1
|
Pan TT, Huang JY, Wang XD, Chen DZ, Chen YP. Copper's dual role: Reviewing its impact on liver health and disease. Int Immunopharmacol 2025; 152:114391. [PMID: 40073812 DOI: 10.1016/j.intimp.2025.114391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/16/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025]
Abstract
As an essential trace element in the human body, Cu exists in the oxidation states of Cu(II) and Cu(I). The interconversion between these states is closely associated with various redox reactions and plays a pivotal role in cellular respiration regulation, energy metabolism, cell growth regulation, and angiogenesis promotion among other biological processes. As the primary metabolic organ, the liver synthesises and secretes Cu-binding proteins to maintain Cu homeostasis and regulate its metabolism. Studies have increasingly demonstrated that abnormally high or low levels of Cu can negatively affect the immune and metabolic microenvironment within the liver. In this review, we summarise the mechanisms underlying Cu metabolism and its dysregulation and highlight the potential involvement of disrupted Cu metabolism in several liver diseases. Our review provides insights that will help in the future development of novel therapeutic targets focusing on Cu metabolism.
Collapse
Affiliation(s)
- Tong-Tong Pan
- Hepatology Diagnosis and Treatment Center & Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Jia-Yin Huang
- Hepatology Diagnosis and Treatment Center & Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Xiao-Dong Wang
- Hepatology Diagnosis and Treatment Center & Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Da-Zhi Chen
- Hangzhou Medical College, Linan District, Hangzhou 311300, China
| | - Yong-Ping Chen
- Hepatology Diagnosis and Treatment Center & Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
2
|
Breitschaft F, Saak AL, Krumbiegel C, Bartolomeu ADA, Weyhermüller T, Waldvogel SR. Multicomponent Electrosynthesis of Enaminyl Sulfonates Starting from Alkylamines, SO 2, and Alcohols. Org Lett 2025; 27:1210-1215. [PMID: 39869543 PMCID: PMC11812012 DOI: 10.1021/acs.orglett.4c04746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/09/2025] [Accepted: 01/17/2025] [Indexed: 01/29/2025]
Abstract
An electrochemical one-pot synthesis of enaminyl sulfonate esters was established, featuring a quasidivided cell under constant current conditions. The multicomponent reaction utilizes simple and readily available alkylamines and an easy-to-use stock solution of SO2 and alcohols. Omission of additional supporting electrolyte through in-situ-generated monoalkylsulfite facilitates the downstream processing. A diverse scope with more than 28 examples and yields up to 85% as well as a 20-fold scale-up reaction prove the feasibility of this novel protocol.
Collapse
Affiliation(s)
- Florian
A. Breitschaft
- Max-Planck-Institute
for Chemical Energy Conversion, Stiftstraße 34−36, 45470 Mülheim an der Ruhr, Germany
| | - Alicia L. Saak
- Department
of Chemistry, Johannes Gutenberg University, Duesbergweg 10−14, 55218 Mainz, Germany
| | - Christian Krumbiegel
- Max-Planck-Institute
for Chemical Energy Conversion, Stiftstraße 34−36, 45470 Mülheim an der Ruhr, Germany
| | - Aloisio de A. Bartolomeu
- Max-Planck-Institute
for Chemical Energy Conversion, Stiftstraße 34−36, 45470 Mülheim an der Ruhr, Germany
| | - Thomas Weyhermüller
- Max-Planck-Institute
for Chemical Energy Conversion, Stiftstraße 34−36, 45470 Mülheim an der Ruhr, Germany
| | - Siegfried R. Waldvogel
- Max-Planck-Institute
for Chemical Energy Conversion, Stiftstraße 34−36, 45470 Mülheim an der Ruhr, Germany
- Karlsruhe
Institute of Technology, Institute of Biological
and Chemical Systems − Functional Molecular Systems (IBCS FMS), Kaiserstraße 12, 76131 Karlsruhe, Germany
| |
Collapse
|
3
|
Xiong L, Beyer D, Liu N, Lehmann T, Neugebauer S, Schaeuble S, Sommerfeld O, Ernst P, Svensson CM, Nietzsche S, Scholl S, Bruns T, Gaßler N, Gräler MH, Figge MT, Panagiotou G, Bauer M, Press AT. Targeting protein kinase C-α prolongs survival and restores liver function in sepsis: Evidence from preclinical models. Pharmacol Res 2025; 212:107581. [PMID: 39761839 DOI: 10.1016/j.phrs.2025.107581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 01/02/2025] [Accepted: 01/02/2025] [Indexed: 01/26/2025]
Abstract
Sepsis is a life-threatening organ failure resulting from a poorly regulated infection response. Organ dysfunction includes hepatic involvement, weakening the immune system due to excretory liver failure, and metabolic dysfunction, increasing the death risk. Although experimental studies correlated excretory liver functionality with immune performance and survival rates in sepsis, the proteins and pathways involved remain unclear. This study identified protein kinase C-α (PKCα) as a novel target for managing excretory liver function during sepsis. Using a preclinical murine sepsis model, we found that both PKCα knockout and the use of a PKCα-inhibitor midostaurin successfully restored liver function without hindering the host's response or ability to clear the pathogen, highlighting PKCα's vital role in excretory liver failure. In septic animals, both approaches significantly boosted survival rates. Midostaurin is the clinically approved active pharmaceutical ingredient in Rydapt, approved for the adjuvant treatment of FTL3-mutated AML. Here, it reduced plasma bile acids and related inflammation in those patients, opening a translational avenue for therapeutics in sepsis. Conclusively, our research underscores the significance of PKCα in controlling excretory liver function during inflammation. This suggests that targeting this protein could restore liver function without compromising the immune system, thereby decreasing sepsis mortality and supporting the recent paradigm that the liver is a hub for the host response to infection that might, in the future, result in novel host-directed therapies supporting the current state-of-the-art intensive care medicine in patients with sepsis-associated liver failure.
Collapse
Affiliation(s)
- Ling Xiong
- Jena University Hospital, Department of Anesthesiology and Intensive Care Medicine, Friedrich-Schiller-University Jena, Jena, Germany; Jena University Hospital, Center for Sepsis Control and Care, Friedrich-Schiller-University Jena, Jena, Germany
| | - Dustin Beyer
- Jena University Hospital, Department of Anesthesiology and Intensive Care Medicine, Friedrich-Schiller-University Jena, Jena, Germany; Jena University Hospital, Center for Sepsis Control and Care, Friedrich-Schiller-University Jena, Jena, Germany
| | - Na Liu
- Jena University Hospital, Department of Anesthesiology and Intensive Care Medicine, Friedrich-Schiller-University Jena, Jena, Germany; Jena University Hospital, Center for Sepsis Control and Care, Friedrich-Schiller-University Jena, Jena, Germany
| | - Tina Lehmann
- Jena University Hospital, Electron Microscopy Center, Friedrich-Schiller-University Jena, Jena, Germany
| | - Sophie Neugebauer
- Jena University Hospital, Institute of Clinical Chemistry and Laboratory Diagnostics, Friedrich-Schiller-University Jena, Jena, Germany
| | - Sascha Schaeuble
- Department of Microbiome Dynamics at Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (Leibniz-HKI), Jena, Germany
| | - Oliver Sommerfeld
- Jena University Hospital, Department of Anesthesiology and Intensive Care Medicine, Friedrich-Schiller-University Jena, Jena, Germany; Jena University Hospital, Center for Sepsis Control and Care, Friedrich-Schiller-University Jena, Jena, Germany
| | - Philipp Ernst
- Jena University Hospital, Clinic for Internal Medicine II, Department of Hematology and Internal Oncology, Friedrich-Schiller-University Jena, Jena, Germany
| | - Carl-Magnus Svensson
- Research Group Applied Systems Biology at Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (Leibniz-HKI), Jena, Germany
| | - Sandor Nietzsche
- Jena University Hospital, Electron Microscopy Center, Friedrich-Schiller-University Jena, Jena, Germany
| | - Sebastian Scholl
- Jena University Hospital, Clinic for Internal Medicine II, Department of Hematology and Internal Oncology, Friedrich-Schiller-University Jena, Jena, Germany
| | - Tony Bruns
- University Hospital RWTH Aachen, Department of Medicine III, Aachen, Germany
| | - Nikolaus Gaßler
- Jena University Hospital, Section of Pathology, Institute of Forensic Medicine, Friedrich-Schiller-University Jena, Jena, Germany
| | - Markus H Gräler
- Jena University Hospital, Department of Anesthesiology and Intensive Care Medicine, Friedrich-Schiller-University Jena, Jena, Germany; Jena University Hospital, Center for Sepsis Control and Care, Friedrich-Schiller-University Jena, Jena, Germany
| | - Marc Thilo Figge
- Jena University Hospital, Center for Sepsis Control and Care, Friedrich-Schiller-University Jena, Jena, Germany; Research Group Applied Systems Biology at Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (Leibniz-HKI), Jena, Germany; Friedrich-Schiller-University Jena, Institute of Microbiology, Faculty of Biological Sciences, Jena, Germany; Friedrich-Schiller-University Jena, Cluster of Excellence Balance of the Microverse, Jena, Germany
| | - Gianni Panagiotou
- Department of Microbiome Dynamics at Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (Leibniz-HKI), Jena, Germany; Friedrich-Schiller-University Jena, Institute of Microbiology, Faculty of Biological Sciences, Jena, Germany; Friedrich-Schiller-University Jena, Cluster of Excellence Balance of the Microverse, Jena, Germany
| | - Michael Bauer
- Jena University Hospital, Department of Anesthesiology and Intensive Care Medicine, Friedrich-Schiller-University Jena, Jena, Germany; Jena University Hospital, Center for Sepsis Control and Care, Friedrich-Schiller-University Jena, Jena, Germany
| | - Adrian T Press
- Jena University Hospital, Department of Anesthesiology and Intensive Care Medicine, Friedrich-Schiller-University Jena, Jena, Germany; Jena University Hospital, Center for Sepsis Control and Care, Friedrich-Schiller-University Jena, Jena, Germany; Friedrich-Schiller-University Jena, Faculty of Medicine, Jena, Germany.
| |
Collapse
|
4
|
Angendohr C, Missing L, Ehlting C, Wolf SD, Lang KS, Vucur M, Luedde T, Bode JG. Interleukin 1 β suppresses bile acid-induced BSEP expression via a CXCR2-dependent feedback mechanism. PLoS One 2024; 19:e0315243. [PMID: 39680527 DOI: 10.1371/journal.pone.0315243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Inflammation-induced cholestasis is a common problem in septic patients and results from cytokine-mediated inhibition of bile acid export including impaired expression of the bile salt export pump (BSEP) with a consecutive increase in intracellular bile acids mediating cell damage. The present study focuses on the mechanisms by which interleukin 1 β (IL-1β), as a critical mediator of sepsis-induced cholestasis, controls the expression of BSEP in hepatocytes. Notably, the treatment of hepatocytes with IL-1β leads to the upregulation of a broad chemokine pattern. Thereby, the IL-1β -induced expression of in particular the CXCR2 ligands CXCL1 and 2 is further enhanced by bile acids, whereas the FXR-mediated upregulation of BSEP induced by bile acids is inhibited by IL-1β. In this context, it is interesting to note that inhibitor studies indicate that IL-1β mediates its inhibitory effects on bile acid-induced expression of BSEP indirectly via CXCR2 ligands. Consistently, inhibition of CXCR2 with the inhibitor SB225002 significantly attenuated of the inhibitory effect of IL-1β on BSEP expression. These data suggest that part of the cholestasis-inducing effect of IL-1β is mediated via a CXCR2-dependent feedback mechanism.
Collapse
Affiliation(s)
- Carolin Angendohr
- Faculty of Medicine & Düsseldorf University Hospital, Department of Gastroenterology, Hepatology and Infectious Disease, Heinrich-Heine-University, Düsseldorf, Germany
| | - Leah Missing
- Faculty of Medicine & Düsseldorf University Hospital, Department of Gastroenterology, Hepatology and Infectious Disease, Heinrich-Heine-University, Düsseldorf, Germany
| | - Christian Ehlting
- Faculty of Medicine & Düsseldorf University Hospital, Department of Gastroenterology, Hepatology and Infectious Disease, Heinrich-Heine-University, Düsseldorf, Germany
| | - Stephanie D Wolf
- Faculty of Medicine & Düsseldorf University Hospital, Department of Gastroenterology, Hepatology and Infectious Disease, Heinrich-Heine-University, Düsseldorf, Germany
| | - Karl S Lang
- Department of Immunology, University of Essen, Essen, Germany
| | - Mihael Vucur
- Faculty of Medicine & Düsseldorf University Hospital, Department of Gastroenterology, Hepatology and Infectious Disease, Heinrich-Heine-University, Düsseldorf, Germany
| | - Tom Luedde
- Faculty of Medicine & Düsseldorf University Hospital, Department of Gastroenterology, Hepatology and Infectious Disease, Heinrich-Heine-University, Düsseldorf, Germany
| | - Johannes G Bode
- Faculty of Medicine & Düsseldorf University Hospital, Department of Gastroenterology, Hepatology and Infectious Disease, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
5
|
Dicks L, Schuh-von Graevenitz K, Prehn C, Sadri H, Murani E, Hosseini Ghaffari M, Häussler S. Bile acid profiles and mRNA abundance of bile acid-related genes in adipose tissue of dairy cows with high versus normal body condition. J Dairy Sci 2024; 107:6288-6307. [PMID: 38490538 DOI: 10.3168/jds.2024-24346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/14/2024] [Indexed: 03/17/2024]
Abstract
Besides their lipid-digestive role, bile acids (BA) influence overall energy homeostasis, such as glucose and lipid metabolism. We hypothesized that BA along with their receptors, regulatory enzymes, and transporters are present in subcutaneous adipose tissue (scAT). In addition, we hypothesized that their mRNA abundance varies with the body condition of dairy cows around calving. Therefore, we analyzed BA in serum and scAT as well as the mRNA abundance of BA-related enzymes, transporters, and receptors in scAT during the transition period in cows with different body conditions around calving. In a previously established animal model, 38 German Holstein cows were divided into either a high (HBCS; n = 19) or normal BCS (NBCS; n = 19) group based on their BCS and back-fat thickness (BFT). Cows were fed different diets to achieve the targeted differences in BCS and BFT (NBCS: BCS <3.5, BFT <1.2 cm; HBCS: BCS >3.75, BFT >1.4 cm) until dry-off at 7 wk antepartum. During the dry period and subsequent lactation, both groups were fed the same diets according to their energy demands. Using a targeted metabolomics approach via liquid chromatography-electrospray ionization-MS /MS, BA were analyzed in serum and scAT at wk -7, 1, 3, and 12 relative to parturition. In serum, 15 BA were observed: cholic acid (CA), chenodeoxycholic acid (CDCA), glycocholic acid (GCA), taurocholic acid (TCA), glycochenodeoxycholic acid (GCDCA), taurochenodeoxycholic acid, deoxycholic acid (DCA), lithocholic acid, glycodeoxycholic acid (GDCA), glycolithocholic acid, taurodeoxycholic acid, taurolithocholic acid, β-muricholic acid, tauromuricholic acid (sum of α and β), and glycoursodeoxycholic acid, whereas in scAT 7 BA were detected: CA, GCA, TCA, GCDCA, taurochenodeoxycholic acid, GDCA, and taurodeoxycholic acid. In serum and scAT samples, the primary BA CA and its conjugate GCA were predominantly detected. Increasing serum concentrations of CA, CDCA, TCA, GCA, GCDCA, DCA, and β-muricholic acid with the onset of lactation might be related to the increasing DMI after parturition. Furthermore, serum concentrations of CA, CDCA, GCA, DCA, GCDCA, TCA, lithocholic acid, and GDCA were lower in HBCS cows compared with NBCS cows, concomitant with increased lipolysis in HBCS cows. The correlation between CA in serum and scAT may point to the transport of CA across cell membranes. Overall, the findings of the present study suggest a potential role of BA in lipid metabolism depending on the body condition of periparturient dairy cows.
Collapse
Affiliation(s)
- Lena Dicks
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany
| | - Katharina Schuh-von Graevenitz
- Department of Life Sciences and Engineering, Animal Nutrition and Hygiene Unit, University of Applied Sciences Bingen, 55411 Bingen am Rhein, Germany
| | - Cornelia Prehn
- Helmholtz Zentrum München, German Research Center for Environmental Health, Metabolomics and Proteomics Core, 85764 Neuherberg, Germany
| | - Hassan Sadri
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, 516616471 Tabriz, Iran
| | - Eduard Murani
- Research Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | | | - Susanne Häussler
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany.
| |
Collapse
|
6
|
Wang Y, Shen M, Xu G, Yu H, Jia C, Zhu F, Meng Q, Xu D, Du S, Zhang D, Zhang Z. Comprehensive analysis of histophysiology, transcriptome and metabolome tolerance mechanisms in black porgy (Acanthopagrus schlegelii) under low temperature stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172318. [PMID: 38608886 DOI: 10.1016/j.scitotenv.2024.172318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/05/2024] [Accepted: 04/06/2024] [Indexed: 04/14/2024]
Abstract
Low temperature stress has adverse effects on fish growth and reproduction, causing huge economic losses to the aquaculture industry. Especially, black porgy (Acanthopagrus schlegelii) farming industry in north of Yangtze River has been severely affected by low temperature for a long time. To explore the tolerance mechanism of black porgy to low temperature stress, the experiment was designed. The liver and gill tissues of black porgy were taken from the water temperature point of 15 °C (control group named as CG), 3.8 °C (cold sensitive group named as CS) and 2.8 °C (cold tolerant group named as CT) with a cooling rate of 3 °C/d from 15 °C for histophysiology, transcriptomics and metabolomics analysis. After cold stress, the histological results showed that the nucleus of the black porgy liver tissue appeared swelling, the cell arrangement was disordered; meanwhile the gill lamellae were twisted and broken, the epidermis was detached and aneurysm appeared. In addition, the expression of antioxidant, glucose metabolism and immune-related enzymes in the liver and gill of black porgy also changed significantly after low temperature stress. By analyzing the transcriptome and metabolome dates of black porgy liver, 3474 differentially expressed genes (DEGs) and 689 differentially expressed metabolites (DEMs) involved in low temperature stress were identified, respectively. The results of the transcriptome and metabolome combined analysis showed that individuals in the CS group mainly supplied energy to the body through lipid metabolism and amino acid metabolism, and meanwhile the apoptosis pathway was activated. While, individuals in the CT group mainly through glucose metabolism and steroid hormone biosynthesis to supply energy for the body. The validation results of qPCR on eight functional genes further demonstrated the reliability of RNA-Seq data. In summary, the results provide molecular information about adaptation to climate change and genetic selection of black porgy.
Collapse
Affiliation(s)
- Yue Wang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Jiangsu Marine Fishery Research Institute, Nantong 226007, China
| | - Mingjun Shen
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Jiangsu Marine Fishery Research Institute, Nantong 226007, China
| | - Guangping Xu
- Jiangsu Marine Fishery Research Institute, Nantong 226007, China
| | - Han Yu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Jiangsu Marine Fishery Research Institute, Nantong 226007, China
| | - Chaofeng Jia
- Jiangsu Marine Fishery Research Institute, Nantong 226007, China
| | - Fei Zhu
- Jiangsu Marine Fishery Research Institute, Nantong 226007, China
| | - Qian Meng
- Jiangsu Marine Fishery Research Institute, Nantong 226007, China
| | - Dafeng Xu
- Jiangsu Marine Fishery Research Institute, Nantong 226007, China
| | - Shuran Du
- Jiangsu Marine Fishery Research Institute, Nantong 226007, China
| | - Dianchang Zhang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; South China Sea Fishery Research Institute, Chinese Academy of Fishery Sciences Guangzhou 510300, China
| | - Zhiwei Zhang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Jiangsu Marine Fishery Research Institute, Nantong 226007, China.
| |
Collapse
|
7
|
Zhang Z, Zhang Q, Zhang Y, Lou Y, Ge L, Zhang W, Zhang W, Song F, Huang P. Role of sodium taurocholate cotransporting polypeptide (NTCP) in HBV-induced hepatitis: Opportunities for developing novel therapeutics. Biochem Pharmacol 2024; 219:115956. [PMID: 38049009 DOI: 10.1016/j.bcp.2023.115956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/06/2023]
Abstract
Hepatitis B is an infectious disease caused by the HBV virus. It presents a significant challenge for treatment due to its chronic nature and the potential for developing severe complications, including hepatocirrhosis and hepatocellular carcinoma. These complications not only cause physical and psychological distress to patients but also impose substantial economic and social burdens on both individuals and society as a whole. The internalization of HBV relies on endocytosis and necessitates the involvement of various proteins, including heparin sulfate proteoglycans, epidermal growth factor receptors, and NTCP. Among these proteins, NTCP is pivotal in HBV internalization and is primarily located in the liver's basement membrane. As a transporter of bile acids, NTCP also serves as a receptor facilitating HBV entry into cells. Numerous molecules have been identified to thwart HBV infection by stifling NTCP activity, although only a handful exhibit low IC50 values. In this systematic review, our primary focus dwells on the structure and regulation of NTCP, as well as the mechanism involved in HBV internalization. We underscore recent drug breakthroughs that specifically target NTCP to combat HBV infection. By shedding light on these advances, this review contributes novel insights into developing effective anti-HBV medications.
Collapse
Affiliation(s)
- Zhentao Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Qi Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Yiwen Zhang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
| | - Yutao Lou
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Luqi Ge
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Wanli Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Wen Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Feifeng Song
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China.
| | - Ping Huang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
8
|
Li P, Chen Z, Meng K, Chen Y, Xu J, Xiang X, Wu X, Huang Z, Lai R, Li P, Lai Z, Ao X, Liu Z, Yang K, Bai X, Zhang Z. Discovery of Taurocholic Acid Sodium Hydrate as a Novel Repurposing Drug for Intervertebral Disc Degeneration by Targeting MAPK3. Orthop Surg 2024; 16:183-195. [PMID: 37933407 PMCID: PMC10782270 DOI: 10.1111/os.13909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/20/2023] [Accepted: 08/30/2023] [Indexed: 11/08/2023] Open
Abstract
OBJECTIVE Nowadays, more than 90% of people over 50 years suffer from intervertebral disc degeneration (IDD), but there are exist no ideal drugs. The aim of this study is to identify a new drug for IDD. METHODS An approved small molecular drug library including 2040 small molecular compounds was used here. We found that taurocholic acid sodium hydrate (NAT) could induce chondrogenesis and osteogenesis in mesenchymal stem cells (MSCs). Then, an in vivo mouse model of IDD was established and the coccygeal discs transcriptome analysis and surface plasmon resonance analysis (SPR) integrated with liquid chromatography-tandem mass spectrometry assay (LC-MS) were performed in this study to study the therapy effect and target proteins of NAT for IDD. Micro-CT was used to evaluate the cancellous bone. The expression of osteogenic (OCN, RNX2), chondrogenic (COL2A1, SOX9), and the target related (ERK1/2, p-ERK1/2) proteins were detected. The alkaline phosphatase staining was performed to estimate osteogenic differentiation. Blood routine and blood biochemistry indexes were analyzed for the safety of NAT. RESULTS The results showed that NAT could induce chondrogenesis and osteogenesis in MSCs. Further experiments confirmed NAT could ameliorate the secondary osteoporosis and delay the development of IDD in mice. Transcriptome analysis identified 128 common genes and eight Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways for NAT. SPR-LC-MS assay detected 57 target proteins for NAT, including MAPK3 (mitogen-activated protein kinase 3), also known as ERK1 (extracellular regulated protein kinase 1). Further verification experiment confirmed that NAT significantly reduced the expression of ERK1/2 phosphorylation. CONCLUSION NAT would induce chondrogenesis and osteogenesis of MSCs, ameliorate the secondary osteoporosis and delay the progression of IDD in mice by targeting MAPK3.Furthermore, MAPK3, especially the phosphorylation of MAPK3, would be a potential therapeutic target for IDD treatment.
Collapse
Affiliation(s)
- Ping Li
- Division of Spine Surgery, Department of Orthopaedics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Zesen Chen
- Division of Spine Surgery, Department of Orthopaedics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Keyu Meng
- Division of Spine Surgery, Department of Orthopaedics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Yanlin Chen
- Division of Spine Surgery, Department of Orthopaedics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Jiajia Xu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Xin Xiang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Xiuhua Wu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Zhiping Huang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Ruijun Lai
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Peng Li
- Division of Spine Surgery, Department of Orthopaedics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Zhongming Lai
- Division of Spine Surgery, Department of Orthopaedics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Xiang Ao
- Division of Spine Surgery, Department of Orthopaedics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Zhongyuan Liu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Kaifan Yang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Xiaochun Bai
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Zhongmin Zhang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
9
|
Karolczak S, Deshwar AR, Aristegui E, Kamath BM, Lawlor MW, Andreoletti G, Volpatti J, Ellis JL, Yin C, Dowling JJ. Loss of Mtm1 causes cholestatic liver disease in a model of X-linked myotubular myopathy. J Clin Invest 2023; 133:e166275. [PMID: 37490339 PMCID: PMC10503795 DOI: 10.1172/jci166275] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 07/19/2023] [Indexed: 07/27/2023] Open
Abstract
X-linked myotubular myopathy (XLMTM) is a fatal congenital disorder caused by mutations in the MTM1 gene. Currently, there are no approved treatments, although AAV8-mediated gene transfer therapy has shown promise in animal models and preliminarily in patients. However, 4 patients with XLMTM treated with gene therapy have died from progressive liver failure, and hepatobiliary disease has now been recognized more broadly in association with XLMTM. In an attempt to understand whether loss of MTM1 itself is associated with liver pathology, we have characterized what we believe to be a novel liver phenotype in a zebrafish model of this disease. Specifically, we found that loss-of-function mutations in mtm1 led to severe liver abnormalities including impaired bile flux, structural abnormalities of the bile canaliculus, and improper endosome-mediated trafficking of canalicular transporters. Using a reporter-tagged Mtm1 zebrafish line, we established localization of Mtm1 in the liver in association with Rab11, a marker of recycling endosomes, and canalicular transport proteins and demonstrated that hepatocyte-specific reexpression of Mtm1 could rescue the cholestatic phenotype. Last, we completed a targeted chemical screen and found that Dynasore, a dynamin-2 inhibitor, was able to partially restore bile flow and transporter localization to the canalicular membrane. In summary, we demonstrate, for the first time to our knowledge, liver abnormalities that were directly caused by MTM1 mutation in a preclinical model, thus establishing the critical framework for better understanding and comprehensive treatment of the human disease.
Collapse
Affiliation(s)
- Sophie Karolczak
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, The University of Toronto, Toronto, Ontario, Canada
| | - Ashish R. Deshwar
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Clinical and Metabolic Genetics and
| | - Evangelina Aristegui
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Binita M. Kamath
- Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michael W. Lawlor
- Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Translational Science Laboratory, Milwaukee, Wisconsin, USA
| | | | - Jonathan Volpatti
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jillian L. Ellis
- Division of Gastroenterology, Hepatology and Nutrition and Division of Developmental Biology and
| | - Chunyue Yin
- Division of Gastroenterology, Hepatology and Nutrition and Division of Developmental Biology and
- Center for Undiagnosed and Rare Liver Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - James J. Dowling
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, The University of Toronto, Toronto, Ontario, Canada
- Division of Neurology, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Teng T, Sun G, Song X, Shi B. The early faecal microbiota transfer alters bile acid circulation and amino acid transport of the small intestine in piglets. J Anim Physiol Anim Nutr (Berl) 2023; 107:564-573. [PMID: 35668615 DOI: 10.1111/jpn.13739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/03/2022] [Accepted: 05/13/2022] [Indexed: 01/01/2023]
Abstract
The purpose of this study was to investigate the effects of faecal microbiota transfer (FMT) with lactation Min sows as faecal donor on blood immunity, small intestine amino acid transport capacity, bile acid circulation, and colon microbiota of recipient piglets. From Days 1 to 10, the recipient group (R group) was orally inoculated with a faecal suspension. The control group (Con group) was orally inoculated with sterile physiological saline. On Day 21, the results showed that the immunoglobulin A (IgA) concentration in plasma of the R group was increased (p < 0.05). The expression of 4F2hc in the jejunal mucosa and ileum mucosa of the R group was ameliorated (p < 0.05). The relative abundance of Synergistetes in the colon of the R group was increased, Proteobacteria was diminished by FMT (p < 0.05). On Day 40, the concentrations of IgA, IgG, and interleukin-2 detected in the plasma of the R group were increased (p < 0.05). FXR and fibroblast growth factor 19 gene expression was upregulated in ileum mucosa, CYP7A1 and Na+ taurocholate cotransporter polypeptide gene expression were downregulated in the liver and organic solute transporters α/β was downregulated in colonic mucosa (p < 0.05). The relative abundance of Proteobacteria and Spirochaetes in the colon of the R group was decreased (p < 0.05). In conclusion, an early FMT with lactation Min sows as faecal donors can alter the small intestine amino acid transport capacity, bile acid circulation, and colonic microbiota of recipient piglets during lactation and after weaning.
Collapse
Affiliation(s)
- Teng Teng
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Guodong Sun
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Xin Song
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Baoming Shi
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| |
Collapse
|
11
|
Cristina Igreja Sá I, Tripska K, Alaei Faradonbeh F, Hroch M, Lastuvkova H, Schreiberova J, Kacerovsky M, Pericacho M, Nachtigal P, Micuda S. Labetalol and soluble endoglin aggravate bile acid retention in mice with ethinylestradiol-induced cholestasis. Front Pharmacol 2023; 14:1116422. [PMID: 36778021 PMCID: PMC9909014 DOI: 10.3389/fphar.2023.1116422] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/16/2023] [Indexed: 01/27/2023] Open
Abstract
Labetalol is used for the therapy of hypertension in preeclampsia. Preeclampsia is characterized by high soluble endoglin (sEng) concentration in plasma and coincides with intrahepatic cholestasis during pregnancy (ICP), which threatens the fetus with the toxicity of cumulating bile acids (BA). Therefore, we hypothesized that both labetalol and increased sEng levels worsen BA cumulation in estrogen-induced cholestasis. C57BL/6J, transgenic mice overexpressing human sEng, and their wild-type littermates were administrated with ethinylestradiol (EE, 10 mg/kg s.c., the mice model of ICP) and labetalol (10 mg/kg s.c.) for 5 days with sample collection and analysis. Plasma was also taken from healthy pregnant women and patients with ICP. Administration of labetalol to mice with EE cholestasis aggravated the increase in BA plasma concentrations by induction of hepatic Mrp4 efflux transporter. Labetalol potentiated the increment of sEng plasma levels induced by estrogen. Increased plasma levels of sEng were also observed in patients with ICP. Moreover, increased plasma levels of human sEng in transgenic mice aggravated estrogen-induced cholestasis in labetalol-treated mice and increased BA concentration in plasma via enhanced reabsorption of BAs in the ileum due to the upregulation of the Asbt transporter. In conclusion, we demonstrated that labetalol increases plasma concentrations of BAs in estrogen-induced cholestasis, and sEng aggravates this retention. Importantly, increased sEng levels in experimental and clinical forms of ICPs might present a novel mechanism explaining the coincidence of ICP with preeclampsia. Our data encourage BA monitoring in the plasma of pregnant women with preeclampsia and labetalol therapy.
Collapse
Affiliation(s)
- Ivone Cristina Igreja Sá
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Katarina Tripska
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Fatemeh Alaei Faradonbeh
- Department of Pharmacology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Milos Hroch
- Department of Biochemistry, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Hana Lastuvkova
- Department of Pharmacology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Jolana Schreiberova
- Department of Pharmacology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Marian Kacerovsky
- Department of Obstetrics and Gynecology, University Hospital Hradec Kralove, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Miguel Pericacho
- Biomedical Research Institute of Salamanca and Renal and Cardiovascular Physiopathology Unit, Department of Physiology and Pharmacology, University of Salamanca, Salamanca, Spain
| | - Petr Nachtigal
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czechia,*Correspondence: Stanislav Micuda, ; Petr Nachtigal,
| | - Stanislav Micuda
- Department of Pharmacology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czechia,*Correspondence: Stanislav Micuda, ; Petr Nachtigal,
| |
Collapse
|
12
|
Zheng Z, Wei J, Hou X, Jia F, Zhang Z, Guo H, Yuan F, He F, Ke Z, Wang Y, Zhao L. A High Hepatic Uptake of Conjugated Bile Acids Promotes Colorectal Cancer-Associated Liver Metastasis. Cells 2022; 11:cells11233810. [PMID: 36497071 PMCID: PMC9736302 DOI: 10.3390/cells11233810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The liver is the most common site for colorectal cancer (CRC)-associated metastasis. There remain unsatisfactory medications in liver metastasis given the incomplete understanding of pathogenic mechanisms. Herein, with an orthotopic implantation model fed either regular or high-fat diets (HFD), more liver metastases were associated with an expansion of conjugated bile acids (BAs), particularly taurocholic acid (TCA) in the liver, and an increased gene expression of Na+-taurocholate cotransporting polypeptide (NTCP). Such hepatic BA change was more apparently shown in the HFD group. In the same model, TCA was proven to promote liver metastases and induce a tumor-favorable microenvironment in the liver, characterizing a high level of fibroblast activation and increased proportions of myeloid-derived immune cells. Hepatic stellate cells, a liver-residing source of fibroblasts, were dose-dependently activated by TCA, and their conditioned medium significantly enhanced the migration capability of CRC cells. Blocking hepatic BA uptake with NTCP neutralized antibody can effectively repress TCA-triggered liver metastases, with an evident suppression of tumor microenvironment niche formation. This study points to a new BA-driven mechanism of CRC-associated liver metastases, suggesting that a reduction of TCA overexposure by limiting liver uptake is a potential therapeutic option for CRC-associated liver metastasis.
Collapse
Affiliation(s)
- Zongmei Zheng
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiao Wei
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xinxin Hou
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Fengjing Jia
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhaozhou Zhang
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Haidong Guo
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Fuwen Yuan
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Feng He
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zunji Ke
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yan Wang
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Correspondence: (Y.W.); (L.Z.)
| | - Ling Zhao
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Correspondence: (Y.W.); (L.Z.)
| |
Collapse
|
13
|
Li Y, Zhou J, Li T. Regulation of the HBV Entry Receptor NTCP and its Potential in Hepatitis B Treatment. Front Mol Biosci 2022; 9:879817. [PMID: 35495620 PMCID: PMC9039015 DOI: 10.3389/fmolb.2022.879817] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Hepatitis B virus (HBV) is a globally prevalent human DNA virus responsible for more than 250 million cases of chronic liver infection, a condition that can lead to liver inflammation, cirrhosis, and hepatocellular carcinoma. Sodium taurocholate co-transporting polypeptide (NTCP), a transmembrane protein highly expressed in human hepatocytes and a mediator of bile acid transport, has been identified as the receptor responsible for the cellular entry of both HBV and its satellite, hepatitis delta virus (HDV). This has led to significant advances in our understanding of the HBV life cycle, especially the early steps of infection. HepG2-NTCP cells and human NTCP-expressing transgenic mice have been employed as the primary cell culture and animal models, respectively, for the study of HBV, and represent valuable approaches for investigating its basic biology and developing treatments for infection. However, the mechanisms involved in the regulation of NTCP transcription, translation, post-translational modification, and transport are still largely elusive. Improvements in our understanding of NTCP biology would likely facilitate the design of new therapeutic drugs for the prevention of the de novo infection of naïve hepatocytes. In this review, we provide critical findings regarding NTCP biology and discuss important questions that remain unanswered.
Collapse
Affiliation(s)
- Yan Li
- *Correspondence: Yan Li, ; Tianliang Li,
| | | | | |
Collapse
|
14
|
Smolobochkin AV, Gazizov AS, Yakhshilikova LJ, Bekrenev DD, Burilov AR, Pudovik MA, Lyubina AP, Amerhanova SK, Voloshina AD. Synthesis and Biological Evaluation of Taurine-Derived Diarylmethane and Dibenzoxanthene Derivatives as Possible Cytotoxic and Antimicrobial Agents. Chem Biodivers 2022; 19:e202100970. [PMID: 35262999 DOI: 10.1002/cbdv.202100970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/08/2022] [Indexed: 11/09/2022]
Abstract
The series of novel taurine-derived diarylmethanes and dibenzoxanthenes was synthesized starting from simple commercially available precursors via modular three-stage approach. All the newly synthesized compounds were screened for in vitro antibacterial and antifungal activity, as well as cytotoxicity towards normal and cancer cell lines. Some of the synthesized compounds exhibited 2-4-fold higher activity against S. aureus, E. faecalis and B. cereus compared with Chloramphenicol. In contrast to Chloramphenicol, the tested compounds also showed bactericidal, rather than bacteriostatic effect, which makes them promising candidates for further studies.
Collapse
Affiliation(s)
- Andrey V Smolobochkin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russian Federation
| | - Almir S Gazizov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russian Federation
| | | | - Dmitrii D Bekrenev
- Kazan National Research Technological University, Kazan, Russian Federation
| | - Alexander R Burilov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russian Federation
| | - Michail A Pudovik
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russian Federation
| | - Anna P Lyubina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russian Federation
| | - Syumbelya K Amerhanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russian Federation
| | - Alexandra D Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russian Federation
| |
Collapse
|
15
|
The Age-Related Macular Degeneration (AMD)-Preventing Mechanism of Natural Products. Processes (Basel) 2022. [DOI: 10.3390/pr10040678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Age-related macular degeneration (AMD) is related to central visual loss in elderly people and, based on the increment in the percentage of the aging population, the number of people suffering from AMD could increase. AMD is initiated by retinal pigment epithelium (RPE) cell death, finally leading to neovascularization in the macula lutea. AMD is an uncurable disease, but the symptom can be suppressed. The current therapy of AMD can be classified into four types: device-based treatment, anti-inflammatory drug treatment, anti-vascular endothelial growth factor treatment, and natural product treatment. All these therapies have adverse effects, however early AMD therapy used with products has several advantages, as it can prevent RPE cell apoptosis in safe doses. Cell death (apoptosis) is caused by various factors, such as oxidative stress, inflammation, carbonyl stress, and a deficiency in essential components for cells, and RPE cell death is related to oxidative stress, inflammation, and carbonyl stress. Some natural products have anti-oxidative effects, anti-inflammation effects, and/or anti-carbonylation effects. The AMD preventive mechanism of natural products varies, with some natural products activating one or more anti-apoptotic pathways, such as the Nrf2/HO-1 anti-oxidative pathway, the anti-inflammasome pathway, and the anti-carbonyl pathway. As AMD drug candidates from natural products effectively inhibit RPE cell death, they have the potential to be developed as drugs for preventing early (dry) AMD.
Collapse
|
16
|
Ruan Y, Liu R, Gong L. Investigation of dysregulated lipid metabolism in diabetic mice via targeted metabolomics of bile acids in enterohepatic circulation. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9236. [PMID: 34897861 DOI: 10.1002/rcm.9236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 10/27/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
RATIONALE The mechanism of lipid metabolism disorder in type 2 diabetes (T2DM) remains unclear. This study aimed to reveal the mechanism underlying dysregulated lipid metabolism in T2DM through bile acid metabolism. METHODS A db/db mouse model was employed to investigate the alteration of bile acid profiles in T2DM. Ultrahigh-performance liquid chromatography with tandem mass spectrometry was used to quantify the detailed bile acid levels in each compartment of enterohepatic circulation. The pathological change of mouse liver was assessed by liver histology and serum biochemical assays. The expression level of bile acid-related transporters and synthases was measured with Western blot analysis. RESULTS The results showed that T2DM can result in severe liver fat accumulation and liver damage. In addition, compared to the control group, in T2DM mice, bile acid synthesis is reduced, while the level of bile acids is increased at the storage sites and the reabsorption sites, but there are subtle gender differences. Further, the ratio of conjugated bile acids in total bile acid in the liver of T2DM mice increased significantly relative to the control group for both female and male mice. CONCLUSIONS In T2DM, bile acid metabolism is disordered in both male and female mice, which could be the underlying mechanism of dysregulated lipid metabolism in T2DM.
Collapse
Affiliation(s)
- Yanjiao Ruan
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rong Liu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lingzhi Gong
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
17
|
Saran C, Sundqvist L, Ho H, Niskanen J, Honkakoski P, Brouwer KLR. Novel Bile Acid-Dependent Mechanisms of Hepatotoxicity Associated with Tyrosine Kinase Inhibitors. J Pharmacol Exp Ther 2022; 380:114-125. [PMID: 34794962 PMCID: PMC9109172 DOI: 10.1124/jpet.121.000828] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/09/2021] [Indexed: 02/03/2023] Open
Abstract
Drug-induced liver injury (DILI) is the leading cause of acute liver failure and a major concern in drug development. Altered bile acid homeostasis via inhibition of the bile salt export pump (BSEP) is one mechanism of DILI. Dasatinib, pazopanib, and sorafenib are tyrosine kinase inhibitors (TKIs) that competitively inhibit BSEP and increase serum biomarkers for hepatotoxicity in ∼25-50% of patients. However, the mechanism(s) of hepatotoxicity beyond competitive inhibition of BSEP are poorly understood. This study examined mechanisms of TKI-mediated hepatotoxicity associated with altered bile acid homeostasis. Dasatinib, pazopanib, and sorafenib showed bile acid-dependent toxicity at clinically relevant concentrations, based on the C-DILI assay using sandwich-cultured human hepatocytes (SCHH). Among several bile acid-relevant genes, cytochrome P450 (CYP) 7A1 mRNA was specifically upregulated by 6.2- to 7.8-fold (dasatinib) and 5.7- to 9.3-fold (pazopanib), compared with control, within 8 hours. This was consistent with increased total bile acid concentrations in culture medium up to 2.3-fold, and in SCHH up to 1.4-fold, compared with control, within 24 hours. Additionally, protein abundance of sodium taurocholate co-transporting polypeptide (NTCP) was increased up to 2.0-fold by these three TKIs. The increase in NTCP protein abundance correlated with increased function; dasatinib and pazopanib increased hepatocyte uptake clearance (CLuptake) of taurocholic acid, a probe bile acid substrate, up to 1.4-fold. In conclusion, upregulation of CYP7A1 and NTCP in SCHH constitute novel mechanisms of TKI-associated hepatotoxicity. SIGNIFICANCE STATEMENT: Understanding the mechanisms of hepatotoxicity associated with tyrosine kinase inhibitors (TKIs) is fundamental to development of effective and safe intervention therapies for various cancers. Data generated in sandwich-cultured human hepatocytes, an in vitro model of drug-induced hepatotoxicity, revealed that TKIs upregulate bile acid synthesis and alter bile acid uptake and excretion. These findings provide novel insights into additional mechanisms of bile acid-mediated drug-induced liver injury, an adverse effect that limits the use and effectiveness of TKI treatment in some cancer patients.
Collapse
Affiliation(s)
- Chitra Saran
- Department of Pharmacology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.S.); Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.S., L.S., H.H., P.H., K.L.R.B.); Department of Pharmacy, Uppsala University, Uppsala, Sweden (L.S.); and School of Pharmacy, University of Eastern Finland, Kuopio, Finland (J.N., P.H.)
| | - Louise Sundqvist
- Department of Pharmacology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.S.); Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.S., L.S., H.H., P.H., K.L.R.B.); Department of Pharmacy, Uppsala University, Uppsala, Sweden (L.S.); and School of Pharmacy, University of Eastern Finland, Kuopio, Finland (J.N., P.H.)
| | - Henry Ho
- Department of Pharmacology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.S.); Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.S., L.S., H.H., P.H., K.L.R.B.); Department of Pharmacy, Uppsala University, Uppsala, Sweden (L.S.); and School of Pharmacy, University of Eastern Finland, Kuopio, Finland (J.N., P.H.)
| | - Jonna Niskanen
- Department of Pharmacology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.S.); Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.S., L.S., H.H., P.H., K.L.R.B.); Department of Pharmacy, Uppsala University, Uppsala, Sweden (L.S.); and School of Pharmacy, University of Eastern Finland, Kuopio, Finland (J.N., P.H.)
| | - Paavo Honkakoski
- Department of Pharmacology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.S.); Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.S., L.S., H.H., P.H., K.L.R.B.); Department of Pharmacy, Uppsala University, Uppsala, Sweden (L.S.); and School of Pharmacy, University of Eastern Finland, Kuopio, Finland (J.N., P.H.)
| | - Kim L R Brouwer
- Department of Pharmacology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.S.); Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.S., L.S., H.H., P.H., K.L.R.B.); Department of Pharmacy, Uppsala University, Uppsala, Sweden (L.S.); and School of Pharmacy, University of Eastern Finland, Kuopio, Finland (J.N., P.H.)
| |
Collapse
|
18
|
Na+-Taurocholate Co-Transporting Polypeptide (NTCP) in Livers, Function, Expression Regulation, and Potential in Hepatitis B Treatment. LIVERS 2021. [DOI: 10.3390/livers1040019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection has become one of the leading causes of liver cirrhosis and hepatocellular carcinoma globally. The discovery of sodium taurocholate co-transporting polypeptide (NTCP), a solute carrier, as a key receptor for HBV and hepatitis D virus (HDV) has opened new avenues for HBV treatment. Additionally, it has led researchers to generate hepatoma cell lines (including HepG2-NTCP and Huh-7-NTCP) susceptible to HBV infection in vitro, hence, paving the way to develop and efficiently screen new and novel anti-HBV drugs. This review summarizes the history, function and critical findings regarding NTCP as a viral receptor for HBV/HDV, and it also discusses recently developed drugs targeting NTCP.
Collapse
|
19
|
Hu T, Wang H. Hepatic Bile Acid Transporters in Drug‐Induced Cholestasis. TRANSPORTERS AND DRUG‐METABOLIZING ENZYMES IN DRUG TOXICITY 2021:307-337. [DOI: 10.1002/9781119171003.ch10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
20
|
Gong X, Zhang Q, Ruan Y, Hu M, Liu Z, Gong L. Chronic Alcohol Consumption Increased Bile Acid Levels in Enterohepatic Circulation and Reduced Efficacy of Irinotecan. Alcohol Alcohol 2021; 55:264-277. [PMID: 32232424 DOI: 10.1093/alcalc/agaa005] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/10/2020] [Accepted: 01/21/2020] [Indexed: 12/13/2022] Open
Abstract
AIMS To investigate the effect of ethanol intake on the whole enterohepatic circulation (EHC) of bile acids (BAs) and, more importantly, on pharmacokinetics of irinotecan. METHODS The present study utilized a mouse model administered by gavage with 0 (control), 240 mg/100 g (30%, v/v) and 390 mg/100 g (50%, v/v) ethanol for 6 weeks, followed by BA profiles in the whole EHC (including liver, gallbladder, intestine and plasma) and colon using ultra-high performance liquid chromatography with tandem mass spectrometry analysis. Pharmacokinetic parameters of irinotecan were measured after administration of irinotecan (i.v. 5 mg/kg) on alcohol-treated mice. RESULTS The results showed that compared with the control group, concentrations of most free-BAs, total amount of the three main forms of BAs (free-BA, taurine-BA and glycine-BA) and total BAs (TBAs) in 50% ethanol intake group were significantly increased, which are mostly attributed to the augmentation of free-BAs and taurine-BAs. Additionally, the TBAs in liver and gallbladder and the BA pool were markedly increased in the 30% ethanol intake group. Importantly, ethanol intake upregulated the expression of BA-related enzymes (Cyp7a1, Cyp27a1, Cyp8b1 and Baat) and transporters (Bsep, Mrp2, P-gp and Asbt) and downregulated the expression of transporter Ntcp and nuclear receptor Fxr in the liver and ileum, respectively. Additionally, 50% ethanol intake caused fairly distinct liver injury. Furthermore, the AUC0-24 h of irinotecan and SN38 were significantly reduced but their clearance was significantly increased in the disrupted EHC of BA by 50% ethanol intake. CONCLUSIONS The present study demonstrated that ethanol intake altered the expression of BA-related synthetases and transporters. The BA levels, especially the toxic BAs (chenodeoxycholic acid, deoxycholic acid and lithocholic acid), in the whole EHC were significantly increased by ethanol intake, which may provide a potential explanation to illuminate the pathogenesis of alcoholic liver injury. Most importantly, chronic ethanol consumption had a significant impact on the pharmacokinetics (AUC0-24 h and clearance) of irinotecan and SN38; hence colon cancer patients with chronic alcohol consumption treated with irinotecan deserve our close attention.
Collapse
Affiliation(s)
- Xia Gong
- 232 Waihuan Donglu, Guangzhou Daxuecheng, Panyu District, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China
| | - Qisong Zhang
- 232 Waihuan Donglu, Guangzhou Daxuecheng, Panyu District, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China
| | - Yanjiao Ruan
- 232 Waihuan Donglu, Guangzhou Daxuecheng, Panyu District, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China
| | - Ming Hu
- 232 Waihuan Donglu, Guangzhou Daxuecheng, Panyu District, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China.,Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Huston, 1441 Moursund St., Houston, TX 77030, USA
| | - Zhongqiu Liu
- 232 Waihuan Donglu, Guangzhou Daxuecheng, Panyu District, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China
| | - Lingzhi Gong
- 232 Waihuan Donglu, Guangzhou Daxuecheng, Panyu District, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China
| |
Collapse
|
21
|
Harnisch LO, Moerer O. The Specific Bile Acid Profile of Shock: A Hypothesis Generating Appraisal of the Literature. J Clin Med 2020; 9:E3844. [PMID: 33256244 PMCID: PMC7761042 DOI: 10.3390/jcm9123844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/21/2020] [Accepted: 11/25/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Bile acid synthesis and regulation of metabolism are tightly regulated. In critical illness, these regulations are impaired. Consequently, the physiologic bile acid pattern in serum becomes disturbed and a disease-specific bile acid profile seems to become evident. METHODS A literature review was performed and trials reporting the broken-down bile acid pattern were condensed with regard to percent differences in bile acid profiles of defined diseases compared to a human control. RESULTS Ten articles were identified. Most of the studied bile acid profiles differ statistically significant between disease states, furthermore, neither of the reported disease entities show the same broken-down pattern of individual bile acids. Deoxycholic acid (DCA) was found to be decreased in almost all diseases, except for the two shock-states investigated (cardiogenic shock, septic shock) where it was elevated by about 100% compared to the control. Moreover, the pattern of both examined shock-states are very similar, rendering a specific shock-pattern possible, that we argue could eventually maintain or even worsen the pathological state. CONCLUSION The specific broken-down bile acid profile of defined diseases might aid in gaining insight into the body's adaptive reaction and the differential diagnosis, as well as in the therapy of disease states in the early course of the disease.
Collapse
Affiliation(s)
- Lars-Olav Harnisch
- Department of Anesthesiology, University of Göttingen, 37075 Göttingen, Germany;
| | | |
Collapse
|
22
|
Abstract
Circadian rhythms are biological systems that synchronize cellular circadian oscillators with the organism's daily feeding-fasting or rest-activity cycles in mammals. Circadian rhythms regulate nutrient absorption and utilization at the cellular level and are closely related to obesity and metabolic disorders. Bile acids are important modulators that facilitate nutrient absorption and regulate energy metabolism. Here, we provide an overview of the current connections and future perspectives between the circadian clock and bile acid metabolism as well as related metabolic diseases. Feeding and fasting cycles influence bile acid pool size and composition, and bile acid signaling can respond to acute lipid and glucose utilization and mediate energy balance. Disruption of circadian rhythms such as shift work, irregular diet, and gene mutations can contribute to altered bile acid metabolism and heighten obesity risk. High-fat diets, alcohol, and gene mutations related to bile acid signaling result in desynchronized circadian rhythms. Gut microbiome also plays a role in connecting circadian rhythms with bile acid metabolism. The underlying mechanism of how circadian rhythms interact with bile acid metabolism has not been fully explored. Sustaining bile acid homeostasis based on circadian rhythms may be a potential therapy to alleviate metabolic disturbance.
Collapse
Affiliation(s)
- Yunxia Yang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, China
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, China
| |
Collapse
|
23
|
Appelman MD, Robin MJ, Vogels EW, Wolzak C, Vos WG, Vos HR, Van Es RM, Burgering BM, Van de Graaf SF. The Lipid Raft Component Stomatin Interacts with the Na + Taurocholate Cotransporting Polypeptide (NTCP) and Modulates Bile Salt Uptake. Cells 2020; 9:cells9040986. [PMID: 32316189 PMCID: PMC7226988 DOI: 10.3390/cells9040986] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 12/15/2022] Open
Abstract
The sodium taurocholate cotransporting polypeptide (NTCP) is expressed at the basolateral membrane of hepatocytes, where it mediates the uptake of conjugated bile acids and forms the hepatocyte entry receptor for the hepatitis B and D virus. Here, we aimed to identify novel protein–protein interactions that could play a role in the regulation of NTCP. To this end, NTCP was precipitated from HA-tagged hNTCP-expressing HepG2 cells, and chloride channel CLIC-like 1 (CLCC1) and stomatin were identified as interacting proteins by mass spectrometry. Interaction was confirmed by co-immunoprecipitation. NTCP, CLCC1 and stomatin were found at the plasma membrane in lipid rafts, as demonstrated by a combination of immunofluorescence, cell surface biotinylation and isolation of detergent-resistant membranes. Neither CLCC1 overexpression nor its knockdown had an effect on NTCP function. However, both stomatin overexpression and knockdown increased NTCP-mediated taurocholate uptake while NTCP abundance at the plasma membrane was only increased in stomatin depleted cells. These findings identify stomatin as an interactor of NTCP and show that the interaction modulates bile salt transport.
Collapse
Affiliation(s)
- Monique D. Appelman
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology, Endocrinology and Metabolism, 1105 BK Amsterdam, The Netherlands
| | - Marion J.D. Robin
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology, Endocrinology and Metabolism, 1105 BK Amsterdam, The Netherlands
| | - Esther W.M. Vogels
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology, Endocrinology and Metabolism, 1105 BK Amsterdam, The Netherlands
| | - Christie Wolzak
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology, Endocrinology and Metabolism, 1105 BK Amsterdam, The Netherlands
| | - Winnie G. Vos
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology, Endocrinology and Metabolism, 1105 BK Amsterdam, The Netherlands
| | - Harmjan R. Vos
- Center for Molecular Medicine, Molecular Cancer Research Section, University Medical Center, 3584 CX Utrecht, The Netherlands
| | - Robert M. Van Es
- Center for Molecular Medicine, Molecular Cancer Research Section, University Medical Center, 3584 CX Utrecht, The Netherlands
| | - Boudewijn M.T. Burgering
- Center for Molecular Medicine, Molecular Cancer Research Section, University Medical Center, 3584 CX Utrecht, The Netherlands
| | - Stan F.J. Van de Graaf
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology, Endocrinology and Metabolism, 1105 BK Amsterdam, The Netherlands
- Amsterdam UMC, Department of Gastroenterology and Hepatology, University of Amsterdam, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam 1105 AZ, The Netherlands
- Correspondence:
| |
Collapse
|
24
|
Wen X, Hu Y, Zhang X, Wei X, Wang T, Yin S. Integrated application of multi-omics provides insights into cold stress responses in pufferfish Takifugu fasciatus. BMC Genomics 2019; 20:563. [PMID: 31286856 PMCID: PMC6615287 DOI: 10.1186/s12864-019-5915-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 06/18/2019] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND T. fasciatus (Takifugu fasciatus) faces the same problem as most warm water fish: the water temperature falls far below the optimal growth temperature in winter, causing a massive death of T. fasciatus and large economic losses. Understanding of the cold-tolerance mechanisms of this species is still limited. Integrated application of multi-omics research can provide a wealth of information to help us improve our understanding of low-temperature tolerance in fish. RESULTS To gain a comprehensive and unbiased molecular understanding of cold-tolerance in T. fasciatus, we characterized mRNA-seq and metabolomics of T. fasciatus livers using Illumina HiSeq 2500 and UHPLC-Q-TOF MS. We identified 2544 up-regulated and 2622 down-regulated genes in the liver of T. fasciatus. A total of 40 differential metabolites were identified, including 9 down-regulated and 31 up-regulated metabolites. In combination with previous studies on proteomics, we have established an mRNA-protein-metabolite interaction network. There are 17 DEMs (differentially-expressed metabolites) and 14 DEGs-DEPs (differentially co-expressed genes and proteins) in the interaction network that are mainly involved in fatty acids metabolism, membrane transport, signal transduction, and DNA damage and defense. We then validated a number of genes in the interaction network by qRT-PCR. Additionally, a number of SNPs (single nucleotide polymorphisms) were revealed through the transcriptome data. These results provide key information for further understanding of the molecular mechanisms of T. fasciatus under cold stress. CONCLUSION The data generated by integrated application of multi-omics can facilitate our understanding of the molecular mechanisms of fish response to low temperature stress. We have not only identified potential genes and SNPs involved in cold tolerance, but also show that some nutrient metabolites may be added to the diet to help the overwintering of T. fasciatus.
Collapse
Affiliation(s)
- Xin Wen
- College of Life Sciences, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023 China
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, 222005 Jiangsu China
| | - Yadong Hu
- College of Life Sciences, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023 China
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, 222005 Jiangsu China
| | - Xinyu Zhang
- College of Life Sciences, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023 China
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, 222005 Jiangsu China
| | - Xiaozhen Wei
- College of Life Sciences, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023 China
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, 222005 Jiangsu China
| | - Tao Wang
- College of Life Sciences, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023 China
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, 222005 Jiangsu China
| | - Shaowu Yin
- College of Life Sciences, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023 China
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, 222005 Jiangsu China
| |
Collapse
|
25
|
Abstract
Bile is composed of multiple macromolecules, including bile acids, free cholesterol, phospholipids, bilirubin, and inorganic ions that aid in digestion, nutrient absorption, and disposal of the insoluble products of heme catabolism. The synthesis and release of bile acids is tightly controlled and dependent on feedback mechanisms that regulate enterohepatic circulation. Alterations in bile composition, impaired gallbladder relaxation, and accelerated nucleation are the principal mechanisms leading to biliary stone formation. Various physiologic conditions and disease states alter bile composition and metabolism, thus increasing the risk of developing gallstones.
Collapse
Affiliation(s)
| | | | - Zeljka Jutric
- Department of Surgery, University of California Irvine; Hepatobiliary and Pancreas Surgery, Department of Surgery, University of California Irvine, Orange, CA, USA.
| |
Collapse
|
26
|
Wet-tip versus dry-tip regimes of osmotically driven fluid flow. Sci Rep 2019; 9:4528. [PMID: 30872654 PMCID: PMC6418297 DOI: 10.1038/s41598-019-40853-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 02/22/2019] [Indexed: 12/05/2022] Open
Abstract
The secretion of osmolytes into a lumen and thereby caused osmotic water inflow can drive fluid flows in organs without a mechanical pump. Such fluids include saliva, sweat, pancreatic juice and bile. The effects of elevated fluid pressure and the associated mechanical limitations of organ function remain largely unknown since fluid pressure is difficult to measure inside tiny secretory channels in vivo. We consider the pressure profile of the coupled osmolyte-flow problem in a secretory channel with a closed tip and an open outlet. Importantly, the entire lateral boundary acts as a dynamic fluid source, the strength of which self-organizes through feedback from the emergent pressure solution itself. We derive analytical solutions and compare them to numerical simulations of the problem in three-dimensional space. The theoretical results reveal a phase boundary in a four-dimensional parameter space separating the commonly considered regime with steady flow all along the channel, here termed “wet-tip” regime, from a “dry-tip” regime suffering ceased flow downstream from the closed tip. We propose a relation between the predicted phase boundary and the onset of cholestasis, a pathological liver condition with reduced bile outflow. The phase boundary also sets an intrinsic length scale for the channel which could act as a length sensor during organ growth.
Collapse
|
27
|
Park SW, Webster CRL, Anwer MS. Mechanism of inhibition of taurolithocholate-induced retrieval of plasma membrane MRP2 by cyclic AMP and tauroursodeoxycholate. Physiol Rep 2018; 5. [PMID: 29192063 PMCID: PMC5727282 DOI: 10.14814/phy2.13529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/03/2017] [Accepted: 11/07/2017] [Indexed: 12/26/2022] Open
Abstract
Taurolithocholate (TLC) produces cholestasis by inhibiting biliary solute secretion in part by retrieving MRP2 from the plasma membrane (PM). Tauroursodeoxycholate (TUDC) and cAMP reverse TLC‐induced cholestasis by inhibiting TLC‐induced retrieval of MRP2. However, cellular mechanisms for this reversal are incompletely understood. Recently, we reported that TLC decreases PM‐MRP2 by activating PKCε followed by phosphorylation of myristoylated alanine‐rich C kinase substrate (MARCKS). Thus, cAMP and TUDC may reverse TLC‐induced cholestasis by inhibiting the TLC/PKCε/MARCKS phosphorylation pathway. We tested this hypothesis by determining whether TUDC and/or cAMP inhibit TLC‐induced activation of PKCε and phosphorylation of MARCKS. Studies were conducted in HuH‐NTCP cell line and rat hepatocytes. Activation of PKCε was determined from the translocation of PKCε to PM using a biotinylation method. Phosphorylation of MARCKS was determined by immunoblotting with a phospho‐MARCKS antibody. TLC, but not cAMP and TUDC, activated PKCε and increased MARCKS phosphorylation in HuH‐NTCP as well in rat hepatocytes. Treatment with TUDC or cAMP inhibited TLC‐induced activation of PKCε and increases in MARCKS phosphorylation in both cell types. Based on these results, we conclude that the reversal of TLC‐induced cholestasis by cAMP and TUDC involves, at least in part, inhibition of TLC‐mediated activation of the PKCε/MARCKS phosphorylation pathway.
Collapse
Affiliation(s)
- Se Won Park
- Department of Biomedical Sciences, Cummings School of Veterinary Medicine at Tufts University, 200 Westboro Road, North Grafton, Massachusetts, USA
| | - Cynthia R L Webster
- Department of Clinical Sciences, Cummings School of Veterinary Medicine at Tufts University, 200 Westboro Road, North Grafton, Massachusetts, USA
| | - Mohammed S Anwer
- Department of Biomedical Sciences, Cummings School of Veterinary Medicine at Tufts University, 200 Westboro Road, North Grafton, Massachusetts, USA
| |
Collapse
|
28
|
Chen MM, Hale C, Stanislaus S, Xu J, Véniant MM. FGF21 acts as a negative regulator of bile acid synthesis. J Endocrinol 2018; 237:139-152. [PMID: 29615519 DOI: 10.1530/joe-17-0727] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 02/26/2018] [Indexed: 12/17/2022]
Abstract
Fibroblast growth factor 21 (FGF21) is a potent regulator of glucose and lipid homeostasis in vivo; its most closely related subfamily member, FGF19, is known to be a critical negative regulator of bile acid synthesis. To delineate whether FGF21 also plays a functional role in bile acid metabolism, we evaluated the effects of short- and long-term exposure to native FGF21 and long-acting FGF21 analogs on hepatic signal transduction, gene expression and enterohepatic bile acid levels in primary hepatocytes and in rodent and monkey models. FGF21 acutely induced ERK phosphorylation and inhibited Cyp7A1 mRNA expression in primary hepatocytes and in different rodent models, although less potently than recombinant human FGF19. Long-term administration of FGF21 in mice fed a standard chow diet resulted in a 50-60% decrease in bile acid levels in the liver and small intestines and consequently a 60% reduction of bile acid pool size. In parallel, colonic and fecal bile acid was decreased, whereas fecal cholesterol and fatty acid excretions were elevated. The long-acting FGF21 analog showed superiority to recombinant human FGF21 and FGF19 in decreasing bile acid levels with long duration of effect action in mice. Long-term administration of the long-acting FGF21 analogs in obese cynomolgus monkeys suppressed plasma total bile acid and 7α-hydroxy-4-cholesten-3-one levels, a biomarker for bile acid synthesis. Collectively, these data reveal a previously unidentified role of FGF21 in bile acid metabolism as a negative regulator of bile acid synthesis.
Collapse
Affiliation(s)
| | | | | | | | - Murielle M Véniant
- Department of Cardiometabolic DisordersAmgen Inc., Thousand Oaks, California, USA
| |
Collapse
|
29
|
Lepist EI, Ray AS. Beyond drug-drug interactions: effects of transporter inhibition on endobiotics, nutrients and toxins. Expert Opin Drug Metab Toxicol 2017; 13:1075-1087. [PMID: 28847160 DOI: 10.1080/17425255.2017.1372425] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Membrane transport proteins play a central role in regulating the disposition of endobiotics, dietary nutrients and environmental toxins. The inhibition of transporters by drugs has potential physiologic consequences. The full extent of the effect of drugs on the function of transporters is poorly understood because only a small subset of the hundreds of transporters expressed in humans - primarily those mediating the rate-determining step in the elimination of specific drugs - are assessed during clinical development. Areas covered: We provide a comprehensive overview of literature reports implicating the inhibition of transporters as the mechanism for off-target effects of drugs. Expert opinion: Transporter inhibition, the mechanism of action of many marketed drugs, appears to play an underappreciated role in a number of side effects including vitamin deficiency, edema, dyslipidemia, cholestasis and gout. Cell systems more broadly expressing transporter networks and methods like unbiased metabolomics should be incorporated into the screening paradigm to expand our understanding of the impact of drugs on the physiologic function of transporters and to allow for these effects to be taken into account in drug discovery and clinical practice.
Collapse
Affiliation(s)
- Eve-Irene Lepist
- a Departments of Drug Metabolism , Gilead Sciences, Inc ., Foster City , CA , USA
| | - Adrian S Ray
- b Clinical Research , Gilead Sciences, Inc ., Foster City , CA , USA
| |
Collapse
|
30
|
Tian J, Zhu J, Yi Y, Li C, Zhang Y, Zhao Y, Pan C, Xiang S, Li X, Li G, Newman JW, Feng X, Liu J, Han J, Wang L, Gao Y, La Frano MR, Liang A. Dose-related liver injury of Geniposide associated with the alteration in bile acid synthesis and transportation. Sci Rep 2017; 7:8938. [PMID: 28827769 PMCID: PMC5566417 DOI: 10.1038/s41598-017-09131-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 07/17/2017] [Indexed: 12/23/2022] Open
Abstract
Fructus Gardenia (FG), containing the major active constituent Geniposide, is widely used in China for medicinal purposes. Currently, clinical reports of FG toxicity have not been published, however, animal studies have shown FG or Geniposide can cause hepatotoxicity in rats. We investigated Geniposide-induced hepatic injury in male Sprague-Dawley rats after 3-day intragastric administration of 100 mg/kg or 300 mg/kg Geniposide. Changes in hepatic histomorphology, serum liver enzyme, serum and hepatic bile acid profiles, and hepatic bile acid synthesis and transportation gene expression were measured. The 300 mg/kg Geniposide caused liver injury evidenced by pathological changes and increases in serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and γ-glutamytransferase (γ-GT). While liver, but not sera, total bile acids (TBAs) were increased 75% by this dose, dominated by increases in taurine-conjugated bile acids (t-CBAs). The 300 mg/kg Geniposide also down-regulated expression of Farnesoid X receptor (FXR), small heterodimer partner (SHP) and bile salt export pump (BSEP). In conclusion, 300 mg/kg Geniposide can induce liver injury with associated changes in bile acid regulating genes, leading to an accumulation of taurine conjugates in the rat liver. Taurocholic acid (TCA), taurochenodeoxycholic acid (TCDCA) as well as tauro-α-muricholic acid (T-α-MCA) are potential markers for Geniposide-induced hepatic damage.
Collapse
Affiliation(s)
- Jingzhuo Tian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jingjing Zhu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yan Yi
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chunying Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yushi Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yong Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chen Pan
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shixie Xiang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaolong Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guiqin Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - John W Newman
- NIH West Coast Metabolomics Center, Davis, CA95616, USA
- United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA95616, USA
- Department of Nutrition, University of California-Davis, Davis, CA95616, USA
| | - Xiaoyi Feng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiayin Han
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lianmei Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yue Gao
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Michael R La Frano
- NIH West Coast Metabolomics Center, Davis, CA95616, USA
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, CA, USA
| | - Aihua Liang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
31
|
Horvatits T, Drolz A, Rutter K, Roedl K, Langouche L, Van den Berghe G, Fauler G, Meyer B, Hülsmann M, Heinz G, Trauner M, Fuhrmann V. Circulating bile acids predict outcome in critically ill patients. Ann Intensive Care 2017; 7:48. [PMID: 28466463 PMCID: PMC5413465 DOI: 10.1186/s13613-017-0272-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 04/20/2017] [Indexed: 02/07/2023] Open
Abstract
Background Jaundice and cholestatic hepatic dysfunction are frequent findings in critically ill patients associated with increased mortality. Cholestasis in critically ill patients is closely associated with stimulation of pro-inflammatory cytokines resulting in impaired bile secretion and subsequent accumulation of bile acids. Aim of this study was to evaluate the clinical role of circulating bile acids in critically ill patients. Methods Total and individual serum bile acids were assessed via high-performance liquid chromatography in 320 critically ill patients and 19 controls. Results Total serum bile acids were threefold higher in septic than cardiogenic shock patients and sixfold higher than in post-surgical patients or controls (p < 0.001). Elevated bile acid levels correlated with severity of illness, renal dysfunction and inflammation (p < 0.05). Total bile acids predicted 28-day mortality independently of sex, age, serum bilirubin and severity of illness (HR 1.041, 95% CI 1.013–1.071, p < 0.005). Best prediction of mortality of total bile acids was seen in patients suffering from septic shock. Conclusions Individual and total BAs are elevated by various degrees in different shock conditions. BAs represent an early predictor of short-term survival in a mixed cohort of ICU patients and may serve as marker for early risk stratification in critically ill patients. Future studies should elucidate whether modulation of BA metabolism and signalling influences the clinical course and outcome in critically ill patients. Electronic supplementary material The online version of this article (doi:10.1186/s13613-017-0272-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thomas Horvatits
- Division of Gastroenterology and Hepatology, Department Internal Medicine 3, Medical University of Vienna, Vienna, Austria.,Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Andreas Drolz
- Division of Gastroenterology and Hepatology, Department Internal Medicine 3, Medical University of Vienna, Vienna, Austria.,Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Karoline Rutter
- Division of Gastroenterology and Hepatology, Department Internal Medicine 3, Medical University of Vienna, Vienna, Austria.,Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Kevin Roedl
- Division of Gastroenterology and Hepatology, Department Internal Medicine 3, Medical University of Vienna, Vienna, Austria.,Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Lies Langouche
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Louvain, Belgium
| | - Greet Van den Berghe
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Louvain, Belgium
| | - Günter Fauler
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Brigitte Meyer
- 5th Medical Department, Kaiser Franz Josef Spital - SMZ Süd, Vienna, Austria
| | - Martin Hülsmann
- Division of Cardiology, Department Internal Medicine 2, Medical University of Vienna, Vienna, Austria
| | - Gottfried Heinz
- Division of Cardiology, Department Internal Medicine 2, Medical University of Vienna, Vienna, Austria
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department Internal Medicine 3, Medical University of Vienna, Vienna, Austria
| | - Valentin Fuhrmann
- Division of Gastroenterology and Hepatology, Department Internal Medicine 3, Medical University of Vienna, Vienna, Austria. .,Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| |
Collapse
|
32
|
Horvatits T, Drolz A, Roedl K, Rutter K, Ferlitsch A, Fauler G, Trauner M, Fuhrmann V. Serum bile acids as marker for acute decompensation and acute-on-chronic liver failure in patients with non-cholestatic cirrhosis. Liver Int 2017; 37:224-231. [PMID: 27416294 DOI: 10.1111/liv.13201] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 07/04/2016] [Indexed: 02/13/2023]
Abstract
BACKGROUND & AIMS Retention of bile acids (BAs) plays a central role in hepatic damage and disturbed BA signalling in liver disease. However, there is lack of data regarding the association of BAs with clinical complications, acute decompensation (AD) and acute-on-chronic liver failure (ACLF). Thus, we aimed to evaluate the impact of circulating serum BAs for complications in patients with cirrhosis. METHODS One hundred and forty-three patients with cirrhosis were included in this prospective cohort-type observational study. Total serum BAs and individual BA composition were assessed in all patients on admission via high-performance liquid chromatography. Clinical complications with respect to AD, ACLF and 1-year transplant-free survival were recorded. RESULTS Total BAs and individual serum BAs were significantly higher in patients with bacterial infection, AD and ACLF (P<.001) and correlated significantly with model of end-stage liver disease (MELD) and hepatic venous pressure gradient (P<.001). Total BAs predicted new onset of AD or ACLF during follow-up (OR 1.025, 95% CI: 1.012-1.038, P<.001). Best cut-off predicting new onset of AD/ACLF and survival during course of time was total BAs ≥36.9 μmol/L. CONCLUSIONS Serum total and individual BAs are associated with AD and ACLF in patients with cirrhosis. Assessment of total BAs could serve as additional marker for risk stratification in cirrhotic patients with respect to new onset of AD and ACLF.
Collapse
Affiliation(s)
- Thomas Horvatits
- Division of Gastroenterology & Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria.,Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas Drolz
- Division of Gastroenterology & Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria.,Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kevin Roedl
- Division of Gastroenterology & Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria.,Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Karoline Rutter
- Division of Gastroenterology & Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria.,Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Arnulf Ferlitsch
- Division of Gastroenterology & Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Günter Fauler
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Michael Trauner
- Division of Gastroenterology & Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Valentin Fuhrmann
- Division of Gastroenterology & Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria.,Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
33
|
Yun C, Yin T, Shatzer K, Burrin DG, Cui L, Tu Y, Hu M. Determination of 7α-OH cholesterol by LC-MS/MS: Application in assessing the activity of CYP7A1 in cholestatic minipigs. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1025:76-82. [PMID: 27218859 PMCID: PMC5358015 DOI: 10.1016/j.jchromb.2016.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 05/01/2016] [Accepted: 05/03/2016] [Indexed: 01/29/2023]
Abstract
An LC-MS/MS method was developed and validated to determine 7α-OH cholesterol in liver microsome. This method was convenient and fast with high specificity and sensitivity. Briefly, a gradient elution was performed on a Synergi polar-C18 column (50×4.6mm i.d., 3μm). The mobile phase (consisting of 0.1% HCOOH solution and acetonitrile) eluted in gradient at a flow rate of 1ml/min. MS detection was operated on APCI (+) mode; the MRM transitions for 7α-OH cholesterol and D7-cholesterol (I.S.) were 385.1≥159.1 and 376.4≥266.3, respectively. The linear response range of 7α-OH cholesterol was covered from 1.563 to 100.0ng/ml. All of the validation items meet the requirement of FDA guidance for bioanalytical method validation. This method was applied to enzymatic studies for determination of cholesterol 7alpha-hydroxylation activity catalyzed by CYP7A1 in the cholestatic minipigs liver microsomes.
Collapse
Affiliation(s)
- Changhong Yun
- Department of Pharmaceutics, University of Houston, 1441 Moursund St. Houston, TX 77030, United States
| | - Taijun Yin
- Department of Pharmaceutics, University of Houston, 1441 Moursund St. Houston, TX 77030, United States
| | - Katherine Shatzer
- Department of Pharmaceutics, University of Houston, 1441 Moursund St. Houston, TX 77030, United States
| | - Douglas G Burrin
- USDA Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates St. Houston, TX 77030, United States
| | - Liwei Cui
- USDA Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates St. Houston, TX 77030, United States
| | - Yifan Tu
- Department of Pharmaceutics, University of Houston, 1441 Moursund St. Houston, TX 77030, United States
| | - Ming Hu
- Department of Pharmaceutics, University of Houston, 1441 Moursund St. Houston, TX 77030, United States.
| |
Collapse
|
34
|
Yan H, Li W. Sodium taurocholate cotransporting polypeptide acts as a receptor for hepatitis B and D virus. Dig Dis 2015; 33:388-96. [PMID: 26045274 DOI: 10.1159/000371692] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Infection of hepatitis B virus (HBV) remains a major public health problem worldwide. Understanding the viral infection and developing antivirals against HBV have been hampered by the lack of convenient culture systems and animal models for the infection. Sodium taurocholate cotransporting polypeptide (NTCP), a key bile acid transporter expressed in liver, was recently identified as a critical receptor for viral entry of HBV and its satellite virus hepatitis D virus (HDV). This finding enabled a reliable cell culture system for the viruses. Detailed studies have shown that NTCP is the major determinant for the species specificity of HBV and HDV at entry level. NTCP is responsible for most sodium-dependent bile salt uptake in liver. The molecular determinant critical for HBV/HDV infection overlaps with that for bile acids transporting on NTCP. We evaluated bile acids as potential antivirals for HBV and HDV infection, and developed bile acid derivatives that effectively block taurocholate transporting as well as viral infections. The discovery that NTCP acts as a receptor for HBV has opens a new door for future studies towards the ultimate goal of curative treatment of HBV infection.
Collapse
Affiliation(s)
- Huan Yan
- National Institute of Biological Sciences, Beijing, China
| | | |
Collapse
|
35
|
Anwer MS. Role of protein kinase C isoforms in bile formation and cholestasis. Hepatology 2014; 60:1090-7. [PMID: 24700589 PMCID: PMC4141907 DOI: 10.1002/hep.27088] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 02/13/2014] [Indexed: 12/11/2022]
Abstract
Transhepatic solute transport provides the osmotic driving force for canalicular bile formation. Choleretic and cholestatic agents affect bile formation, in part, by altering plasma membrane localizations of transporters involved in bile formation. These short-term dynamic changes in transporter location are highly regulated posttranslational events requiring various cellular signaling pathways. Interestingly, both choleretic and cholestatic agents activate the same intracellular signaling kinases, such as phosphoinositide-3-kinase (PI3K), protein kinase C (PKC), and mitogen-activated protein kinase (MAPK). An emerging theme is that choleretic and cholestatic effects may be mediated by different isoforms of these kinases. This is most evident for PKC-mediated regulation of plasma membrane localization of Na+-taurocholate cotransporting polypeptide (NTCP) and multidrug resistance-associated protein 2 (MRP2) by conventional PKCα (cPKCα), novel PKCδ (nPKCδ), nPKCε, and atypical PKCζ (aPKCζ). aPKCζ may mediate choleretic effects by inserting NTCP into the plasma membrane, and nPKCε may mediate cholestatic effects by retrieving MRP2 from the plasma membrane. On the other hand, cPKCα and nPKCδ may be involved in choleretic, cholestatic, and anticholestatic effects by inserting, retrieving, and inhibiting retrieval of transporters, respectively. The effects of PKC isoforms may be mediated by phosphorylation of the transporters, actin binding proteins (radixin and myristoylated alanine-rich C kinase substrate), and Rab proteins. Human NTCP plays an important role in the entry of hepatitis B and D viruses into hepatocytes and consequent infection. Thus, PKCs, by regulating NTCP trafficking, may also play an important role in hepatic viral infections.
Collapse
Affiliation(s)
- M Sawkat Anwer
- Department of Biomedical Sciences, Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA
| |
Collapse
|
36
|
Abstract
Bile acids, synthesized from cholesterol, are known to produce beneficial as well as toxic effects in the liver. The beneficial effects include choleresis, immunomodulation, cell survival, while the toxic effects include cholestasis, apoptosis and cellular toxicity. It is believed that bile acids produce many of these effects by activating intracellular signaling pathways. However, it has been a challenge to relate intracellular signaling to specific and at times opposing effects of bile acids. It is becoming evident that bile acids produce different effects by activating different isoforms of phosphoinositide 3-kinase (PI3K), Protein kinase Cs (PKCs), and mitogen activated protein kinases (MAPK). Thus, the apoptotic effect of bile acids may be mediated via PI3K-110γ, while cytoprotection induce by cAMP-GEF pathway involves activation of PI3K-p110α/β isoforms. Atypical PKCζ may mediate beneficial effects and nPKCε may mediate toxic effects, while cPKCα and nPKCδ may be involved in both beneficial and toxic effects of bile acids. The opposing effects of nPKCδ activation may depend on nPKCδ phosphorylation site(s). Activation of ERK1/2 and JNK1/2 pathway appears to mediate beneficial and toxic effects, respectively, of bile acids. Activation of p38α MAPK and p38β MAPK may mediate choleretic and cholestatic effects, respectively, of bile acids. Future studies clarifying the isoform specific effects on bile formation should allow us to define potential therapeutic targets in the treatment of cholestatic disorders.
Collapse
Affiliation(s)
- Mohammed Sawkat Anwer
- Department of Biomedical Sciences, Cummings School of Veterinary Medicine at Tufts University, 200 Westboro Road, North Grafton, MA, USA
| |
Collapse
|
37
|
Abstract
Bile is a unique and vital aqueous secretion of the liver that is formed by the hepatocyte and modified down stream by absorptive and secretory properties of the bile duct epithelium. Approximately 5% of bile consists of organic and inorganic solutes of considerable complexity. The bile-secretory unit consists of a canalicular network which is formed by the apical membrane of adjacent hepatocytes and sealed by tight junctions. The bile canaliculi (∼1 μm in diameter) conduct the flow of bile countercurrent to the direction of portal blood flow and connect with the canal of Hering and bile ducts which progressively increase in diameter and complexity prior to the entry of bile into the gallbladder, common bile duct, and intestine. Canalicular bile secretion is determined by both bile salt-dependent and independent transport systems which are localized at the apical membrane of the hepatocyte and largely consist of a series of adenosine triphosphate-binding cassette transport proteins that function as export pumps for bile salts and other organic solutes. These transporters create osmotic gradients within the bile canalicular lumen that provide the driving force for movement of fluid into the lumen via aquaporins. Species vary with respect to the relative amounts of bile salt-dependent and independent canalicular flow and cholangiocyte secretion which is highly regulated by hormones, second messengers, and signal transduction pathways. Most determinants of bile secretion are now characterized at the molecular level in animal models and in man. Genetic mutations serve to illuminate many of their functions.
Collapse
Affiliation(s)
- James L Boyer
- Department of Medicine and Liver Center, Yale University School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
38
|
Stross C, Kluge S, Weissenberger K, Winands E, Häussinger D, Kubitz R. A dileucine motif is involved in plasma membrane expression and endocytosis of rat sodium taurocholate cotransporting polypeptide (Ntcp). Am J Physiol Gastrointest Liver Physiol 2013; 305:G722-30. [PMID: 24008362 DOI: 10.1152/ajpgi.00056.2013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The sodium taurocholate cotransporting polypeptide (Ntcp) is the major uptake transporter for bile salts into liver parenchymal cells, and PKC-mediated endocytosis was shown to regulate the number of Ntcp molecules at the plasma membrane. In this study, mechanisms of Ntcp internalization were analyzed by flow cytometry, immunofluorescence, and Western blot analyses in HepG2 cells. PKC activation induced endocytosis of Ntcp from the plasma membrane by ~30%. Endocytosis of Ntcp was clathrin dependent and was followed by lysosomal degradation. A dileucine motif located in the third intracellular loop of Ntcp was essential for endocytosis but also for processing and plasma membrane targeting, suggesting a dual function of this motif for intracellular trafficking of Ntcp. Mutation of two of five potential phosphorylation sites surrounding the dileucine motif (Thr225 and Ser226) inhibited PKC-mediated endocytosis. In conclusion, we could identify a motif, which is critical for Ntcp plasma membrane localization. Endocytic retrieval protects hepatocytes from elevated bile salt concentrations and is of special interest, because NTCP has been identified as a receptor for the hepatitis B and D virus.
Collapse
Affiliation(s)
- Claudia Stross
- Dept. of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Univ. Clinic of the Heinrich-Heine Univ. of Düsseldorf, Moorenstrasse 5, D-40225 Düsseldorf, Germany.
| | | | | | | | | | | |
Collapse
|
39
|
Anwer MS, Stieger B. Sodium-dependent bile salt transporters of the SLC10A transporter family: more than solute transporters. PFLUGERS ARCHIV : EUROPEAN JOURNAL OF PHYSIOLOGY 2013. [PMID: 24196564 DOI: 10.1007/s00424‐013‐1367‐0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The SLC10A transporter gene family consists of seven members and substrates transported by three members (SLC10A1, SLC10A2 and SLC10A6) are Na(+)-dependent. SLC10A1 (sodium taurocholate cotransporting polypeptide [NTCP]) and SLC10A2 (apical sodium-dependent bile salt transporter [ASBT]) transport bile salts and play an important role in maintaining enterohepatic circulation of bile salts. Solutes other than bile salts are also transported by NTCP. However, ASBT has not been shown to be a transporter for non-bile salt substrates. While the transport function of NTCP can potentially be used as liver function test, interpretation of such a test may be complicated by altered expression of NTCP in diseases and presence of drugs that may inhibit NTCP function. Transport of bile salts by NTCP and ASBT is inhibited by a number of drugs and it appears that ASBT is more permissive to drug inhibition than NTCP. The clinical significance of this inhibition in drug disposition and drug-drug interaction remains to be determined. Both NCTP and ASBT undergo post-translational regulations that involve phosphorylation/dephosphorylation, translocation to and retrieval from the plasma membrane and degradation by the ubiquitin-proteasome system. These posttranslational regulations are mediated via signaling pathways involving cAMP, calcium, nitric oxide, phosphoinositide-3-kinase (PI3K), protein kinase C (PKC) and protein phosphatases. There appears to be species difference in the substrate specificity and the regulation of plasma membrane localization of human and rodent NTCP. These differences should be taken into account when extrapolating rodent data for human clinical relevance and developing novel therapies. NTCP has recently been shown to play an important role in HBV and HDV infection by serving as a receptor for entry of these viruses into hepatocytes.
Collapse
Affiliation(s)
- M Sawkat Anwer
- Department of Biomedical Sciences, Cummings School of Veterinary Medicine, Tufts University, 200 Westboro Road, North Grafton, MA, 01536, USA,
| | | |
Collapse
|
40
|
Fu ZD, Klaassen CD. Increased bile acids in enterohepatic circulation by short-term calorie restriction in male mice. Toxicol Appl Pharmacol 2013; 273:680-90. [PMID: 24183703 DOI: 10.1016/j.taap.2013.10.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/16/2013] [Accepted: 10/20/2013] [Indexed: 12/15/2022]
Abstract
Previous studies showed glucose and insulin signaling can regulate bile acid (BA) metabolism during fasting or feeding. However, limited knowledge is available on the effect of calorie restriction (CR), a well-known anti-aging intervention, on BA homeostasis. To address this, the present study utilized a "dose-response" model of CR, where male C57BL/6 mice were fed 0, 15, 30, or 40% CR diets for one month, followed by BA profiling in various compartments of the enterohepatic circulation by UPLC-MS/MS technique. This study showed that 40% CR increased the BA pool size (162%) as well as total BAs in serum, gallbladder, and small intestinal contents. In addition, CR "dose-dependently" increased the concentrations of tauro-cholic acid (TCA) and many secondary BAs (produced by intestinal bacteria) in serum, such as tauro-deoxycholic acid (TDCA), DCA, lithocholic acid, ω-muricholic acid (ωMCA), and hyodeoxycholic acid. Notably, 40% CR increased TDCA by over 1000% (serum, liver, and gallbladder). Interestingly, 40% CR increased the proportion of 12α-hydroxylated BAs (CA and DCA), which correlated with improved glucose tolerance and lipid parameters. The CR-induced increase in BAs correlated with increased expression of BA-synthetic (Cyp7a1) and conjugating enzymes (BAL), and the ileal BA-binding protein (Ibabp). These results suggest that CR increases BAs in male mice possibly through orchestrated increases in BA synthesis and conjugation in liver as well as intracellular transport in ileum.
Collapse
Affiliation(s)
- Zidong Donna Fu
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | | |
Collapse
|
41
|
Sodium-dependent bile salt transporters of the SLC10A transporter family: more than solute transporters. Pflugers Arch 2013; 466:77-89. [PMID: 24196564 DOI: 10.1007/s00424-013-1367-0] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 09/16/2013] [Accepted: 09/20/2013] [Indexed: 12/19/2022]
Abstract
The SLC10A transporter gene family consists of seven members and substrates transported by three members (SLC10A1, SLC10A2 and SLC10A6) are Na(+)-dependent. SLC10A1 (sodium taurocholate cotransporting polypeptide [NTCP]) and SLC10A2 (apical sodium-dependent bile salt transporter [ASBT]) transport bile salts and play an important role in maintaining enterohepatic circulation of bile salts. Solutes other than bile salts are also transported by NTCP. However, ASBT has not been shown to be a transporter for non-bile salt substrates. While the transport function of NTCP can potentially be used as liver function test, interpretation of such a test may be complicated by altered expression of NTCP in diseases and presence of drugs that may inhibit NTCP function. Transport of bile salts by NTCP and ASBT is inhibited by a number of drugs and it appears that ASBT is more permissive to drug inhibition than NTCP. The clinical significance of this inhibition in drug disposition and drug-drug interaction remains to be determined. Both NCTP and ASBT undergo post-translational regulations that involve phosphorylation/dephosphorylation, translocation to and retrieval from the plasma membrane and degradation by the ubiquitin-proteasome system. These posttranslational regulations are mediated via signaling pathways involving cAMP, calcium, nitric oxide, phosphoinositide-3-kinase (PI3K), protein kinase C (PKC) and protein phosphatases. There appears to be species difference in the substrate specificity and the regulation of plasma membrane localization of human and rodent NTCP. These differences should be taken into account when extrapolating rodent data for human clinical relevance and developing novel therapies. NTCP has recently been shown to play an important role in HBV and HDV infection by serving as a receptor for entry of these viruses into hepatocytes.
Collapse
|
42
|
Parolini C, Manzini S, Busnelli M, Rigamonti E, Marchesi M, Diani E, Sirtori CR, Chiesa G. Effect of the combinations between pea proteins and soluble fibres on cholesterolaemia and cholesterol metabolism in rats. Br J Nutr 2013; 110:1394-401. [PMID: 23458494 DOI: 10.1017/s0007114513000639] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Many functional foods and dietary supplements have been reported to be beneficial for the management of dyslipidaemia, one of the major risk factors for CVD. Soluble fibres and legume proteins are known to be a safe and practical approach for cholesterol reduction. The present study aimed at investigating the hypocholesterolaemic effect of the combinations of these bioactive vegetable ingredients and their possible effects on the expression of genes regulating cholesterol homeostasis. A total of six groups of twelve rats each were fed, for 28 d, Nath's hypercholesterolaemic diets, differing in protein and fibre sources, being, respectively, casein and cellulose (control), pea proteins and cellulose (pea), casein and oat fibres (oat), casein and apple pectin (pectin), pea proteins and oat fibres (pea+oat) and pea proteins and apple pectin (pea+pectin). Administration of each vegetable-containing diet was associated with lower total cholesterol concentrations compared with the control. The combinations (pea+oat and pea+pectin) were more efficacious than fibres alone in modulating cholesterolaemia ( - 53 and - 54%, respectively, at 28 d; P< 0·005). In rats fed the diets containing oat fibres or apple pectin, alone or in combination with pea proteins, a lower hepatic cholesterol content (P< 0·005) and higher hepatic mRNA concentrations of CYP7A1 and NTCP were found when compared with the control rats (P< 0·05). In summary, the dietary combinations of pea proteins and oat fibres or apple pectin are extremely effective in lowering plasma cholesterol concentrations in rats and affect cellular cholesterol homeostasis by up-regulating genes involved in hepatic cholesterol turnover.
Collapse
Affiliation(s)
- Cinzia Parolini
- Department of Pharmacological Sciences, Università degli Studi di Milano, via Balzaretti 9, 20133 Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Ramasamy U, Anwer MS, Schonhoff CM. Cysteine 96 of Ntcp is responsible for NO-mediated inhibition of taurocholate uptake. Am J Physiol Gastrointest Liver Physiol 2013; 305:G513-9. [PMID: 23886862 PMCID: PMC3798720 DOI: 10.1152/ajpgi.00089.2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The Na(+) taurocholate (TC) cotransporting polypeptide Ntcp/NTCP mediates TC uptake across the sinusoidal membrane of hepatocytes. Previously, we demonstrated that nitric oxide (NO) inhibits TC uptake through S-nitrosylation of a cysteine residue. Our current aim was to determine which of the eight cysteine residues of Ntcp is responsible for NO-mediated S-nitrosylation and inhibition of TC uptake. Thus, we tested the effect of NO on TC uptake in HuH-7 cells transiently transfected with cysteine-to-alanine mutant Ntcp constructs. Of the eight mutants tested, only C44A Ntcp displayed decreased total and plasma membrane (PM) levels that were also reflected in decreased TC uptake. C266A Ntcp showed a decrease in TC uptake that was not explained by a decrease in total expression or PM localization, indicating that C266 is required for optimal uptake. We speculated that NO would target C266 since a previous report had shown the thiol reactive compound [2-(trimethylammonium) ethyl] methanethiosulfonate bromide (MTSET) inhibits TC uptake by wild-type NTCP but not by C266A NTCP. We confirmed that MTSET targets C266 of Ntcp, but, surprisingly, we found that C266 was not responsible for NO-mediated inhibition of TC uptake. Instead, we found that C96 was targeted by NO since C96A Ntcp was insensitive to NO-mediated inhibition of TC uptake. We also found that wild-type but not C96A Ntcp is S-nitrosylated by NO, suggesting that C96 is important in regulating Ntcp function in response to elevated levels of NO.
Collapse
Affiliation(s)
- Umadevi Ramasamy
- Dept. of Biomedical Sciences, Tufts Cummings School of Veterinary Medicine, 200 Westboro Rd., North Grafton, MA, 01536.
| | | | | |
Collapse
|
44
|
Mühlfeld S, Domanova O, Berlage T, Stross C, Helmer A, Keitel V, Häussinger D, Kubitz R. Short-term feedback regulation of bile salt uptake by bile salts in rodent liver. Hepatology 2012; 56:2387-97. [PMID: 22806967 DOI: 10.1002/hep.25955] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 06/18/2012] [Indexed: 12/17/2022]
Abstract
UNLABELLED The sodium taurocholate cotransporting polypeptide (Ntcp) is the major bile salt uptake transporter at the sinusoidal membrane of hepatocytes. Short-term feedback regulation of Ntcp by primary bile salts has not yet been investigated in vivo. Subcellular localization of Ntcp was analyzed in Ntcp-transfected HepG2-cells by flow cytometry and in immunofluorescence images from tissue sections by a new automated image analysis method. Net bile salt uptake was investigated in perfused rat liver by a pulse chase technique. In Flag-Ntcp-EGFP (enhanced green fluorescent protein) expressing HepG2-cells, taurochenodeoxycholate (TCDC), but not taurocholate (TC), induced endocytosis of Ntcp. TCDC, but not TC, caused significant internalization of Ntcp in perfused rat livers, as shown by an increase in intracellular Ntcp immunoreactivity, whereas Bsep distribution remained unchanged. These results correlate with functional studies. Rat livers were continuously perfused with 100 μmol/L of TC. 25 μmol/L of TCDC, taurodeoxycholate (TDC), tauroursodeoxycholate (TUDC), or TC were added for 30 minutes, washed out, followed by a pulse of (3) [H]-TC. TCDC, but not TDC, TUDC, or TC significantly increased the amount of (3) [H]-TC in the effluent, indicating a reduced sinusoidal net TC uptake. This effect was sensitive to chelerythrine (protein kinase C inhibitor) and cypermethrin (protein phosphatase 2B inhibitor). Phosphoinositide 3-kinase (PI3K) inhibitors had an additive effect, whereas Erk1/2 (extracellular signal activated kinase 1/2), p38MAPK, protein phosphatase 1/2A (PP1/2A), and reactive oxygen species (ROS) were not involved. CONCLUSION TCDC regulates bile salt transport at the sinusoidal membrane by protein kinase C- and protein phosphatase 2B-mediated retrieval of Ntcp from the plasma membrane. During increased portal bile salt load this mechanism may adjust bile salt uptake along the acinus and protect periportal hepatocytes from harmful bile salt concentrations.
Collapse
Affiliation(s)
- Stefanie Mühlfeld
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Park SW, Schonhoff CM, Webster CRL, Anwer MS. Protein kinase Cδ differentially regulates cAMP-dependent translocation of NTCP and MRP2 to the plasma membrane. Am J Physiol Gastrointest Liver Physiol 2012; 303:G657-65. [PMID: 22744337 PMCID: PMC3468552 DOI: 10.1152/ajpgi.00529.2011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cyclic AMP stimulates translocation of Na(+)/taurocholate cotransporting polypeptide (NTCP) from the cytosol to the sinusoidal membrane and multidrug resistance-associated protein 2 (MRP2) to the canalicular membrane. A recent study suggested that protein kinase Cδ (PKCδ) may mediate cAMP-induced translocation of Ntcp and Mrp2. In addition, cAMP has been shown to stimulate NTCP translocation in part via Rab4. The aim of this study was to determine whether cAMP-induced translocation of NTCP and MRP2 require kinase activity of PKCδ and to test the hypothesis that cAMP-induced activation of Rab4 is mediated via PKCδ. Studies were conducted in HuH-NTCP cells (HuH-7 cells stably transfected with NTCP). Transfection of cells with wild-type PKCδ increased plasma membrane PKCδ and NTCP and increased Rab4 activity. Paradoxically, overexpression of kinase-dead dominant-negative PKCδ also increased plasma membrane PKCδ and NTCP as well as Rab4 activity. Similar results were obtained in PKCδ knockdown experiments, despite a decrease in total PKCδ. These results raised the possibility that plasma membrane localization rather than kinase activity of PKCδ is necessary for NTCP translocation and Rab4 activity. This hypothesis was supported by results showing that rottlerin, which has previously been shown to inhibit cAMP-induced membrane translocation of PKCδ and NTCP, inhibited cAMP-induced Rab4 activity. In addition, LY294002 (a phosphoinositide-3-kinase inhibitor), which has been shown to inhibit cAMP-induced NTCP translocation, also inhibited cAMP-induced PKCδ translocation. In contrast to the results with NTCP, cAMP-induced MRP2 translocation was inhibited in cells transfected with DN-PKCδ and small interfering RNA PKCδ. Taken together, these results suggest that the plasma membrane localization rather than kinase activity of PKCδ plays an important role in cAMP-induced NTCP translocation and Rab4 activity, whereas the kinase activity of PKCδ is necessary for cAMP-induced MRP2 translocation.
Collapse
Affiliation(s)
| | | | - Cynthia R. L. Webster
- 2Clinical Sciences, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts
| | | |
Collapse
|
46
|
Gender-divergent profile of bile acid homeostasis during aging of mice. PLoS One 2012; 7:e32551. [PMID: 22403674 PMCID: PMC3293819 DOI: 10.1371/journal.pone.0032551] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 02/01/2012] [Indexed: 12/25/2022] Open
Abstract
Aging is a physiological process with a progressive decline of adaptation and functional capacity of the body. Bile acids (BAs) have been recognized as signaling molecules regulating the homeostasis of glucose, lipid, and energy. The current study characterizes the age-related changes of individual BA concentrations by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) in serum and liver of male and female C57BL/6 mice from 3 to 27 months of age. Total BA concentrations in serum increased 340% from 3 to 27 months in female mice, whereas they remained relatively constant with age in male mice. During aging, male and female mice shared the following changes: (1) BA concentrations in liver remained relatively constant; (2) the proportions of beta-muricholic acid (βMCA) increased and deoxycholic acid (DCA) decreased between 3 and 27 months in serum and liver; and (3) total BAs in serum and liver became more hydrophilic between 3 and 27 months. In female mice, (1) the mRNAs of hepatic BA uptake transporters, the Na+/taurocholate cotransporting polypeptide (Ntcp) and the organic anion transporting polypeptide 1b2 (Oatp1b2), decreased after 12 months, and similar trends were observed for their proteins; (2) the mRNA of the rate-limiting enzyme for BA synthesis, cholesterol 7α-hydroxylase (Cyp7a1), increased from 3 to 9 months and remained high thereafter. However, in male mice, Ntcp, Oatp1b2, and Cyp7a1 mRNAs remained relatively constant with age. In summary, the current study shows gender-divergent profiles of BA concentrations and composition in serum and liver of mice during aging, which is likely due to the gender-divergent expression of BA transporters Ntcp and Oatp1b2 as well as the synthetic enzyme Cyp7a1.
Collapse
|
47
|
Pai R, French D, Ma N, Hotzel K, Plise E, Salphati L, Setchell KDR, Ware J, Lauriault V, Schutt L, Hartley D, Dambach D. Antibody-mediated inhibition of fibroblast growth factor 19 results in increased bile acids synthesis and ileal malabsorption of bile acids in cynomolgus monkeys. Toxicol Sci 2012; 126:446-56. [PMID: 22268002 DOI: 10.1093/toxsci/kfs011] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Fibroblast growth factor 19 (FGF19) represses cholesterol 7α-hydroxylase (Cyp7α1) and inhibits bile acid synthesis in vitro and in vivo. Previous studies have shown that anti-FGF19 antibody treatment reduces growth of colon tumor xenografts and prevents hepatocellular carcinomas in FGF19 transgenic mice and thus may be a useful cancer target. In a repeat dose safety study in cynomolgus monkeys, anti-FGF19 treatment (3-100 mg/kg) demonstrated dose-related liver toxicity accompanied by severe diarrhea and low food consumption. The mechanism of anti-FGF19 toxicity was investigated using in vitro and in vivo approaches. Our results show that anti-FGF19 antibody had no direct cytotoxic effect on monkey hepatocytes. Anti-FGF19 increased Cyp7α1, as expected, but also increased bile acid efflux transporter gene (bile salt export pump, multidrug resistant protein 2 [MRP2], and MRP3) expression and reduced sodium taurocholate cotransporting polypeptide and organic anion transporter 2 expression in liver tissues from treated monkeys and in primary hepatocytes. In addition, anti-FGF19 treatment increased solute transporter gene (ileal bile acid-binding protein, organic solute transporter α [OST-α], and OST-β) expression in ileal tissues from treated monkeys but not in Caco-2 cells. However, deoxycholic acid (a secondary bile acid) increased expression of FGF19 and these solute transporter genes in Caco-2 cells. Gas chromatography-mass spectrometry analysis of monkey feces showed an increase in total bile acids and cholic acid derivatives. These findings suggest that high doses of anti-FGF19 increase Cyp7α1 expression and bile acid synthesis and alter the expression of bile transporters in the liver resulting in enhanced bile acid efflux and reduced uptake. Increased bile acids alter expression of solute transporters in the ileum causing diarrhea and the enhanced enterohepatic recirculation of bile acids leading to liver toxicity.
Collapse
Affiliation(s)
- Rama Pai
- Department of Safety Assessment, Genentech Incorporated, South San Francisco, California 94080, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Murray JW, Thosani AJ, Wang P, Wolkoff AW. Heterogeneous accumulation of fluorescent bile acids in primary rat hepatocytes does not correlate with their homogenous expression of ntcp. Am J Physiol Gastrointest Liver Physiol 2011; 301:G60-8. [PMID: 21474652 PMCID: PMC3129936 DOI: 10.1152/ajpgi.00035.2011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Sodium taurocholate-cotransporting polypeptide (ntcp) is considered to be a major determinant of bile acid uptake into hepatocytes. However, the regulation of ntcp and the degree that it participates in the accumulation of specific substrates are not well understood. We utilized fluorescent bile acid derivatives and direct quantitation of fluorescent microscopy images to examine the regulation of ntcp and its role in the cell-to-cell variability of fluorescent bile acid accumulation. Primary-cultured rat hepatocytes rapidly accumulated the fluorescent bile acids, chenodeoxycholylglycylamidofluorescein (CDCGamF), 7-β- nitrobenzoxadiazole 3-α hydroxy 5-β cholan-24-oic acid (NBD-CA), and cholyl-glycylamido-fluorescein (CGamF). However, in stably transfected HeLa cells, ntcp preferred CDCGamF, whereas the organic anion transporter, organic anion transporting polypeptide 1 (oatp1a1), preferred NBD-CA, and neither ntcp nor oatp1a1 showed strong accumulation of CGamF by these methods. Ntcp-mediated transport of CDCGamF was inhibited by taurocholate, cyclosporin, actin depolymerization, and an inhibitor of atypical PKC-ζ. The latter two agents altered the cellular distribution of ntcp as visualized in ntcp-green fluorescent protein-transfected cells. Although fluorescent bile acid accumulation was reproducible by the imaging assays, individual cells showed variable accumulation that was not attributable to changes in membrane permeability or cell viability. In HeLa cells, this was accounted for by variable levels of ntcp, whereas, in hepatocytes, ntcp expression was uniform, and low accumulation was seen in a large portion of cells despite the presence of ntcp. These studies indicate that single-cell imaging can provide insight into previously unrecognized details of anion transport in the complex environment of polarized hepatocytes.
Collapse
Affiliation(s)
- John W. Murray
- 1Department of Anatomy and Structural Biology, ,2Marion Bessin Liver Research Center and Division of Gastroenterology and Liver Diseases, Albert Einstein College of Medicine, Bronx, New York
| | - Amar J. Thosani
- 2Marion Bessin Liver Research Center and Division of Gastroenterology and Liver Diseases, Albert Einstein College of Medicine, Bronx, New York
| | - Pijun Wang
- 1Department of Anatomy and Structural Biology, ,2Marion Bessin Liver Research Center and Division of Gastroenterology and Liver Diseases, Albert Einstein College of Medicine, Bronx, New York
| | - Allan W. Wolkoff
- 1Department of Anatomy and Structural Biology, ,2Marion Bessin Liver Research Center and Division of Gastroenterology and Liver Diseases, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
49
|
Rogue A, Lambert C, Jossé R, Antherieu S, Spire C, Claude N, Guillouzo A. Comparative gene expression profiles induced by PPARγ and PPARα/γ agonists in human hepatocytes. PLoS One 2011; 6:e18816. [PMID: 21533120 PMCID: PMC3078935 DOI: 10.1371/journal.pone.0018816] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 03/10/2011] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Several glitazones (PPARγ agonists) and glitazars (dual PPARα/γ agonists) have been developed to treat hyperglycemia and, simultaneously, hyperglycemia and dyslipidemia, respectively. However, most have caused idiosyncratic hepatic or extrahepatic toxicities through mechanisms that remain largely unknown. Since the liver plays a key role in lipid metabolism, we analyzed changes in gene expression profiles induced by these two types of PPAR agonists in human hepatocytes. METHODOLOGY/PRINCIPAL FINDINGS Primary human hepatocytes and the well-differentiated human hepatoma HepaRG cells were exposed to different concentrations of two PPARγ (troglitazone and rosiglitazone) and two PPARα/γ (muraglitazar and tesaglitazar) agonists for 24 h and their transcriptomes were analyzed using human pangenomic Agilent microarrays. Principal Component Analysis, hierarchical clustering and Ingenuity Pathway Analysis® revealed large inter-individual variability in the response of the human hepatocyte populations to the different compounds. Many genes involved in lipid, carbohydrate, xenobiotic and cholesterol metabolism, as well as inflammation and immunity, were regulated by both PPARγ and PPARα/γ agonists in at least a number of human hepatocyte populations and/or HepaRG cells. Only a few genes were selectively deregulated by glitazars when compared to glitazones, indicating that PPARγ and PPARα/γ agonists share most of their target genes. Moreover, some target genes thought to be regulated only in mouse or to be expressed in Kupffer cells were also found to be responsive in human hepatocytes and HepaRG cells. CONCLUSIONS/SIGNIFICANCE This first comprehensive analysis of gene regulation by PPARγ and PPARα/γ agonists favor the conclusion that glitazones and glitazars share most of their target genes and induce large differential changes in gene profiles in human hepatocytes depending on hepatocyte donor, the compound class and/or individual compound, thereby supporting the occurrence of idiosyncratic toxicity in some patients.
Collapse
Affiliation(s)
- Alexandra Rogue
- UMR INSERM U991, Faculté des Sciences Pharmaceutiques et Biologiques, Rennes, France
- Université de Rennes 1, Rennes, France
- Biologie Servier, Gidy, France
| | - Carine Lambert
- UMR INSERM U991, Faculté des Sciences Pharmaceutiques et Biologiques, Rennes, France
- Université de Rennes 1, Rennes, France
| | - Rozenn Jossé
- UMR INSERM U991, Faculté des Sciences Pharmaceutiques et Biologiques, Rennes, France
- Université de Rennes 1, Rennes, France
| | - Sebastien Antherieu
- UMR INSERM U991, Faculté des Sciences Pharmaceutiques et Biologiques, Rennes, France
- Université de Rennes 1, Rennes, France
| | | | - Nancy Claude
- Institut de Recherches Servier, Courbevoie, France
| | - André Guillouzo
- UMR INSERM U991, Faculté des Sciences Pharmaceutiques et Biologiques, Rennes, France
- Université de Rennes 1, Rennes, France
| |
Collapse
|
50
|
Stieger B, Geier A. Genetic variations of bile salt transporters as predisposing factors for drug-induced cholestasis, intrahepatic cholestasis of pregnancy and therapeutic response of viral hepatitis. Expert Opin Drug Metab Toxicol 2011; 7:411-25. [PMID: 21320040 DOI: 10.1517/17425255.2011.557067] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Drug-induced cholestasis, intrahepatic cholestasis of pregnancy and viral hepatitis are acquired forms of liver disease. Cholestasis is a pathophysiologic state with impaired bile formation and subsequent accumulation of bile salts in hepatocytes. The bile salt export pump (BSEP) (ABCB11) is the key export system for bile salts from hepatocytes. AREAS COVERED This article provides an introduction into the physiology of bile formation followed by a summary of the current knowledge on the key bile salt transporters, namely, the sodium-taurocholate co-transporting polypeptide NTCP, the organic anion transporting polypeptides (OATPs), BSEP and the multi-drug resistance protein 3. The pathophysiologic consequences of altered functions of these transporters, with an emphasis on molecular and genetic aspects, are then discussed. EXPERT OPINION Knowledge of the role of hepatocellullar transporters, especially BSEP, in acquired cholestasis is continuously increasing. A common variant of BSEP (p.V444A) is now a well-established susceptibility factor for acquired cholestasis and recent evidence suggests that the same variant also influences the therapeutic response and disease progression of viral hepatitis C. Studies in large independent cohorts are now needed to confirm the relevance of p.V444A. Genome-wide association studies should lead to the identification of additional genetic factors underlying cholestatic liver disease.
Collapse
Affiliation(s)
- Bruno Stieger
- University Hospital Zurich, Division of Clinical Pharmacology and Toxicology, 8091 Zurich, Switzerland.
| | | |
Collapse
|