ronat L, Rönnlund M, Adolfsson R, Hanganu A, Pudas S. Revised Temperament and Character Inventory factors predict neuropsychiatric symptoms and aging-related cognitive decline across 25 years. Front Aging Neurosci 2024; 16:1335336. [PMID: 38450380 PMCID: PMC10915205 DOI: 10.3389/fnagi.2024.1335336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/29/2024] [Indexed: 03/08/2024] Open
Abstract
Introduction Personality traits and neuropsychiatric symptoms such as neuroticism and depression share genetic overlap and have both been identified as risks factors for development of aging-related neurocognitive decline and Alzheimer's disease (AD). This study aimed to examine revised personality factors derived from the Temperament and Character Inventory, previously shown to be associated with psychiatric disorders, as predictors of neuropsychiatric, cognitive, and brain trajectories of participants from a population-based aging study. Methods Mixed-effect linear regression analyses were conducted on data for the full sample (Nmax = 1,286), and a healthy subsample not converting to AD-dementia during 25-year follow-up (Nmax = 1,145), complemented with Cox proportional regression models to determine risk factors for conversion to clinical AD. Results Two personality factors, Closeness to Experience (CE: avoidance of new stimuli, high anxiety, pessimistic anticipation, low reward seeking) and Tendence to Liabilities (TL: inability to change, low autonomy, unaware of the value of their existence) were associated with higher levels of depressive symptoms, stress (CE), sleep disturbance (TL), as well as greater decline in memory, vocabulary and verbal fluency in the full sample. Higher CE was additionally associated with greater memory decline across 25 years in the healthy subsample, and faster right hippocampal volume reduction across 8 years in a neuroimaging subsample (N = 216). Most, but not all, personality-cognition associations persisted after controlling for diabetes, hypertension and cardiovascular disease. Concerning risks for conversion to AD, higher age, and APOE-ε4, but none of the personality measures, were significant predictors. Conclusion The results indicate that personality traits associated with psychiatric symptoms predict accelerated age-related neurocognitive declines even in the absence of neurodegenerative disease. The attenuation of some personality effects on cognition after adjustment for health indicators suggests that those effects may be partly mediated by somatic health. Taken together, the results further emphasize the importance of personality traits in neurocognitive aging and underscore the need for an integrative (biopsychosocial) perspective of normal and pathological age-related cognitive decline.
Collapse
Affiliation(s)
- Lucas Ronat
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, Neuroimaging of Emotions Lab, Montreal, QC, Canada
- Department of Medicine, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
| | | | - Rolf Adolfsson
- Department of Clinical Sciences, Umeå University, Umeå, Sweden
| | - Alexandru Hanganu
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, Neuroimaging of Emotions Lab, Montreal, QC, Canada
- Department of Psychology, Faculty of Arts and Sciences, University of Montreal, Montreal, QC, Canada
| | - Sara Pudas
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
| |
Collapse
|
11
|
Zhu Y, Wang Y, Chen P, Lei Y, Yan F, Yang Z, Yang L, Wang L. Effects of acute stress on risky decision-making are related to neuroticism: An fMRI study of the Balloon Analogue Risk Task. J Affect Disord 2023; 340:120-128. [PMID: 37549812 DOI: 10.1016/j.jad.2023.08.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/30/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND Decision making under acute stress is frequent in daily life. While evidence suggests for a modulatory role of neuroticism on risky decision-making behaviors, the neural correlates underlying the association between neuroticism and risky decision-making under acute stress remain to be elucidated. METHODS Based on a modified Balloon Analogue Risk Task (BART) with concurrent functional magnetic resonance imaging, we evaluated the effect of acute stress on risk-taking behavior in 27 healthy male adults, and further assessed stress-induced changes in brain activation according to the individual differences in neuroticism. RESULTS Higher trait neuroticism levels positively correlated with increased stress-modulated activation of the right dorsal anterior cingulate cortex during risk-taking, and negatively correlated with decreased stress-modulated activation of the right dorsolateral prefrontal cortex during cash-outs. LIMITATIONS Only male participants were recruited. CONCLUSIONS We found a positive correlation between neuroticism and greater risk-taking behavior under acute stress. These results extend our understanding of the increased risk-taking propensity in high neurotic individuals under acute stress.
Collapse
Affiliation(s)
- Yuyang Zhu
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China; Aviation Psychological Efficacy Laboratory, Air Force Medical Center, PLA, Air Force Medical University, Beijing 100142, China
| | - Yituo Wang
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China; Department of Radiology, Seventh Medical Center of the Chinese PLA General Hospital, Beijing 100700, China
| | - Pinhong Chen
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Yu Lei
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Feng Yan
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Zheng Yang
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Liu Yang
- Aviation Psychological Efficacy Laboratory, Air Force Medical Center, PLA, Air Force Medical University, Beijing 100142, China.
| | - Lubin Wang
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.
| |
Collapse
|
12
|
Holton KM, Chan SY, Brockmeier AJ, Öngür D, Hall MH. Exploring the influence of functional architecture on cortical thickness networks in early psychosis - A longitudinal study. Neuroimage 2023; 274:120127. [PMID: 37086876 DOI: 10.1016/j.neuroimage.2023.120127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 04/24/2023] Open
Abstract
Cortical thickness reductions differ between individuals with psychotic disorders and comparison subjects even in early stages of illness. Whether these reductions covary as expected by functional network membership or simply by spatial proximity has not been fully elucidated. Through orthonormal projective non-negative matrix factorization, cortical thickness measurements in functionally-annotated regions from MRI scans of early-stage psychosis and matched healthy controls were reduced in dimensionality into features capturing positive covariance. Rather than matching the functional networks, the covarying regions in each feature displayed a more localized spatial organization. With Bayesian belief networks, the covarying regions per feature were arranged into a network topology to visualize the dependency structure and identify key driving regions. The features demonstrated diagnosis-specific differences in cortical thickness distributions per feature, identifying reduction-vulnerable spatial regions. Differences in key cortical thickness features between psychosis and control groups were delineated, as well as those between affective and non-affective psychosis. Clustering of the participants, stratified by diagnosis and clinical variables, characterized the clinical traits that define the cortical thickness patterns. Longitudinal follow-up revealed that in select clusters with low baseline cortical thickness, clinical traits improved over time. Our study represents a novel effort to characterize brain structure in relation to functional networks in healthy and clinical populations and to map patterns of cortical thickness alterations among ESP patients onto clinical variables for a better understanding of brain pathophysiology.
Collapse
Affiliation(s)
- Kristina M Holton
- Computational Neural Information Engineering Lab, University of Delaware, 139 The Green, Newark, DE 19716, USA.
| | - Shi Yu Chan
- Psychosis Neurobiology Laboratory, McLean Hospital, 115 Mill St, Belmont, MA 02478, USA; Division of Psychotic Disorders, McLean Hospital, 115 Mill St, Belmont, MA 02478, USA
| | - Austin J Brockmeier
- Computational Neural Information Engineering Lab, University of Delaware, 139 The Green, Newark, DE 19716, USA
| | - Dost Öngür
- Department of Psychiatry, Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA; Division of Psychotic Disorders, McLean Hospital, 115 Mill St, Belmont, MA 02478, USA
| | - Mei-Hua Hall
- Psychosis Neurobiology Laboratory, McLean Hospital, 115 Mill St, Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA; Division of Psychotic Disorders, McLean Hospital, 115 Mill St, Belmont, MA 02478, USA.
| |
Collapse
|
13
|
Wang L, Zhou X, Song X, Gan X, Zhang R, Liu X, Xu T, Jiao G, Ferraro S, Bore MC, Yu F, Zhao W, Montag C, Becker B. Fear of missing out (FOMO) associates with reduced cortical thickness in core regions of the posterior default mode network and higher levels of problematic smartphone and social media use. Addict Behav 2023; 143:107709. [PMID: 37004381 DOI: 10.1016/j.addbeh.2023.107709] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
BACKGROUND AND AIMS Fear of missing out (FOMO) promotes the desire or urge to stay continuously connected with a social reference group and updated on their activities, which may result in escalating and potentially addictive smartphone and social media use. The present study aimed to determine whether the neurobiological basis of FOMO encompasses core regions of the reward circuitry or social brain, and associations with levels of problematic smartphone or social media use. METHODS We capitalized on a dimensional neuroimaging approach to examine cortical thickness and subcortical volume associations in a sample of healthy young individuals (n = 167). Meta-analytic network and behavioral decoding analyses were employed to further characterize the identified regions. RESULTS Higher levels of FOMO associated with lower cortical thickness in the right precuneus. In contrast, no associations between FOMO and variations in striatal morphology were observed. Meta-analytic decoding revealed that the identified precuneus region exhibited a strong functional interaction with the default mode network (DMN) engaged in social cognitive and self-referential domains. DISCUSSION AND CONCLUSIONS Together the present findings suggest that individual variations in FOMO are associated with the brain structural architecture of the right precuneus, a core hub within a large-scale functional network resembling the DMN and involved in social and self-referential processes. FOMO may promote escalating social media and smartphone use via social and self-referential processes rather than reward-related processes per se.
Collapse
Affiliation(s)
- Lan Wang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, and, MOE Key Laboratory of NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Xinqi Zhou
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Xinwei Song
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, and, MOE Key Laboratory of NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Xianyang Gan
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, and, MOE Key Laboratory of NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Ran Zhang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, and, MOE Key Laboratory of NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiqin Liu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, and, MOE Key Laboratory of NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Ting Xu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, and, MOE Key Laboratory of NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Guojuan Jiao
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, and, MOE Key Laboratory of NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Stefania Ferraro
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, and, MOE Key Laboratory of NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Mercy Chepngetich Bore
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, and, MOE Key Laboratory of NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Fangwen Yu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, and, MOE Key Laboratory of NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Weihua Zhao
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, and, MOE Key Laboratory of NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Christian Montag
- Department of Molecular Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany.
| | - Benjamin Becker
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, and, MOE Key Laboratory of NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
14
|
Lin J, Li L, Pan N, Liu X, Zhang X, Suo X, Kemp GJ, Wang S, Gong Q. Neural correlates of neuroticism: A coordinate-based meta-analysis of resting-state functional brain imaging studies. Neurosci Biobehav Rev 2023; 146:105055. [PMID: 36681370 DOI: 10.1016/j.neubiorev.2023.105055] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 12/27/2022] [Accepted: 01/17/2023] [Indexed: 01/20/2023]
Abstract
Neuroticism is one of the most robust higher-order personality traits associated with negative emotionality and risk of mental disorders. Many studies have investigated relationships between neuroticism and the brain, but the results have been inconsistent. We conducted a meta-analysis of whole-brain resting-state functional neuroimaging studies to identify the most stable neurofunctional substrates of neuroticism. We found stable significant positive correlations between neuroticism and resting-state brain activity in the left middle temporal gyrus (MTG), left striatum, and right hippocampus. In contrast, resting-state brain activity in the left superior temporal gyrus (STG) and right supramarginal gyrus (SMG) was negatively associated with neuroticism. Additionally, meta-regression analysis revealed brain regions in which sex and age moderated the link of spontaneous activity with neuroticism. This is the first study to provide a comprehensive understanding of resting-state brain activity correlates of neuroticism, and the findings may be useful for the targeting of specific brain regions for interventions to decrease the risks of mental health problems.
Collapse
Affiliation(s)
- Jinping Lin
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China; Functional and Molecular Imaging Key Laboratory of Sichuan University, Chengdu, China
| | - Lei Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Nanfang Pan
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China; Functional and Molecular Imaging Key Laboratory of Sichuan University, Chengdu, China
| | - Xiqin Liu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China; Functional and Molecular Imaging Key Laboratory of Sichuan University, Chengdu, China
| | - Xun Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China; Functional and Molecular Imaging Key Laboratory of Sichuan University, Chengdu, China
| | - Xueling Suo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China; Functional and Molecular Imaging Key Laboratory of Sichuan University, Chengdu, China
| | - Graham J Kemp
- Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Song Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China; Functional and Molecular Imaging Key Laboratory of Sichuan University, Chengdu, China.
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, China
| |
Collapse
|
15
|
Montag C, Becker B. Neuroimaging the effects of smartphone (over-)use on brain function and structure-a review on the current state of MRI-based findings and a roadmap for future research. PSYCHORADIOLOGY 2023; 3:kkad001. [PMID: 38666109 PMCID: PMC10917376 DOI: 10.1093/psyrad/kkad001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 04/28/2024]
Abstract
The smartphone represents a transformative device that dramatically changed our daily lives, including how we communicate, work, entertain ourselves, and navigate through unknown territory. Given its ubiquitous availability and impact on nearly every aspect of our lives, debates on the potential impact of smartphone (over-)use on the brain and whether smartphone use can be "addictive" have increased over the last years. Several studies have used magnetic resonance imaging to characterize associations between individual differences in excessive smartphone use and variations in brain structure or function. Therefore, it is an opportune time to summarize and critically reflect on the available studies. Following this overview, we present a roadmap for future research to improve our understanding of how excessive smartphone use can affect the brain, mental health, and cognitive and affective functions.
Collapse
Affiliation(s)
- Christian Montag
- Department of Molecular Psychology, Institute of Psychology and Education, Ulm University, Ulm 89081, Germany
| | - Benjamin Becker
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
- Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology, Chengdu 611731, China
| |
Collapse
|
16
|
Klugah-Brown B, Zhou X, Wang L, Gan X, Zhang R, Liu X, Song X, Zhao W, Biswal BB, Yu F, Montag C, Becker B. Associations between levels of Internet Gaming Disorder symptoms and striatal morphology-replication and associations with social anxiety. PSYCHORADIOLOGY 2022; 2:207-215. [PMID: 38665272 PMCID: PMC10917202 DOI: 10.1093/psyrad/kkac020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 04/28/2024]
Abstract
Background Brain structural alterations of the striatum have been frequently observed in internet gaming disorder (IGD); however, the replicability of the results and the associations with social-affective dysregulations such as social anxiety remain to be determined. Methods The present study combined a dimensional neuroimaging approach with both voxel-wise and data-driven multivariate approaches to (i) replicate our previous results on a negative association between IGD symptom load (assessed by the Internet Gaming Disorder Scale-Short Form) and striatal volume, (ii) extend these findings to female individuals, and (iii) employ multivariate and mediation models to determine common brain structural representations of IGD and social anxiety (assessed by the Liebowitz Social Anxiety Scale). Results In line with the original study, the voxel-wise analyses revealed a negative association between IGD and volumes of the bilateral caudate. Going beyond the earlier study investigating only male participants, the present study demonstrates that the association in the right caudate was comparable in both the male and the female subsamples. Further examination using the multivariate approach revealed regionally different associations between IGD and social anxiety with striatal density representations in the dorsal striatum (caudate) and ventral striatum (nucleus accumbens). Higher levels of IGD were associated with higher social anxiety and the association was critically mediated by the multivariate neurostructural density variations of the striatum. Conclusions Altered striatal volumes may represent a replicable and generalizable marker of IGD symptoms. However, exploratory multivariate analyses revealed more complex and regional specific associations between striatal density and IGD as well as social anxiety symptoms. Variations in both tendencies may share common structural brain representations, which mediate the association between increased IGD and social anxiety.
Collapse
Affiliation(s)
- Benjamin Klugah-Brown
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, P.R. China
| | - Xinqi Zhou
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, P.R. China
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, 610101, China
| | - Lan Wang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, P.R. China
| | - Xianyang Gan
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, P.R. China
| | - Ran Zhang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, P.R. China
| | - Xiqin Liu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, P.R. China
| | - Xinwei Song
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, P.R. China
| | - Weihua Zhao
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, P.R. China
| | - Bharat B Biswal
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, P.R. China
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, USA
| | - Fangwen Yu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, P.R. China
| | - Christian Montag
- Department of Molecular Psychology, Institute of Psychology and Education, Ulm University, 89069 Ulm, Germany
| | - Benjamin Becker
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, P.R. China
| |
Collapse
|
17
|
DeYoung CG, Beaty RE, Genç E, Latzman RD, Passamonti L, Servaas MN, Shackman AJ, Smillie LD, Spreng RN, Viding E, Wacker J. Personality Neuroscience: An Emerging Field with Bright Prospects. PERSONALITY SCIENCE 2022; 3:e7269. [PMID: 36250039 PMCID: PMC9561792 DOI: 10.5964/ps.7269] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Personality neuroscience is the study of persistent psychological individual differences, typically in the general population, using neuroscientific methods. It has the potential to shed light on the neurobiological mechanisms underlying individual differences and their manifestation in ongoing behavior and experience. The field was inaugurated many decades ago, yet has only really gained momentum in the last two, as suitable technologies have become widely available. Personality neuroscience employs a broad range of methods, including molecular genetics, pharmacological assays or manipulations, electroencephalography, and various neuroimaging modalities, such as magnetic resonance imaging and positron emission tomography. Although exciting progress is being made in this young field, much remains unknown. In this brief review, we discuss discoveries that have been made, methodological challenges and advances, and important questions that remain to be answered. We also discuss best practices for personality neuroscience research and promising future directions for the field.
Collapse
Affiliation(s)
| | | | - Erhan Genç
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | | | - Luca Passamonti
- University of Cambridge, Cambridge, UK
- Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Michelle N. Servaas
- University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
18
|
Liu X, Klugah-Brown B, Zhang R, Chen H, Zhang J, Becker B. Pathological fear, anxiety and negative affect exhibit distinct neurostructural signatures: evidence from psychiatric neuroimaging meta-analysis. Transl Psychiatry 2022; 12:405. [PMID: 36151073 PMCID: PMC9508096 DOI: 10.1038/s41398-022-02157-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 11/24/2022] Open
Abstract
Internalizing disorders encompass anxiety, fear and depressive disorders, which exhibit overlap at both conceptual and symptom levels. Given that a neurobiological evaluation is lacking, we conducted a Seed-based D-Mapping comparative meta-analysis including coordinates as well as original statistical maps to determine common and disorder-specific gray matter volume alterations in generalized anxiety disorder (GAD), fear-related anxiety disorders (FAD, i.e., social anxiety disorder, specific phobias, panic disorder) and major depressive disorder (MDD). Results showed that GAD exhibited disorder-specific altered volumes relative to FAD including decreased volumes in left insula and lateral/medial prefrontal cortex as well as increased right putamen volume. Both GAD and MDD showed decreased prefrontal volumes compared to controls and FAD. While FAD showed less robust alterations in lingual gyrus compared to controls, this group presented intact frontal integrity. No shared structural abnormalities were found. Our study is the first to provide meta-analytic evidence for distinct neuroanatomical abnormalities underlying the pathophysiology of anxiety-, fear-related and depressive disorders. These findings may have implications for determining promising target regions for disorder-specific neuromodulation interventions (e.g. transcranial magnetic stimulation or neurofeedback).
Collapse
Affiliation(s)
- Xiqin Liu
- grid.54549.390000 0004 0369 4060The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People’s Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, 611731 Chengdu, P. R. China
| | - Benjamin Klugah-Brown
- grid.54549.390000 0004 0369 4060The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People’s Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, 611731 Chengdu, P. R. China
| | - Ran Zhang
- grid.54549.390000 0004 0369 4060The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People’s Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, 611731 Chengdu, P. R. China
| | - Huafu Chen
- grid.54549.390000 0004 0369 4060The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People’s Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, 611731 Chengdu, P. R. China
| | - Jie Zhang
- grid.8547.e0000 0001 0125 2443Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, 200433 Shanghai, P. R. China ,grid.8547.e0000 0001 0125 2443Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, 200433 Shanghai, P. R. China
| | - Benjamin Becker
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, 611731, Chengdu, P. R. China.
| |
Collapse
|
19
|
Ooi LQR, Chen J, Zhang S, Kong R, Tam A, Li J, Dhamala E, Zhou JH, Holmes AJ, Yeo BTT. Comparison of individualized behavioral predictions across anatomical, diffusion and functional connectivity MRI. Neuroimage 2022; 263:119636. [PMID: 36116616 DOI: 10.1016/j.neuroimage.2022.119636] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 08/24/2022] [Accepted: 09/15/2022] [Indexed: 10/31/2022] Open
Abstract
A fundamental goal across the neurosciences is the characterization of relationships linking brain anatomy, functioning, and behavior. Although various MRI modalities have been developed to probe these relationships, direct comparisons of their ability to predict behavior have been lacking. Here, we compared the ability of anatomical T1, diffusion and functional MRI (fMRI) to predict behavior at an individual level. Cortical thickness, area and volume were extracted from anatomical T1 images. Diffusion Tensor Imaging (DTI) and approximate Neurite Orientation Dispersion and Density Imaging (NODDI) models were fitted to the diffusion images. The resulting metrics were projected to the Tract-Based Spatial Statistics (TBSS) skeleton. We also ran probabilistic tractography for the diffusion images, from which we extracted the stream count, average stream length, and the average of each DTI and NODDI metric across tracts connecting each pair of brain regions. Functional connectivity (FC) was extracted from both task and resting-state fMRI. Individualized prediction of a wide range of behavioral measures were performed using kernel ridge regression, linear ridge regression and elastic net regression. Consistency of the results were investigated with the Human Connectome Project (HCP) and Adolescent Brain Cognitive Development (ABCD) datasets. In both datasets, FC-based models gave the best prediction performance, regardless of regression model or behavioral measure. This was especially true for the cognitive component. Furthermore, all modalities were able to predict cognition better than other behavioral components. Combining all modalities improved prediction of cognition, but not other behavioral components. Finally, across all behaviors, combining resting and task FC yielded prediction performance similar to combining all modalities. Overall, our study suggests that in the case of healthy children and young adults, behaviorally-relevant information in T1 and diffusion features might reflect a subset of the variance captured by FC.
Collapse
Affiliation(s)
- Leon Qi Rong Ooi
- Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore, Singapore; Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore; N.1 Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore, Singapore
| | - Jianzhong Chen
- Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore; N.1 Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore, Singapore
| | - Shaoshi Zhang
- Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore, Singapore; Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore; N.1 Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore, Singapore
| | - Ru Kong
- Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore, Singapore; Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore; N.1 Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore, Singapore
| | - Angela Tam
- Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore; N.1 Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore, Singapore
| | - Jingwei Li
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Center Jülich, Jülich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Elvisha Dhamala
- Yale University, Departments of Psychology and Psychiatry, New Haven, CT, United States; Kavli Institute for Neuroscience, Yale University, New Haven, CT, United States
| | - Juan Helen Zhou
- Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore, Singapore; Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
| | - Avram J Holmes
- Yale University, Departments of Psychology and Psychiatry, New Haven, CT, United States; Wu Tsai Institute, Yale University, New Haven, CT, United States
| | - B T Thomas Yeo
- Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore, Singapore; Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore; N.1 Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
20
|
Gray Matter Abnormalities in Patients with Complex Regional Pain Syndrome: A Systematic Review and Meta-Analysis of Voxel-Based Morphometry Studies. Brain Sci 2022; 12:brainsci12081115. [PMID: 36009176 PMCID: PMC9405829 DOI: 10.3390/brainsci12081115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/10/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
Current findings on brain structural alterations in complex regional pain syndrome (CRPS) are heterogenous and controversial. This study aimed to perform a systematic review and meta-analysis to explore the significant gray matter volume (GMV) abnormalities between patients with CRPS and healthy controls (HCs). A systematic search of the PubMed, Web of Science, and MEDLINE databases was performed, updated through 27 January 2022. A total of five studies (93 CRPS patients and 106 HCs) were included. Peak coordinates and effect sizes were extracted and meta-analyzed by anisotropic effect size-signed differential mapping (AES-SDM). Heterogeneity, sensitivity, and publication bias of the main results were checked by the Q test, jackknife analysis, and the Egger test, respectively. Meta-regression analysis was performed to explore the potential impact of risk factors on GMV alterations in patients with CRPS. The main analysis exhibited that patients with CRPS had increased GMV in the left medial superior frontal gyrus (SFGmedial.L), left striatum, and an undefined area (2, 0, -8) that may be in hypothalamus, as well as decreased GMV in the corpus callosum (CC) (extending to right supplementary motor area (SMA.R), right median cingulate/paracingulate gyri (MCC.R)), and an undefined area (extending to the right caudate nucleus (CAU.R), and right thalamus (THA.R)). Meta-regression analysis showed a negative relationship between increased GMV in the SFGmedial.L and disease duration, and the percentage of female patients with CRPS. Brain structure abnormalities in the sensorimotor regions (e.g., SFGmedial.L, SMA.R, CAU.R, MCC.R, and THA.R) may be susceptible in patients with CRPS. Additionally, sex differences and disease duration may have a negative effect on the increased GMV in SFGmedial.L.
Collapse
|
21
|
Gray and white matter abnormality in patients with T2DM-related cognitive dysfunction: a systemic review and meta-analysis. Nutr Diabetes 2022; 12:39. [PMID: 35970833 PMCID: PMC9378704 DOI: 10.1038/s41387-022-00214-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 07/05/2022] [Accepted: 07/15/2022] [Indexed: 12/03/2022] Open
Abstract
Aims/hypothesis Brain structure abnormality in patients with type 2 diabetes mellitus (T2DM)-related cognitive dysfunction (T2DM-CD) has been reported for decades in magnetic resonance imaging (MRI) studies. However, the reliable results were still unclear. This study aimed to make a systemic review and meta-analysis to find the significant and consistent gray matter (GM) and white matter (WM) alterations in patients with T2DM-CD by comparing with the healthy controls (HCs). Methods Published studies were systemically searched from PubMed, MEDLINE, Cochrane Library and Web of Science databases updated to November 14, 2021. Studies reporting abnormal GM or WM between patients with T2DM-CD and HCs were selected, and their significant peak coordinates (x, y, z) and effect sizes (z-score or t-value) were extracted to perform a voxel-based meta-analysis by anisotropic effect size-signed differential mapping (AES-SDM) 5.15 software. Results Total 15 studies and 16 datasets (1550 participants) from 7531 results were involved in this study. Compared to HCs, patients with T2DM-CD showed significant and consistent decreased GM in right superior frontal gyrus, medial orbital (PFCventmed. R, BA 11), left superior temporal gyrus (STG. L, BA 48), and right calcarine fissure / surrounding cortex (CAL. R, BA 17), as well as decreased fractional anisotropy (FA) in right inferior network, inferior fronto-occipital fasciculus (IFOF. R), right inferior network, longitudinal fasciculus (ILF. R), and undefined area (32, −60, −42) of cerebellum. Meta-regression showed the positive relationship between decreased GM in PFCventmed.R and MoCA score, the positive relationship between decreased GM in STG.L and BMI, as well as the positive relationship between the decreased FA in IFOF.R and age or BMI. Conclusions/interpretation T2DM impairs the cognitive function by affecting the specific brain structures. GM atrophy in PFCventmed. R (BA 11), STG. L (BA 48), and CAL. R (BA 17), as well as WM injury in IFOF. R, ILF. R, and undefined area (32, −60, −42) of cerebellum. And those brain regions may be valuable targets for future researches. Age, BMI, and MoCA score have a potential influence on the altered GM or WM in T2DM-CD.
Collapse
|
22
|
Ma T, Ji YY, Yan LF, Lin JJ, Li ZY, Wang W, Li JL, Cui GB. Gray Matter Volume Abnormality in Chronic Pain Patients With Depressive Symptoms: A Systemic Review and Meta-Analysis of Voxel-Based Morphometry Studies. Front Neurosci 2022; 16:826759. [PMID: 35733934 PMCID: PMC9207409 DOI: 10.3389/fnins.2022.826759] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/19/2022] [Indexed: 12/21/2022] Open
Abstract
Background Gray matter volume (GMV) alteration in specific brain regions has been widely regarded as one of the most important neuroplasticity features in chronic pain patients with depressive symptoms (CP-D). However, the consistent and significant results were still lacking. Thus, further exploration was suggested to be performed. Objectives This study aimed to comprehensively collect the voxel-based morphometry (VBM) studies on GMV alteration between CP-D and healthy controls (HCs). And a systemic review and meta-analysis were made to explore the characteristic brain regions in chronic pain and depression comorbidity. Methods Search of PubMed, MEDLINE, Web of Science, and Cochrane Library databases updated to July 13, 2021. The altered GMV between CP-D and HCs in VBM studies was included in this meta-analysis. In total, 18 studies (20 datasets) and 1320 participants (520 patients and 800 HCs) were included. The significant coordinate information (x, y, z) reported in standard space and the effect size (t-value or z-score) were extracted and analyzed by anisotropic effect size-signed differential mapping (AES-SDM) 5.15 software. Results According to the main analysis results, CP-D showed significant and consistent increased GMV in the left hippocampus (HIP. L) and decreased GMV in the medial part of the left superior frontal gyrus (SFG. L, BA 10) compared to HCs. Subgroup analysis showed significant decreased GMV in the medial orbital part of SFG.R (BA 10) in neuropathic pain, as well as significant increased GMV in the right parahippocampal gyrus (PHG.R, BA 35), left hippocampus (HIP.L, BA 20), and right middle frontal gyrus (MFG.R) in musculoskeletal pain. Furthermore, meta-regression showed a positive relationship between the decreased GMV in the medial part of SFG.L and the percentage of female patients. Conclusion GMV abnormality in specific brain areas (e.g., HIP.L and SFG) was robust and reproducible, which could be significantly involved in this comorbidity disease. The findings in this study may be a valuable reference for future research. Systematic Review Registration [www.crd.york.ac.uk/prospero/].
Collapse
Affiliation(s)
- Teng Ma
- Functional and Molecular Imaging Key Lab of Shaanxi Province, Department of Radiology, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Yuan-Yuan Ji
- College of Forensic Medicine, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Ministry of Public Health for Forensic Science, Xi’an Jiaotong University, Xi’an, China
| | - Lin-Feng Yan
- Functional and Molecular Imaging Key Lab of Shaanxi Province, Department of Radiology, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Jia-Ji Lin
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Ze-Yang Li
- Functional and Molecular Imaging Key Lab of Shaanxi Province, Department of Radiology, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Wen Wang
- Functional and Molecular Imaging Key Lab of Shaanxi Province, Department of Radiology, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Jin-Lian Li
- Functional and Molecular Imaging Key Lab of Shaanxi Province, Department of Radiology, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Guang-Bin Cui
- Functional and Molecular Imaging Key Lab of Shaanxi Province, Department of Radiology, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
23
|
Medial prefrontal and occipito-temporal activity at encoding determines enhanced recognition of threatening faces after 1.5 years. Brain Struct Funct 2022; 227:1655-1672. [PMID: 35174416 DOI: 10.1007/s00429-022-02462-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/24/2022] [Indexed: 11/02/2022]
Abstract
Studies demonstrated that faces with threatening emotional expressions are better remembered than non-threatening faces. However, whether this memory advantage persists over years and which neural systems underlie such an effect remains unknown. Here, we employed an individual difference approach to examine whether the neural activity during incidental encoding was associated with differential recognition of faces with emotional expressions (angry, fearful, happy, sad and neutral) after a retention interval of > 1.5 years (N = 89). Behaviorally, we found a better recognition for threatening (angry, fearful) versus non-threatening (happy and neutral) faces after a delay of > 1.5 years, which was driven by forgetting of non-threatening faces compared with immediate recognition after encoding. Multivariate principal component analysis (PCA) on the behavioral responses further confirmed the discriminative recognition performance between threatening and non-threatening faces. A voxel-wise whole-brain analysis on the concomitantly acquired functional magnetic resonance imaging (fMRI) data during incidental encoding revealed that neural activity in bilateral inferior occipital gyrus (IOG) and ventromedial prefrontal/orbitofrontal cortex (vmPFC/OFC) was associated with the individual differences in the discriminative emotional face recognition performance measured by an innovative behavioral pattern similarity analysis (BPSA). The left fusiform face area (FFA) was additionally determined using a regionally focused analysis. Overall, the present study provides evidence that threatening facial expressions lead to persistent face recognition over periods of > 1.5 years, and that differential encoding-related activity in the medial prefrontal cortex and occipito-temporal cortex may underlie this effect.
Collapse
|
24
|
Qi Z, Wang J, Gong J, Su T, Fu S, Huang L, Wang Y. Common and specific patterns of functional and structural brain alterations in schizophrenia and bipolar disorder: a multimodal voxel-based meta-analysis. J Psychiatry Neurosci 2022; 47:E32-E47. [PMID: 35105667 PMCID: PMC8812718 DOI: 10.1503/jpn.210111] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/12/2021] [Accepted: 11/16/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Schizophrenia and bipolar disorder have been linked to alterations in the functional activity and grey matter volume of some brain areas, reflected in impaired regional homogeneity and aberrant voxel-based morphometry. However, because of variable findings and methods used across studies, identifying patterns of brain alteration in schizophrenia and bipolar disorder has been difficult. METHODS We conducted a meta-analysis of differences in regional homogeneity and voxel-based morphometry between patients and healthy controls for schizophrenia and bipolar disorder separately, using seed-based d mapping. RESULTS We included 45 publications on regional homogeneity (26 in schizophrenia and 19 in bipolar disorder) and 190 publications on voxel-based morphometry (120 in schizophrenia and 70 in bipolar disorder). Patients with schizophrenia showed increased regional homogeneity in the frontal cortex and striatum and the supplementary motor area; they showed decreased regional homogeneity in the insula, primary sensory cortex (visual and auditory cortices) and sensorimotor cortex. Patients with bipolar disorder showed increased regional homogeneity in the frontal cortex and striatum; they showed decreased regional homogeneity in the insula. Patients with schizophrenia showed decreased grey matter volume in the superior temporal gyrus, inferior frontal gyrus, cingulate cortex and cerebellum. Patients with bipolar disorder showed decreased grey matter volume in the insula, cingulate cortex, frontal cortex and thalamus. Overlap analysis showed that patients with schizophrenia displayed decreased regional homogeneity and grey matter volume in the left insula and left superior temporal gyrus; patients with bipolar disorder displayed decreased regional homogeneity and grey matter volume in the left insula. LIMITATIONS The small sample size for our subgroup analysis (unmedicated versus medicated patients and substantial heterogeneity in the results for some regions could limit the interpretability and generalizability of the results. CONCLUSION Patients with schizophrenia and bipolar disorder shared a common pattern of regional functional and structural alterations in the insula and frontal cortex. Patients with schizophrenia showed more widespread functional and structural impairment, most prominently in the primary sensory motor areas.
Collapse
Affiliation(s)
| | - Junjing Wang
- From the Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China (Qi, Su, Fu, Huang, Y. Wang); the Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China (Qi, Su, Fu, Huang, Y. Wang); the Department of Applied Psychology, Guangdong University of Foreign Studies, Guangzhou, China (J. Wang); and the Department of Radiology, Six Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (Gong)
| | | | | | | | | | | |
Collapse
|
25
|
Giannakopoulos P, Rodriguez C, Montandon ML, Garibotto V, Haller S, Herrmann FR. Personality Impact on Alzheimer's Disease-Signature and Vascular Imaging Markers: A PET-MRI Study. J Alzheimers Dis 2021; 85:1807-1817. [PMID: 34958019 DOI: 10.3233/jad-215062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Several studies postulated that personality is an independent determinant of cognitive trajectories in old age. OBJECTIVE This study explores the impact of personality on widely used Alzheimer's disease (AD) and vascular imaging markers. METHODS We examined the association between personality and three classical AD imaging markers (centiloid-based-amyloid load, MRI volumetry in hippocampus, and media temporal lobe atrophy), and two vascular MRI parameters (Fazekas score and number of cortical microbleeds) assessed at baseline and upon a 54-month-follow-up. Personality was assessed with the Neuroticism Extraversion Openness Personality Inventory-Revised. Regression models were used to identify predictors of imaging markers including sex, personality factors, presence of APOE ɛ4 allele and cognitive evolution over time. RESULTS Cortical GM volumes were negatively associated with higher levels of Conscientiousness both at baseline and follow-up. In contrast, higher scores of Openness were related to better preservation of left hippocampal volumes in these two time points and negatively associated with medial temporal atrophy at baseline. Amyloid load was not affected by personality factors. Cases with higher Extraversion scores displayed higher numbers of cortical microbleeds at baseline. CONCLUSION Personality impact on brain morphometry is detected only in some among the routinely used imaging markers. The most robust associations concern the positive role of high levels of Conscientiousness and Openness on AD-signature MRI markers. Higher extraversion levels are associated with increased vulnerability to cortical microbleeds pointing to the fact that the socially favorable traits may have a detrimental effect on brain integrity in old age.
Collapse
Affiliation(s)
- Panteleimon Giannakopoulos
- Department of Psychiatry, University of Geneva, Geneva, Switzerland.,Medical Direction, Geneva University Hospitals, Geneva, Switzerland
| | - Cristelle Rodriguez
- Department of Psychiatry, University of Geneva, Geneva, Switzerland.,Medical Direction, Geneva University Hospitals, Geneva, Switzerland
| | - Marie-Louise Montandon
- Department of Psychiatry, University of Geneva, Geneva, Switzerland.,Department of Rehabilitation and Geriatrics, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Valentina Garibotto
- Department of Nuclear Medicine and Molecular Imaging, Diagnostic Department, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Sven Haller
- CIMC - Centre d'Imagerie Médicale de Cornavin, Geneva, Switzerland.,Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden.,Faculty of Medicine of the University of Geneva, Geneva, Switzerland.,Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - François R Herrmann
- Department of Rehabilitation and Geriatrics, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| |
Collapse
|
26
|
Magal N, Hendler T, Admon R. Is neuroticism really bad for you? Dynamics in personality and limbic reactivity prior to, during and following real-life combat stress. Neurobiol Stress 2021; 15:100361. [PMID: 34286052 PMCID: PMC8274340 DOI: 10.1016/j.ynstr.2021.100361] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/09/2021] [Accepted: 06/23/2021] [Indexed: 11/03/2022] Open
Abstract
The personality trait of neuroticism is considered a risk factor for stress vulnerability, putatively via its association with elevated limbic reactivity. Nevertheless, majority of evidence to date that relates neuroticism, neural reactivity and stress vulnerability stems from cross-sectional studies conducted in a “stress-free” environment. Here, using a unique prospective longitudinal design, we assessed personality, stress-related symptoms and neural reactivity at three time points over the course of four and a half years; accounting for prior to, during, and long-time following a stressful military service that included active combat. Results revealed that despite exposure to multiple potentiality traumatic events, majority of soldiers exhibited none-to-mild levels of posttraumatic and depressive symptoms during and following their military service. In contrast, a quadratic pattern of change in personality emerged overtime, with neuroticism being the only personality trait to increase during stressful military service and subsequently decrease following discharge. Elevated neuroticism during military service was associated with reduced amygdala and hippocampus activation in response to stress-related content, and this association was also reversed following discharge. A similar pattern was found between neuroticism and hippocampus-anterior cingulate cortex (ACC) functional connectivity in response to stress-related content. Taken together these findings suggest that stressful military service at young adulthood may yield a temporary increase in neuroticism mediated by a temporary decrease in limbic reactivity, with both effects being reversed long-time following discharge. Considering that participants exhibited low levels of stress-related symptoms throughout the study period, these dynamic patterns may depict behavioral and neural mechanisms that facilitate stress resilience.
Collapse
Affiliation(s)
- Noa Magal
- School of Psychological Sciences, University of Haifa, Haifa, Israel
| | - Talma Hendler
- Tel-Aviv Center for Brain Function, Wohl Institute for Advanced Imaging, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel.,School of Psychological Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Roee Admon
- School of Psychological Sciences, University of Haifa, Haifa, Israel.,The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel
| |
Collapse
|
27
|
Liu X, Lai H, Li J, Becker B, Zhao Y, Cheng B, Wang S. Gray matter structures associated with neuroticism: A meta-analysis of whole-brain voxel-based morphometry studies. Hum Brain Mapp 2021; 42:2706-2721. [PMID: 33704850 PMCID: PMC8127153 DOI: 10.1002/hbm.25395] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 01/28/2021] [Accepted: 02/22/2021] [Indexed: 02/05/2023] Open
Abstract
Neuroticism is major higher-order personality trait and has been robustly associated with mental and physical health outcomes. Although a growing body of studies have identified neurostructural markers of neuroticism, the results remained highly inconsistent. To characterize robust associations between neuroticism and variations in gray matter (GM) structures, the present meta-analysis investigated the concurrence across voxel-based morphometry (VBM) studies using the anisotropic effect size signed differential mapping (AES-SDM). A total of 13 studies comprising 2,278 healthy subjects (1,275 females, 29.20 ± 14.17 years old) were included. Our analysis revealed that neuroticism was consistently associated with the GM structure of a cluster spanning the bilateral dorsal anterior cingulate cortex and extending to the adjacent medial prefrontal cortex (dACC/mPFC). Meta-regression analyses indicated that the neuroticism-GM associations were not confounded by age and gender. Overall, our study is the first whole-brain meta-analysis exploring the brain structural correlates of neuroticism, and the findings may have implications for the intervention of high-neuroticism individuals, who are at risk of mental disorders, by targeting the dACC/mPFC.
Collapse
Affiliation(s)
- Xiqin Liu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.,State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Han Lai
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Jingguang Li
- College of Teacher Education, Dali University, Dali, China
| | - Benjamin Becker
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Yajun Zhao
- School of Education and Psychology, Southwest Minzu University, Chengdu, China
| | - Bochao Cheng
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Song Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.,Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|