1
|
Li Z, Jiang S, Liu W, Yang X, Liu F, Li X, Li J, Yu M, Wei Z, Wang B, Qian D. A promising endeavor against human cytomegalovirus: Predominant epitopes-based recombinant subunit vaccine RH EcIE1/pp65/pp150. Virulence 2025; 16:2497903. [PMID: 40277436 PMCID: PMC12064061 DOI: 10.1080/21505594.2025.2497903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 12/23/2024] [Accepted: 04/21/2025] [Indexed: 04/26/2025] Open
Abstract
Human cytomegalovirus (HCMV) is widespread in the population, typically remaining latent. However, it can cause severe morbidity and mortality in transplant patients and immunodeficient individuals. Currently, there is no approved vaccine against HCMV. This study used immunoinformatics methods to predict the predominant T and B-cell epitopes of three key HCMV proteins, including phosphoprotein 65 (pp65), pp150, and immediate-early protein 1 (IE1). Subsequently, we synthesized a recombinant subunit vaccine (RHEcIE1/pp65/pp150) from Escherichia coli, comprising RHEc-1 and RHEc-2. We observed that the RHEcIE1/pp65/pp150 vaccine exhibited high safety and immunogenicity in mice, enhancing a significant upregulation of CD80, CD86, CD40, and MHCII on dendritic cells and macrophages. Additionally, the vaccine activated innate immune responses through the NF-κB signalling pathway, triggering CD4+ and CD8+T cells to secrete tumour necrosis factor (TNF)-α, interferon (IFN)-γ, and interleukin (IL)-2, directing the T-cell response towards Th1. Moreover, it stimulated CD4+T cells to secrete IL-4, IL-6, and IL-10, promoting B-cell immunity. Furthermore, the RHEcIE1/pp65/pp150 vaccine induced the formation of abundant memory cells and high levels of neutralizing antibody titres, conducive to providing long-lasting protection. Taken together, the RHEcIE1/pp65/pp150 vaccine is a promising endeavour against HCMV, and these findings contribute valuable insights to the development of HCMV vaccine candidates.
Collapse
MESH Headings
- Cytomegalovirus Vaccines/immunology
- Cytomegalovirus Vaccines/genetics
- Cytomegalovirus Vaccines/administration & dosage
- Animals
- Vaccines, Subunit/immunology
- Vaccines, Subunit/genetics
- Vaccines, Subunit/administration & dosage
- Cytomegalovirus/immunology
- Cytomegalovirus/genetics
- Mice
- Viral Matrix Proteins/immunology
- Viral Matrix Proteins/genetics
- Cytomegalovirus Infections/prevention & control
- Cytomegalovirus Infections/immunology
- Humans
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Phosphoproteins/immunology
- Phosphoproteins/genetics
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/genetics
- Epitopes, B-Lymphocyte/immunology
- Epitopes, B-Lymphocyte/genetics
- Female
- Immediate-Early Proteins/immunology
- Immediate-Early Proteins/genetics
- Antibodies, Viral/blood
- Mice, Inbred BALB C
- Immunogenicity, Vaccine
Collapse
Affiliation(s)
- Zonghui Li
- Department of Pathogenic Biology, Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
- Department of Clinical Laboratory, Chengdu Aerotropolis Asia Heart Hospital, Chengdu, China
| | - Shasha Jiang
- Department of Pathogenic Biology, Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
- Department of Clinical Laboratory, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Wenxuan Liu
- Department of Pathogenic Biology, Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xiaoli Yang
- Department of Pathogenic Biology, Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Fengjun Liu
- Department of Pathogenic Biology, Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xu Li
- Department of Pathogenic Biology, Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Jun Li
- Department of Pathogenic Biology, Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Meng Yu
- Department of Pathogenic Biology, Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Zhun Wei
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Bin Wang
- Department of Pathogenic Biology, Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Dongmeng Qian
- Department of Pathogenic Biology, Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
2
|
Chen Y, Chen R, Li H, Shuai Z. Clinical management of autoimmune liver diseases: juncture, opportunities, and challenges ahead. Immunol Res 2025; 73:67. [PMID: 40195209 PMCID: PMC11976385 DOI: 10.1007/s12026-025-09622-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/14/2025] [Indexed: 04/09/2025]
Abstract
The three major autoimmune liver diseases are autoimmune hepatitis (AIH), primary biliary cholangitis (PBC), and primary sclerosing cholangitis (PSC).These conditions are assumed to result from a breakdown in immunological tolerance, which leads to an inflammatory process that causes liver damage.The self-attack is started by T-helper cell-mediated identification of liver autoantigens and B-cell production of autoantibodies,and it is maintained by a reduction in the number and activity of regulatory T-cells.Infections and environmental factors have been explored as triggering factors for these conditions, in addition to a genetic predisposition.Allelic mutations in the HLA locus have been linked to vulnerability, as have relationships with single nucleotide polymorphisms in non-HLA genes.Despite the advances in the management of these diseases, there is no curative treatment for these disorders, and a significant number of patients eventually progress to an end-stage liver disease requiring liver transplantation.In this line, tailored immune-therapeutics have emerged as possible treatments to control the disease.In addition, early diagnosis and treatment are pivotal for reducing the long-lasting effects of these conditions and their burden on quality of life.Herein we present a review of the etiology, clinical presentation, diagnosis, and challenges on ALDs and the feasible solutions for these complex diseases.
Collapse
MESH Headings
- Humans
- Hepatitis, Autoimmune/therapy
- Hepatitis, Autoimmune/diagnosis
- Hepatitis, Autoimmune/immunology
- Hepatitis, Autoimmune/etiology
- Cholangitis, Sclerosing/therapy
- Cholangitis, Sclerosing/diagnosis
- Cholangitis, Sclerosing/immunology
- Liver Cirrhosis, Biliary/therapy
- Liver Cirrhosis, Biliary/diagnosis
- Liver Cirrhosis, Biliary/immunology
- Animals
- Immunotherapy/methods
- Autoimmune Diseases/therapy
- Autoimmune Diseases/diagnosis
- Disease Management
- Genetic Predisposition to Disease
Collapse
Affiliation(s)
- Yangfan Chen
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Ruofei Chen
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Haiyan Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Zongwen Shuai
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, 230032, China.
| |
Collapse
|
3
|
Cardon A, Guinebretière T, Dong C, Gil L, Ado S, Gavlovsky PJ, Braud M, Danger R, Schultheiß C, Doméné A, Paul-Gilloteaux P, Chevalier C, Bernier L, Judor JP, Fourgeux C, Imbert A, Khaldi M, Bardou-Jacquet E, Elkrief L, Lannes A, Silvain C, Schnee M, Tanne F, Vavasseur F, Brusselle L, Brouard S, Kwok WW, Mosnier JF, Lohse AW, Poschmann J, Binder M, Gournay J, Conchon S, Milpied P, Renand A. Single cell profiling of circulating autoreactive CD4 T cells from patients with autoimmune liver diseases suggests tissue imprinting. Nat Commun 2025; 16:1161. [PMID: 39880819 PMCID: PMC11779892 DOI: 10.1038/s41467-025-56363-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 01/15/2025] [Indexed: 01/31/2025] Open
Abstract
Autoimmune liver diseases (AILD) involve dysregulated CD4 T cell responses against liver self-antigens, but how these autoreactive T cells relate to liver tissue pathology remains unclear. Here we perform single-cell transcriptomic and T cell receptor analyses of circulating, self-antigen-specific CD4 T cells from patients with AILD and identify a subset of liver-autoreactive CD4 T cells with a distinct B-helper transcriptional profile characterized by PD-1, TIGIT and HLA-DR expression. These cells share clonal relationships with expanded intrahepatic T cells and exhibit transcriptional signatures overlapping with tissue-resident T cells in chronically inflamed environments. Using a mouse model, we demonstrate that, following antigen recognition in the liver, CD4 T cells acquire an exhausted phenotype, play a crucial role in liver damage, and are controlled by immune checkpoint pathways. Our findings thus suggest that circulating autoreactive CD4 T cells in AILD are imprinted by chronic antigen exposure to promote liver inflammation, thereby serving as a potential target for developing biomarkers and therapies for AILD.
Collapse
Affiliation(s)
- Anaïs Cardon
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Thomas Guinebretière
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Chuang Dong
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, CIML, Marseille, France
| | - Laurine Gil
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, CIML, Marseille, France
| | - Sakina Ado
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, CIML, Marseille, France
| | - Pierre-Jean Gavlovsky
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Martin Braud
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Richard Danger
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Christoph Schultheiß
- Laboratory of Translational Immuno-Oncology, Department of Biomedicine, University and University Hospital Basel, Division of Oncology, University Hospital Basel, Basel, Switzerland
| | - Aurélie Doméné
- Nantes Université, CHU Nantes, CNRS, Inserm, BioCore, US16, SFR Bonamy, Nantes, France
| | | | | | - Laura Bernier
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Jean-Paul Judor
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Cynthia Fourgeux
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Astrid Imbert
- Service Hepato-gastro-entérologie et Assistance Nutritionnelle, CHU Nantes, Nantes, France
| | - Marion Khaldi
- Service Hepato-gastro-entérologie et Assistance Nutritionnelle, CHU Nantes, Nantes, France
- Institut des Maladies de l'Appareil Digestif, IMAD, CHU Nantes, Nantes, France
| | - Edouard Bardou-Jacquet
- CHU Rennes, Service des maladies du foie, Université Rennes, INSERM, INRAE, Institut NUMECAN, Rennes, France
| | - Laure Elkrief
- CHRU Tours, Service Hépato-Gastroentérologie, Tours, France
| | - Adrien Lannes
- CHU Angers, Service Hépato-Gastroentérologie et Oncologie Digestive, Université d'Angers, Laboratoire HIFIH, UPRES EA3859, SFR 4208, Angers, France
| | | | - Matthieu Schnee
- CHD Vendée-La Roche sur Yon, Service Hépato-Gastroentérologie, F- 85000, la Roche sur Yon, France
| | - Florence Tanne
- CHU Brest, Service Hépato-Gastroentérologie, Brest, France
| | | | - Lucas Brusselle
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Sophie Brouard
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - William W Kwok
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Jean-François Mosnier
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
- Service Anatomie et Cytologie Pathologiques, CHU Nantes, Nantes, France
| | - Ansgar W Lohse
- First Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jeremie Poschmann
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Mascha Binder
- Laboratory of Translational Immuno-Oncology, Department of Biomedicine, University and University Hospital Basel, Division of Oncology, University Hospital Basel, Basel, Switzerland
| | - Jérôme Gournay
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
- Service Hepato-gastro-entérologie et Assistance Nutritionnelle, CHU Nantes, Nantes, France
- Institut des Maladies de l'Appareil Digestif, IMAD, CHU Nantes, Nantes, France
| | - Sophie Conchon
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France.
| | - Pierre Milpied
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, CIML, Marseille, France.
| | - Amédée Renand
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France.
| |
Collapse
|
4
|
Rojas M, Acosta-Ampudia Y, Heuer LS, Zang W, M Monsalve D, Ramírez-Santana C, Anaya JM, M Ridgway W, A Ansari A, Gershwin ME. Antigen-specific T cells and autoimmunity. J Autoimmun 2024; 148:103303. [PMID: 39141985 DOI: 10.1016/j.jaut.2024.103303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Abstract
Autoimmune diseases (ADs) showcase the intricate balance between the immune system's protective functions and its potential for self-inflicted damage. These disorders arise from the immune system's erroneous targeting of the body's tissues, resulting in damage and disease. The ability of T cells to distinguish between self and non-self-antigens is pivotal to averting autoimmune reactions. Perturbations in this process contribute to AD development. Autoreactive T cells that elude thymic elimination are activated by mimics of self-antigens or are erroneously activated by self-antigens can trigger autoimmune responses. Various mechanisms, including molecular mimicry and bystander activation, contribute to AD initiation, with specific triggers and processes varying across the different ADs. In addition, the formation of neo-epitopes could also be implicated in the emergence of autoreactivity. The specificity of T cell responses centers on the antigen recognition sequences expressed by T cell receptors (TCRs), which recognize peptide fragments displayed by major histocompatibility complex (MHC) molecules. The assortment of TCR gene combinations yields a diverse array of T cell populations, each with distinct affinities for self and non-self antigens. However, new evidence challenges the traditional notion that clonal expansion solely steers the selection of higher-affinity T cells. Lower-affinity T cells also play a substantial role, prompting the "two-hit" hypothesis. High-affinity T cells incite initial responses, while their lower-affinity counterparts perpetuate autoimmunity. Precision treatments that target antigen-specific T cells hold promise for avoiding widespread immunosuppression. Nevertheless, detection of such antigen-specific T cells remains a challenge, and multiple technologies have been developed with different sensitivities while still harboring several drawbacks. In addition, elements such as human leukocyte antigen (HLA) haplotypes and validation through animal models are pivotal for advancing these strategies. In brief, this review delves into the intricate mechanisms contributing to ADs, accentuating the pivotal role(s) of antigen-specific T cells in steering immune responses and disease progression, as well as the novel strategies for the identification of antigen-specific cells and their possible future use in humans. Grasping the mechanisms behind ADs paves the way for targeted therapeutic interventions, potentially enhancing treatment choices while minimizing the risk of systemic immunosuppression.
Collapse
Affiliation(s)
- Manuel Rojas
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA; Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia.
| | - Yeny Acosta-Ampudia
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Luke S Heuer
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA
| | - Weici Zang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA
| | - Diana M Monsalve
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Carolina Ramírez-Santana
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | | | - William M Ridgway
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA
| | - Aftab A Ansari
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
5
|
Longhi MS, Zhang L, Mieli-Vergani G, Vergani D. B and T cells: (Still) the dominant orchestrators in autoimmune hepatitis. Autoimmun Rev 2024; 23:103591. [PMID: 39117005 PMCID: PMC11409799 DOI: 10.1016/j.autrev.2024.103591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/03/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
Autoimmune hepatitis (AIH) is a severe hepatopathy characterized by hypergammaglobulinemia, presence of serum autoantibodies and histological appearance of interface hepatitis. Liver damage in AIH is initiated by the presentation of a liver autoantigen to uncommitted Th0 lymphocytes, followed by a cascade of effector immune responses culminating with the production of inflammatory cytokines, activation of cytotoxic cells and subsequent hepatocyte injury. B cells actively participate in AIH liver damage by presenting autoantigens to uncommitted T lymphocytes. B cells also undergo maturation into plasma cells that are responsible for production of immunoglobulin G and autoantibodies, which mediate antibody dependent cell cytotoxicity. Perpetuation of effector immunity with consequent progression of liver damage is permitted by impairment in regulatory T cells (Tregs), a lymphocyte subset central to the maintenance of immune homeostasis. Treg impairment in AIH is multifactorial, deriving from numerical decrease, reduced suppressive function, poor response to IL-2 and less stable phenotype. In this review, we discuss the role of B and T lymphocytes in the pathogenesis of AIH. Immunotherapeutic strategies that could limit inflammation and halt disease progression while reconstituting tolerance to liver autoantigens are also reviewed and discussed.
Collapse
Affiliation(s)
- Maria Serena Longhi
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA.
| | - Lina Zhang
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA; School of Arts and Sciences, Tufts University, Medford, MA, USA
| | - Giorgina Mieli-Vergani
- Institute of Liver Studies, MowatLabs, Department of Inflammation Biology, School of Immunology & Microbial Sciences, Faculty of Liver Sciences and Medicine, King's College London, London, United Kingdom.
| | - Diego Vergani
- Institute of Liver Studies, MowatLabs, Department of Inflammation Biology, School of Immunology & Microbial Sciences, Faculty of Liver Sciences and Medicine, King's College London, London, United Kingdom.
| |
Collapse
|
6
|
Yuming Z, Ruqi T, Gershwin ME, Xiong M. Autoimmune Hepatitis: Pathophysiology. Clin Liver Dis 2024; 28:15-35. [PMID: 37945156 DOI: 10.1016/j.cld.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Genome-wide association analyses suggest that HLA genes including HLA-DRB*0301, HLA-DRB*0401, and HLA-B*3501 as well as non-HLA genes including CD28/CTLA4/ICOS and SYNPR increased AIH susceptibility. The destruction of hepatocytes is the result of the imbalance between proinflammatory cells and immunosuppressive cells, especially the imbalance between Tregs and Th17 cells. The microbiome in patients with AIH is decreased in diversity with a specific decline in Bifidobacterium and enrichment in Veillonella and Faecalibacterium. Recent evidence has demonstrated the pathogenic role of E. gallinarum and L.reuteri in inducing autoimmunity in the liver.
Collapse
Affiliation(s)
- Zhou Yuming
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China
| | - Tang Ruqi
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China
| | - Merrill Eric Gershwin
- Division of Rheumatology, Department of Medicine, Allergy and Clinical Immunology, University of California at Davis, 451 Health Sciences Drive, Suite 6510, Davis, CA 95616, USA.
| | - Ma Xiong
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China; Institute of Aging & Tissue Regeneration, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
7
|
Chen G, Hu X, Huang Y, Xiang X, Pan S, Chen R, Xu X. Role of the immune system in liver transplantation and its implications for therapeutic interventions. MedComm (Beijing) 2023; 4:e444. [PMID: 38098611 PMCID: PMC10719430 DOI: 10.1002/mco2.444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/17/2023] Open
Abstract
Liver transplantation (LT) stands as the gold standard for treating end-stage liver disease and hepatocellular carcinoma, yet postoperative complications continue to impact survival rates. The liver's unique immune system, governed by a microenvironment of diverse immune cells, is disrupted during processes like ischemia-reperfusion injury posttransplantation, leading to immune imbalance, inflammation, and subsequent complications. In the posttransplantation period, immune cells within the liver collaboratively foster a tolerant environment, crucial for immune tolerance and liver regeneration. While clinical trials exploring cell therapy for LT complications exist, a comprehensive summary is lacking. This review provides an insight into the intricacies of the liver's immune microenvironment, with a specific focus on macrophages and T cells as primary immune players. Delving into the immunological dynamics at different stages of LT, we explore the disruptions after LT and subsequent immune responses. Focusing on immune cell targeting for treating liver transplant complications, we provide a comprehensive summary of ongoing clinical trials in this domain, especially cell therapies. Furthermore, we offer innovative treatment strategies that leverage the opportunities and prospects identified in the therapeutic landscape. This review seeks to advance our understanding of LT immunology and steer the development of precise therapies for postoperative complications.
Collapse
Affiliation(s)
- Guanrong Chen
- The Fourth School of Clinical MedicineZhejiang Chinese Medical UniversityHangzhouChina
| | - Xin Hu
- Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
| | - Yingchen Huang
- The Fourth School of Clinical MedicineZhejiang Chinese Medical UniversityHangzhouChina
| | - Xiaonan Xiang
- Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
| | - Sheng Pan
- Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
| | - Ronggao Chen
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiao Xu
- Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
- Zhejiang Chinese Medical UniversityHangzhouChina
| |
Collapse
|
8
|
Zhang S, Nan F, Jiang S, Zhou X, Niu D, Li J, Wang H, Zhang X, Zhang X, Wang B. CRM197-conjugated peptides vaccine of HCMV pp65 and gH induce maturation of DC and effective viral-specific T cell responses. Virulence 2023; 14:2169488. [PMID: 36723437 PMCID: PMC9897769 DOI: 10.1080/21505594.2023.2169488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Human cytomegalovirus (HCMV) infection is prevalent worldwide, and there is currently no licenced HCMV vaccine to control it. Therefore, developing an effective HCMV vaccine is a significant priority. Because of their excellent immunogenicity, the crucial components of HCMV, phosphoprotein 65 (pp65) and glycoproteins H (gH) are potential target proteins for HCMV vaccine design. In this study, we predicted and screened the dominant antigenic epitopes of B and T cells from pp65 and gH conjugated with the carrier protein cross-reacting material 197 (CRM197) to form three peptide-CRM197 vaccines (pp65-CRM197, gH-CRM197, and pp65-CRM197+gH-CRM197). Furthermore, the immunogenicity of the peptide-CRM197 vaccines and their effects on dendritic cells (DCs) were explored. The results showed that three peptide-CRM197 vaccines could induce maturation of DCs through the p38 MAPK signalling pathway and promote the release of proinflammatory factors, such as TNF-α and interleukin (IL) -6. Meanwhile, the peptide-CRM197 vaccines could effectively activate T cell and humoral immunity, which were far better than the inactivated HCMV vaccine. In conclusion, we constructed three peptide-CRM197 vaccines, which could induce multiple immune effects, providing a novel approach for HCMV vaccine design.
Collapse
Affiliation(s)
- Shuyun Zhang
- Department of Pathogenic Biology, Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, China,CONTACT Bin Wang Department of Pathogenic Biology, Department of Special Medicine, School of Basic Medicine Qingdao University, Qingdao, China
| | - Fulong Nan
- Department of Pathogenic Biology, Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, China,CONTACT Bin Wang Department of Pathogenic Biology, Department of Special Medicine, School of Basic Medicine Qingdao University, Qingdao, China
| | - Shasha Jiang
- Department of Pathogenic Biology, Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xiaoqiong Zhou
- Department of Pathogenic Biology, Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Delei Niu
- Department of Pathogenic Biology, Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Jun Li
- Department of Pathogenic Biology, Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Hui Wang
- Department of Pathogenic Biology, Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xueming Zhang
- Department of Pathogenic Biology, Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xianjuan Zhang
- Department of Pathogenic Biology, Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Bin Wang
- Department of Pathogenic Biology, Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, China,CONTACT Bin Wang Department of Pathogenic Biology, Department of Special Medicine, School of Basic Medicine Qingdao University, Qingdao, China
| |
Collapse
|
9
|
Czaja AJ. Introducing Molecular Chaperones into the Causality and Prospective Management of Autoimmune Hepatitis. Dig Dis Sci 2023; 68:4098-4116. [PMID: 37755606 PMCID: PMC10570239 DOI: 10.1007/s10620-023-08118-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023]
Abstract
Molecular chaperones influence the immunogenicity of peptides and the activation of effector T cells, and their pathogenic roles in autoimmune hepatitis are unclear. Heat shock proteins are pivotal in the processing and presentation of peptides that activate CD8+ T cells. They can also induce regulatory B and T cells and promote immune tolerance. Tapasin and the transporter associated with antigen processing-binding protein influence the editing and loading of high-affinity peptides for presentation by class I molecules of the major histocompatibility complex. Their over-expression could enhance the autoimmune response, and their deficiency could weaken it. The lysosome-associated membrane protein-2a isoform in conjunction with heat shock cognate 70 supports the importation of cytosolic proteins into lysosomes. Chaperone-mediated autophagy can then process the peptides for activation of CD4+ T cells. Over-expression of autophagy in T cells may also eliminate negative regulators of their activity. The human leukocyte antigen B-associated transcript three facilitates the expression of class II peptide receptors, inhibits T cell apoptosis, prevents T cell exhaustion, and sustains the immune response. Immunization with heat shock proteins has induced immune tolerance in experimental models and humans with autoimmune disease by inducing regulatory T cells. Therapeutic manipulation of other molecular chaperones may promote T cell exhaustion and induce tolerogenic dendritic cells. In conclusion, molecular chaperones constitute an under-evaluated family of ancillary proteins that could affect the occurrence, severity, and outcome of autoimmune hepatitis. Clarification of their contributions to the immune mechanisms and clinical activity of autoimmune hepatitis could have therapeutic implications.
Collapse
Affiliation(s)
- Albert J Czaja
- Mayo Clinic College of Medicine and Science, 200 First Street S.W., Rochester, MN, 55905, USA.
| |
Collapse
|
10
|
Huang W, Rui K, Wang X, Peng N, Zhou W, Shi X, Lu L, Hu D, Tian J. The aryl hydrocarbon receptor in immune regulation and autoimmune pathogenesis. J Autoimmun 2023; 138:103049. [PMID: 37229809 DOI: 10.1016/j.jaut.2023.103049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/10/2023] [Accepted: 04/18/2023] [Indexed: 05/27/2023]
Abstract
As a ligand-activated transcription factor, the aryl hydrocarbon receptor (AhR) is activated by structurally diverse ligands derived from the environment, diet, microorganisms, and metabolic activity. Recent studies have demonstrated that AhR plays a key role in modulating both innate and adaptive immune responses. Moreover, AhR regulates innate immune and lymphoid cell differentiation and function, which is involved in autoimmune pathogenesis. In this review, we discuss recent advances in understanding the mechanism of activation of AhR and its mediated functional regulation in various innate immune and lymphoid cell populations, as well as the immune-regulatory effect of AhR in the development of autoimmune diseases. In addition, we highlight the identification of AhR agonists and antagonists that may serve as potential therapeutic targets for the treatment of autoimmune disorders.
Collapse
Affiliation(s)
- Wei Huang
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China; Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Ke Rui
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China; Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| | - Xiaomeng Wang
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China; Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Na Peng
- Department of Rheumatology and Nephrology, The Second People's Hospital, China Three Gorges University, Yichang, China
| | - Wenhao Zhou
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiaofei Shi
- Department of Rheumatology and Immunology, The First Affiliated Hospital and School of Medicine, Henan University of Science and Technology, Luoyang, China
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Chongqing International Institute for Immunology, China
| | - Dajun Hu
- Department of Rheumatology and Nephrology, The Second People's Hospital, China Three Gorges University, Yichang, China.
| | - Jie Tian
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China; Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
11
|
Li Y, Xiu Z, Li S, Zhu Y, Li Y, Zhao R, Li Y, Yang X, Ge C, Li N, Jin N, Shang C, Li X, Han J. Human adenovirus type 7 virus-like particle vaccine induces Dendritic cell maturation through the TLR4/NF-κB pathway and is highly immunogenic. Antiviral Res 2023; 212:105559. [PMID: 36813181 DOI: 10.1016/j.antiviral.2023.105559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023]
Abstract
Human adenovirus type 7 (HAdv-7) infection is the main cause of upper respiratory tract infection, bronchitis and pneumonia in children. At present, there are no anti-adenovirus drugs or preventive vaccines in the market. Therefore, it is necessary to develop a safe and effective anti-adenovirus type 7 vaccine. In this study, we designed a virus-like particle vaccine expressing the epitopes of hexon and penton of adenovirus type 7 with hepatitis B core protein (HBc) as the vector to induce high-level humoral and cellular immune responses. To evaluate the effectiveness of the vaccine, we first detected the expression of molecular markers on the surface of antigen presenting cells and the secretion of proinflammatory cytokines in vitro. We then measured the levels of neutralizing antibodies and T cell activation in vivo. The results showed that the HAdv-7 virus-like particles (VLPs) recombinant subunit vaccine could activate the innate immune response, including the TLR4/NF-κB pathway which upregulated the expression of MHC II, CD80, CD86, CD40 and cytokines. The vaccine also triggered a strong neutralizing antibody and cellular immune response and activated T lymphocytes. Therefore, the HAdv-7 VLPs promoted humoral and cellular immune responses, thereby potentially enhancing protection against HAdv-7 infection.
Collapse
Affiliation(s)
- Yiquan Li
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, 130117, PR China; Medical College, Yanbian University, Yanji, 133002, PR China
| | - Zhiru Xiu
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, 130117, PR China
| | - Shanzhi Li
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, 130117, PR China
| | - Yilong Zhu
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, 130117, PR China
| | - Yaru Li
- Medical College, Yanbian University, Yanji, 133002, PR China
| | - Renshuang Zhao
- Medical College, Yanbian University, Yanji, 133002, PR China
| | - Yue Li
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, 130117, PR China
| | - Xia Yang
- Medical College, Yanbian University, Yanji, 133002, PR China
| | - Chenchen Ge
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, PR China
| | - Nan Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, PR China
| | - Ningyi Jin
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, 130117, PR China; Medical College, Yanbian University, Yanji, 133002, PR China; Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, PR China
| | - Chao Shang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, PR China.
| | - Xiao Li
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, 130117, PR China; Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, PR China.
| | - Jicheng Han
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, 130117, PR China; Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, PR China.
| |
Collapse
|
12
|
Jiang S, Nan F, Zhang S, Zhang X, Li Z, Yu Z, Liu F, Li J, Zhou X, Niu D, Wang H, Zhang X, Liu W, Yang X, Wang Y, Wang B. CRM197-conjugated multi antigen dominant epitope for effective human cytomegalovirus vaccine development. Int J Biol Macromol 2022; 224:79-93. [DOI: 10.1016/j.ijbiomac.2022.10.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022]
|
13
|
Mack CL. HLA Associations in pediatric autoimmune liver diseases: Current state and future research initiatives. Front Immunol 2022; 13:1019339. [PMID: 36311765 PMCID: PMC9609783 DOI: 10.3389/fimmu.2022.1019339] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/12/2022] [Indexed: 11/21/2024] Open
Abstract
The strongest genetic association with autoimmunity is within chromosome 6p21, where the human leukocyte antigen (HLA) complex resides. This review will focus on the HLA associations within pediatric autoimmune hepatitis, autoimmune sclerosing cholangitis and primary sclerosing cholangitis. In general, there is considerable overlap in HLA genotypes conferring susceptibility to pediatric autoimmune liver diseases, however unique HLA associations and protective HLA genotypes exist. There are numerous areas for future research initiatives in pediatric autoimmune liver diseases and HLA associations with clinical outcomes, autoantigen discovery and novel therapeutics targeting the HLA- autoantigen- T cell pathway will be highlighted.
Collapse
Affiliation(s)
- Cara L. Mack
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology & Nutrition Medical College of Wisconsin and Children’s Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
14
|
Pandey SP, Bender MJ, McPherson AC, Phelps CM, Sanchez LM, Rana M, Hedden L, Sangani KA, Chen L, Shapira JH, Siller M, Goel C, Verdú EF, Jabri B, Chang A, Chandran UR, Mullett SJ, Wendell SG, Singhi AD, Tilstra JS, Pierre JF, Arteel GE, Hinterleitner R, Meisel M. Tet2 deficiency drives liver microbiome dysbiosis triggering Tc1 cell autoimmune hepatitis. Cell Host Microbe 2022; 30:1003-1019.e10. [PMID: 35658976 PMCID: PMC9841318 DOI: 10.1016/j.chom.2022.05.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/04/2022] [Accepted: 05/09/2022] [Indexed: 01/19/2023]
Abstract
The triggers that drive interferon-γ (IFNγ)-producing CD8 T cell (Tc1 cell)-mediated autoimmune hepatitis (AIH) remain obscure. Here, we show that lack of hematopoietic Tet methylcytosine dioxygenase 2 (Tet2), an epigenetic regulator associated with autoimmunity, results in the development of microbiota-dependent AIH-like pathology, accompanied by hepatic enrichment of aryl hydrocarbon receptor (AhR) ligand-producing pathobionts and rampant Tc1 cell immunity. We report that AIH-like disease development is dependent on both IFNγ and AhR signaling, as blocking either reverts ongoing AIH-like pathology. Illustrating the critical role of AhR-ligand-producing pathobionts in this condition, hepatic translocation of the AhR ligand indole-3-aldehyde (I3A)-releasing Lactobacillus reuteri is sufficient to trigger AIH-like pathology. Finally, we demonstrate that I3A is required for L. reuteri-induced Tc1 cell differentiation in vitro and AIH-like pathology in vivo, both of which are restrained by Tet2 within CD8 T cells. This AIH-disease model may contribute to the development of therapeutics to alleviate AIH.
Collapse
Affiliation(s)
- Surya P Pandey
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mackenzie J Bender
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Alex C McPherson
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - Catherine M Phelps
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Mohit Rana
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lee Hedden
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kishan A Sangani
- Department of Medicine, University of Chicago, Chicago, IL, USA; Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Li Chen
- Department of Medicine, University of Chicago, Chicago, IL, USA; Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Jake H Shapira
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Magdalena Siller
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Chhavi Goel
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Elena F Verdú
- Division of Gastroenterology, Department of Internal Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Bana Jabri
- Department of Medicine, University of Chicago, Chicago, IL, USA; Committee on Immunology, University of Chicago, Chicago, IL, USA; Department of Pathology, University of Chicago, Chicago, IL, USA; Department of Pediatrics, University of Chicago, Chicago, IL, USA
| | - Alexander Chang
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Uma R Chandran
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steven J Mullett
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Health Sciences Metabolomics and Lipidomics Core, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stacy G Wendell
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Health Sciences Metabolomics and Lipidomics Core, University of Pittsburgh, Pittsburgh, PA, USA
| | - Aatur D Singhi
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jeremy S Tilstra
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Joseph F Pierre
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Gavin E Arteel
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Reinhard Hinterleitner
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Marlies Meisel
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
15
|
Abstract
Type 1 CD8 T cells (Tc1s) have been implicated in liver injury in autoimmune hepatitis (AIH) through mechanisms that have so far been unclear. In this issue of Cell Host & Microbe, Pandey et al. show that the aryl hydrocarbon receptor ligand-producing pathobiont Lactobacillus reuteri induces Tc1-mediated AIH-like pathology in mice with Tet-methylcytosine-dioxygenase-2 deficiency.
Collapse
|
16
|
Tana MMS, Klepper A, Lyden A, Pisco AO, Phelps M, McGee B, Green K, Feng S, DeRisi J, Crawford ED, Lammert CS. Transcriptomic profiling of blood from autoimmune hepatitis patients reveals potential mechanisms with implications for management. PLoS One 2022; 17:e0264307. [PMID: 35312680 PMCID: PMC8936448 DOI: 10.1371/journal.pone.0264307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
Autoimmune hepatitis (AIH) is a poorly understood, chronic disease, for which corticosteroids are still the mainstay of therapy and most patients undergo liver biopsy to obtain a diagnosis. We aimed to determine if there was a transcriptomic signature of AIH in the peripheral blood and investigate underlying biologic pathways revealed by gene expression analysis. Whole blood RNA from 75 AIH patients and 25 healthy volunteers was extracted and sequenced. Differential gene expression analysis revealed 249 genes that were significantly differentially expressed in AIH patients compared to controls. Using a random forest algorithm, we determined that less than 10 genes were sufficient to differentiate the two groups in our cohort. Interferon signaling was more active in AIH samples compared to controls, regardless of treatment status. Pegivirus sequences were detected in five AIH samples and 1 healthy sample. The gene expression data and clinical metadata were used to determine 12 genes that were significantly associated with advanced fibrosis in AIH. AIH patients with a partial response to therapy demonstrated decreased evidence of a CD8+ T cell gene expression signal. These findings represent progress in understanding a disease in need of better tests, therapies, and biomarkers.
Collapse
Affiliation(s)
- Michele May-Sien Tana
- University of California, San Francisco, CA, United States of America
- UCSF Liver Center, San Francisco, CA, United States of America
- * E-mail:
| | - Arielle Klepper
- University of California, San Francisco, CA, United States of America
| | - Amy Lyden
- Chan Zuckerberg Biohub, San Francisco, CA, United States of America
| | | | - Maira Phelps
- Chan Zuckerberg Biohub, San Francisco, CA, United States of America
| | - Breann McGee
- University of Indiana, Bloomington, IN, United States of America
| | - Kelsey Green
- University of Indiana, Bloomington, IN, United States of America
| | - Sandy Feng
- University of California, San Francisco, CA, United States of America
- UCSF Liver Center, San Francisco, CA, United States of America
| | - Joseph DeRisi
- University of California, San Francisco, CA, United States of America
- Chan Zuckerberg Biohub, San Francisco, CA, United States of America
| | - Emily Dawn Crawford
- University of California, San Francisco, CA, United States of America
- Chan Zuckerberg Biohub, San Francisco, CA, United States of America
| | - Craig S. Lammert
- University of Indiana, Bloomington, IN, United States of America
| |
Collapse
|
17
|
Terziroli Beretta-Piccoli B, Mieli-Vergani G, Vergani D. Autoimmmune hepatitis. Cell Mol Immunol 2022; 19:158-176. [PMID: 34580437 PMCID: PMC8475398 DOI: 10.1038/s41423-021-00768-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 08/29/2021] [Indexed: 02/06/2023] Open
Abstract
Autoimmune hepatitis (AIH) is a T-cell mediated, inflammatory liver disease affecting all ages and characterized by female preponderance, elevated serum transaminase and immunoglobulin G levels, positive circulating autoantibodies, and presence of interface hepatitis at liver histology. AIH type 1, affecting both adults and children, is defined by positive anti-nuclear and/or anti-smooth muscle antibodies, while type 2 AIH, affecting mostly children, is defined by positive anti-liver-kidney microsomal type 1 and/or anti-liver cytosol type 1 antibody. While the autoantigens of type 2 AIH are well defined, being the cytochrome P4502D6 (CYP2D6) and the formiminotransferase cyclodeaminase (FTCD), in type 1 AIH they remain to be identified. AIH-1 predisposition is conferred by possession of the MHC class II HLA DRB1*03 at all ages, while DRB1*04 predisposes to late onset disease; AIH-2 is associated with possession of DRB1*07 and DRB1*03. The majority of patients responds well to standard immunosuppressive treatment, based on steroid and azathioprine; second- and third-line drugs should be considered in case of intolerance or insufficient response. This review offers a comprehensive overview of pathophysiological and clinical aspects of AIH.
Collapse
Affiliation(s)
- Benedetta Terziroli Beretta-Piccoli
- Epatocentro Ticino & Facoltà di Scienze Biomediche, Università della Svizzera Italiana, Lugano, Switzerland.
- Institute for Research in Biomedicine, Bellinzona, Switzerland.
- King's College London Faculty of Life Sciences & Medicine at King's College Hospital, London, UK.
| | - Giorgina Mieli-Vergani
- King's College London Faculty of Life Sciences & Medicine at King's College Hospital, London, UK
- Paediatric Liver, GI and Nutrition Centre, MowatLabs, King's College Hospital, London, UK
| | - Diego Vergani
- King's College London Faculty of Life Sciences & Medicine at King's College Hospital, London, UK
- Institute of Liver Studies, MowatLabs, King's College Hospital, London, UK
| |
Collapse
|
18
|
Fasano R, Malerba E, Prete M, Solimando AG, Buonavoglia A, Silvestris N, Leone P, Racanelli V. Impact of Antigen Presentation Mechanisms on Immune Response in Autoimmune Hepatitis. Front Immunol 2022; 12:814155. [PMID: 35116039 PMCID: PMC8804214 DOI: 10.3389/fimmu.2021.814155] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/31/2021] [Indexed: 12/21/2022] Open
Abstract
The liver is a very tolerogenic organ. It is continually exposed to a multitude of antigens and is able to promote an effective immune response against pathogens and simultaneously immune tolerance against self-antigens. In spite of strong peripheral and central tolerogenic mechanisms, loss of tolerance can occur in autoimmune liver diseases, such as autoimmune hepatitis (AIH) through a combination of genetic predisposition, environmental factors, and an imbalance in immunological regulatory mechanisms. The liver hosts several types of conventional resident antigen presenting cells (APCs) such as dendritic cells, B cells and macrophages (Kupffer cells), and unconventional APCs including liver sinusoidal endothelial cells, hepatic stellate cells and hepatocytes. By standard (direct presentation and cross-presentation) and alternative mechanisms (cross-dressing and MHC class II-dressing), liver APCs presents self-antigen to naive T cells in the presence of costimulation leading to an altered immune response that results in liver injury and inflammation. Additionally, the transport of antigens and antigen:MHC complexes by trogocytosis and extracellular vesicles between different cells in the liver contributes to enhance antigen presentation and amplify autoimmune response. Here, we focus on the impact of antigen presentation on the immune response in the liver and on the functional role of the immune cells in the induction of liver inflammation. A better understanding of these key pathogenic aspects could facilitate the establishment of novel therapeutic strategies in AIH.
Collapse
Affiliation(s)
- Rossella Fasano
- Department of Biomedical Sciences and Human Oncology, “Aldo Moro” University of Bari Medical School, Bari, Italy
- Medical Oncology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Eleonora Malerba
- Department of Biomedical Sciences and Human Oncology, “Aldo Moro” University of Bari Medical School, Bari, Italy
| | - Marcella Prete
- Department of Biomedical Sciences and Human Oncology, “Aldo Moro” University of Bari Medical School, Bari, Italy
| | - Antonio Giovanni Solimando
- Department of Biomedical Sciences and Human Oncology, “Aldo Moro” University of Bari Medical School, Bari, Italy
- Medical Oncology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Alessio Buonavoglia
- Department of Biomedical Sciences and Human Oncology, “Aldo Moro” University of Bari Medical School, Bari, Italy
| | - Nicola Silvestris
- Department of Biomedical Sciences and Human Oncology, “Aldo Moro” University of Bari Medical School, Bari, Italy
- Medical Oncology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Patrizia Leone
- Department of Biomedical Sciences and Human Oncology, “Aldo Moro” University of Bari Medical School, Bari, Italy
| | - Vito Racanelli
- Department of Biomedical Sciences and Human Oncology, “Aldo Moro” University of Bari Medical School, Bari, Italy
- *Correspondence: Vito Racanelli,
| |
Collapse
|
19
|
Thomas-Dupont P, Grube-Pagola P, Izaguirre-Hernández IY, Hernández-Flores KG, Sánchez-Marce EE, Cano-Contreras AD, Remes-Troche JM, Vivanco-Cid H. Development of a New Murine Model of Type 2 Autoimmune Hepatitis Using a Human Liver Protein. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:21-30. [PMID: 34717895 DOI: 10.1016/j.ajpath.2021.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/13/2021] [Accepted: 10/04/2021] [Indexed: 11/17/2022]
Abstract
Autoimmune hepatitis (AIH) is a chronic inflammatory condition of the liver characterized by parenchymal destruction, hypergammaglobulinemia, specific autoantibody production, and hepatic fibrosis and necrosis. Murine models of AIH have been described; however, little is known about the immunologic mechanisms of tissue destruction. In this study, a new murine model of type 2 AIH was developed using recombinant human cytochrome P450 (CYP) 2D6 emulsified with complete Freund's adjuvant (CFA). BALB/c mice were immunized with 2 μg/mL i.p. of CYP2D6 in CFA. The control group received CFA or phosphate-buffered saline alone. Alanine aminotransferase activity, autoantibody production, IgG concentrations, histologic damage, and specific T-cell response were evaluated. Persistent AIH, characterized by cellular infiltration, hepatic fibrosis, elevated alanine aminotransferase, and the production of anti-liver kidney microsomal antibody type 1 developed in CFA/CYP2D6-immunized mice. These mice presented high levels of IgG and its subclasses IgG1, IgG2a, and IgG2b against liver self-proteins. Interestingly, IL-2+ and interferon γ-positive Cyp2d6-specific T cells were present in greater concentrations in mice immunized with CFA/CYP2D6 compared with control. Immunization with CFA, in combination with a natural human autoantigen like CYP2D6, was demonstrated to break tolerance, resulting in a chronic form of autoimmune-related liver damage. This murine model of type 2 AIH is expected to be instrumental in understanding the immunologic mechanisms of the pathogenesis of this autoimmune liver disease.
Collapse
Affiliation(s)
- Pablo Thomas-Dupont
- Instituto de Investigaciones Medico-Biológicas, Universidad Veracruzana, Veracruz, México
| | - Peter Grube-Pagola
- Instituto de Investigaciones Medico-Biológicas, Universidad Veracruzana, Veracruz, México
| | | | | | - Elvis E Sánchez-Marce
- Hospital Regional de Alta Especialidad de Veracruz, Servicios de Salud de Veracruz, Veracruz, México
| | - Ana D Cano-Contreras
- Instituto de Investigaciones Medico-Biológicas, Universidad Veracruzana, Veracruz, México
| | - José M Remes-Troche
- Instituto de Investigaciones Medico-Biológicas, Universidad Veracruzana, Veracruz, México
| | - Héctor Vivanco-Cid
- Instituto de Investigaciones Medico-Biológicas, Universidad Veracruzana, Veracruz, México.
| |
Collapse
|
20
|
Sirbe C, Simu G, Szabo I, Grama A, Pop TL. Pathogenesis of Autoimmune Hepatitis-Cellular and Molecular Mechanisms. Int J Mol Sci 2021; 22:13578. [PMID: 34948375 PMCID: PMC8703580 DOI: 10.3390/ijms222413578] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 02/05/2023] Open
Abstract
Pediatric autoimmune liver disorders include autoimmune hepatitis (AIH), autoimmune sclerosing cholangitis (ASC), and de novo AIH after liver transplantation. AIH is an idiopathic disease characterized by immune-mediated hepatocyte injury associated with the destruction of liver cells, causing inflammation, liver failure, and fibrosis, typically associated with autoantibodies. The etiology of AIH is not entirely unraveled, but evidence supports an intricate interaction among genetic variants, environmental factors, and epigenetic modifications. The pathogenesis of AIH comprises the interaction between specific genetic traits and molecular mimicry for disease development, impaired immunoregulatory mechanisms, including CD4+ T cell population and Treg cells, alongside other contributory roles played by CD8+ cytotoxicity and autoantibody production by B cells. These findings delineate an intricate pathway that includes gene to gene and gene to environment interactions with various drugs, viral infections, and the complex microbiome. Epigenetics emphasizes gene expression through hereditary and reversible modifications of the chromatin architecture without interfering with the DNA sequence. These alterations comprise DNA methylation, histone transformations, and non-coding small (miRNA) and long (lncRNA) RNA transcriptions. The current first-line therapy comprises prednisolone plus azathioprine to induce clinical and biochemical remission. Further understanding of the cellular and molecular mechanisms encountered in AIH may depict their impact on clinical aspects, detect biomarkers, and guide toward novel, effective, and better-targeted therapies with fewer side effects.
Collapse
Affiliation(s)
- Claudia Sirbe
- 2nd Pediatric Discipline, Department of Mother and Child, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (C.S.); (T.L.P.)
- 2nd Pediatric Clinic, Emergency Clinical Hospital for Children, 400177 Cluj-Napoca, Romania
| | - Gelu Simu
- Cardiology Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
- Cardiology Department, Rehabilitation Hospital, 400066 Cluj-Napoca, Romania
| | - Iulia Szabo
- Department of Rheumatology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Alina Grama
- 2nd Pediatric Discipline, Department of Mother and Child, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (C.S.); (T.L.P.)
- 2nd Pediatric Clinic, Emergency Clinical Hospital for Children, 400177 Cluj-Napoca, Romania
| | - Tudor Lucian Pop
- 2nd Pediatric Discipline, Department of Mother and Child, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (C.S.); (T.L.P.)
- 2nd Pediatric Clinic, Emergency Clinical Hospital for Children, 400177 Cluj-Napoca, Romania
| |
Collapse
|
21
|
Vergani D, Terziroli Beretta-Piccoli B, Mieli-Vergani G. A reasoned approach to the treatment of autoimmune hepatitis. Dig Liver Dis 2021; 53:1381-1393. [PMID: 34162505 DOI: 10.1016/j.dld.2021.05.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/15/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022]
Abstract
Autoimmune hepatitis (AIH) is a chronic inflammatory liver disease affecting all ages, characterised by elevated transaminase and immunoglobulin G levels, positive autoantibodies, interface hepatitis on histology and good response to immunosuppressive treatment. If untreated, it has a poor prognosis. The aim of this review is to analyse AIH therapeutic interventions with reference to our knowledge of the pathogenesis of AIH. Standard treatment, based on steroids and azathioprine, leads to disease remission in 80-90% of patients. Alternative first-line treatment with budesonide is effective in adults, but less so in the juvenile form of AIH; first-line treatment with ciclosporin does not provide convincing advantages compared to standard treatment. Second-line treatments are needed for patients not responding or intolerant to first-line standard management. Mycophenolate mofetil is the most widely used second-line drug, and has good efficacy particularly for patients intolerant to azathioprine, but is teratogenic. Only few and heterogeneous data on calcineurin inhibitors and m-TOR inhibitors are available. Biologicals, including anti-tumour necrosis factor- α and anti-CD20 monoclonal antibodies, have given ambivalent results and may have severe side-effects. Clinical trials with new therapeutic options aiming at targeting B lymphocytes and proinflammatory cytokines, or expanding regulatory T cells to restore tolerance are ongoing.
Collapse
Affiliation(s)
- Diego Vergani
- King's College London Faculty of Life Sciences & Medicine, London, UK; Institute of Liver Studies, MowatLabs, King's College Hospital, London, UK; Epatocentro Ticino, Lugano, Switzerland
| | - Benedetta Terziroli Beretta-Piccoli
- Institute of Liver Studies, MowatLabs, King's College Hospital, London, UK; Epatocentro Ticino, Lugano, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Switzerland
| | - Giorgina Mieli-Vergani
- King's College London Faculty of Life Sciences & Medicine, London, UK; Epatocentro Ticino, Lugano, Switzerland; Paediatric Liver, GI and Nutrition Centre, MowatLabs, King's College Hospital, London, UK.
| |
Collapse
|
22
|
Vuerich M, Wang N, Kalbasi A, Graham JJ, Longhi MS. Dysfunctional Immune Regulation in Autoimmune Hepatitis: From Pathogenesis to Novel Therapies. Front Immunol 2021; 12:746436. [PMID: 34650567 PMCID: PMC8510512 DOI: 10.3389/fimmu.2021.746436] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/10/2021] [Indexed: 12/20/2022] Open
Abstract
Autoimmune hepatitis (AIH) is a chronic inflammatory disorder characterized by hypergammaglobulinemia, presence of serum autoantibodies and histological features of interface hepatitis. AIH therapeutic management still relies on the administration of corticosteroids, azathioprine and other immunosuppressants like calcineurin inhibitors and mycophenolate mofetil. Withdrawal of immunosuppression often results in disease relapse, and, in some cases, therapy is ineffective or associated with serious side effects. Understanding the mechanisms underlying AIH pathogenesis is therefore of paramount importance to develop more effective and well tolerated agents capable of restoring immunotolerance to liver autoantigens. Imbalance between effector and regulatory cells permits liver damage perpetuation and progression in AIH. Impaired expression and regulation of CD39, an ectoenzyme key to immunotolerance maintenance, have been reported in Tregs and effector Th17-cells derived from AIH patients. Interference with these altered immunoregulatory pathways may open new therapeutic avenues that, in addition to limiting aberrant inflammatory responses, would also reconstitute immune homeostasis. In this review, we highlight the most recent findings in AIH immunopathogenesis and discuss how these could inform and direct the development of novel therapeutic tools.
Collapse
Affiliation(s)
- Marta Vuerich
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Na Wang
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,School of Medicine, Shandong University, Jinan, China
| | - Ahmadreza Kalbasi
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Jonathon J Graham
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Maria Serena Longhi
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
23
|
You Z, Li Y, Wang Q, Zhao Z, Li Y, Qian Q, Li B, Zhang J, Huang B, Liang J, Chen R, Lyu Z, Chen Y, Lian M, Xiao X, Miao Q, Fang J, Lian Z, Eric Gershwin M, Tang R, Ma X. The Clinical Significance of Hepatic CD69 + CD103 + CD8 + Resident-Memory T Cells in Autoimmune Hepatitis. Hepatology 2021; 74:847-863. [PMID: 33554350 DOI: 10.1002/hep.31739] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/01/2020] [Accepted: 01/05/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS The diverse inflammatory response found in the liver of patients with autoimmune hepatitis (AIH) is well established, but identification of potentially pathogenic subpopulations has proven enigmatic. APPROACH AND RESULTS We report herein that CD69+ CD103+ CD8+ tissue-resident memory T cells (TRM ) are significantly increased in the liver of patients with AIH compared to chronic hepatitis B, NAFLD, and healthy control tissues. In addition, there was a significant statistical correlation between elevation of CD8+ TRM cells and AIH disease severity. Indeed, in patients with successful responses to immunosuppression, the frequencies of such hepatic CD8+ TRM cells decreased significantly. CD69+ CD8+ and CD69+ CD103+ CD8+ T cells, also known as CD8+ TRM cells, reflect tissue residency and are well known to provide intense immune antigenic responses. Hence, it was particularly interesting that patients with AIH also manifest an elevated expression of IL-15 and TGF-β on inflammatory cells, and extensive hepatic expression of E-cadherin; these factors likely contribute to the development and localization of CD8+ TRM cells. Based on these data and, in particular, the relationships between disease severity and CD8+ TRM cells, we studied the mechanisms involved with glucocorticoid (GC) modulation of CD8+ TRM cell expansion. Our data reflect that GCs in vitro inhibit the expansion of CD8+ TRM cells induced by IL-15 and TGF-β and with direct down-regulation of the nuclear factor Blimp1 of CD8+ TRM cells. CONCLUSIONS Our data suggest that CD8+ TRM cells play a critical role in the pathogenesis of AIH, and GCs attenuate hepatic inflammation through direct inhibition of CD8+ TRM cell expansion.
Collapse
Affiliation(s)
- Zhengrui You
- Division of Gastroenterology and HepatologyKey Laboratory of Gastroenterology and HepatologyMinistry of HealthState Key Laboratory for Oncogenes and Related GenesRenji HospitalShanghai Institute of Digestive DiseaseSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - You Li
- Division of Gastroenterology and HepatologyKey Laboratory of Gastroenterology and HepatologyMinistry of HealthState Key Laboratory for Oncogenes and Related GenesRenji HospitalShanghai Institute of Digestive DiseaseSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Qixia Wang
- Division of Gastroenterology and HepatologyKey Laboratory of Gastroenterology and HepatologyMinistry of HealthState Key Laboratory for Oncogenes and Related GenesRenji HospitalShanghai Institute of Digestive DiseaseSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Zhibin Zhao
- Chronic Disease LaboratoryInstitutes for Life Sciences and School of MedicineSouth China University of TechnologyGuangzhouChina
| | - Yikang Li
- Division of Gastroenterology and HepatologyKey Laboratory of Gastroenterology and HepatologyMinistry of HealthState Key Laboratory for Oncogenes and Related GenesRenji HospitalShanghai Institute of Digestive DiseaseSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Qiwei Qian
- Division of Gastroenterology and HepatologyKey Laboratory of Gastroenterology and HepatologyMinistry of HealthState Key Laboratory for Oncogenes and Related GenesRenji HospitalShanghai Institute of Digestive DiseaseSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Bo Li
- Division of Gastroenterology and HepatologyKey Laboratory of Gastroenterology and HepatologyMinistry of HealthState Key Laboratory for Oncogenes and Related GenesRenji HospitalShanghai Institute of Digestive DiseaseSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Jun Zhang
- Division of Gastroenterology and HepatologyKey Laboratory of Gastroenterology and HepatologyMinistry of HealthState Key Laboratory for Oncogenes and Related GenesRenji HospitalShanghai Institute of Digestive DiseaseSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Bingyuan Huang
- Division of Gastroenterology and HepatologyKey Laboratory of Gastroenterology and HepatologyMinistry of HealthState Key Laboratory for Oncogenes and Related GenesRenji HospitalShanghai Institute of Digestive DiseaseSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Jubo Liang
- Division of Gastroenterology and HepatologyKey Laboratory of Gastroenterology and HepatologyMinistry of HealthState Key Laboratory for Oncogenes and Related GenesRenji HospitalShanghai Institute of Digestive DiseaseSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Ruiling Chen
- Division of Gastroenterology and HepatologyKey Laboratory of Gastroenterology and HepatologyMinistry of HealthState Key Laboratory for Oncogenes and Related GenesRenji HospitalShanghai Institute of Digestive DiseaseSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Zhuwan Lyu
- Division of Gastroenterology and HepatologyKey Laboratory of Gastroenterology and HepatologyMinistry of HealthState Key Laboratory for Oncogenes and Related GenesRenji HospitalShanghai Institute of Digestive DiseaseSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Yong Chen
- Division of Gastroenterology and HepatologyKey Laboratory of Gastroenterology and HepatologyMinistry of HealthState Key Laboratory for Oncogenes and Related GenesRenji HospitalShanghai Institute of Digestive DiseaseSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Min Lian
- Division of Gastroenterology and HepatologyKey Laboratory of Gastroenterology and HepatologyMinistry of HealthState Key Laboratory for Oncogenes and Related GenesRenji HospitalShanghai Institute of Digestive DiseaseSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Xiao Xiao
- Division of Gastroenterology and HepatologyKey Laboratory of Gastroenterology and HepatologyMinistry of HealthState Key Laboratory for Oncogenes and Related GenesRenji HospitalShanghai Institute of Digestive DiseaseSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Qi Miao
- Division of Gastroenterology and HepatologyKey Laboratory of Gastroenterology and HepatologyMinistry of HealthState Key Laboratory for Oncogenes and Related GenesRenji HospitalShanghai Institute of Digestive DiseaseSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Jingyuan Fang
- Division of Gastroenterology and HepatologyKey Laboratory of Gastroenterology and HepatologyMinistry of HealthState Key Laboratory for Oncogenes and Related GenesRenji HospitalShanghai Institute of Digestive DiseaseSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Zhexiong Lian
- Chronic Disease LaboratoryInstitutes for Life Sciences and School of MedicineSouth China University of TechnologyGuangzhouChina
| | - M Eric Gershwin
- Division of RheumatologyDepartment of Medicine, Allergy and Clinical ImmunologyUniversity of California at DavisDavisCA
| | - Ruqi Tang
- Division of Gastroenterology and HepatologyKey Laboratory of Gastroenterology and HepatologyMinistry of HealthState Key Laboratory for Oncogenes and Related GenesRenji HospitalShanghai Institute of Digestive DiseaseSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Xiong Ma
- Division of Gastroenterology and HepatologyKey Laboratory of Gastroenterology and HepatologyMinistry of HealthState Key Laboratory for Oncogenes and Related GenesRenji HospitalShanghai Institute of Digestive DiseaseSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
24
|
Cargill T, Culver EL. The Role of B Cells and B Cell Therapies in Immune-Mediated Liver Diseases. Front Immunol 2021; 12:661196. [PMID: 33936097 PMCID: PMC8079753 DOI: 10.3389/fimmu.2021.661196] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022] Open
Abstract
B cells form a branch of the adaptive immune system, essential for the body’s immune defense against pathogens. B cell dysfunction has been implicated in the pathogenesis of immune mediated liver diseases including autoimmune hepatitis, IgG4-related hepatobiliary disease, primary biliary cholangitis and primary sclerosing cholangitis. B cells may initiate and maintain immune related liver diseases in several ways including the production of autoantibodies and the activation of T cells via antigen presentation or cytokine production. Here we comprehensively review current knowledge on B cell mechanisms in immune mediated liver diseases, exploring disease pathogenesis, B cell therapies, and novel treatment targets. We identify key areas where future research should focus to enable the development of targeted B cell therapies.
Collapse
Affiliation(s)
- Tamsin Cargill
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Emma L Culver
- Oxford Liver Unit, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
25
|
Liberal R, de Boer YS, Heneghan MA. Established and novel therapeutic options for autoimmune hepatitis. Lancet Gastroenterol Hepatol 2021; 6:315-326. [DOI: 10.1016/s2468-1253(20)30328-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 08/14/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023]
|
26
|
Abstract
PURPOSE OF REVIEW Autoimmune hepatitis (AIH) is a chronic disease characterized by a lymphocyte infiltrate in the liver. For decades, nonspecific immunosuppression has been used to limit chronic liver inflammation. The high risk of relapse, the treatments side effects, and the significant number of refractory patients are the main clinical issues that require efforts to understand AIH immune mechanisms. RECENT FINDINGS The balance between regulatory CD4 T cells, known to control autoimmunity, and effector CD4 T cells, that recognize liver self-antigens and mediate the liver inflammation, appears central in AIH immune mechanisms. Recent advances in the identification of pathogenic auto-reactive CD4 T cells, and of new mechanisms of immune regulatory defects in AIH patients, give new insights into the pathophysiology of this disease. SUMMARY In this review, we propose an overview of the central role of CD4 T cells (both regulatory and pathogenic) in mechanisms of AIH, with a focus on recent advances regarding defective regulatory mechanisms and immune profile of auto-reactive CD4 T cells. These findings may have implication for the orientation of new therapeutic strategies to treat AIH, such as regulatory T-cell infusion or targeting B cells and cytokines released by pathogenic CD4 T cells.
Collapse
Affiliation(s)
- Anaïs Cardon
- Université de Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | | | | |
Collapse
|
27
|
Savio LEB, Robson SC, Longhi MS. Ectonucleotidase Modulation of Lymphocyte Function in Gut and Liver. Front Cell Dev Biol 2021; 8:621760. [PMID: 33553158 PMCID: PMC7859358 DOI: 10.3389/fcell.2020.621760] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/15/2020] [Indexed: 01/10/2023] Open
Abstract
Imbalance between regulatory and effector T lymphocytes contributes to loss of immunotolerance and plays a permissive role in the initiation, perpetuation, and progression of chronic inflammatory diseases and autoimmune disorders. Regulatory/effector cell balance is governed by the CD39 ectonucleotidase, the prototype member of the NTPDase family that hydrolyzes ATP and ADP into AMP, subsequently converted into adenosine by CD73. Generation of adenosine impacts T-cell function as it contributes to the mechanism of suppression of Tregs and confers regulatory properties to pathogenic Th17-cells. CD39 cell distribution, mechanism of regulation and impact on inflammatory and regulatory signaling pathways are also discussed here. Innovative therapeutic strategies to boost CD39 levels and activity by either administering soluble ADPases or interfering with CD39 inhibitory signals are reviewed. Restoration of CD39 levels and function has enormous translational and clinical implications and should be regarded as an additional form of treatment to be deployed in the chronic inflammatory setting. The key role of CD39 in immunoregulation in the context of Crohn's disease, one of the most frequent manifestations of inflammatory bowel disease, and autoimmune hepatitis, an autoimmune disorder of the liver, is reviewed and discussed here.
Collapse
Affiliation(s)
- Luiz Eduardo Baggio Savio
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Simon C Robson
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.,Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Maria Serena Longhi
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
28
|
Antigen presentation, autoantibody production, and therapeutic targets in autoimmune liver disease. Cell Mol Immunol 2020; 18:92-111. [PMID: 33110250 PMCID: PMC7852534 DOI: 10.1038/s41423-020-00568-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023] Open
Abstract
The liver is an important immunological organ that controls systemic tolerance. The liver harbors professional and unconventional antigen-presenting cells that are crucial for tolerance induction and maintenance. Orchestrating the immune response in homeostasis depends on a healthy and well-toned immunological liver microenvironment, which is maintained by the crosstalk of liver-resident antigen-presenting cells and intrahepatic and liver-infiltrating leukocytes. In response to pathogens or autoantigens, tolerance is disrupted by unknown mechanisms. Intrahepatic parenchymal and nonparenchymal cells exhibit unique antigen-presenting properties. The presentation of microbial and endogenous lipid-, metabolite- and peptide-derived antigens from the gut via conventional and nonconventional mechanisms can educate intrahepatic immune cells and elicit effector responses or tolerance. Perturbation of this balance results in autoimmune liver diseases, such as autoimmune hepatitis, primary biliary cholangitis, and primary sclerosing cholangitis. Although the exact etiologies of these autoimmune liver diseases are unknown, it is thought that the disruption of tolerance towards self-antigens and microbial metabolites and lipids, as well as alterations in bile acid composition, may result in changes in effector cell activation and polarization and may reduce or impair protective anti-inflammatory regulatory T and B cell responses. Additionally, the canonical and noncanonical transmission of antigens and antigen:MHC complexes via trogocytosis or extracellular vesicles between different (non) immune cells in the liver may play a role in the induction of hepatic inflammation and tolerance. Here, we summarize emerging aspects of antigen presentation, autoantibody production, and the application of novel therapeutic approaches in the characterization and treatment of autoimmune liver diseases.
Collapse
|
29
|
Richardson N, Ng STH, Wraith DC. Antigen-Specific Immunotherapy for Treatment of Autoimmune Liver Diseases. Front Immunol 2020; 11:1586. [PMID: 32793226 PMCID: PMC7385233 DOI: 10.3389/fimmu.2020.01586] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/15/2020] [Indexed: 12/11/2022] Open
Abstract
The liver is a critical organ in controlling immune tolerance. In particular, it is now clear that targeting antigens for presentation by antigen presenting cells in the liver can induce immune tolerance to either autoantigens from the liver itself or tissues outside of the liver. Here we review immune mechanisms active within the liver that contribute both to the control of infectious diseases and tolerance to self-antigens. Despite its extraordinary capacity for tolerance induction, the liver remains a target organ for autoimmune diseases. In this review, we compare and contrast known autoimmune diseases of the liver. Currently patients tend to receive strong immunosuppressive treatments and, in many cases, these treatments are associated with deleterious side effects, including a significantly higher risk of infection and associated health complications. We propose that, in future, antigen-specific immunotherapies are adopted for treatment of liver autoimmune diseases in order to avoid such adverse effects. We describe various therapeutic approaches that either are in or close to the clinic, highlight their mechanism of action and assess their suitability for treatment of autoimmune liver diseases.
Collapse
Affiliation(s)
| | | | - David C. Wraith
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
30
|
Soon CF, Zhang S, Suneetha PV, Antunes DA, Manns MP, Raha S, Schultze-Florey C, Prinz I, Wedemeyer H, Sällberg Chen M, Cornberg M. Hepatitis E Virus (HEV)-Specific T Cell Receptor Cross-Recognition: Implications for Immunotherapy. Front Immunol 2019; 10:2076. [PMID: 31552033 PMCID: PMC6738269 DOI: 10.3389/fimmu.2019.02076] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 08/16/2019] [Indexed: 12/26/2022] Open
Abstract
T cell immunotherapy is a concept developed for the treatment of cancer and infectious diseases, based on cytotoxic T lymphocytes to target tumor- or pathogen-specific antigens. Antigen-specificity of the T cell receptors (TCRs) is an important selection criterion in the developmental design of immunotherapy. However, off-target specificity is a possible autoimmunity concern if the engineered antigen-specific T cells are cross-reacting to self-peptides in-vivo. In our recent work, we identified several hepatitis E virus (HEV)-specific TCRs as potential candidates to be developed into T cell therapy to treat chronic hepatitis E. One of the identified TCRs, targeting a HLA-A2-restricted epitope at the RNA-dependent RNA polymerase (HEV-1527: LLWNTVWNM), possessed a unique multiple glycine motif in the TCR-β CDR3, which might be a factor inducing cross-reactivity. The aim of our study was to explore if this TCR could cross-recognize self-peptides to underlay autoimmunity. Indeed, we found that this HEV-1527-specific TCR could also cross-recognize an apoptosis-related epitope, Nonmuscle Myosin Heavy Chain 9 (MYH9-478: QLFNHTMFI). While this TCR had dual specificities to both viral epitope and a self-antigen by double Dextramer binding, it was selectively functional against HEV-1527 but not activated against MYH9-478. The consecutive glycine motif in β chain may be the reason promoting TCR binding promiscuity to recognize a secondary target, thereby facilitating cross-recognition. In conclusion, candidate TCRs for immunotherapy development should be screened for autoimmune potential, especially when the TCRs exhibit unique sequence pattern.
Collapse
Affiliation(s)
- Chai Fen Soon
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hanover, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hanover, Germany
| | - Shihong Zhang
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hanover, Germany
| | | | | | - Michael Peter Manns
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hanover, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hanover, Germany
| | - Solaiman Raha
- Hannover Medical School, Institute of Immunology, Hanover, Germany
| | - Christian Schultze-Florey
- Hannover Medical School, Institute of Immunology, Hanover, Germany.,Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hanover, Germany
| | - Immo Prinz
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hanover, Germany.,Hannover Medical School, Institute of Immunology, Hanover, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hanover, Germany.,German Center for Infection Research, Partner Site Hannover-Braunschweig, Hanover, Germany.,Department of Gastroenterology and Hepatology, University Clinic Essen, Essen, Germany
| | - Margaret Sällberg Chen
- Department of Dental Medicine and Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Markus Cornberg
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hanover, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hanover, Germany.,German Center for Infection Research, Partner Site Hannover-Braunschweig, Hanover, Germany.,Centre for Individualised Infection Medicine, Hanover, Germany.,Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
31
|
Webb GJ, Hirschfield GM, Krawitt EL, Gershwin ME. Cellular and Molecular Mechanisms of Autoimmune Hepatitis. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2019; 13:247-292. [PMID: 29140756 DOI: 10.1146/annurev-pathol-020117-043534] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Autoimmune hepatitis is an uncommon idiopathic syndrome of immune-mediated destruction of hepatocytes, typically associated with autoantibodies. The disease etiology is incompletely understood but includes a clear association with human leukocyte antigen (HLA) variants and other non-HLA gene variants, female sex, and the environment. Pathologically, there is a CD4+ T cell-rich lymphocytic inflammatory infiltrate with variable hepatocyte necrosis and subsequent hepatic fibrosis. Attempts to understand pathogenesis are informed by several monogenetic syndromes that may include autoimmune liver injury, by several drug and environmental agents that have been identified as triggers in a minority of cases, by human studies that point toward a central role for CD4+ effector and regulatory T cells, and by animal models of the disease. Nonspecific immunosuppression is the current standard therapy. Further understanding of the disease's cellular and molecular mechanisms may assist in the design of better-targeted therapies, aid the limitation of adverse effects from therapy, and inform individualized risk assessment and prognostication.
Collapse
Affiliation(s)
- G J Webb
- National Institute for Health Research Liver Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, United Kingdom; ,
| | - G M Hirschfield
- National Institute for Health Research Liver Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, United Kingdom; ,
| | - E L Krawitt
- Department of Medicine, University of Vermont, Burlington, Vermont 05405, USA; .,Department of Medicine, Dartmouth College, Hanover, New Hampshire 03755, USA
| | - M E Gershwin
- Division of Rheumatology, Allergy, and Clinical Immunology, School of Medicine, University of California, Davis, California 95817, USA;
| |
Collapse
|
32
|
Juvenile autoimmune hepatitis: A comprehensive review. J Autoimmun 2018; 95:69-76. [DOI: 10.1016/j.jaut.2018.10.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 10/13/2018] [Indexed: 12/12/2022]
|
33
|
Christen U, Hintermann E. Pathogens and autoimmune hepatitis. Clin Exp Immunol 2018; 195:35-51. [PMID: 30113082 DOI: 10.1111/cei.13203] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 07/30/2018] [Accepted: 08/06/2018] [Indexed: 12/12/2022] Open
Abstract
Autoimmune hepatitis (AIH) is a severe form of hepatitis resulting in the autoimmune-mediated destruction of the liver parenchyma. Whereas many of the immunopathogenic events have been elucidated and some of the drivers of the disease have been identified, little is known about the aetiology of the disease. There are certain risk factors, such as particular human leucocyte antigen (HLA) haplotypes, that enhance the susceptibility for AIH or influence the severity of the disease. However, as for many other autoimmune diseases, the mere presence of such risk factors does not warrant the occurrence of the disease. Not all individuals carrying risk factors develop AIH, and not all patients with AIH are carriers of high-risk alleles. Thus, additional environmental factors need to be considered as triggers for AIH. Environmental factors include diet, sunlight exposure, stress, medication and hygiene, as well as pathogen infections and vaccinations. This review discusses if pathogens should be considered as triggers for the initiation and/or propagation of AIH.
Collapse
Affiliation(s)
- U Christen
- Pharmazentrum Frankfurt / ZAFES, Goethe University Hospital, Frankfurt am Main, Germany
| | - E Hintermann
- Pharmazentrum Frankfurt / ZAFES, Goethe University Hospital, Frankfurt am Main, Germany
| |
Collapse
|
34
|
Zhao Y, Li Y, Zhao D, Zhang H, Liu Y, Liao H, Zhang Y, Yan H. Fumarate hydratase-specific T cell response in Chinese patients with autoimmune hepatitis. Clin Res Hepatol Gastroenterol 2018; 42:339-346. [PMID: 29610041 DOI: 10.1016/j.clinre.2017.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/19/2017] [Indexed: 02/04/2023]
Abstract
PURPOSE Fumarate hydratase (FH) is expressed in the serum of patients with autoimmune hepatitis (AIH). The specific involvement of FH-specific T cell response is currently unknown. The aim of the study was to assess the frequency and clinical significance of FH-specific T cell response in AIH. METHODS This was a prospective study of 42 consecutive patients admitted to the clinical study center of autoimmune liver disease of our Hospital, Capital Medical University (China) between January 2011 and December 2014. PBMCs were collected and the FH-specific T cell response was detected by Elispot. Cytokines and antibody responses were assessed. RESULTS Among the 42 AIH patients, 57.1% showed a positive response to FH peptides. The difference in FH-specific T cell response frequency among AIH patients and control groups was significant (P<0.001). The FH peptides induced the secretion of CD4+ and CD8+ T cells. The FH-specific T cell response in patients with active disease was stronger than in those with remission (P=0.0283). FH-specific T cell response in patients with active disease showed a positive association with ALT (r=0.4712, P=0.0098) and AST (r=0.3924, P=0.0352) levels. The magnitude of the FH-specific T cell response correlated with the HAI score (r=0.7290, P=0.0047) and anti-FH titer (r=0.6457, P=0.0093). CONCLUSION FH-specific T cell response may be detected in the blood of patients with AIH and seems to be associated with AIH disease progression. FH-specific T cell response could be a pathogenic cause of AIH.
Collapse
Affiliation(s)
- Yan Zhao
- Center for clinical laboratory, Beijing You'An Hospital, Capital Medical University, 100069 Beijing, China
| | - Yanli Li
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Dantong Zhao
- Center for clinical laboratory, Beijing You'An Hospital, Capital Medical University, 100069 Beijing, China
| | - Haiping Zhang
- Center for clinical laboratory, Beijing You'An Hospital, Capital Medical University, 100069 Beijing, China
| | - Yanmin Liu
- Study Centre of Autoimmune liver disease, Beijing You'An Hospital, Capital Medical University, 100069 Beijing, China
| | - Huiyu Liao
- Study Centre of Autoimmune liver disease, Beijing You'An Hospital, Capital Medical University, 100069 Beijing, China
| | - Yonghong Zhang
- Interventional therapy center, Beijing You'An Hospital, Capital Medical University, 100069 Beijing, China.
| | - Huiping Yan
- Center for clinical laboratory, Beijing You'An Hospital, Capital Medical University, 100069 Beijing, China.
| |
Collapse
|
35
|
Sebode M, Weiler-Normann C, Liwinski T, Schramm C. Autoantibodies in Autoimmune Liver Disease-Clinical and Diagnostic Relevance. Front Immunol 2018; 9:609. [PMID: 29636752 PMCID: PMC5880919 DOI: 10.3389/fimmu.2018.00609] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/12/2018] [Indexed: 12/12/2022] Open
Abstract
Testing for liver-related autoantibodies should be included in the workup of patients with hepatitis or cholestasis of unknown origin. Although most of these autoantibodies are not disease specific, their determination is a prerequisite to diagnose autoimmune hepatitis (AIH) and primary biliary cholangitis (PBC), and they are components of the diagnostic scoring system in these diseases. In primary sclerosing cholangitis (PSC), on the other hand, autoantibodies are frequently present but play a minor role in establishing the diagnosis. In PSC, however, data on antibodies suggest a link between disease pathogenesis and the intestinal microbiota. This review will focus on practical aspects of antibody testing in the three major autoimmune liver diseases AIH, PBC, and PSC.
Collapse
Affiliation(s)
- Marcial Sebode
- 1st Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Christina Weiler-Normann
- 1st Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany.,Martin Zeitz Centre for Rare Diseases, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Timur Liwinski
- 1st Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Schramm
- 1st Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany.,Martin Zeitz Centre for Rare Diseases, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
36
|
Christen U, Hintermann E. Autoantibodies in Autoimmune Hepatitis: Can Epitopes Tell Us about the Etiology of the Disease? Front Immunol 2018; 9:163. [PMID: 29503645 PMCID: PMC5820307 DOI: 10.3389/fimmu.2018.00163] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/18/2018] [Indexed: 12/12/2022] Open
Abstract
Autoimmune hepatitis (AIH), primary biliary cholangitis (PBC), and primary sclerosing cholangitis (PSC) are serious autoimmune liver diseases that are characterized by a progressive destruction of the liver parenchyma and/or the hepatic bile ducts and the development of chronic fibrosis. Left untreated autoimmune liver diseases are often life-threatening, and patients require a liver transplantation to survive. Thus, an early and reliable diagnosis is paramount for the initiation of a proper therapy with immunosuppressive and/or anticholelithic drugs. Besides the analysis of liver biopsies and serum markers indicating liver damage, the screening for specific autoantibodies is an indispensable tool for the diagnosis of autoimmune liver diseases. Such liver autoantigen-specific antibodies might be involved in the disease pathogenesis, and their epitope specificity may give some insight into the etiology of the disease. Here, we will mainly focus on the generation and specificity of autoantibodies in AIH patients. In addition, we will review data from animal models that aim toward a better understanding of the origins and pathogenicity of such autoantibodies.
Collapse
Affiliation(s)
- Urs Christen
- Pharmazentrum Frankfurt/ZAFES, Goethe University Hospital, Frankfurt am Main, Germany
| | - Edith Hintermann
- Pharmazentrum Frankfurt/ZAFES, Goethe University Hospital, Frankfurt am Main, Germany
| |
Collapse
|
37
|
Martínez-Bravo MJ, Sánchez B, Sousa JM, Acevedo MJ, Gómez-Bravo MA, Núñez-Roldán A, Aguilera I. T-cell allorecognition of donor glutathione S-transferase T1 in plasma cell-rich rejection. World J Hepatol 2017; 9:1115-1124. [PMID: 29026463 PMCID: PMC5620421 DOI: 10.4254/wjh.v9.i27.1115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/06/2017] [Accepted: 06/13/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the role of glutathione S-transferase T1 donor-specific T lymphocytes in plasma cell-rich rejection of liver allografts.
METHODS The study group included 22 liver transplant patients. Among them, 18 patients were mismatched for the glutathione S-transferase T1 (GSTT1) alleles (don+/rec-), and 4 were matched (don+/rec+). Seven of the mismatched patients produced anti-GSTT1 antibodies and developed plasma cell-rich rejection (former de novo immune hepatitis). For the detection of specific T lymphocytes, peripheral blood mononuclear cells were collected and stored in liquid nitrogen. The memory T cell response was studied by adding to the cell cultures to a mix of 39 custom-made, 15-mer overlapping peptides, which covered the entire GSTT1 amino acid sequence. The specific cellular response to peptides was analyzed by flow cytometry using the markers CD8, CD4, IL-4 and IFNγ.
RESULTS Activation of CD8+ T cells with different peptides was observed exclusively in the group of patients with plasma-cell rich rejection (3 out of 7), with production of IL-4 and/or IFNγ at a rate of 1%-4.92% depending on the peptides. The CD4+ response was most common and not exclusive for patients with the disease, where 5 out of 7 showed percentages of activated cells from 1.24% to 31.34%. Additionally, two patients without the disease but with the mismatch had cells that became stimulated with some peptides (1.45%-5.18%). Highly unexpected was the finding of a double positive CD4+CD8low T cell population that showed the highest degree of activation with some of the peptides in 7 patients with the mismatch, in 4 patients with plasma cell-rich rejection and in 3 patients without the disease. Unfortunately, CD4+CD8low cells represent 1% of the total number of lymphocytes, and stimulation could not be analyzed in 9 patients due to the low number of gated cells. Cells from the 4 patients included as controls did not show activation with any of the peptides.
CONCLUSION Patients with GSTT1 mismatch can develop a specific T-cell response, but the potential role of this response in the pathogenesis of plasma cell-rich rejection is unknown.
Collapse
Affiliation(s)
- María José Martínez-Bravo
- Immunology Service, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
| | - Berta Sánchez
- Immunology Service, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
| | - José Manuel Sousa
- Digestive Diseases Service, Hospital Universitario Virgen del Rocío, 41013 Seville, Spain
| | - María José Acevedo
- Immunology Service, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
| | | | - Antonio Núñez-Roldán
- Immunology Service, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
| | - Isabel Aguilera
- Immunology Service, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
| |
Collapse
|
38
|
Hepatic stroma-educated regulatory DCs suppress CD8 + T cell proliferation in mice. Oncotarget 2017; 8:93414-93425. [PMID: 29212160 PMCID: PMC5706806 DOI: 10.18632/oncotarget.18459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 05/22/2017] [Indexed: 02/07/2023] Open
Abstract
Liver dendritic cells (DCs) display immunosuppressive activities and inhibit the CD4+ T cell response. The present study assessed whether and how liver DCs suppress CD8+ T cells. We found that bone marrow-derived mature DCs incubated with liver stromal cells were characterized by a longer life span, reduced CD11c, IA/IE, CD80, CD86, and CD40 expression, and increased CD11b expression. These unique liver stromal cell-educated mature DCs (LSed-DCs) stimulated CD8+ T cells to express CD25 and CD69, but inhibited their proliferation. CD8+ T cell suppression depended on soluble factors released by LSed-DCs, but not cell-cell contact. Compared with mature DCs, LSed-DCs produced more nitric oxide and IL-10. Addition of a nitric oxide synthase inhibitor, PBIT, but not an IL-10-blocking mAb, reversed LSed-DC inhibition of CD8+ T cell proliferation. We also found that LSed-DCs reduced CD8+ T cell-mediated liver damage in a mouse model of autoimmune hepatitis. These results demonstrate that the liver stroma induces mature DCs to differentiate into regulatory DCs that suppress CD8+ T cell proliferation, and thus contribute to liver tolerance.
Collapse
|
39
|
Liberal R, Mieli-Vergani G, Vergani D. Contemporary issues and future directions in autoimmune hepatitis. Expert Rev Gastroenterol Hepatol 2016; 10:1163-1174. [PMID: 27215278 DOI: 10.1080/17474124.2016.1193004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Autoimmune hepatitis (AIH) is a severe life-threatening hepatopathy of unknown etiology, affecting both pediatric and adult populations, and characterised by inflammatory liver histology, circulating non-organ-specific autoantibodies, and hypergammaglobulinaemia. AIH is a very heterogeneous disease with a variety of clinical presentations, ranging from asymptomatic liver test abnormalities to acute severe hepatitis or even acute liver failure. It responds very well to immunosuppressive treatment with prednisolone with or without azathioprine. Patients who are intolerant or fail to respond to standard therapy are candidates for alternative immunosuppressive regimens, the combination of steroids with mycophenolate mofetil or calcineurin inhibitors being the most frequently reported. The pathogenesis of AIH remains not completely understood, although there is evidence that genetic predisposition, molecular mimicry and defective immunoregulatory mechanisms contribute to the autoimmune liver damage. Areas covered: A literature search was conducted using the key-words 'autoimmune hepatitis', 'immunogenetics', 'regulatory T-cells' and 'immunosuppression'. The aim of this review is to discuss recent breakthroughs in the understanding AIH pathogenesis, diagnosis and treatment. Expert commentary: Progress in the understanding of AIH pathogenesis is likely to contribute to the development of novel therapeutic strategies, such as the adoptive transfer of autologous expanded antigen-specific regulatory T-cells.
Collapse
Affiliation(s)
- Rodrigo Liberal
- a Institute of Liver Studies and Paediatric Liver, GI & Nutrition Centre , King's College Hospital , London , UK
| | - Giorgina Mieli-Vergani
- a Institute of Liver Studies and Paediatric Liver, GI & Nutrition Centre , King's College Hospital , London , UK
| | - Diego Vergani
- a Institute of Liver Studies and Paediatric Liver, GI & Nutrition Centre , King's College Hospital , London , UK
| |
Collapse
|
40
|
Liberal R, Mieli-Vergani G, Vergani D. Autoimmune hepatitis: From mechanisms to therapy. Rev Clin Esp 2016. [DOI: 10.1016/j.rceng.2016.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
41
|
Liberal R, Mieli-Vergani G, Vergani D. Autoimmune hepatitis: From mechanisms to therapy. Rev Clin Esp 2016; 216:372-383. [PMID: 27161382 DOI: 10.1016/j.rce.2016.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 04/02/2016] [Indexed: 12/13/2022]
Abstract
Autoimmune hepatitis (AIH) is a progressive inflammatory hepatopathy and an important cause of end-stage liver disease. Its aetiology remains unknown, though both genetic and environmental factors are involved in its development. The major mechanism of autoimmune liver damage involves immune reactions against host liver antigens. Numerical and functional defects of regulatory T-cells play a permissive role enabling autoimmune liver injury to occur and persist. The most typical features of AIH are female preponderance, hypergammaglobulinaemia, seropositivity for circulating autoantibodies and a picture of interface hepatitis on histology. Two types of AIH are distinguished according to serological profile: AIH type 1 patients are positive for anti-nuclear and/or anti-smooth muscle antibodies, whereas AIH type 2 patients are defined by the positivity for anti-liver kidney microsomal type 1 antibody and/or for anti-liver cytosol type 1 antibody. Clinical manifestations are variable, and AIH onset is often ill-defined, frequently mimicking acute hepatitis; its course may be fluctuating. AIH responds to immunosuppressive treatment in the majority of cases. Steroids with or without azathioprine should be instituted promptly upon diagnosis. Remission is achieved in some 80% of patients. For the remaining 20% of patients, alternative immunosuppressive agents such as mycophenolate mofetil and calcineurin inhibitors are an option. Liver transplantation should be considered for those patients who progress to cirrhosis and develop complications of end-stage liver disease, as well as for those presenting with acute liver failure; outcomes are excellent, although the disease may recur in the allograft.
Collapse
Affiliation(s)
- R Liberal
- Institute of Liver Studies, King's College London, Faculty of Life Sciences & Medicine, London, UK; Department of Gastroenterology, Centro Hospitalar São João and Faculty of Medicine, University of Porto, Porto, Portugal
| | - G Mieli-Vergani
- Institute of Liver Studies, King's College London, Faculty of Life Sciences & Medicine, London, UK; Paediatric Liver, GI & Nutrition Centre, King's College Hospital, London, UK
| | - D Vergani
- Institute of Liver Studies, King's College London, Faculty of Life Sciences & Medicine, London, UK.
| |
Collapse
|
42
|
Emperipolesis mediated by CD8 T cells is a characteristic histopathologic feature of autoimmune hepatitis. Clin Rev Allergy Immunol 2016; 48:226-35. [PMID: 25051956 DOI: 10.1007/s12016-014-8432-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Emperipolesis has been widely described in patients with autoimmune hepatitis, but the significance and the diagnostic value have not been quantitated. The goal of this study was to define the features and clinical significance of emperipolesis in autoimmune hepatitis (AIH). A retrospective histological evaluation of 101 patients with AIH and 184 controls was performed. Confocal staining for CD4, CD8, CD19, CD56, CD163, and CD11b, CK8/18 and cleaved caspase-3 was performed. Emperipolesis was observed in 65.3 % of the patients with AIH in haematoxylin and eosin (H&E)-stained slides, which was significantly higher than in patients with primary biliary cirrhosis (17.9 %), chronic hepatitis B (14.9 %), and drug-induced liver injury (25.6 %). Among AIH patients, the patients with emperipolesis had significantly higher serum (alanine aminotransferase/aspartate aminotransferase [ALT/AST]) levels. Histologically, emperipolesis was associated with more severe necroinflammatory features and more advanced fibrosis. The lymphocytes in hepatocytes were predominantly as CD8 T cells. Emperipolesis of CD8 T cells induced cleaved caspase-3 expression, and was prominent in areas apoptosis. Emperipolesis is a characteristic feature of AIH which is often seen in conjunction with interface hepatitis, plasmacytic infiltration and hepatocyte rosetting and is associated with more severe necroinflammatory and fibrotic changes. In AIH, emperipolesis is predominantly mediated by CD8 T cells, appears to induce apoptosis and may be another mechanism of autoimmune-mediated hepatocyte injury.
Collapse
|
43
|
Diego and Giorgina Vergani: The two hearts of translational autoimmunity. J Autoimmun 2016; 66:1-6. [DOI: 10.1016/j.jaut.2015.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 11/30/2015] [Indexed: 12/18/2022]
|
44
|
Regulatory T Cells in Autoimmune and Viral Chronic Hepatitis. J Immunol Res 2015; 2015:479703. [PMID: 26106627 PMCID: PMC4464004 DOI: 10.1155/2015/479703] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 05/21/2015] [Indexed: 12/26/2022] Open
Abstract
In both autoimmune liver disease and chronic viral hepatitis, the injury results from an immune-mediated cytotoxic T cell response to liver cells. As such, it is not surprising that CD4(+) regulatory T cells, a key regulatory population of T cells able to curb immune responses, could be involved in both autoimmune hepatitis and chronic viral hepatitis. The liver can induce the conversion of naïve CD4(+) T cells to CD4(+) regulatory T cells and induce tolerance to locally expressed antigens. This tolerance mechanism is carefully regulated in physiological conditions but any imbalance could be pathological. An overly tolerant immune response can lead to chronic infections while an overreactive and unbridled immune response can lead to autoimmune hepatitis. With the recent advent of monoclonal antibodies able to target regulatory T cells (daclizumab) and improve immune responses and several ongoing clinical trials analysing the impact of regulatory T cell infusion on autoimmune liver disease or liver transplant tolerance, modulation of immunological tolerance through CD4(+) regulatory T cells could be a key element of future immunotherapies for several liver diseases allowing restoring the balance between proper immune responses and tolerance. .
Collapse
|
45
|
Liberal R, Grant CR, Longhi MS, Mieli-Vergani G, Vergani D. Regulatory T cells: Mechanisms of suppression and impairment in autoimmune liver disease. IUBMB Life 2015; 67:88-97. [PMID: 25850692 DOI: 10.1002/iub.1349] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 11/11/2015] [Indexed: 12/24/2022]
Abstract
There are three classic liver diseases with probable autoimmune etiology: primary biliary cirrhosis, primary sclerosing cholangitis, and autoimmune hepatitis. The occurrence of these autoimmune conditions is determined by the breakdown of immune-regulatory mechanisms that in health are responsible for maintaining immunological tolerance against self-antigens. Among the multiple T cell subsets with suppressive function, the regulatory T cells (Tregs), defined by the expression of CD4, the IL-2 receptor α chain (CD25), and the transcription factor FOXP3, have emerged as having a central role in maintaining immune-tolerance to autoantigens. Tregs are equipped with an array of mechanisms of suppression, including the modulation of antigen presenting cell maturation and function, the killing of target cells, the disruption of metabolic pathways, and the production of anti-inflammatory cytokines. In all the three autoimmune liver diseases mentioned above, there is evidence pointing for either a reduced frequency and/or function of Tregs. Here, we review the definition, phenotypic characteristics, and mechanisms of suppression employed by Tregs and then we discuss the evidence available pointing to their impairment in patients with autoimmune liver disease.
Collapse
Affiliation(s)
- Rodrigo Liberal
- Institute of Liver Studies and Paediatric Liver, GI & Nutrition Centre, King's College London School of Medicine at King's College Hospital, London, UK
| | | | | | | | | |
Collapse
|
46
|
Bogdanos D, Leung PS, Gershwin ME. Liver and the Biliary Tract. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00087-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
47
|
Sutti S, Rigamonti C, Vidali M, Albano E. CYP2E1 autoantibodies in liver diseases. Redox Biol 2014; 3:72-78. [PMID: 25462068 PMCID: PMC4297929 DOI: 10.1016/j.redox.2014.11.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 11/10/2014] [Accepted: 11/11/2014] [Indexed: 12/11/2022] Open
Abstract
Autoimmune reactions involving cytochrome P4502E1 (CYP2E1) are a feature of idiosyncratic liver injury induced by halogenated hydrocarbons and isoniazid, but are also detectable in about one third of the patients with advanced alcoholic liver disease (ALD) and chronic hepatitis C (CHC). In these latter the presence of anti-CYP2E1 auto-antibodies is an independent predictor of extensive necro-inflammation and fibrosis and worsens the recurrence of hepatitis following liver transplantation, indicating that CYP2E1-directed autoimmunity can contribute to hepatic injury. The molecular characterization of the antigens recognized by anti-CYP2E1 auto-antibodies in ALD and CHC has shown that the targeted conformational epitopes are located in close proximity on the molecular surface. Furthermore, these epitopes can be recognized on CYP2E1 expressed on hepatocyte plasma membranes where they can trigger antibody-mediated cytotoxicity. This does not exclude that T cell-mediated responses against CYP2E1 might also be involved in causing hepatocyte damage. CYP2E1 structural modifications by reactive metabolites and molecular mimicry represent important factors in the breaking of self-tolerance against CYP2E1 in, respectively, ALD and CHC. However, genetic or acquired interferences with the mechanisms controlling the homeostasis of the immune system are also likely to contribute. More studies are needed to better characterize the impact of anti-CYP2E1 autoimmunity in liver diseases particularly in relation to the fact that common metabolic alterations such as obesity and diabetes stimulates hepatic CYP2E1 expression.
Collapse
Affiliation(s)
- Salvatore Sutti
- Department of Health Sciences, University "Amedeo Avogadro" of East Piedmont and Interdepartmental Research Centre for Autoimmune Diseases (IRCAD), Novara, Italy
| | | | - Matteo Vidali
- Azienda Ospedaliero-Universitaria Maggiore della Carità, Novara, Italy
| | - Emanuele Albano
- Department of Health Sciences, University "Amedeo Avogadro" of East Piedmont and Interdepartmental Research Centre for Autoimmune Diseases (IRCAD), Novara, Italy.
| |
Collapse
|
48
|
Liu A, Hu J, Wu W, Huang Y, Liang H, Wang H, Yang R, Fan J. Preliminary exploration of HLA-A 1101-restricted human cytomegalovirus glycoprotein B-specific CD8⁺ T cells in allogeneic stem-cell transplant recipients. Virus Res 2014; 188:38-44. [PMID: 24704672 DOI: 10.1016/j.virusres.2014.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 03/16/2014] [Accepted: 03/24/2014] [Indexed: 10/25/2022]
Abstract
T-cell responses directed against human cytomegalovirus (HCMV) glycoprotein B (gB) contribute to protective immunity against HCMV infection in both animal models and humans. However, the gB-specific human CD8(+) T cell responses remain poorly understood. gB antigen-specific CD8(+) T cells were stained with seven major histocompatibility complex (MHC)-peptide pentamers in 16 human leukocyte antigen (HLA)-A 1101-positive, HCMV-seropositive patients following hematopoietic stem cell transplantation (HSCT). Of these seven pentamers, the most frequent CD8(+) T-cell responses were directed against the gB332-340 peptide. These gB332-340-specific CD8(+) T cells were strongly associated with the presence of plasma HCMV immunoglobulin M in all HSCT recipients and exhibited a probable causal relationship with the level of pp65 antigenemia. Together, these data suggest a role for gB332-340-specific CD8(+) T cells in HCMV reactivation after HSCT. Furthermore, the pentamer assay may be valuable in detecting antigen-specific CD8(+) T cells.
Collapse
Affiliation(s)
- Anbing Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, China
| | - Jianhua Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, China
| | - Wei Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, China
| | - Yaping Huang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, China
| | - Hanying Liang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, China
| | - Huiqi Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, China
| | - Rong Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, China
| | - Jun Fan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, China.
| |
Collapse
|
49
|
Retinoic acid stabilizes antigen-specific regulatory T-cell function in autoimmune hepatitis type 2. J Autoimmun 2014; 53:26-32. [PMID: 24566085 DOI: 10.1016/j.jaut.2014.02.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 02/02/2014] [Indexed: 01/03/2023]
Abstract
Imbalance between effector and regulatory T-cells (Treg) underlies the loss of immune-tolerance to self-antigens in autoimmune disease. In autoimmune hepatitis type 2 (AIH-2), effector CD4 T-cell immune responses to cytochrome P450IID6 (CYP2D6) are permitted by numerically and functionally impaired Treg. Restoration of CYP2D6-specific Treg in AIH-2 would enable control over effectors sharing the same antigen specificity, leading to re-establishment of immune-tolerance. We have previously developed a protocol for generating antigen-specific Treg through co-culture with semi-mature dendritic cells presenting CYP2D6 peptides. In this study, we aimed to explore phenotypic and functional features of patient Treg compared to health, to test Treg stability under pro-inflammatory conditions, and to investigate the potential benefit of supplementation with all-trans-retinoic acid (RA) or rapamycin (RP), agents proven to enhance Treg function. We show that antigen-specific Treg from patients have comparable phenotypic and functional features to those from healthy controls, suppressing both proliferation and pro-inflammatory cytokine production by effector cells. Treg exposure to inflammatory challenge results in decreased suppressive function and up-regulation of Th1/Th2/Th17 transcription factors both in health and AIH-2. The increase of Th1 and Th17 transcription factors is limited by addition of RA in controls and Th1 expression is decreased by RP in patients. Importantly, inflammation-induced decrease in Treg function is also abrogated by RA/RP in health and RA in patients. Our data provide important information for the optimization of protocols aiming at generating antigen-specific Treg for treatment of autoimmune disease and for understanding their biology upon pro-inflammatory challenge and RP/RA supplementation.
Collapse
|
50
|
Abstract
Adenosine triphosphate (ATP) is essential for the myriad of metabolic processes upon which life is based and is known widely as the universal energy currency unit of intracellular biologic reactions. ATP, adenosine diphosphate, adenosine, as well as other purines and pyrimidines also serve as ubiquitous extracellular mediators which function through the activation of specific receptors (viz. P2 receptors for nucleotides and purinergic P1 receptors for adenosine). Extracellular nucleotides are rapidly converted to nucleosides, such as adenosine, by highly regulated plasma membrane ectonucleotidases that modulate many of the normal biological and metabolic processes in the liver - such as gluconeogenesis and insulin signaling. Under inflammatory conditions, as with ischemia reperfusion, sepsis or metabolic stress, ATP and other nucleotides can also act as 'damage-associated molecular patterns' causing inflammasome activation in innate immune cells and endothelium resulting in tissue damage. The phosphohydrolysis of ATP by ectonucleotidases, such as those of the CD39/ENTPD family, results in the generation of immune suppressive adenosine, which in turn markedly limits inflammatory processes. Experimental studies by others and our group have implicated purinergic signaling in experimental models of hepatic ischemia reperfusion and inflammation, transplant rejection, hepatic regeneration, steatohepatitis, fibrosis and cancer, amongst others. Expression of ectonucleotidases on sinusoidal endothelial, stellate or immune cells allows for homeostatic integration and linking of the control of vascular inflammatory and immune cell reactions in the liver. CD39 expression also identifies hepatic myeloid dendritic cells and efficiently distinguishes T-regulatory-type cells from other resting or activated T cells. Our evolving data strongly indicate that CD39 serves as a key 'molecular switch' and is an integral component of the suppressive machinery of myeloid, dendritic and T cells. Increased understanding of mechanisms of extracellular ATP scavenging and specifically conversion to nucleosides by ectonucleotidases of the CD39 family have also led to novel insights into the exquisite balance of nucleotide P2-receptor and adenosinergic P1-receptor signaling in inflammatory and hepatic diseases. Further, CD39 and other ectonucleotidases exhibit genetic polymorphisms in humans which alter levels of expression/function and are associated with predisposition to inflammatory and immune diseases, diabetes and vascular calcification, amongst other problems. Development of therapeutic strategies targeting purinergic signaling and ectonucleotidases offers promise for the management of disordered inflammation and aberrant immune reactivity.
Collapse
Affiliation(s)
- Byron P Vaughn
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, Mass., USA
| | | | | |
Collapse
|