1
|
Lian Q, Zhao H, Wang B, Ling P, Li J, Dai P, Ge J, Su X, Wang Z, Qiao S. Enhancing radiosensitivity in osteosarcoma via CDKN2C overexpression: A mechanism involving G1 phase arrest mediated by inhibition of CDK4 expression and Thr172 phosphorylation. Biochem Biophys Res Commun 2024; 735:150840. [PMID: 39426133 DOI: 10.1016/j.bbrc.2024.150840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/04/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND The limited radiosensitivity of osteosarcoma poses a challenge in applying radiotherapy, necessitating the search for effective radiosensitizing targets. METHODS The lentiviral vectors were employed to establish CDKN2C-overexpressing (CDKN2C-OE) and CDKN2C-negative control (CDKN2C-NC) HOS and U2OS osteosarcoma cells. Cells were treated with or without irradiation (IR) to assess radiosensitization via viability, proliferation, apoptosis, and cell cycle analysis. A mouse model with subcutaneous tumors from CDKN2C-OE and CDKN2C-NC HOS cells evaluated tumor growth post-IR. Immunohistochemical staining and Western blot analysis were conducted to confirm model establishment and explore mechanisms. RESULTS CDKN2C-OE combined with IR inhibited cell viability and proliferation, promoting apoptosis in vitro and inhibiting tumor growth in vivo. CDKN2C-OE inhibited G1 phase progression post-IR by suppressing Cyclin-dependent kinase 4 (CDK4) expression and Thr172 phosphorylation, reducing retinoblastoma protein (RB) phosphorylation at Ser807/811. CDKN2C-OE did not primarily impact the cell cycle by regulating the expression of CDK6 and Cyclin D1. Furthermore, when CDKN2C-OE was combined with IR, the expression of BAX, Caspase-3, and its active cleavage product, cleaved Caspase-3, was upregulated. CONCLUSIONS Our research results indicate that overexpression of CDKN2C enhances radiosensitivity in osteosarcoma through the induction of G1 phase arrest and subsequent apoptosis. G1 phase arrest is mediated by the suppression of CDK4 expression and Thr172 phosphorylation, which consequently affects the expression of phosphorylated RB at the Ser807/811 sites.
Collapse
Affiliation(s)
- Qiujian Lian
- Department of Orthopedics, The Third Affiliated Hospital (Eastern Hepatobiliary Surgery Hospital), Naval Medical University, Shanghai 201805, China; Department of Orthopedics, Fuzhou Second General Hospital, Fuzhou Fujian 350007, China
| | - Haonan Zhao
- Department of Orthopedics, The Third Affiliated Hospital (Eastern Hepatobiliary Surgery Hospital), Naval Medical University, Shanghai 201805, China
| | - Bingxuan Wang
- Department of Orthopedics, The Third Affiliated Hospital (Eastern Hepatobiliary Surgery Hospital), Naval Medical University, Shanghai 201805, China
| | - Ping Ling
- Department of General Surgery, The 902 Hospital of the PLA Joint Logistic Support Force, Bengbu Anhui 233000, China
| | - Jingyan Li
- Department of Geriatric Medicine, Fujian Provincial Hospital, Fuzhou Fujian 350001, China
| | - Peijun Dai
- Department of Orthopedics, The Third Affiliated Hospital (Eastern Hepatobiliary Surgery Hospital), Naval Medical University, Shanghai 201805, China
| | - Junyong Ge
- Department of Orthopedics, The Third Affiliated Hospital (Eastern Hepatobiliary Surgery Hospital), Naval Medical University, Shanghai 201805, China
| | - Xu Su
- Department of Orthopedics, The Third Affiliated Hospital (Eastern Hepatobiliary Surgery Hospital), Naval Medical University, Shanghai 201805, China
| | - Zhiwei Wang
- Department of Orthopedics, The Third Affiliated Hospital (Eastern Hepatobiliary Surgery Hospital), Naval Medical University, Shanghai 201805, China.
| | - Suchi Qiao
- Department of Orthopedics, The Third Affiliated Hospital (Eastern Hepatobiliary Surgery Hospital), Naval Medical University, Shanghai 201805, China.
| |
Collapse
|
2
|
Kot M, Simiczyjew A, Wądzyńska J, Ziętek M, Matkowski R, Nowak D. Characterization of two melanoma cell lines resistant to BRAF/MEK inhibitors (vemurafenib and cobimetinib). Cell Commun Signal 2024; 22:410. [PMID: 39175042 PMCID: PMC11342534 DOI: 10.1186/s12964-024-01788-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/12/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND BRAF (v-raf murine sarcoma viral oncogene homolog B1)/MEK (mitogen-activated protein kinase kinase) inhibitors are used for melanoma treatment. Unfortunately, patients treated with this combined therapy develop resistance to treatment quite quickly, but the mechanisms underlying this phenomenon are not yet fully understood. Here, we report and characterize two melanoma cell lines (WM9 and Hs294T) resistant to BRAF (vemurafenib) and MEK (cobimetinib) inhibitors. METHODS Cell viability was assessed via the XTT test. The level of selected proteins as well as activation of signaling pathways were evaluated using Western blotting. The expression of the chosen genes was assessed by RT-PCR. The distribution of cell cycle phases was analyzed by flow cytometry, and confocal microscopy was used to take photos of spheroids. The composition of cytokines secreted by cells was determined using a human cytokine array. RESULTS The resistant cells had increased survival and activation of ERK kinase in the presence of BRAF/MEK inhibitors. The IC50 values for these cells were over 1000 times higher than for controls. Resistant cells also exhibited elevated activation of AKT, p38, and JNK signaling pathways with increased expression of EGFR, ErbB2, MET, and PDGFRβ receptors as well as reduced expression of ErbB3 receptor. Furthermore, these cells demonstrated increased expression of genes encoding proteins involved in drug transport and metabolism. Resistant cells also exhibited features of epithelial-mesenchymal transition and cancer stem cells as well as reduced proliferation rate and elevated cytokine secretion. CONCLUSIONS In summary, this work describes BRAF/MEK-inhibitor-resistant melanoma cells, allowing for better understanding the underlying mechanisms of resistance. The results may thus contribute to the development of new, more effective therapeutic strategies.
Collapse
Affiliation(s)
- Magdalena Kot
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Aleksandra Simiczyjew
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland.
| | - Justyna Wądzyńska
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Marcin Ziętek
- Department of Oncology, Division of Surgical Oncology, Wroclaw Medical University, Plac Hirszfelda 12, Wroclaw, 53-413, Poland
- Lower Silesian Oncology, Pulmonology, and Hematology Center, Plac Hirszfelda 12, Wroclaw, 53-413, Poland
| | - Rafał Matkowski
- Department of Oncology, Division of Surgical Oncology, Wroclaw Medical University, Plac Hirszfelda 12, Wroclaw, 53-413, Poland
- Lower Silesian Oncology, Pulmonology, and Hematology Center, Plac Hirszfelda 12, Wroclaw, 53-413, Poland
| | - Dorota Nowak
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| |
Collapse
|
3
|
Csergeová L, Krbušek D, Janoštiak R. CIP/KIP and INK4 families as hostages of oncogenic signaling. Cell Div 2024; 19:11. [PMID: 38561743 PMCID: PMC10985988 DOI: 10.1186/s13008-024-00115-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/25/2024] [Indexed: 04/04/2024] Open
Abstract
CIP/KIP and INK4 families of Cyclin-dependent kinase inhibitors (CKIs) are well-established cell cycle regulatory proteins whose canonical function is binding to Cyclin-CDK complexes and altering their function. Initial experiments showed that these proteins negatively regulate cell cycle progression and thus are tumor suppressors in the context of molecular oncology. However, expanded research into the functions of these proteins showed that most of them have non-canonical functions, both cell cycle-dependent and independent, and can even act as tumor enhancers depending on their posttranslational modifications, subcellular localization, and cell state context. This review aims to provide an overview of canonical as well as non-canonical functions of CIP/KIP and INK4 families of CKIs, discuss the potential avenues to promote their tumor suppressor functions instead of tumor enhancing ones, and how they could be utilized to design improved treatment regimens for cancer patients.
Collapse
Affiliation(s)
- Lucia Csergeová
- BIOCEV-First Faculty of Medicine, Charles University, Prague, Czechia
| | - David Krbušek
- BIOCEV-First Faculty of Medicine, Charles University, Prague, Czechia
| | | |
Collapse
|
4
|
Schirripa A, Sexl V, Kollmann K. Cyclin-dependent kinase inhibitors in malignant hematopoiesis. Front Oncol 2022; 12:916682. [PMID: 36033505 PMCID: PMC9403899 DOI: 10.3389/fonc.2022.916682] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
The cell-cycle is a tightly orchestrated process where sequential steps guarantee cellular growth linked to a correct DNA replication. The entire cell division is controlled by cyclin-dependent kinases (CDKs). CDK activation is balanced by the activating cyclins and CDK inhibitors whose correct expression, accumulation and degradation schedule the time-flow through the cell cycle phases. Dysregulation of the cell cycle regulatory proteins causes the loss of a controlled cell division and is inevitably linked to neoplastic transformation. Due to their function as cell-cycle brakes, CDK inhibitors are considered as tumor suppressors. The CDK inhibitors p16INK4a and p15INK4b are among the most frequently altered genes in cancer, including hematopoietic malignancies. Aberrant cell cycle regulation in hematopoietic stem cells (HSCs) bears severe consequences on hematopoiesis and provokes hematological disorders with a broad array of symptoms. In this review, we focus on the importance and prevalence of deregulated CDK inhibitors in hematological malignancies.
Collapse
|
5
|
Zou J, Qin W. Comprehensive analysis of the cancer driver genes constructs a seven-gene signature for prediction of survival and tumor immunity in hepatocellular carcinoma. Front Genet 2022; 13:937948. [PMID: 36017503 PMCID: PMC9395598 DOI: 10.3389/fgene.2022.937948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/05/2022] [Indexed: 12/02/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly malignant and heterogeneous tumor with poor prognosis. Cancer driver genes (CDGs) play an important role in the carcinogenesis and progression of HCC. In this study, we comprehensively investigated the expression, mutation, and prognostic significance of 568 CDGs in HCC. A prognostic risk model was constructed based on seven CDGs (CDKN2C, HRAS, IRAK1, LOX, MYCN, NRAS, and PABPC1) and verified to be an independent prognostic factor in both TCGA and ICGC cohorts. The low-score group, which showed better prognosis, had a high proportion of CD8+ T cells and elevated expression of interferon-related signaling pathways. Additionally, we constructed a nomogram to extend the clinical applicability of the prognostic model, which exhibits excellent predictive accuracy for survival. Our study showed the important role of CDGs in HCC and provides a novel prognostic indicator for HCC.
Collapse
Affiliation(s)
- Jun Zou
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wan Qin
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Wan Qin,
| |
Collapse
|
6
|
INK4 cyclin-dependent kinase inhibitors as potential prognostic biomarkers and therapeutic targets in hepatocellular carcinoma. Biosci Rep 2022; 42:231524. [PMID: 35771229 PMCID: PMC9284345 DOI: 10.1042/bsr20221082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
The INK4 family is an important family of cyclin-dependent kinase inhibitors (CDKIs) and consists of CDKN2A, CDKN2B, CDKN2, and CDKN2D. Abnormal expression of CDKN2A has been reported in hepatocellular carcinoma (HCC) and is associated with the prognosis of patients and infiltration of immune cells. However, there is a lack of systematic research on the roles of the other INK4 family members in the diagnosis, prognosis, and immune regulation of HCC. Using online public databases and clinical samples, we comprehensively analyzed the INK4 family in HCC. All four INK4 proteins were overexpressed in HCC and correlated with advanced cancer stage and poor prognosis. INK4 expression accurately distinguished tumor from normal tissue, particularly CDKN2A and CDKN2C. The INK4 family participated in cell-cycle regulation and the DNA damage repair pathway, which inhibited genotoxic-induced apoptosis in tumorigenesis. INK4 proteins were positively correlated with the infiltration of immune cells (B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells) and immune checkpoints (CTLA-4, PD1, and PD-L1). CDKN2D had the highest correlation (correlation coefficient >0.3) with all the above-mentioned infiltrating immune cells and immune checkpoints, indicating that it may be useful as an immunotherapy target. The INK4 family was valuable for diagnosis and predicting the prognosis of HCC and participated in the occurrence, progression, and immune regulation of HCC, demonstrating its potential as a diagnostic and prognostic biomarker and therapeutic target in HCC.
Collapse
|
7
|
Li GS, Chen G, Liu J, Tang D, Zheng JH, Luo J, Jin MH, Lu HS, Bao CX, Tian J, Deng WS, Fu JW, Feng Y, Zeng NY, Zhou HF, Kong JL. Clinical significance of cyclin-dependent kinase inhibitor 2C expression in cancers: from small cell lung carcinoma to pan-cancers. BMC Pulm Med 2022; 22:246. [PMID: 35751045 PMCID: PMC9233395 DOI: 10.1186/s12890-022-02036-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
Background Cyclin-dependent kinase inhibitor 2C (CDKN2C) was identified to participate in the occurrence and development of multiple cancers; however, its roles in small cell lung carcinoma (SCLC) remain unclear. Methods Differential expression analysis of CDKN2C between SCLC and non-SCLC were performed based on 937 samples from multiple centers. The prognosis effects of CDKN2C in patients with SCLC were detected using both Kaplan–Meier curves and log-rank tests. Using receiver-operating characteristic curves, whether CDKN2C expression made it feasible to distinguish SCLC was determined. The potential mechanisms of CDKN2C in SCLC were investigated by gene ontology terms and signaling pathways (Kyoto Encyclopedia of Genes and Genomes). Based on 10,080 samples, a pan-cancer analysis was also performed to determine the roles of CDKN2C in multiple cancers. Results For the first time, upregulated CDKN2C expression was detected in SCLC samples at both the mRNA and protein levels (p of Wilcoxon rank-sum test < 0.05; standardized mean difference = 2.86 [95% CI 2.20–3.52]). Transcription factor FOXA1 expression may positively regulate CDKN2C expression levels in SCLC. High CDKN2C expression levels were related to the poor prognosis of patients with SCLC (hazard ratio > 1, p < 0.05) and showed pronounced effects for distinguishing SCLC from non-SCLC (sensitivity, specificity, and area under the curve ≥ 0.95). CDKN2C expression may play a role in the development of SCLC by affecting the cell cycle. Furthermore, the first pan-cancer analysis revealed the differential expression of CDKN2C in 16 cancers (breast invasive carcinoma, etc.) and its independent prognostic significance in nine cancers (e.g., adrenocortical carcinoma). CDKN2C expression was related to the immune microenvironment, suggesting its potential usefulness as a prognostic marker in immunotherapy. Conclusions This study identified upregulated CDKN2C expression and its clinical significance in SCLC and other multiple cancers, suggesting its potential usefulness as a biomarker in treating and differentiating cancers. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-022-02036-5.
Collapse
Affiliation(s)
- Guo-Sheng Li
- Ward of Pulmonary and Critical Care Medicine, Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Jun Liu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Deng Tang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Jin-Hua Zheng
- Department of Pathology, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Jing Luo
- Ward of Pulmonary and Critical Care Medicine, Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Mei-Hua Jin
- Department of Pathology, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Hua-Song Lu
- Ward of Pulmonary and Critical Care Medicine, Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Chong-Xi Bao
- Ward of Pulmonary and Critical Care Medicine, Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Jia Tian
- Department of Pathology, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Wu-Sheng Deng
- Ward of Pulmonary and Critical Care Medicine, Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Jing-Wei Fu
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Yue Feng
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Neng-Yong Zeng
- Department of Respiratory and Critical Care Medicine, The Second People's Hospital of Qinzhou, Qinzhou, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Hua-Fu Zhou
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Jin-Liang Kong
- Ward of Pulmonary and Critical Care Medicine, Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.
| |
Collapse
|
8
|
Cai T, Qin Q, Song R, Zhao J, Wang G, Zhang J. Identifying and Validating Differentially Methylated Regions in Newly Diagnosed Patients with Graves' Disease. DNA Cell Biol 2021; 40:482-490. [PMID: 33617351 DOI: 10.1089/dna.2020.6215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
This research used combined bioinformatic methods to identify differentially methylated regions (DMRs) in newly diagnosed patients with Graves' disease (GD). Peripheral blood from six GD patients and controls was collected and methyl-DNA immunoprecipitation (MeDIP), and NimbleGen Human DNA Methylation 3 × 720 K promoter plus CpG island microarrays were further analyzed. DMRs were categorized into low-methylated genes and high-methylated genes, which were mapped into a protein-protein interaction (PPI) network constructed by a dataset. Then, six candidate genes were validated in an expanded population with 32 GD patients and 30 controls using bisulfite amplicon sequencing. Top 10 hub genes revealed by PPI analysis were CRHR1, CAMK2A, SERPINA1, RANBP9, ICAM1, ADRB2, KRTAP13-1, PTPRA, S100A2, and KPRP. Five CpG sites of CDKN2C (51436061), SERPINA1 (94856657), B3GNT2 (62422532 and 62422689), and IRS4 (107979477) were validated, having significantly different methylation levels between GD patients and controls. Based on gender stratification, nine significant CpG sites of CDKN2C (51436061), SERPINA1 (94855831), and B3GNT2 (62422301, 62422327, 62422356, 62422365, 62422374, 62422532, and 62422689) were detected between female GD patients and controls. The methylation level of 62422532 of B3GNT2 was significantly associated with levels of serum TGAb and TRAb. In addition, the methylation level of 62422689 of B3GNT2 showed significant correlation with the age of GD patients. In the analysis of prediction of transcription factor binding at specific CpG sites in B3GNT2 promoter region, paired box protein 5 (Pax-5) and CCAAT/enhancer-binding protein (C/EBP β) might be under the influence of methylation at CpG sites 62422365 and 62422532, respectively. CDKN2C, SERPINA1, IRS4, and especially B3GNT2 were potential aberrantly methylated genes related to GD. These findings might supply the latest information of DNA methylation in the GD disease.
Collapse
Affiliation(s)
- Tiantian Cai
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.,Department of Endocrinology and The First People's Hospital of Xianyang, Xianyang, People's Republic of China
| | - Qiu Qin
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Ronghua Song
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Jing Zhao
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Guofei Wang
- Department of Neurosurgery, The First People's Hospital of Xianyang, Xianyang, People's Republic of China
| | - Jinan Zhang
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| |
Collapse
|
9
|
Sanaei M, Kavoosi F, Ghasemi A. Investigation of the Effect of 5-Aza-2'-Deoxycytidine on p15INK4, p16INK4, p18INK4, and p19INK4 Genes Expression, Cell Growth Inhibition, and Apoptosis Induction in Hepatocellular Carcinoma PLC/PRF/5 Cell Line. Adv Biomed Res 2020; 9:33. [PMID: 33072645 PMCID: PMC7532824 DOI: 10.4103/abr.abr_68_20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/19/2020] [Accepted: 05/05/2020] [Indexed: 01/02/2023] Open
Abstract
Background Cyclin-dependent kinases (CDKs) are the key regulators of cell-cycle transitions and characterized by needing a separate subunit, a cyclin, which provides domains essential for enzymatic activity. The activities of cyclin-CDK complexes are controlled by a group of molecules that inhibit CDK activity and CDK inhibitors (CKIs). Cancer often exhibits an aberrant CpG methylation of promoter regions of tumor suppressor genes such as CKIs. Treatment with the DNA demethylating agents, such as 5-aza-2'-deoxycytidine (5-Aza-CdR), can restore and upregulate CKIs. Previously, we reported the effect of 5-Aza-CdR and genistein on DNA methyltransferase (DNMTs) in hepatocellular carcinoma (HCC). The aim of the present study was to evaluate the effect of 5-Aza-CdR on p15INK4, p16INK4, p18INK4, and p19INK4 genes expression, cell growth inhibition, and apoptosis induction in HCC PLC/PRF/5 cell line. Materials and Methods The effect of 5-Aza-CdR on the cell growth of PLC/PRF/5 cells, genes expression, and apoptosis induction were assessed by 3-[4, 5-dimethyl-2-thiazolyl]-2, 5-diphenyl-2H-tetrazolium bromide assay, real-time quantitative reverse transcription-polymerase chain reaction analysis, and flow cytometry, respectively. Results 5-Aza-CdR (0, 1, 5, 10, 25, and 50 μM) inhibited PLC/PRF/5 cell growth at different periods significantly. This compound induced apoptosis and reactivated p15INK4, p16INK4, p18INK4, and p19INK4 genes expression at a concentration of 5 μM significantly. Conclusion 5-Aza-CdR can inhibit cell viability and induce apoptosis by epigenetic reactivation of p15INK4, p16INK4, p18INK4, and p19INK4 genes in HCC PLC/PRF/5.
Collapse
Affiliation(s)
- Masumeh Sanaei
- Research Center for Non-Communicable Diseases, Jahrom University of Medical Sciences, Jahrom, Fars Province, Iran
| | - Fraidoon Kavoosi
- Research Center for Non-Communicable Diseases, Jahrom University of Medical Sciences, Jahrom, Fars Province, Iran
| | - Ali Ghasemi
- Student of Research Committee, Jahrom University of Medical Sciences, Jahrom, Fars Province, Iran
| |
Collapse
|
10
|
Masaki T, Morishita A. Previous and current knowledge on cell cycle-related molecules in hepatocellular carcinoma: Potential therapeutic targets of cell cycle-related molecules in hepatocellular carcinoma. Hepatol Res 2019; 49:1094-1096. [PMID: 31721376 DOI: 10.1111/hepr.13440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/29/2019] [Accepted: 10/10/2019] [Indexed: 02/08/2023]
Affiliation(s)
- Tsutomu Masaki
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Asahiro Morishita
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| |
Collapse
|
11
|
Madhu Krishna B, Chaudhary S, Mishra DR, Naik SK, Suklabaidya S, Adhya AK, Mishra SK. Estrogen receptor α dependent regulation of estrogen related receptor β and its role in cell cycle in breast cancer. BMC Cancer 2018; 18:607. [PMID: 29843638 PMCID: PMC5975398 DOI: 10.1186/s12885-018-4528-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 05/18/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Breast cancer (BC) is highly heterogeneous with ~ 60-70% of estrogen receptor positive BC patient's response to anti-hormone therapy. Estrogen receptors (ERs) play an important role in breast cancer progression and treatment. Estrogen related receptors (ERRs) are a group of nuclear receptors which belong to orphan nuclear receptors, which have sequence homology with ERs and share target genes. Here, we investigated the possible role and clinicopathological importance of ERRβ in breast cancer. METHODS Estrogen related receptor β (ERRβ) expression was examined using tissue microarray slides (TMA) of Breast Carcinoma patients with adjacent normal by immunohistochemistry and in breast cancer cell lines. In order to investigate whether ERRβ is a direct target of ERα, we investigated the expression of ERRβ in short hairpin ribonucleic acid knockdown of ERα breast cancer cells by western blot, qRT-PCR and RT-PCR. We further confirmed the binding of ERα by electrophoretic mobility shift assay (EMSA), chromatin immunoprecipitation (ChIP), Re-ChIP and luciferase assays. Fluorescence-activated cell sorting analysis (FACS) was performed to elucidate the role of ERRβ in cell cycle regulation. A Kaplan-Meier Survival analysis of GEO dataset was performed to correlate the expression of ERRβ with survival in breast cancer patients. RESULTS Tissue microarray (TMA) analysis showed that ERRβ is significantly down-regulated in breast carcinoma tissue samples compared to adjacent normal. ER + ve breast tumors and cell lines showed a significant expression of ERRβ compared to ER-ve tumors and cell lines. Estrogen treatment significantly induced the expression of ERRβ and it was ERα dependent. Mechanistic analyses indicate that ERα directly targets ERRβ through estrogen response element and ERRβ also mediates cell cycle regulation through p18, p21cip and cyclin D1 in breast cancer cells. Our results also showed the up-regulation of ERRβ promoter activity in ectopically co-expressed ERα and ERRβ breast cancer cell lines. Fluorescence-activated cell sorting analysis (FACS) showed increased G0/G1 phase cell population in ERRβ overexpressed MCF7 cells. Furthermore, ERRβ expression was inversely correlated with overall survival in breast cancer. Collectively our results suggest cell cycle and tumor suppressor role of ERRβ in breast cancer cells which provide a potential avenue to target ERRβ signaling pathway in breast cancer. CONCLUSION Our results indicate that ERRβ is a negative regulator of cell cycle and a possible tumor suppressor in breast cancer. ERRβ could be therapeutic target for the treatment of breast cancer.
Collapse
Affiliation(s)
- B Madhu Krishna
- Cancer Biology Lab, Institute of Life Sciences, Nalco Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India
| | - Sanjib Chaudhary
- Cancer Biology Lab, Institute of Life Sciences, Nalco Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India.,Present address: Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| | - Dipti Ranjan Mishra
- Department of Gene Function & Regulation, Institute of Life Sciences, Nalco square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India
| | - Sanoj K Naik
- Cancer Biology Lab, Institute of Life Sciences, Nalco Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India
| | - S Suklabaidya
- Tumor Microenvironment and Animal Models Lab, Department of Translational Research and Technology Development, Institute of Life Sciences, Nalco square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India
| | - A K Adhya
- Department of Pathology, Kalinga Institute of Medical Sciences, Chandaka Industrial Estate, KIIT Rd, Patia, Bhubaneswar, Odisha, India
| | - Sandip K Mishra
- Cancer Biology Lab, Institute of Life Sciences, Nalco Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India.
| |
Collapse
|
12
|
Zhang Y, Liu Y, Duan J, Yan H, Zhang J, Zhang H, Fan Q, Luo F, Yan G, Qiao K, Liu J. Hippocalcin-like 1 suppresses hepatocellular carcinoma progression by promoting p21(Waf/Cip1) stabilization by activating the ERK1/2-MAPK pathway. Hepatology 2016; 63:880-97. [PMID: 26659654 DOI: 10.1002/hep.28395] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 12/10/2015] [Indexed: 12/21/2022]
Abstract
UNLABELLED Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death. However, the underlying mechanism during hepatocarcinogenesis remains unclarified. Stable isotope labeling by amino acids in cell culture (SILAC) is a powerful quantitative strategy for proteome-wide discovery of novel biomarkers in cancers. Hippocalcin-like 1 (HPCAL1) is a calcium sensor protein. However, the biological function of HPCAL1 is poorly understood in cancers, including HCC. Herein, HPCAL1 was identified by SILAC as a novel hepatocarcinogenesis suppressor down-regulated in HCC cell lines and tissues. Importantly, lost expression of HPCAL1 was associated with worse prognosis of HCC patients. Interestingly, secreted HPCAL1 protein in the plasma dropped dramatically in HCC patients compared with healthy donors. Receiver operating characteristic curve analysis showed that serum HPCAL1 at a concentration of 8.654 ng/mL could better predict HCC. Furthermore, ectopic expression of HPCAL1 suppresses cell proliferation, while depletion of HPCAL1 led to increased cell growth both in vitro and in vivo. Mechanistically, HPCAL1 directly interacted with p21(Waf/Cip1) in the nucleus, which requires the EF-hand 4 motif of HPCAL1 and the Cy1 domain of p21. This interaction stabilized p21(Waf/Cip1) in an extracellular signal-regulated kinase 1/2-mitogen-activated protein kinase-dependent manner, which subsequently prevented p21(Waf/Cip1) proteasomal degradation by disrupting SCF(Skp2) and CRL4(Cdt2) E3 ligase complexes, resulting in increased protein stability and inhibitory effect of p21(Waf/Cip1). Notably, the tumor suppressive function of HPCAL1 was dependent on p21 in vitro and in vivo. Consistent with this observation, expression of HPCAL1 and p21(Waf/Cip1) was positively correlated in HCC tissues. CONCLUSION These findings highlight a novel tumor suppressor upstream of p21(Waf/Cip1) in attenuating cell cycle progression and provide a promising diagnostic and prognostic factor, as well as a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Yonglong Zhang
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Biomedical Sciences of Shanghai Medical School, Fudan University, Shanghai, China
| | - Yanfeng Liu
- Department of Surgery, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Medical Molecular Virology (MOE & MOH), Shanghai Medical College, Fudan University, Shanghai, China
| | - Jinlin Duan
- Department of Pathology, Affiliated Tongren Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Haibo Yan
- Institutes of Biomedical Sciences of Shanghai Medical School, Fudan University, Shanghai, China
| | - Jun Zhang
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Huilu Zhang
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Qi Fan
- Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Feifei Luo
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Guoquan Yan
- Institutes of Biomedical Sciences of Shanghai Medical School, Fudan University, Shanghai, China
| | - Ke Qiao
- Key Laboratory of Medical Molecular Virology (MOE & MOH), Shanghai Medical College, Fudan University, Shanghai, China
| | - Jie Liu
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Biomedical Sciences of Shanghai Medical School, Fudan University, Shanghai, China
| |
Collapse
|
13
|
DNA methyltransferase 3A promotes cell proliferation by silencing CDK inhibitor p18INK4C in gastric carcinogenesis. Sci Rep 2015; 5:13781. [PMID: 26350239 PMCID: PMC4563369 DOI: 10.1038/srep13781] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 08/05/2015] [Indexed: 01/13/2023] Open
Abstract
Little is known about the roles of DNA methyltransferase 3A (DNMT3A) in gastric carcinogenesis. Here, we reported that the exogenous expression of DNMT3A promoted gastric cancer (GC) cell proliferation by accelerating the G1/S transition. Subsequently, p18INK4C was identified as a downstream target of DNMT3A. The elevated expression of DNMT3A suppressed p18INK4C at least at the transcriptional level. Depletion of p18INK4C expression in GC cells induced cell cycle progression, whereas its re-expression alleviated the effect of DNMT3A overexpression on G1/S transition. Furthermore, we found that DNMT3A modulated p18INK4C by directly binding to and silencing the p18INK4C gene via promoter hypermethylation. In clinical GC tissue specimens analyzed, the level of methylation of p18INK4C detected in tumor tissues was significantly higher than that in paired non-tumor tissues. Moreover, elevated level of DNMT3A expression was associated with the differentiation of GC tissues and was negatively correlated with the p18INK4C expression level. Taken together, our results found that DNMT3A contributes to the dysregulation of the cell cycle by repressing p18INK4C in a DNA methylation-dependent manner, suggesting that DNMT3A-p18INK4C axis involved in GC. These findings provide new insights into gastric carcinogenesis and a potential therapeutic target for GC that may be further investigated in the future.
Collapse
|
14
|
TOYOTA YUKA, IWAMA HISAKAZU, KATO KIYOHITO, TANI JOJI, KATSURA AKIKO, MIYATA MIWA, FUJIWARA SHINTARO, FUJITA KOJI, SAKAMOTO TEPPEI, FUJIMORI TAKAYUKI, OKURA RYOICHI, KOBAYASHI KIYOYUKI, TADOKORO TOMOKO, MIMURA SHIMA, NOMURA TAKAKO, MIYOSHI HISAAKI, MORISHITA ASAHIRO, KAMADA HIDEKI, YONEYAMA HIROHITO, OKANO KEIICHI, SUZUKI YASUYUKI, MASAKI TSUTOMU. Mechanism of gemcitabine-induced suppression of human cholangiocellular carcinoma cell growth. Int J Oncol 2015; 47:1293-302. [DOI: 10.3892/ijo.2015.3118] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 05/04/2015] [Indexed: 11/06/2022] Open
|
15
|
Zheng Q, Sheng Q, Jiang C, Shu J, Chen J, Nie Z, Lv Z, Zhang Y. MicroRNA-452 promotes tumorigenesis in hepatocellular carcinoma by targeting cyclin-dependent kinase inhibitor 1B. Mol Cell Biochem 2014; 389:187-95. [PMID: 24381057 DOI: 10.1007/s11010-013-1940-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 12/18/2013] [Indexed: 12/25/2022]
Abstract
Dysregulation of miR-452 has been observed in many tumors, but its biological function in hepatocellular carcinoma (HCC) is still unknown. Our results showed that miR-452 expression is significantly increased in HCC tissues and HCC cell lines. We also found that overexpression of miR-452 dramatically accelerated proliferation, induced cell cycle from G1 to S transition, and blocked apoptosis of HCC cells. Migration and matrigel invasion assays indicated that miR-452 significantly promotes HepG2 and QGY-7703 cells migration and invasion in vitro. Further studies showed that miR-452 directly targets the 3'-untranslated region of cyclin-dependent kinase inhibitor 1B (CDKN1B), ectopic miR-452 expression suppressed CDKN1B expression on mRNA and protein level. Silencing CDKN1B by small interfering RNA resembled the phenotype resulting from ectopic miR-452 expression. This study provides new insights into the potential molecular mechanisms that miRNA-452 contributed to HCC.
Collapse
Affiliation(s)
- Qingliang Zheng
- College of Life Science, Zhejiang Sci-Tech University, Hangzhou, 310018, China,
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Molecular and serum markers in hepatocellular carcinoma: Predictive tools for prognosis and recurrence. Crit Rev Oncol Hematol 2012; 82:116-40. [DOI: 10.1016/j.critrevonc.2011.05.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 04/08/2011] [Accepted: 05/18/2011] [Indexed: 12/12/2022] Open
|
17
|
Wang H, Wen W. Biomarkers of Hepatocellular Carcinoma. PRIMARY LIVER CANCER 2012:79-154. [DOI: 10.1007/978-3-642-28702-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
18
|
Gagrica S, Brookes S, Anderton E, Rowe J, Peters G. Contrasting behavior of the p18INK4c and p16INK4a tumor suppressors in both replicative and oncogene-induced senescence. Cancer Res 2011; 72:165-75. [PMID: 22080569 DOI: 10.1158/0008-5472.can-11-2552] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The cyclin-dependent kinase (CDK) inhibitors, p18(INK4c) and p16(INK4a), both have the credentials of tumor suppressors in human cancers and mouse models. For p16(INK4a), the underlying rationale is its role in senescence, but the selective force for inactivation of p18(INK4c) in incipient cancer cells is less clear. Here, we show that in human fibroblasts undergoing replicative or oncogene-induced senescence, there is a marked decline in the levels of p18(INK4c) protein and RNA, which mirrors the accumulation of p16(INK4a). Downregulation of INK4c is not dependent on p16(INK4a), and RAS can promote the loss of INK4c without cell-cycle arrest. Downregulation of p18(INK4c) correlates with reduced expression of menin and E2F1 but is unaffected by acute cell-cycle arrest or inactivation of the retinoblastoma protein (pRb). Collectively, our data question the idea that p18(INK4c) acts as a backup for loss of p16(INK4a) and suggest that the apparent activation of p18(INK4c) in some settings represents delayed senescence rather than increased expression. We propose that the contrasting behavior of the two very similar INK4 proteins could reflect their respective roles in senescence versus differentiation.
Collapse
Affiliation(s)
- Sladjana Gagrica
- Molecular Oncology Laboratory, CRUK London Research Institute, London, United Kingdom
| | | | | | | | | |
Collapse
|
19
|
Eguchi T, Itadani H, Shimomura T, Kawanishi N, Hirai H, Kotani H. Expression levels of p18INK4C modify the cellular efficacy of cyclin-dependent kinase inhibitors via regulation of Mcl-1 expression in tumor cell lines. Mol Cancer Ther 2009; 8:1460-72. [PMID: 19509251 DOI: 10.1158/1535-7163.mct-08-1159] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Because cyclin-dependent kinases (CDK) play a pivotal role in cancer progression, the development of CDK inhibitors has attracted attention in antitumor therapy. However, despite significant preclinical and clinical developments, CDK inhibition biomarkers for predicting efficacy against certain cancers in individual patients have not been identified. Here, we characterized a macrocyclic quinoxalin-2-one CDK inhibitor, compound A, and identified a gene biomarker for predicting its efficacy. Compound A showed 100-fold selectivity for CDK family proteins over other kinases and inhibited both E2F transcriptional activity and RNA polymerase II phosphorylation. Compound A treatment resulted in decreased proliferation in various tumor cell lines; however, the apoptosis induction rate differed significantly among the cell lines examined, which was consistent with roscovitine. By comparing the mRNA expression profiles of sensitive and resistant cell lines, we found that expression levels of an endogenous CDK inhibitor, p18(INK4C), showed a strong negative correlation to the sensitivity. In fact, p18 status was correlated with the response to CDK inhibitor in an independent data set of multiple myeloma cell lines and silencing p18 expression increased the susceptibility of resistant cells to CDK inhibitors. The analysis of molecular mechanisms revealed that cells with lowered p18 had aberrant CDK6 and E2F activities, which resulted in a transcriptional down-regulation of Mcl-1, a key molecule associated with flavopiridol-induced apoptosis, thereby leading to susceptibility to therapeutic intervention with CDK inhibitors. These results identified a molecular basis for CDK inhibitors to exert an antitumor effect in p18-deficient cancers and support the clinical use of CDK inhibitors.
Collapse
Affiliation(s)
- Tomohiro Eguchi
- Department of Cancer Research, Banyu Tsukuba Research Institute, Merck Research Laboratory, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Zhang S, Tang Q, Xu F, Xue Y, Zhen Z, Deng Y, Liu M, Chen J, Liu S, Qiu M, Liao Z, Li Z, Luo D, Shi F, Zheng Y, Bi F. RhoA regulates G1-S progression of gastric cancer cells by modulation of multiple INK4 family tumor suppressors. Mol Cancer Res 2009; 7:570-80. [PMID: 19372585 DOI: 10.1158/1541-7786.mcr-08-0248] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
RhoA, a member of the Rho GTPase family, has been extensively studied in the regulation of cytoskeletal dynamics, gene transcription, cell cycle progression, and cell transformation. Overexpression of RhoA is found in many malignancies and elevated RhoA activity is associated with proliferation phenotypes of cancer cells. We reported previously that RhoA was hyperactivated in gastric cancer tissues and suppression of RhoA activity could partially reverse the proliferation phenotype of gastric cancer cells, but the underlying mechanism has yet to be elucidated. It has been reported that RhoA activation is crucial for the cell cycle G(1)-S procession through the regulation of Cip/Kip family tumor suppressors in benign cell lines. In this study, we found that selective suppression of RhoA or its effectors mammalian Diaphanous 1 and Rho kinase (ROCK) by small interfering RNA and a pharmacologic inhibitor effectively inhibited proliferation and cell cycle G(1)-S transition in gastric cancer lines. Down-regulation of RhoA-mammalian Diaphanous 1 pathway, but not RhoA-ROCK pathway, caused an increase in the expression of p21(Waf1/Cip1) and p27(Kip1), which are coupled with reduced expression and activity of CDK2 and a cytoplasmic mislocalization of p27(Kip1). Suppression of RhoA-ROCK pathway, on the other hand, resulted in an accumulation of p15(INK4b), p16(INK4a), p18(INK4c), and p19(INK4d), leading to reduced expression and activities of CDK4 and CDK6. Thus, RhoA may use two distinct effector pathways in regulating the G(1)-S progression of gastric cancer cells.
Collapse
Affiliation(s)
- Siyuan Zhang
- Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
van Veelen W, Klompmaker R, Gloerich M, van Gasteren CJR, Kalkhoven E, Berger R, Lips CJM, Medema RH, Höppener JWM, Acton DS. P18 is a tumor suppressor gene involved in human medullary thyroid carcinoma and pheochromocytoma development. Int J Cancer 2009; 124:339-45. [PMID: 18942719 DOI: 10.1002/ijc.23977] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In multiple endocrine neoplasia syndrome Type 2 (MEN2), medullary thyroid carcinoma (MTC) and pheochromocytoma (PC) are associated with hereditary activating germ-line mutations in the RET proto-oncogene. Also in a large percentage of sporadic MTCs and PCs, somatic RET mutations appear to be involved in tumor formation. In one single MEN2 family an extensive variety in disease expression may be observed, indicating that additional genetic events are responsible for progression of the disease towards a more aggressive phenotype. However, these additional mutations in both hereditary and sporadic MTC and PC development are largely unknown. Here, we show for the first time the presence of somatic mutations in the cell cycle regulator P18 in human RET-associated MTCs and PCs. Each of these mutations causes an amino acid substitution in the cyclin dependent kinase-interacting region of P18(INK4C). Since these mutations partly inhibited P18(INK4C) function and reduced its stability, our findings implicate P18 as a tumor suppressor gene involved in human MTC and PC development.
Collapse
Affiliation(s)
- Wendy van Veelen
- Division of Biomedical Genetics, Department of Metabolic and Endocrine Diseases, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Hossain MG, Iwata T, Mizusawa N, Qian ZR, Shima SWN, Okutsu T, Yamada S, Sano T, Yoshimoto K. Expression of p18(INK4C) is down-regulated in human pituitary adenomas. Endocr Pathol 2009; 20:114-21. [PMID: 19401813 DOI: 10.1007/s12022-009-9076-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cyclin-dependent kinase inhibitors represented by the INK4 family comprising p16(INK4A), p15(INK4B), p18(INK4C), and p19(INK4D) are regulators of the cell cycle shown to be aberrant in many types of cancer. Mice lacking p18(Ink4c) exhibit a series of phenotypes including the development of widespread organomegaly and pituitary adenomas. The objective of our study is to examine the role of p18(INK4C) in the pathogenesis of human pituitary tumors. The protein and mRNA levels of p18(INK4C) were examined by immunohistochemistry and real-time reverse transcription-polymerase chain reaction, respectively. The methylation status of the p18(INK4C) gene promoter and somatic mutations of the p18(INK4C) gene were also investigated. p18(INK4C) protein expression was lost or significantly reduced in 64% of pituitary adenomas compared with levels in normal pituitary glands. p18(INK4C) mRNA levels were low in all ACTH adenomas and non-functioning (NF)-FSH and in 42%, 70% and 66% of GH, PRL, and subtype 3 adenomas, respectively. p18(INK4C) mRNA levels were significantly associated with p18(INK4C) protein levels. Neither methylated promoters in pituitary adenomas, except in one NF-FSH adenoma, nor somatic mutations of the p18(INK4C) gene in any pituitary adenomas were detected. The down-regulation of p18(INK4C) expression may contribute to the tumorigenesis of pituitary adenomas.
Collapse
Affiliation(s)
- M Golam Hossain
- Department of Medical Pharmacology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Vivekanandan P, Singh OV. High-dimensional biology to comprehend hepatocellular carcinoma. Expert Rev Proteomics 2008; 5:45-60. [PMID: 18282123 DOI: 10.1586/14789450.5.1.45] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide and is the third leading cause of death from cancer. The diverse etiology, high morbidity/mortality, lack of diagnostic markers for early diagnosis and the highly variable clinical course of HCC have hindered advances in diagnosis and treatment. Microsatellite instability, chromosomal aberrations, mutations in key cell cycle genes and epigenetic changes have been reported in HCC. Availability of modern technologies advance 'high-dimensional biology' (HDB), a term that refers to the simultaneous study of the genetic variants (genome), transcription (mRNA; transcriptome), peptides and proteins (proteomics), and metabolites (metabolomics) for the intermediate products of metabolism of an organ, tissue or organism. The growing interest in omics-based research has enabled the simultaneous examination of thousands of genes, transcripts and proteins of interest, with high-throughput techniques and advanced analytical tools for data analysis. The use of each approach towards functional omics has lead to the classification of HCC into molecular subgroups. Here we review the use of HDB as a tool for the identification of markers for screening, diagnosis, molecular classification and the discovery of new therapeutic drug targets of HCC. With the extensive use of HDB, it may be possible in the near future, to have custom-made therapeutic regimens for HCC based on the molecular subtype, ultimately leading to an improved survival of HCC patients.
Collapse
|
24
|
McBee JK, Yu LR, Kinoshita Y, Uo T, Beyer RP, Veenstra TD, Morrison RS. Proteomic analysis of protein expression changes in a model of gliomagenesis. Proteomics Clin Appl 2007; 1:1485-98. [PMID: 21136645 DOI: 10.1002/prca.200700292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Loss of p53 function is a common event in a variety of human cancers including tumors of glial origin. Using an in vitro mouse model of malignant astrocyte transformation, three cleavable isotope coded affinity tag (cICAT) experiments were performed comparing cultured wild-type astrocytes and two p53(-/-) astrocyte cultures before and after malignant transformation. We identified and quantitated an average of 1366 proteins per experiment and demonstrated that the protein quantitation ratios in each individual cICAT experiment correlated well to ratios determined in the other two studies. These data were further supported by microarray analysis which also correlated to changes in protein expression. The results showed significant changes in protein expression in association with malignant transformation. Proteins overexpressed in malignant astrocytes were typically involved in ribosome biogenesis/protein synthesis and DNA replication, while underexpressed proteins were generally associated with the regulation of cell cycle checkpoint control, tumor suppression, and apoptosis. Among the significantly up-regulated proteins and transcripts in malignant mouse astrocytes were members of the minichromosome maintenance (MCM) family. Western blot analysis verified increased expression of MCM proteins in malignant human astrocytoma cell lines, which had not previously been described. These results demonstrate the usefulness of the cICAT approach for comparing differences in protein expression profiles between normal and malignant cells.
Collapse
Affiliation(s)
- Joshua K McBee
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, USA; Institute for Systems Biology, Seattle, WA, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Pei XH, Bai F, Smith MD, Xiong Y. p18Ink4c collaborates with Men1 to constrain lung stem cell expansion and suppress non-small-cell lung cancers. Cancer Res 2007; 67:3162-70. [PMID: 17409423 DOI: 10.1158/0008-5472.can-06-4517] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mutant mice lacking both cyclin-dependent kinase (CDK) inhibitors p18(Ink4c) and p27(Kip1) develop a tumor spectrum reminiscent of human multiple endocrine neoplasia (MEN) syndromes. To determine how p18 and p27 genetically interact with Men1, the tumor suppressor gene mutated in familial MEN1, we characterized p18-Men1 and p27-Men1 double mutant mice and showed that p18, but not p27, functionally collaborates with Men1 in suppressing lung tumorigenesis. Lung tumors developed in both Men1(+/-) and p18(-/-);Men1(+/-) mice at a high penetrance and contain both neuroendocrine and nonneuroendocrine cells. The remaining wild-type Men1 allele was lost in most lung tumors from Men1(+/-) mice but was retained in most tumors from p18(-/-);Men1(+/-) mice, showing a functional collaboration between p18 and Men1 in lung tumor suppression. Phosphorylation of Rb protein at both CDK2 and CDK4/CDK6 sites were significantly increased in normal bronchial epithelia and tumor cells derived from p18(-/-);Men1(+/-) mice compared to those from single p18(-/-) or Men1(+/-) mice. Lung tumors developed in p18(-/-);Men1(+/-) mice were multifocal, more heterogeneous, and highly invasive compared to those developed in either p18(-/-) or Men1(+/-) mice. Bronchioalveolar stem cells are expanded in normal and tumorigenic lungs of p18(-/-) mice and are further expanded in p18(-/-);Men1(+/-) lung tumors. These results reveal a previously unrecognized function of p18 in lung tumor suppression through collaboration with Men1 to control lung stem cell proliferation.
Collapse
Affiliation(s)
- Xin-Hai Pei
- Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics, Program in Molecular Biology and Biotechnology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | | | |
Collapse
|
26
|
Mann CD, Neal CP, Garcea G, Manson MM, Dennison AR, Berry DP. Prognostic molecular markers in hepatocellular carcinoma: a systematic review. Eur J Cancer 2007; 43:979-92. [PMID: 17291746 DOI: 10.1016/j.ejca.2007.01.004] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Revised: 12/22/2006] [Accepted: 01/04/2007] [Indexed: 12/14/2022]
Abstract
Hepatocellular carcinoma (HCC) is the fifth commonest malignancy worldwide and its incidence is rising. Surgery, including transplantation, remains the only potentially curative modality for HCC, yet recurrence rates are high and long-term survival poor. The ability to predict individual recurrence risk and subsequently prognosis would help guide surgical and chemotherapeutic treatment. As understanding of hepatocarcinogenesis has increased, the myriad of genetic and molecular events that drive the hepatocarcinogenic disease process, including angiogenesis, invasion and metastasis, have been identified. This systematic review examines the evidence from published manuscripts reporting the prognostic potential of molecular biomarkers in hepatocellular carcinoma. In summary, a number of molecular biomarkers with prognostic significance have been identified in hepatocellular carcinoma. Not only might these molecules allow more accurate prediction of prognosis for patients with HCC, but they may also provide targets for potential therapeutic agents.
Collapse
Affiliation(s)
- Christopher D Mann
- Cancer Biomarkers and Prevention Group, Department of Cancer Studies and Molecular Medicine, Biocentre, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom.
| | | | | | | | | | | |
Collapse
|
27
|
Bai F, Pei XH, Nishikawa T, Smith MD, Xiong Y. p18Ink4c, but not p27Kip1, collaborates with Men1 to suppress neuroendocrine organ tumors. Mol Cell Biol 2006; 27:1495-504. [PMID: 17145768 PMCID: PMC1800728 DOI: 10.1128/mcb.01764-06] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Mutant mice lacking both cyclin-dependent kinase (CDK) inhibitors p18(Ink4c) and p27(Kip1) develop a tumor spectrum reminiscent of human multiple endocrine neoplasia (MEN) syndromes. To determine how p18 and p27 genetically interact with Men1, the tumor suppressor gene mutated in familial MEN1, we characterized p18-Men1 and p27-Men1 double mutant mice. Compared with their corresponding single mutant littermates, the p18(-/-); Men1(+/-) mice develop tumors at an accelerated rate and with an increased incidence in the pituitary, thyroid, parathyroid, and pancreas. In the pituitary and pancreatic islets, phosphorylation of the retinoblastoma (Rb) protein at both CDK2 and CDK4/6 sites was increased in p18(-/-) and Men1(+/-) cells and was further increased in p18(-/-); Men1(+/-) cells. The remaining wild-type Men1 allele was lost in most tumors from Men1(+/-) mice but was retained in most tumors from p18(-/-); Men1(+/-) mice. Combined mutations of p27(-/-) and Men1(+/-), in contrast, did not exhibit noticeable synergistic stimulation of Rb kinase activity, cell proliferation, and tumor growth. These results demonstrate that functional collaboration exists between p18 and Men1 and suggest that Men1 may regulate additional factor(s) that interact with p18 and p27 differently.
Collapse
Affiliation(s)
- Feng Bai
- Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | | | | | | | | |
Collapse
|
28
|
Nilsson LM, Keller UB, Yang C, Nilsson JA, Cleveland JL, Roussel MF. Ink4c is dispensable for tumor suppression in Myc-induced B-cell lymphomagenesis. Oncogene 2006; 26:2833-9. [PMID: 17099725 DOI: 10.1038/sj.onc.1210104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
p18(Ink4c) functions as a dedicated inhibitor of cyclin-D-dependent kinases. Loss of Ink4c predisposes mice to tumor development and, in a dose-dependent manner, complements the tumor-promoting effects of various oncogenes. We have now addressed whether Ink4c loss impacts B-cell tumor development in the Emu-Myc transgenic mouse, a model of human Burkitt lymphoma. Loss of one or both alleles did not influence the onset of lymphoma in Emu-Myc transgenics, and did not appreciably affect Myc's proliferative or apoptotic responses in precancerous B cells. Nevertheless, Ink4c loss modulated the effects of Myc-induced transformation by decreasing the frequency of Arf loss, an ordinarily common event in Emu-Myc-induced lymphomas.
Collapse
Affiliation(s)
- L M Nilsson
- Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | | | |
Collapse
|
29
|
Uziel T, Zindy F, Xie S, Lee Y, Forget A, Magdaleno S, Rehg JE, Calabrese C, Solecki D, Eberhart CG, Sherr SE, Plimmer S, Clifford SC, Hatten ME, McKinnon PJ, Gilbertson RJ, Curran T, Sherr CJ, Roussel MF. The tumor suppressors Ink4c and p53 collaborate independently with Patched to suppress medulloblastoma formation. Genes Dev 2005; 19:2656-67. [PMID: 16260494 PMCID: PMC1283959 DOI: 10.1101/gad.1368605] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Accepted: 09/09/2005] [Indexed: 11/24/2022]
Abstract
Recurrent genetic alterations in human medulloblastoma (MB) include mutations in the sonic hedgehog (SHH) signaling pathway and TP53 inactivation (approximately 25% and 10% of cases, respectively). However, mouse models of MB, regardless of their initiating lesions, generally depend upon p53 inactivation for rapid onset and high penetrance. The gene encoding the cyclin-dependent kinase inhibitor p18(Ink4c) is transiently expressed in mouse cerebellar granule neuronal precursor cells (GNPs) as they exit the cell division cycle and differentiate. Coinactivation of Ink4c and p53 provided cultured GNPs with an additive proliferative advantage, either in the presence or absence of Shh, and induced MB with low penetrance but with greatly increased incidence following postnatal irradiation. In contrast, mice lacking one or two functional Ink4c alleles and one copy of Patched (Ptc1) encoding the Shh receptor rapidly developed MBs that retained wild-type p53. In tumor cells purified from double heterozygotes, the wild-type Ptc1 allele, but not Ink4c, was inactivated. Therefore, when combined with Ptc1 mutation, Ink4c is haploinsufficient for tumor suppression. Methylation of INK4C (CDKN2C) was observed in four of 23 human MBs, and p18(INK4C) protein expression was extinguished in 14 of 73 cases. Hence, p18(INK4C) loss may contribute to MB formation in children.
Collapse
Affiliation(s)
- Tamar Uziel
- Department of Tumor Cell Biology and Genetics, Memphis, Tennessee 38105, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
The observation that mutations in tumor suppressor genes can have haploinsufficient, as well as gain of function and dominant negative, phenotypes has caused a reevaluation of the 'two-hit' model of tumor suppressor inactivation. Here we examine the history of haploinsufficiency and tumor suppressors in order to understand the origin of the 'two-hit' dogma. The two-hit model of tumor suppressor gene inactivation was derived from mathematical modeling of cancer incidence. Subsequent interpretations implied that tumor suppressors were recessive, requiring mutations in both alleles. This model has provided a useful conceptual framework for three decades of research on the genetics and biology of tumor suppressor genes. Recently it has become clear that mutations in tumor suppressor genes are not always completely recessive. Haploinsufficiency occurs when one allele is insufficient to confer the full functionality produced from two wild-type alleles. Haploinsufficiency, however, is not an absolute property. It can be partial or complete and can vary depending on tissue type, other epistatic interactions, and environmental factors. In addition to simple quantitative differences (one allele versus two alleles), gene mutations can have qualitative differences, creating gain of function or dominant negative effects that can be difficult to distinguish from dosage-dependence. Like mutations in many other genes, tumor suppressor gene mutations can be haploinsufficient, dominant negative or gain of function in addition to recessive. Thus, under certain circumstances, one hit may be sufficient for inactivation. In addition, the phenotypic penetrance of these mutations can vary depending on the nature of the mutation itself, the genetic background, the tissue type, environmental factors and other variables. Incorporating these new findings into existing models of the clonal evolution will be a challenge for the future.
Collapse
Affiliation(s)
- Shannon R Payne
- Fred Hutchinson Cancer Research Center, Seattle, WA 90109, USA
| | | |
Collapse
|
31
|
Luedde T, Tacke F, Manns MP, Trautwein C. p18(INK4c) expression in hepatocellular carcinoma. Hepatology 2005; 41:405; author reply 406. [PMID: 15660428 DOI: 10.1002/hep.20544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
32
|
|