1
|
Wang Q, Chen S, Guo Z, Xia S, Zhang M. NK-like CD8 T cell: one potential evolutionary continuum between adaptive memory and innate immunity. Clin Exp Immunol 2024; 217:136-150. [PMID: 38651831 PMCID: PMC11239564 DOI: 10.1093/cei/uxae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/06/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024] Open
Abstract
CD8 T cells are crucial adaptive immune cells with cytotoxicity to fight against pathogens or abnormal self-cells via major histocompatibility complex class I-dependent priming pathways. The composition of the memory CD8 T-cell pool is influenced by various factors. Physiological aging, chronic viral infection, and autoimmune diseases promote the accumulation of CD8 T cells with highly differentiated memory phenotypes. Accumulating studies have shown that some of these memory CD8 T cells also exhibit innate-like cytotoxicity and upregulate the expression of receptors associated with natural killer (NK) cells. Further analysis shows that these NK-like CD8 T cells have transcriptional profiles of both NK and CD8 T cells, suggesting the transformation of CD8 T cells into NK cells. However, the specific induction mechanism underlying NK-like transformation and the implications of this process for CD8 T cells are still unclear. This review aimed to deduce the possible differentiation model of NK-like CD8 T cells, summarize the functions of major NK-cell receptors expressed on these cells, and provide a new perspective for exploring the role of these CD8 T cells in health and disease.
Collapse
Affiliation(s)
- Qiulei Wang
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Shaodan Chen
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Zhenhong Guo
- National Key Laboratory of Medical Immunology, Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Sheng Xia
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Minghui Zhang
- School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
2
|
Mora-Bitria L, Asquith B. Innate receptors modulating adaptive T cell responses: KIR-HLA interactions and T cell-mediated control of chronic viral infections. Immunogenetics 2023; 75:269-282. [PMID: 36719466 PMCID: PMC9887252 DOI: 10.1007/s00251-023-01293-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 01/02/2023] [Indexed: 02/01/2023]
Abstract
Killer-cell immunoglobulin-like receptors (KIRs) are mainly expressed on natural killer (NK) cells and are key regulators of innate immune responses. NK cells are the first responders in the face of infection and help promote placentation during pregnancy; the importance of KIRs in these NK-mediated processes is well-established. However, mounting evidence suggests that KIRs also have a prominent and long-lasting effect on the adaptive immune system. Here, we review the evidence for the impact of KIRs on T cell responses with a focus on the clinical significance of this interaction.
Collapse
Affiliation(s)
- Laura Mora-Bitria
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Becca Asquith
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
3
|
Koh JY, Kim DU, Moon BH, Shin EC. Human CD8 + T-Cell Populations That Express Natural Killer Receptors. Immune Netw 2023; 23:e8. [PMID: 36911797 PMCID: PMC9995994 DOI: 10.4110/in.2023.23.e8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 03/07/2023] Open
Abstract
CD8+ T cells are activated by TCRs that recognize specific cognate Ags, while NK-cell activation is regulated by a balance between signals from germline-encoded activating and inhibitory NK receptors. Through these different processes of Ag recognition, CD8+ T cells and NK cells play distinct roles as adaptive and innate immune cells, respectively. However, some human CD8+ T cells have been found to express activating or inhibitory NK receptors. CD8+ T-cell populations expressing NK receptors straddle the innate-adaptive boundary with their innate-like features. Recent breakthrough technical advances in multi-omics analysis have enabled elucidation of the unique immunologic characteristics of these populations. However, studies have not yet fully clarified the heterogeneity and immunological characteristics of each CD8+ T-cell population expressing NK receptors. Here we aimed to review the current knowledge of various CD8+ T-cell populations expressing NK receptors, and to pave the way for delineating the landscape and identifying the various roles of these T-cell populations.
Collapse
Affiliation(s)
- June-Young Koh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.,Genome Insight, Inc., Daejeon 34051, Korea
| | - Dong-Uk Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Bae-Hyeon Moon
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.,The Center for Viral Immunology, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon 34126, Korea
| |
Collapse
|
4
|
Wang B, Zhang B, Zhou L, Li S, Li Z, Luo H. Multi-omics reveals diet-induced metabolic disorders and liver inflammation via microbiota-gut-liver axis. J Nutr Biochem 2023; 111:109183. [PMID: 36270571 DOI: 10.1016/j.jnutbio.2022.109183] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 06/23/2022] [Accepted: 09/23/2022] [Indexed: 11/05/2022]
Abstract
The gut microbiota medicated gut-liver axis is vital for liver function and health. We aimed to explore the underlying molecular mechanism of diet-induced metabolic liver disorders via microbiota-gut-liver axis using multi-omics. Metataxonomics, metaproteomics, transcriptomics, and metabolomics were conducted on liver tissue and biofluids (gastrointestinal contents and blood) to elucidate the microbial mechanism related to metabolic disorders and liver injury. The hepatic inflammation occurred based on histomorphology after feeding a long-term grain-based high-energy diet, and the serum biochemical parameters and proinflammatory cytokines were significantly activated. Metaproteomics analysis indicated that the high-energy diet reduced anti-infection, immunity, anti-oxidant functions, and increased cell death and damage of rumen microbiome. Ruminal Ruminococcus_2, Solobacterium, and Syntrophococcu and jejunal Pirellula were potential microbial markers of liver disorders. The high-energy diet promoted hepatic inflammatory response and cytokine/chemokine-mediated signaling pathways located in the core of the functional genomic network. The high-energy diet increased indoxyl sulfate and p-cresol sulfate and decreased triterpenoids in the liver that were the potential biomarkers associated with metabolic liver disorders. Integrated multi-omics analyses showed interactions among the rumen and jejunum microbiota, circulating metabolites, and liver gene expression, suggesting a systemic immune response and liver disorder that signals through the microbiota-gut-liver axis.
Collapse
Affiliation(s)
- Bing Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China.
| | - Boyan Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Lin Zhou
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Shuanghong Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Zhen Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Hailing Luo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China.
| |
Collapse
|
5
|
Thiele D, La Gruta NL, Nguyen A, Hussain T. Hiding in Plain Sight: Virtually Unrecognizable Memory Phenotype CD8 + T cells. Int J Mol Sci 2020; 21:ijms21228626. [PMID: 33207648 PMCID: PMC7698292 DOI: 10.3390/ijms21228626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 02/07/2023] Open
Abstract
Virtual memory T (TVM) cells are a recently described population of conventional CD8+ T cells that, in spite of their antigen inexperience, express markers of T cell activation. TVM cells exhibit rapid responsiveness to both antigen-specific and innate stimuli in youth but acquire intrinsic antigen-specific response defects in the elderly. In this article, we review how the identification of TVM cells necessitates a re-evaluation of accepted paradigms for conventional memory T (TMEM) cells, the potential for heterogeneity within the TVM population, and the defining characteristics of TVM cells. Further, we highlight recent literature documenting the development of TVM cells as a distinct CD8+ T cell lineage as well their biological significance in the context of disease.
Collapse
|
6
|
Mejido DCP, de Oliveira JM, Gaspar AMC, Gardinali NR, Bottino FDO, de Carvalho LG, Lopes dos Santos DR, Kevorkian YB, Xavier LL, Moran J, Pelajo-Machado M, Marchevsky RS, Pinto MA. Evidences of HEV genotype 3 persistence and reactivity in liver parenchyma from experimentally infected cynomolgus monkeys (Macaca fascicularis). PLoS One 2019; 14:e0218472. [PMID: 31211801 PMCID: PMC6581283 DOI: 10.1371/journal.pone.0218472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 06/03/2019] [Indexed: 12/20/2022] Open
Abstract
Hepatitis E virus genotype 3 (HEV-3) is an emerging zoonotic pathogen, responsible for sporadic cases of acute hepatitis E worldwide. Primate models have proven to be an essential tool for the study of HEV pathogenesis. Here we describe the outcomes of HEV infection in Macaca fascicularis (cynomolgus) inoculated experimentally with genotype 3. Eight adult cynomolgus macaques were inoculated intravenously with HEV-3 viral particles isolated from swine and human samples. Liver, spleen, duodenum, gallbladder and bile were sequential assessed up to the end-point of this study, 67 days post-inoculation (dpi). Our previously published findings showed that biochemical parameters return gradually to baseline levels at 55 dpi, whereas anti-HEV IgM and HEV RNA become undetectable in the serum and feces of all animals, indicating a non-viremic phase of recovery. Nevertheless, at a later stage during convalescence (67 dpi), the presence of HEV-3 RNA and antigen persist in central organs, even after peripheral viral clearance. Our results show that two cynomolgus inoculated with swine HEV-3 (animals I3 and O1) presented persistence of HEV RNA low titers in liver, gallbladder and bile. At this same stage of infection, HEV antigen (HEV Ag) could be detected in all infected animals, predominantly in non-reactive Kupffer cells (CD68+iNOS-) and sinusoidal lining cells. Simultaneously, CD4+, CD3+CD4+, and CD3+CD8+ immune cells were identified in hepatic sinusoids and small inflammatory clusters of lobular mononuclear cells, at the end-point of this study. Inability of HEV clearance in humans can result in chronic hepatitis, liver cirrhosis, with subsequent liver failure requiring transplantation. The results of our study support the persistence of HEV-3 during convalescence at 67 dpi, with active immune response in NHP. We alert to the inherent risk of viral transmission through liver transplantation, even in the absence of clinical and biochemical signs of acute infection. Thus, besides checking conventional serological markers of HEV infection, we strongly recommend HEV-3 RNA and antigen detection in liver explants as public health measure to prevent donor-recipient transmission and spread of hepatitis E.
Collapse
Affiliation(s)
- Diana Chaves Pereira Mejido
- Laboratory of Technological Development in Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brasil
| | - Jaqueline Mendes de Oliveira
- Laboratory of Technological Development in Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brasil
| | - Ana Maria Coimbra Gaspar
- Laboratory of Technological Development in Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brasil
| | - Noemi Rovaris Gardinali
- Laboratory of Technological Development in Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brasil
| | - Fernanda de Oliveira Bottino
- Laboratory of Technological Development in Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brasil
| | | | - Debora Regina Lopes dos Santos
- Departament of Veterinary Microbiology and Immunology, Federal Rural University of Rio De Janeiro, Rio de Janeiro, Brasil
| | - Yohan Brito Kevorkian
- Laboratory of Technological Development in Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brasil
| | - Leandro Layter Xavier
- Laboratory of Morphometry, Institute of Biology, Rio de Janeiro State University (UERJ), Rio de Janeiro, Brasil
| | - Julio Moran
- Laboratory of Pathology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brasil
| | | | - Renato Sergio Marchevsky
- Laboratory of Control of Neurovirulence, Bio-Manguinhos, Fundação Oswaldo Cruz, Rio de Janeiro, Brasil
| | - Marcelo Alves Pinto
- Laboratory of Technological Development in Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brasil
- * E-mail:
| |
Collapse
|
7
|
Boelen L, Debebe B, Silveira M, Salam A, Makinde J, Roberts CH, Wang ECY, Frater J, Gilmour J, Twigger K, Ladell K, Miners KL, Jayaraman J, Traherne JA, Price DA, Qi Y, Martin MP, Macallan DC, Thio CL, Astemborski J, Kirk G, Donfield SM, Buchbinder S, Khakoo SI, Goedert JJ, Trowsdale J, Carrington M, Kollnberger S, Asquith B. Inhibitory killer cell immunoglobulin-like receptors strengthen CD8 + T cell-mediated control of HIV-1, HCV, and HTLV-1. Sci Immunol 2018; 3:eaao2892. [PMID: 30413420 PMCID: PMC6277004 DOI: 10.1126/sciimmunol.aao2892] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 06/06/2018] [Accepted: 10/09/2018] [Indexed: 01/05/2023]
Abstract
Killer cell immunoglobulin-like receptors (KIRs) are expressed predominantly on natural killer cells, where they play a key role in the regulation of innate immune responses. Recent studies show that inhibitory KIRs can also affect adaptive T cell-mediated immunity. In mice and in human T cells in vitro, inhibitory KIR ligation enhanced CD8+ T cell survival. To investigate the clinical relevance of these observations, we conducted an extensive immunogenetic analysis of multiple independent cohorts of HIV-1-, hepatitis C virus (HCV)-, and human T cell leukemia virus type 1 (HTLV-1)-infected individuals in conjunction with in vitro assays of T cell survival, analysis of ex vivo KIR expression, and mathematical modeling of host-virus dynamics. Our data suggest that functional engagement of inhibitory KIRs enhances the CD8+ T cell response against HIV-1, HCV, and HTLV-1 and is a significant determinant of clinical outcome in all three viral infections.
Collapse
Affiliation(s)
- Lies Boelen
- Department of Medicine, Imperial College London, London, UK
| | - Bisrat Debebe
- Department of Medicine, Imperial College London, London, UK
| | - Marcos Silveira
- Department of Medicine, Imperial College London, London, UK
- Faculty of Engineering, São Paulo State University-UNESP, São Paulo, Brazil
| | - Arafa Salam
- Institute for Infection and Immunity, St. George's, University of London, London, UK
| | - Julia Makinde
- International AIDS Vaccine Initiative Human Immunology Laboratory, London, UK
| | - Chrissy H Roberts
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, UK
| | - Eddie C Y Wang
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - John Frater
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford, UK
| | - Jill Gilmour
- International AIDS Vaccine Initiative Human Immunology Laboratory, London, UK
| | - Katie Twigger
- Department of Medicine, Imperial College London, London, UK
| | - Kristin Ladell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Kelly L Miners
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Jyothi Jayaraman
- Immunology Division, Department of Pathology, University of Cambridge, Cambridge, UK
| | - James A Traherne
- Immunology Division, Department of Pathology, University of Cambridge, Cambridge, UK
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Ying Qi
- Cancer and Inflammation Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Maureen P Martin
- Cancer and Inflammation Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Derek C Macallan
- Institute for Infection and Immunity, St. George's, University of London, London, UK
| | | | | | | | | | - Susan Buchbinder
- San Francisco Department of Public Health, San Francisco, CA, USA
| | - Salim I Khakoo
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - James J Goedert
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - John Trowsdale
- Immunology Division, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Mary Carrington
- Cancer and Inflammation Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
- Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA
| | - Simon Kollnberger
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Becca Asquith
- Department of Medicine, Imperial College London, London, UK.
| |
Collapse
|
8
|
Béziat V, Hilton HG, Norman PJ, Traherne JA. Deciphering the killer-cell immunoglobulin-like receptor system at super-resolution for natural killer and T-cell biology. Immunology 2016; 150:248-264. [PMID: 27779741 PMCID: PMC5290243 DOI: 10.1111/imm.12684] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/12/2016] [Accepted: 10/17/2016] [Indexed: 12/13/2022] Open
Abstract
Killer-cell immunoglobulin-like receptors (KIRs) are components of two fundamental biological systems essential for human health and survival. First, they contribute to host immune responses, both innate and adaptive, through their expression by natural killer cells and T cells. Second, KIR play a key role in regulating placentation, and hence reproductive success. Analogous to the diversity of their human leucocyte antigen class I ligands, KIR are extremely polymorphic. In this review, we describe recent developments, fuelled by methodological advances, that are helping to decipher the KIR system in terms of haplotypes, polymorphisms, expression patterns and their ligand interactions. These developments are delivering deeper insight into the relevance of KIR in immune system function, evolution and disease.
Collapse
Affiliation(s)
- Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Imagine Institute, Paris Descartes University, Paris, France
| | - Hugo G Hilton
- Departments of Structural Biology and Microbiology & Immunology, Stanford University, Stanford, CA, USA
| | - Paul J Norman
- Departments of Structural Biology and Microbiology & Immunology, Stanford University, Stanford, CA, USA
| | | |
Collapse
|
9
|
Yi RT, Niu YH, Liu HL, Zhang TY, Yang YC, Zhang Y, Yin DL, Chen TY, Zhao YR. Natural Killer Group 2A Expressed on Both Peripheral CD3 -CD56 +NK Cells and CD3 +CD8 +T Cells Plays a Pivotal Negative Regulatory Role in the Progression of Hepatitis B Virus-Related Acute-on-Chronic Liver Failure. J Interferon Cytokine Res 2016; 36:689-697. [PMID: 27828717 DOI: 10.1089/jir.2015.0166] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
To explore the role of surface receptors natural killer group 2A (NKG2A) and natural killer group 2D (NKG2D) on CD3+CD8+T cells and CD3-CD56+NK cells in the progression of hepatitis B virus (HBV)-related acute-on-chronic liver failure (ACLF), we measured the expression of NKG2A and NKG2D on the surface of these 2 types of circulating cells by flow cytometry in 3 groups. One group consists of 36 patients with chronic hepatitis B (CHB), another one consists of 22 patients with HBV-related ACLF, and the last one has 12 normal controls (NC). The experimental result indicated that there was no significant difference in the proportion of CD3+CD8+T cells in total lymphocytes between the 3 groups. However, the percentage of CD3-CD56+NK cells in ACLF group was evidently higher than that in the CHB group (P < 0.05). In addition, the expression of NKG2D on CD3+CD8+T cells in the ACLF group was significantly lower than that in the CHB group (P < 0.05), but there were no statistically significant differences in its percentages on CD3-CD56+NK cells between the 3 groups. The expression of NKG2A on CD3+CD8+T cells in the ACLF group was significantly higher than that in the NC group (P < 0.05), and on NK cells was significantly higher than that in the CHB group (P < 0.05) and NC group (P < 0.01). The increase in ratios of NKG2A to NKG2D on CD3+CD8+T cells and CD3-CD56+NK cells in the ACLF group was significantly more than that in the CHB group and NC group. The results indicate that the imbalance between NKG2A and NKG2D may contribute to the progression of HBV-related ACLF mediated by CD3-CD56+NK cells and CD3+CD8+T cells. Compared with NKG2D, NKG2A expressed on both peripheral CD3-CD56+NK cells and CD3+CD8+T cells plays a more pivotal negative regulatory role in the progression of HBV-related ACLF.
Collapse
Affiliation(s)
- Rui-Tian Yi
- 1 Department of Infectious Diseases, First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, China
| | - Ying-Hua Niu
- 1 Department of Infectious Diseases, First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, China
| | - Hong-Li Liu
- 2 Central Laboratory, Shaanxi Provincial Infectious Diseases Hospital and Xi'an Eighth Hospital Affiliated to Xi'an Jiaotong University Health Science Center , Xi'an, China
| | - Tie-Ying Zhang
- 3 Department of Internal Medicine, No. 1 Hospital of Xi'an , Xi'an, China
| | - Yu-Cong Yang
- 4 Molecular Medicine Center, First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, China
| | - Yu Zhang
- 5 Department of Gastroenterology, Xi'an Zhongxin Hospital , Xi'an, China
| | - Dong-Lin Yin
- 6 Department of Infectious Diseases, No. 3 People's Hospital Affiliated to Medical College, Shanghai Jiaotong University , Shanghai, China
| | - Tian-Yan Chen
- 1 Department of Infectious Diseases, First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, China
| | - Ying-Ren Zhao
- 1 Department of Infectious Diseases, First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, China
| |
Collapse
|
10
|
Russi S, Lauletta G, Serviddio G, Sansonno S, Conteduca V, Sansonno L, De Re V, Sansonno D. T cell receptor variable β gene repertoire in liver and peripheral blood lymphocytes of chronically hepatitis C virus-infected patients with and without mixed cryoglobulinaemia. Clin Exp Immunol 2013; 172:254-62. [PMID: 23574322 DOI: 10.1111/cei.12035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2012] [Indexed: 12/20/2022] Open
Abstract
To characterize the repertoire of T lymphocytes in chronically hepatitis C virus (HCV)-infected patients with and without mixed cryoglobulinaemia (MC). T cell receptor (TCR) variable (V) β clonalities in portal tracts isolated from liver biopsy sections with a laser capture microdissection technique in 30 HCV-positive MC patients were studied by size spectratyping. Complementarity-determining region 3 (CDR3) profiles of liver-infiltrating lymphocytes (LIL) were also compared with those circulating in the blood. The representative results of TCR Vβ by CDR3 were also obtained from liver tissues and peripheral blood lymphocytes (PBL) of 21 chronically HCV-infected patients without MC. LIL were highly restricted, with evidence of TCR Vβ clonotypic expansions in 23 of 30 (77%) and in 15 of 21 (71%) MC and non-MC patients, respectively. The blood compartment contained TCR Vβ expanded clones in 19 (63%) MC and 12 (57%) non-MC patients. The occurrence of LIL clonalities was detected irrespective of the degree of liver damage or circulating viral load, whereas it correlated positively with higher levels of intrahepatic HCV RNA. These results support the notion that TCR Vβ repertoire is clonally expanded in HCV-related MC with features comparable to those found in chronically HCV-infected patients without MC.
Collapse
Affiliation(s)
- S Russi
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine and Clinical Oncology, University of Bari Medical School, Bari, Italy
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Cook LB, Elemans M, Rowan AG, Asquith B. HTLV-1: persistence and pathogenesis. Virology 2013; 435:131-40. [PMID: 23217623 DOI: 10.1016/j.virol.2012.09.028] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 09/21/2012] [Accepted: 09/24/2012] [Indexed: 12/27/2022]
MESH Headings
- Adolescent
- Antigens, Viral, Tumor/genetics
- Antigens, Viral, Tumor/immunology
- HLA Antigens/genetics
- HLA Antigens/immunology
- HTLV-I Infections/immunology
- HTLV-I Infections/pathology
- HTLV-I Infections/virology
- Human T-lymphotropic virus 1/pathogenicity
- Human T-lymphotropic virus 1/physiology
- Humans
- Immunity, Innate
- Killer Cells, Natural/pathology
- Killer Cells, Natural/virology
- Leukemia, T-Cell/immunology
- Leukemia, T-Cell/pathology
- Leukemia, T-Cell/virology
- Lymphoma, T-Cell/immunology
- Lymphoma, T-Cell/pathology
- Lymphoma, T-Cell/virology
- Paraparesis, Tropical Spastic/immunology
- Paraparesis, Tropical Spastic/pathology
- Paraparesis, Tropical Spastic/virology
- Receptors, KIR/genetics
- Receptors, KIR/immunology
- T-Lymphocytes, Cytotoxic/pathology
- T-Lymphocytes, Cytotoxic/virology
Collapse
Affiliation(s)
- Lucy B Cook
- Section of Immunology, Wright-Fleming Institute, Imperial College London, London W2 1PG, UK
| | | | | | | |
Collapse
|
12
|
CD8 T cells express randomly selected KIRs with distinct specificities compared with NK cells. Blood 2012; 120:3455-65. [PMID: 22968455 DOI: 10.1182/blood-2012-03-416867] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Epistatic interactions between killer cell immunoglobulin-like receptors (KIRs) and their cognate HLA class I ligands have important implications for reproductive success, antiviral immunity, susceptibility to autoimmune conditions and cancer, as well as for graft-versus-leukemia reactions in settings of allogeneic stem cell transplantation. Although CD8 T cells are known to acquire KIRs when maturing from naive to terminally differentiated cells, little information is available about the constitution of KIR repertoires on human CD8 T cells. Here, we have performed a high-resolution analysis of KIR expression on CD8 T cells. The results show that most CD8 T cells possess a restricted KIR expression pattern, often dominated by a single activating or inhibitory KIR. Furthermore, the expression of KIR, and its modulation of CD8 T-cell function, was independent of expression of self-HLA class I ligands. Finally, despite similarities in the stochastic regulation of KIRs by the bidirectional proximal promoter, the specificity of inhibitory KIRs on CD8 T cells was often distinct from that of natural killer cells in the same individual. The results provide new insight into the formation of KIR repertoires on human T cells.
Collapse
|
13
|
Seich al Basatena NK, MacNamara A, Vine AM, Thio CL, Astemborski J, Usuku K, Osame M, Kirk GD, Donfield SM, Goedert JJ, Bangham CR, Carrington M, Khakoo SI, Asquith B. KIR2DL2 enhances protective and detrimental HLA class I-mediated immunity in chronic viral infection. PLoS Pathog 2011; 7:e1002270. [PMID: 22022261 PMCID: PMC3192839 DOI: 10.1371/journal.ppat.1002270] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 08/01/2011] [Indexed: 12/14/2022] Open
Abstract
Killer cell immunoglobulin-like receptors (KIRs) influence both innate and adaptive immunity. But while the role of KIRs in NK-mediated innate immunity is well-documented, the impact of KIRs on the T cell response in human disease is not known. Here we test the hypothesis that an individual's KIR genotype affects the efficiency of their HLA class I-mediated antiviral immune response and the outcome of viral infection. We show that, in two unrelated viral infections, hepatitis C virus and human T lymphotropic virus type 1, possession of the KIR2DL2 gene enhanced both protective and detrimental HLA class I-restricted anti-viral immunity. These results reveal a novel role for inhibitory KIRs. We conclude that inhibitory KIRs, in synergy with T cells, are a major determinant of the outcome of persistent viral infection.
Collapse
MESH Headings
- Female
- Genes, MHC Class I
- HTLV-I Infections/genetics
- HTLV-I Infections/immunology
- HTLV-I Infections/virology
- Hepacivirus/immunology
- Hepacivirus/physiology
- Hepatitis C, Chronic/genetics
- Hepatitis C, Chronic/immunology
- Hepatitis C, Chronic/virology
- Histocompatibility Antigens Class I/immunology
- Human T-lymphotropic virus 1/immunology
- Human T-lymphotropic virus 1/physiology
- Humans
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Killer Cells, Natural/virology
- Male
- Receptors, KIR/immunology
- Receptors, KIR2DL2/genetics
- Receptors, KIR2DL2/metabolism
- T-Lymphocytes/immunology
- Viral Load
Collapse
Affiliation(s)
| | | | | | - Chloe L. Thio
- Johns Hopkins University, Baltimore, Maryland, United States of America
| | | | | | | | - Gregory D. Kirk
- Johns Hopkins University, Baltimore, Maryland, United States of America
| | | | - James J. Goedert
- National Cancer Institute, Rockville, Maryland, United States of America
| | | | - Mary Carrington
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland, United States of America
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, United States of America
| | | | | |
Collapse
|
14
|
Colantonio AD, Bimber BN, Neidermyer WJ, Reeves RK, Alter G, Altfeld M, Johnson RP, Carrington M, O'Connor DH, Evans DT. KIR polymorphisms modulate peptide-dependent binding to an MHC class I ligand with a Bw6 motif. PLoS Pathog 2011; 7:e1001316. [PMID: 21423672 PMCID: PMC3053351 DOI: 10.1371/journal.ppat.1001316] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 02/08/2011] [Indexed: 12/01/2022] Open
Abstract
Molecular interactions between killer immunoglobulin-like receptors (KIRs) and their MHC class I ligands play a central role in the regulation of natural killer (NK) cell responses to viral pathogens and tumors. Here we identify Mamu-A1*00201 (Mamu-A*02), a common MHC class I molecule in the rhesus macaque with a canonical Bw6 motif, as a ligand for Mamu-KIR3DL05. Mamu-A1*00201 tetramers folded with certain SIV peptides, but not others, directly stained primary NK cells and Jurkat cells expressing multiple allotypes of Mamu-KIR3DL05. Differences in binding avidity were associated with polymorphisms in the D0 and D1 domains of Mamu-KIR3DL05, whereas differences in peptide-selectivity mapped to the D1 domain. The reciprocal exchange of the third predicted MHC class I-contact loop of the D1 domain switched the specificity of two Mamu-KIR3DL05 allotypes for different Mamu-A1*00201-peptide complexes. Consistent with the function of an inhibitory KIR, incubation of lymphocytes from Mamu-KIR3DL05(+) macaques with target cells expressing Mamu-A1*00201 suppressed the degranulation of tetramer-positive NK cells. These observations reveal a previously unappreciated role for D1 polymorphisms in determining the selectivity of KIRs for MHC class I-bound peptides, and identify the first functional KIR-MHC class I interaction in the rhesus macaque. The modulation of KIR-MHC class I interactions by viral peptides has important implications to pathogenesis, since it suggests that the immunodeficiency viruses, and potentially other types of viruses and tumors, may acquire changes in epitopes that increase the affinity of certain MHC class I ligands for inhibitory KIRs to prevent the activation of specific NK cell subsets.
Collapse
Affiliation(s)
- Arnaud D. Colantonio
- Department of Microbiology and Molecular Genetics, Harvard Medical School, New England Primate Research Center, Southborough, Massachusetts, United States of America
| | - Benjamin N. Bimber
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Wisconsin National Primate Research Center, Madison, Wisconsin, United States of America
| | - William J. Neidermyer
- Department of Microbiology and Molecular Genetics, Harvard Medical School, New England Primate Research Center, Southborough, Massachusetts, United States of America
| | - R. Keith Reeves
- Division of Immunology, New England Primate Research Center, Southborough, Massachusetts, United States of America
| | - Galit Alter
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, Massachusetts, United States of America
| | - Marcus Altfeld
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, Massachusetts, United States of America
| | - R. Paul Johnson
- Division of Immunology, New England Primate Research Center, Southborough, Massachusetts, United States of America
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, Massachusetts, United States of America
| | - Mary Carrington
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, Massachusetts, United States of America
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, SAIC-Frederick, Inc., NCI Frederick, Frederick, Maryland, United States of America
| | - David H. O'Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Wisconsin National Primate Research Center, Madison, Wisconsin, United States of America
| | - David T. Evans
- Department of Microbiology and Molecular Genetics, Harvard Medical School, New England Primate Research Center, Southborough, Massachusetts, United States of America
| |
Collapse
|
15
|
Hepatitis C virus (HCV) evades NKG2D-dependent NK cell responses through NS5A-mediated imbalance of inflammatory cytokines. PLoS Pathog 2010; 6:e1001184. [PMID: 21085608 PMCID: PMC2978723 DOI: 10.1371/journal.ppat.1001184] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Accepted: 10/07/2010] [Indexed: 02/06/2023] Open
Abstract
Understanding how hepatitis C virus (HCV) induces and circumvents the host's natural killer (NK) cell-mediated immunity is of critical importance in efforts to design effective therapeutics. We report here the decreased expression of the NKG2D activating receptor as a novel strategy adopted by HCV to evade NK-cell mediated responses. We show that chronic HCV infection is associated with expression of ligands for NKG2D, the MHC class I-related Chain (MIC) molecules, on hepatocytes. However, NKG2D expression is downmodulated on circulating NK cells, and consequently NK cell-mediated cytotoxic capacity and interferon-γ production are impaired. Using an endotoxin-free recombinant NS5A protein, we show that NS5A stimulation of monocytes through Toll-like Receptor 4 (TLR4) promotes p38- and PI3 kinase-dependent IL-10 production, while inhibiting IL-12 production. In turn, IL-10 triggers secretion of TGFβ which downmodulates NKG2D expression on NK cells, leading to their impaired effector functions. Moreover, culture supernatants of HCV JFH1 replicating Huh-7.5.1 cells reproduce the effect of recombinant NS5A on NKG2D downmodulation. Exogenous IL-15 can antagonize the TGFβ effect and restore normal NKG2D expression on NK cells. We conclude that NKG2D-dependent NK cell functions are modulated during chronic HCV infection, and demonstrate that this alteration can be prevented by exogenous IL-15, which could represent a meaningful adjuvant for therapeutic intervention.
Collapse
|
16
|
Sturm N, Thélu MA, Camous X, Dimitrov G, Ramzan M, Dufeu-Duchesne T, Bonorino P, Guillermet C, Brambilla E, Arvers P, Pernollet M, Leroy V, Zarski JP, Marche PN, Jouvin-Marche E. Characterization and role of intra-hepatic regulatory T cells in chronic hepatitis C pathogenesis. J Hepatol 2010; 53:25-35. [PMID: 20452085 DOI: 10.1016/j.jhep.2010.02.024] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 02/04/2010] [Accepted: 02/23/2010] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS In chronic hepatitis C (CHC), HCV-specific T-cell responses are often dysfunctionnal. In vitro data point out that regulatory T cells (Treg) are able to suppress HCV-specific lymphocyte proliferation and cytokine secretion but their implication in this pathology is still debated. METHODS Three complementary approaches were performed to investigate phenotype, frequency or localization of intra-hepatic Treg in treatment naïve CHC patients. Double immunohistochemical analysis was performed in 20 formalin-fixed biopsies with CD8/FoxP3 and CD4/FoxP3 antibodies. Cellular markers and cytokines were investigated by quantitative RT-PCR in 27 additional frozen biopsies. Eight other fresh liver biopsies were selected for complementary analysis of immunophenotyping and frequency of intra-hepatic Treg. RESULTS Immunohistochemical analyses showed the presence of intra-hepatic CD4(+)FoxP3(+)T cells while CD8(+)FoxP3(+)T cells were very scarce. CD4(+)FoxP3(+)T cells were located in necro-inflammatory areas in contact with CD8(+)T cells, suggesting that Treg-mediated inhibition of CD8(+)T cell proliferation may occur by cell-cell contact. RT-PCR analyses showed strong correlations between CD8, FoxP3, and IL-10 with emergence of four distinct gene clusters, CD8-FoxP3, CD8-IL-10, TGF-beta-IL-10, and TNF-alpha-TGF-beta. No correlation was found between serum viral load and any immune markers. Interestingly, the FoxP3(+)/CD8(+) cells ratio significantly decreased in severe fibrosis (F>3) due to the dramatic decline of FoxP3 cells. CONCLUSIONS This study provides new insights into the histological localization of Treg within HCV-infected liver, with a special accumulation of CD4(+)FoxP3(+)Treg cells in necro-inflammatory areas, in contact with CD8(+)T cells. Our results suggest a link between Treg, CD8, and IL-10 which altogether could balance immune responses against the virus to avoid immunopathogenesis.
Collapse
|
17
|
Knapp S, Warshow U, Hegazy D, Brackenbury L, Guha IN, Fowell A, Little AM, Alexander GJ, Rosenberg WM, Cramp ME, Khakoo SI. Consistent beneficial effects of killer cell immunoglobulin-like receptor 2DL3 and group 1 human leukocyte antigen-C following exposure to hepatitis C virus. Hepatology 2010; 51:1168-75. [PMID: 20077564 PMCID: PMC4202114 DOI: 10.1002/hep.23477] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
UNLABELLED Natural killer cells are a key component in the immune control of viral infections. Their functions are controlled by inhibitory receptors for major histocompatability complex (MHC) class I, including the killer cell immunoglobulin-like receptors (KIR). KIR2DL3 in combination with its cognate human leukocyte antigen (HLA)-C ligand has been shown to be associated with spontaneous resolution of viremia following hepatitis C virus (HCV) infection. In order to determine if this gene combination is advantageous across all potential outcomes following HCV exposure, we studied individuals with apparent resistance to HCV infection who remain seronegative and aviremic despite long-term injection drug use and also individuals chronically infected with HCV who successfully clear HCV with treatment. Homozygosity for KIR2DL3 in combination with group 1 HLA-C allotypes was more frequent in exposed seronegative aviremic individuals as compared to those with chronic HCV (25.0% versus 9.7%, P = 0.003, odds ratio [OR] = 3.1, 95% confidence interval [CI] = 1.3-7.1) in a model similar to that found for those spontaneously resolving HCV. In individuals undergoing treatment for HCV, those with KIR2DL3 and group 1 HLA-C were more likely to make a sustained virological response (SVR) (P = 0.013, OR = 2.3, 95% CI = 1.1-4.5). KIR and HLA-C protection in both treatment response and spontaneously resolving HCV was validated at the allelic level, in which KIR2DL3-HLA-Cw*03 was associated with SVR (P = 0.004, OR = 3.4, 95% CI = 1.5-8.7) and KIR2DL3/KIR2DL3-HLA-Cw*03 was associated with spontaneous resolution of HCV infection (P = 0.01, OR = 2.3, 95% CI = 1.2-4.4). CONCLUSION KIR and HLA-C genes are consistently beneficial determinants in the outcome of HCV infection. This advantage extends to the allelic level for both gene families.
Collapse
Affiliation(s)
- Susanne Knapp
- Department of Hepatology, Division of Medicine, Imperial College London, UK
| | - Usama Warshow
- Hepatology Research Group, Peninsula Medical School and Hepatology Department Derriford Hospital, Plymouth, UK
| | - Doha Hegazy
- Hepatology Research Group, Peninsula Medical School and Hepatology Department Derriford Hospital, Plymouth, UK
| | - Louise Brackenbury
- Department of Hepatology, Division of Medicine, Imperial College London, UK
| | - I. Neil Guha
- Department of Hepatology, University of Southampton, Southampton, UK
| | - Andrew Fowell
- Department of Hepatology, University of Southampton, Southampton, UK
| | | | | | | | - Matthew E. Cramp
- Hepatology Research Group, Peninsula Medical School and Hepatology Department Derriford Hospital, Plymouth, UK
| | - Salim I. Khakoo
- Department of Hepatology, Division of Medicine, Imperial College London, UK
| |
Collapse
|
18
|
Hermann E, Berthe A, Truyens C, Alonso-Vega C, Parrado R, Torrico F, Carlier Y, Braud VM. Killer cell immunoglobulin-like receptor expression induction on neonatal CD8(+) T cells in vitro and following congenital infection with Trypanosoma cruzi. Immunology 2009; 129:418-26. [PMID: 19922420 DOI: 10.1111/j.1365-2567.2009.03194.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Major histocompatibility complex (MHC) class I-specific inhibitory natural killer receptors (iNKRs) are expressed by subsets of T cells but the mechanisms inducing their expression are poorly understood, particularly for killer-cell immunoglobulin-like receptors (KIRs). The iNKRs are virtually absent from the surface of cord blood T cells but we found that KIR expression could be induced upon interleukin-2 stimulation in vitro. In addition, KIR expression was enhanced after treatment with 5-aza-2'-deoxycytidine, suggesting a role for DNA methylation. In vivo induction of KIR expression on cord blood T cells was also observed during a human congenital infection with Trypanosoma cruzi which triggers activation of fetal CD8(+) T cells. These KIR(+) T cells had an effector and effector/memory phenotype suggesting that KIR expression was consecutive to the antigenic stimulation; however, KIR was not preferentially found on parasite-specific CD8(+) T cells secreting interferon-gamma upon in vitro restimulation with live T. cruzi. These findings show that KIR expression is likely regulated by epigenetic mechanisms that occur during the maturation process of cord blood T cells. Our data provide a molecular basis for the appearance of KIRs on T cells with age and they have implications for T-cell homeostasis and the regulation of T-cell-mediated immune responses.
Collapse
Affiliation(s)
- Emmanuel Hermann
- Laboratoire de Parasitologie, Faculté de Médecine, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Focosi D, Bestagno M, Burrone O, Petrini M. CD57+ T lymphocytes and functional immune deficiency. J Leukoc Biol 2009; 87:107-16. [PMID: 19880576 DOI: 10.1189/jlb.0809566] [Citation(s) in RCA: 188] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
CD57(+) expression in T lymphocytes has been recognized for decades as a marker of in vitro replicative senescence. In recent years, accumulating evidences have pointed on the utility of this marker to measure functional immune deficiency in patients with autoimmune disease, infectious diseases, and cancers. We review here the relevant literature and implications in clinical settings.
Collapse
Affiliation(s)
- Daniele Focosi
- Division of Hematology, Azienda Ospedaliera Santa Chiara, University of Pisa, via Roma, Pisa, Italy.
| | | | | | | |
Collapse
|
20
|
Fine characterization of intrahepatic NK cells expressing natural killer receptors in chronic hepatitis B and C. J Hepatol 2009; 51:458-67. [PMID: 19596474 DOI: 10.1016/j.jhep.2009.05.030] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 05/06/2009] [Accepted: 05/11/2009] [Indexed: 12/11/2022]
Abstract
BACKGROUND/AIMS The fate of intrahepatic NK cell subsets in the course of HCV and HBV infections is not clearly understood. METHODS Blood and intrahepatic CD56(+) NK cell subsets (expressing NKG2A, CD158a,h or CD158b,j receptors) from HCV or HBV patients were quantified by flow cytometry and localized by immunohistochemistry in liver biopsies. RESULTS A significant reduction in NK cell frequency and a quantitative imbalance between CD56(bright) and CD56(dim) subsets were observed in chronic HCV patients as compared to HBV patients, underlining that the inflammatory environment is not the only cause of these phenomena. The proportions of intrahepatic NK cells expressing either NKG2A, and/or CD158a,h, CD158b,j differed significantly between HCV and HBV patients. A higher frequency of perforin among intrahepatic CD56(+)CD3(-) cells was observed in HCV compared to HBV patients. Double immunohistochemical staining showed that CD56(+)CD3(-) cells were localized within necrotic areas. Immune monitoring of circulating CD56 subsets revealed that CD3(-)CD56(bright)NKG2A(+) and CD3(-)CD56(dim)NKG2A(+) cells were positively correlated with the necroinflammatory score and inversely correlated with viral load, respectively, in HCV patients. CONCLUSIONS HCV and HBV affect NK cell subsets according to the status of the diseases, especially CD3(-)CD56(dim)NKG2A(+) and CD3(-)CD56(bright)NKG2A(+) cells, may be of interest for disease monitoring.
Collapse
|
21
|
de Arias AE, Haworth SE, Defeo TM, Poli F. Natural killer cells in hepatitis C virus recurrence following liver transplantation: what role do they play? Expert Rev Gastroenterol Hepatol 2009; 3:329-32. [PMID: 19673619 DOI: 10.1586/egh.09.29] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
22
|
de Arias AE, Haworth SE, Belli LS, Burra P, Pinzello G, Vangeli M, Minola E, Guido M, Boccagni P, De Feo TM, Torelli R, Cardillo M, Scalamogna M, Poli F. Killer cell immunoglobulin-like receptor genotype and killer cell immunoglobulin-like receptor-human leukocyte antigen C ligand compatibility affect the severity of hepatitis C virus recurrence after liver transplantation. Liver Transpl 2009; 15:390-9. [PMID: 19326408 DOI: 10.1002/lt.21673] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In 20% to 30% of infected individuals, hepatitis C virus (HCV) can cause cirrhosis and hepatocellular carcinoma, for which liver transplantation is the best treatment available. HCV re-infection is universal, and hepatitis disease recurrence occurs in most cases with a 30% probability of progression to graft cirrhosis at 5 years post-transplant. The immunological response to HCV involves natural killer (NK) cells and killer cell immunoglobulin-like receptors (KIRs), which specifically recognize human leukocyte antigen (HLA) class I antigens present on target cells. The effector functions of NK cells are influenced by inhibitory KIR interaction with self-HLA class I ligands, with HLA-C being the most predominant. This study examines the roles of KIR genotypes and their HLA ligands in both HCV disease recurrence and its progression. A total of 151 patients were included in the cohort, and their clinical details were recorded. Liver biopsies were used to define the absence/presence of recurrent hepatitis, the degree of fibrosis, and the progression to cirrhosis over a 10-year period. Mismatching of KIR-HLA-C ligands between donor-recipient pairs was associated with the recurrence of hepatitis (P = 0.008). The presence of KIR2DL3 in the recipient correlated with progression to liver fibrosis (P = 0.04). The mismatching of HLA-KIR ligands favored the progression of the recurrent hepatitis to fibrosis only in the presence of KIR2DL3 (P = 0.04). These preliminary results indicate that the KIR genotype and KIR-HLA-C ligand compatibility play roles in the recurrence and progression of hepatitis C disease in liver transplant recipients.
Collapse
Affiliation(s)
- Alejandro Espadas de Arias
- Department of Regenerative Medicine, Organ and Tissue Transplantation Immunology, Ospedale Maggiore Policlinico, Mangiagalli, Regina Elena, Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Meresse B, Cerf-Bensussan N. Innate T cell responses in human gut. Semin Immunol 2009; 21:121-9. [PMID: 19231234 DOI: 10.1016/j.smim.2009.01.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Accepted: 01/20/2009] [Indexed: 01/27/2023]
Abstract
One arm of the gut-associated immune system is represented by a vast collection of T lymphocytes which participate in the subtle interplay between innate and adaptive immune mechanisms and maintain homeostasis at the main body external surface. Mounting data are providing exciting new insight into the innate-like mechanisms which enable intestinal T cells to rapidly sense local conditions and which broaden the spectrum of their functions and regulation at this strategic location. Herein we discuss how innate-like T cell recognition by unconventional T cell subsets and expression of innate NK receptors might modulate immune T cell responses in the human normal or diseased intestine.
Collapse
Affiliation(s)
- Bertrand Meresse
- INSERM U793, Université Paris Descartes, Medical School, 156 rue de Vaugirard, 75737 Paris Cedex 15, France.
| | | |
Collapse
|
24
|
|
25
|
Permanent silencing of NKG2A expression for cell-based therapeutics. J Mol Med (Berl) 2008; 87:199-210. [PMID: 19002424 DOI: 10.1007/s00109-008-0417-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Revised: 10/21/2008] [Accepted: 10/22/2008] [Indexed: 01/05/2023]
Abstract
Natural killer (NK) and T-cell cytotoxicity is significantly reduced by signaling via CD94/NKG2A receptors. High levels of NKG2A on NK cells have been shown to compromise the graft-versus-leukemia effect in hematopoietic stem cell transplantation. We therefore evaluated the functional relevance of NKG2A silencing for the cytotoxic potential of genetically engineered NK and T cells. Lentiviral vectors containing short hairpin RNA (shRNA) sequences targeting NKG2A transcripts were used to transduce NKG2A(+) primary NK and T cells. NKG2A expression levels were measured by flow cytometry and real-time PCR. The effect of NKG2A silencing on the cytolytic potential of NK and T cells was evaluated in cytotoxicity assays using K562 and B lymphoblastoid cells as targets. Granzyme B mRNA transcript levels were detected by real-time PCR. The transduction of inducible RNAi cassettes containing the sequences for shRNAs targeting NKG2A reduced protein expression in NK and T cells by up to 95%. The cytotoxicity assays demonstrated that NKG2A silencing effectively enhanced NK and CD8+ T-cell lysis by up to 40% and 15%, respectively. However, lysis of K562 cells which lack human leukocyte antigen-E, the ligand of NKG2A, was associated with an upregulation of the natural cytotoxicity receptor NKp30 in NKG2A-silenced NK cells. Our data suggest that RNAi-mediated silencing of NKG2A in effector cells could improve the efficacy of cell-based immunotherapies but also show that indirect effects of NKG2A knockdown exist that have to be considered when designing therapeutic protocols with genetically engineered NK or T cells.
Collapse
|
26
|
Ligand-independent exhaustion of killer immunoglobulin-like receptor-positive CD8+ T cells in human immunodeficiency virus type 1 infection. J Virol 2008; 82:9668-77. [PMID: 18579582 DOI: 10.1128/jvi.00341-08] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Virus-specific CD8(+) T cells play a central role in the control of viral infections, including human immunodeficiency virus type 1 (HIV-1) infection. However, despite the presence of strong and broad HIV-specific CD8(+) T-cell responses in chronic HIV-1 infection, these cells progressively lose critical effector functions and fail to clear the infection. Mounting evidence suggests that the upregulation of several inhibitory regulatory receptors on the surface of CD8(+) T cells during HIV-1 infection may contribute directly to the impairment of T-cell function. Here, we investigated the role of killer immunoglobulin receptors (KIR), which are expressed on NK cells and on CD8(+) T cells, in regulating CD8(+) T-cell function in HIV-1 infection. KIR expression was progressively upregulated on CD8(+) T cells during HIV-1 infection and correlated with the level of viral replication. Expression of KIR was associated with a profound inhibition of cytokine secretion, degranulation, proliferation, and activation by CD8(+) T cells following stimulation with T-cell receptor (TCR)-dependent stimuli. In contrast, KIR(+) CD8(+) T cells responded potently to TCR-independent stimulation, demonstrating that these cells are functionally competent. KIR-associated suppression of CD8(+) T-cell function was independent of ligand engagement, suggesting that these regulatory receptors may constitutively repress TCR activation. This ligand-independent repression of TCR activation of KIR(+) CD8(+) T cells may represent a significant barrier to therapeutic interventions aimed at improving the quality of the HIV-specific CD8(+) T-cell response in infected individuals.
Collapse
|
27
|
Ishii S, Koziel MJ. Immune responses during acute and chronic infection with hepatitis C virus. Clin Immunol 2008; 128:133-47. [PMID: 18514579 DOI: 10.1016/j.clim.2008.03.525] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Revised: 03/27/2008] [Accepted: 03/27/2008] [Indexed: 12/13/2022]
Abstract
Hepatitis C virus (HCV) induces persistent infection and causes chronic liver disease in most infected patients. Vigorous HCV-specific CD4+ and CD8+ T cell responses against HCV multiple epitopes are necessary for spontaneous viral clearance during the acute phase, but the virus appears to have multiple strategies to evade these defenses. There are relatively few studies on the role of immune responses during the chronic phase of infection. CD4+ T cell responses appear to protect against liver injury and may be important to clearance during interferon and ribavirin based therapy. Classic cytotoxic T cells (CTL) may primarily damage the liver in chronic HCV, but there may be subpopulations of T cells that protect against liver inflammation. Resolution of these outstanding questions is important to the development of a prophylactic vaccine as well as improving therapeutic options for those with chronic infection.
Collapse
Affiliation(s)
- Shigeaki Ishii
- Infectious Disease Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|